[go: up one dir, main page]

JP7479567B2 - Method for controlling segregation and network carbide in 86-grade high-strength cord steel wire rod - Google Patents

Method for controlling segregation and network carbide in 86-grade high-strength cord steel wire rod Download PDF

Info

Publication number
JP7479567B2
JP7479567B2 JP2023513991A JP2023513991A JP7479567B2 JP 7479567 B2 JP7479567 B2 JP 7479567B2 JP 2023513991 A JP2023513991 A JP 2023513991A JP 2023513991 A JP2023513991 A JP 2023513991A JP 7479567 B2 JP7479567 B2 JP 7479567B2
Authority
JP
Japan
Prior art keywords
controlled
slab
temperature
wire rod
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023513991A
Other languages
Japanese (ja)
Other versions
JP2023539662A (en
Inventor
家明 廖
永彪 来
錦中 左
仲林 桂
昆鵬 王
陽 趙
艶 沈
Original Assignee
中天鋼鉄集団有限公司
常州中天特鋼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中天鋼鉄集団有限公司, 常州中天特鋼有限公司 filed Critical 中天鋼鉄集団有限公司
Publication of JP2023539662A publication Critical patent/JP2023539662A/en
Application granted granted Critical
Publication of JP7479567B2 publication Critical patent/JP7479567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Metal Rolling (AREA)

Description

本発明は、コード鋼生産の技術分野に属し、具体的には、86級高強度コード鋼線材の偏析及び網状炭化物の制御方法に関する。 The present invention belongs to the technical field of cord steel production, and specifically relates to a method for controlling segregation and network carbides in 86-class high-strength cord steel wire rod.

近年、我が国の自動車工業及び機械製造業の急速な発展により、コード鋼の需要量がますます大きくなるとともに、製品の品質要求がますます高くなる。自動車が軽量化とエコで環境に優しい方向に発展するにつれて、コード鋼線の強度と疲労強度を向上させることで、全体強度が同じであるタイヤにおいて、コード鋼線の使用量を少なくすることができ、タイヤの重量が低下し、タイヤの転がり抵抗が少なくなり、エネルギー消費が節約され、タイヤの生産コストが低下する。現在、高強度コード鋼86級は、高利潤、高付加価値製品に属し、かつ市場規模が大きく、見通しが良好である。 In recent years, with the rapid development of China's automobile and machinery manufacturing industries, the demand for cord steel is increasing and the quality requirements for products are becoming higher. As automobiles develop in the direction of lightweight and eco-friendly, improving the strength and fatigue strength of cord steel wire can reduce the amount of cord steel wire used in tires with the same overall strength, reducing tire weight, reducing tire rolling resistance, saving energy consumption and lowering tire production costs. At present, high-strength cord steel grade 86 belongs to high-profit, high-added-value products, and has a large market size and good prospects.

コード鋼は、その動作条件及び安全性能の要求により、その化学成分、介在物、機械的性質及び金属組織などのいずれにも厳しく要求されている。高Al含有量の変形しない硬質介在物、線材心部偏析(網状炭化物)は、顧客における深絞りやカール破断を引き起こす二つの大きな問題である。86級コードは、それ自体のC含有量が高いため(銘柄がLX86Aである86級コード鋼線の成分重量百分率は、C:0.85-0.90%、Si:0.15-0.35%、Mn:0.40-0.60%、P:≦0.015%、S:≦0.015%、Cr:≦0.10%)、連続鋳造偏析が重く、線材は、網状セメンタイトを形成しやすく、基地組織を切り離し、コードの引抜き加工プロセスにおいてカップコーン状の断線を引き起こし、生産効率が低く、コード品質が悪い原因となる。 Due to the requirements of its operating conditions and safety performance, cord steel has strict requirements for its chemical composition, inclusions, mechanical properties, metal structure, etc. High Al 2 O 3 content, non-deformable hard inclusions, and wire core segregation (network carbide) are two major problems that cause deep drawing and curl breakage in customers. Grade 86 cord has a high C content (the component weight percentages of grade 86 cord steel wire with the brand name LX86A are C: 0.85-0.90%, Si: 0.15-0.35%, Mn: 0.40-0.60%, P: ≦0.015%, S: ≦0.015%, Cr: ≦0.10%), so continuous casting segregation is heavy, and the wire is prone to form network cementite, which separates the matrix structure and causes cup-cone-shaped breakage in the cord drawing process, resulting in low production efficiency and poor cord quality.

86級コードの国内のほとんどの鉄鋼企業は、大ビレット(投入軽圧下)+高温拡散+分塊仕上げ+二回加熱成形という工程を採用し、ステルモア空冷と組み合わせることで線材の網状炭化物及び脱炭の品質を制御している。世界的な景気低迷の中で、自動車業界は競争が激化し、生産と製造コストを如何に低下させてより高い利幅を獲得するかは、サプライチェーン企業全体が追求する目標である。二回加熱成形工程を採用することは、プロセスが長く、コストが高く、競争力が欠如するという弱点を有する。例えば中国特許文献(出願番号201910798924.3)には、二回加熱成形工程を採用した高強度コード鋼ビレットの生産方法が開示されている。すなわち、大ビレットを小ビレットに圧延し、冷却した後、小ビレットを再び加熱することにより、5.5線材に圧延するが、工程経路が長くコストが高いという欠点を有する。 Most domestic steel enterprises of 86 grade cord adopt the process of large billet (light reduction) + high temperature diffusion + blooming finishing + double heating and forming, and combine it with Stelmor air cooling to control the quality of wire rod reticulated carbide and decarburization. In the midst of the global economic downturn, the automobile industry is becoming more competitive, and how to reduce production and manufacturing costs and obtain higher profit margins is the goal pursued by the entire supply chain enterprises. The use of the double heating and forming process has the disadvantages of a long process, high cost, and lack of competitiveness. For example, a Chinese patent document (application number 201910798924.3) discloses a production method of high-strength cord steel billet using a double heating and forming process. That is, the large billet is rolled into a small billet, cooled, and then the small billet is heated again to roll it into 5.5 wire rod, but it has the disadvantages of a long process path and high cost.

本発明は、従来の「KR→BOF→LF→CC→表面抜取検査→加熱→分塊→皮はぎ→加熱→圧延制御→制御冷却」の代わりに、「KR→BOF→LF→CC→表面処理→加熱→圧延制御→冷却制御」という工程を採用している。製鋼工程、圧延工程の合理的な設計により、二次加熱成形を経ず、皮をはぐ必要がなく、かつ連続鋳造機械の軽圧下技術にサポートされずに、86級高強度コード鋼線材の偏析及び網状炭化物を改善し、当該問題による顧客の引抜き断線を低減させる86級高強度コード鋼線材の偏析及び網状炭化物の制御方法が提供される。 Instead of the conventional process of "KR → BOF → LF → CC → surface sampling inspection → heating → blooming → skinning → heating → rolling control → controlled cooling", the present invention adopts the process of "KR → BOF → LF → CC → surface treatment → heating → rolling control → cooling control". By rationally designing the steelmaking and rolling processes, a method for controlling segregation and reticulate carbide in 86-grade high-strength cord steel wire rod is provided, which improves the segregation and reticulate carbide in 86-grade high-strength cord steel wire rod without secondary heating and forming, without the need for skinning, and without the support of the light reduction technology of the continuous casting machine, and reduces the customer's wire breakage caused by said problems when drawing.

上記目的を達成するために、本発明で採用される技術的手段は以下のとおりである。 To achieve the above objective, the technical means adopted in the present invention are as follows:

86級高強度コード鋼線材の偏析及び網状炭化物の制御方法は、順次行われるKR溶銑前脱硫工程、BOF転炉製錬工程、LF炉精錬工程、連続鋳造CC工程、鋳片表面処理工程、鋳片加熱工程、圧延制御工程及び冷却制御工程を含み、前記86級高強度コード鋼線材の成分重量百分率は、C:0.85-0.90%、Si:0.15-0.35%、Mn:0.40-0.60%、P:≦0.015%、S:≦0.010%、Cr:≦0.010%、Al:≦0.005%であり、残りが、Fe及び不可避的不純物元素である。 The method for controlling segregation and reticulated carbides in 86-grade high-strength cord steel wire rod includes a KR hot metal pre-desulfurization process, a BOF converter smelting process, an LF furnace refining process, a continuous casting CC process, a slab surface treatment process, a slab heating process, a rolling control process, and a cooling control process, and the component weight percentages of the 86-grade high-strength cord steel wire rod are C: 0.85-0.90%, Si: 0.15-0.35%, Mn: 0.40-0.60%, P: ≦0.015%, S: ≦0.010%, Cr: ≦0.010%, Al: ≦0.005%, and the remainder are Fe and unavoidable impurity elements.

KR溶銑前脱硫工程において、S元素は、偏析しやすい有害元素であり、鋳片凝固中心におけるS元素の濃縮を低減させ、鋳片の偏析を低減させるために、溶銑を前処理する。したがって、KR工程において、溶銑鍋に石灰などの脱硫剤を3~6kg/トン鋼添加し、強力な機械的攪拌を施すことにより、転炉における溶銑のS含有量≦0.003%が保証されるように溶銑中のS含有量を除去し、その後、脱Sスラグを除去する。 In the KR hot metal pre-desulfurization process, S element is a harmful element that easily segregates, so the hot metal is pre-treated to reduce the concentration of S element in the solidification center of the slab and reduce segregation in the slab. Therefore, in the KR process, 3 to 6 kg/ton of desulfurization agent such as lime is added to the hot metal ladle and strong mechanical stirring is performed to remove the S content in the hot metal so that the S content of the hot metal in the converter is guaranteed to be ≦0.003%, and then the desulfurization slag is removed.

BOF転炉製錬工程において、Pも、偏析しやすい有害元素であり、完成品中のP含有量≦0.010%、S含有量≦0.008%、かつ、P+S含有量≦0.016%となるように制御する必要がある。具体的な制御方法は、完成品のP、S及びその他の有害元素が低いレベルにあることを保証するために、BOF製錬にコード専用クリーン鋼屑(成分は、主成分Fe、C、Si、Mn及び他の不可避的微量元素であり、総量が総金属装入量の10%~30%を占める)を用いる。また、転炉BOF製錬は「ダブルスラグ」工程を採用し、すなわち、転炉における吹錬により約5±1minのケイ素マンガン酸化期が終了する際に、出鋼のP含有量≦0.010%が保証されるようにガンを出し、転炉における吹錬後期のP戻りを防止するために脱Pスラグを除去し、ガンを再び入れ、スラグを作る。BOF転炉製錬工程において、転炉出鋼は「ダブル止め」出鋼工程を採用し、すなわち、出鋼プロセスでスラグ止めコーンによるスラグ止めと滑り板によるスラグ止めの組み合わせを用いると同時に、スラグ流出検出技術を装備して出鋼プロセスにおけるスラグ流出量≦50kgとなるように制御することで、精錬プロセスでP、S、Tiなどの有害元素のスラグから溶鋼への拡散が回避される。「ダブル止め」出鋼工程により、鋼中のP、S含有量が少なくなり、ひいては鋳片の偏析が少なくなる。 In the BOF converter smelting process, P is also a harmful element that is prone to segregation, and it is necessary to control the P content in the finished product to be ≦0.010%, the S content ≦0.008%, and the P + S content ≦0.016%. The specific control method is to use code-specific clean steel scrap (the main components are Fe, C, Si, Mn and other unavoidable trace elements, the total amount of which accounts for 10% to 30% of the total metal charge) in the BOF smelting to ensure that the P, S and other harmful elements in the finished product are at low levels. In addition, the converter BOF smelting adopts a "double slag" process, that is, when the silicon-manganese oxidation period of about 5±1 min is completed by blowing in the converter, the gun is turned off to ensure that the P content of the tapped steel is ≦0.010%, and the de-P slag is removed to prevent P return in the later stage of blowing in the converter, and the gun is turned on again to make slag. In the BOF converter smelting process, the converter adopts a "double stop" tapping process, that is, a combination of a slag stopper cone and a slide plate is used in the tapping process, and slag outflow detection technology is equipped to control the amount of slag outflow in the tapping process to be ≦50 kg, thereby preventing the diffusion of harmful elements such as P, S, and Ti from the slag to molten steel in the refining process. The "double stop" tapping process reduces the P and S content in the steel, and therefore reduces the segregation of the slab.

LF炉精錬工程において、精錬プロセスで炭化珪素による脱酸を採用し、精錬スラグはCaO-SiO二元スラグ系を採用し、精錬最終スラグのアルカリ度を0.7-1.0に制御する。精錬の後期に大きなアルゴンガスの攪拌を回避し(スラグ面をちょうど吹き分けるようにアルゴンガスの底吹きを制御する)、スラグ巻き込みを防止する。ブル取鍋の温度が溶鋼液相線の温度35~45℃よりも高いことが保証されるように溶鋼の成分と温度を調整する。精錬が終了し、アルゴンガスソフトブロー時間≧15minとする。 In the LF furnace refining process, the refining process adopts silicon carbide deoxidation, the refining slag adopts CaO- SiO2 binary slag system, and the alkalinity of the final refining slag is controlled to 0.7-1.0. In the later stage of refining, large argon gas stirring is avoided (bottom blowing of argon gas is controlled so as to just blow the slag surface apart), and slag entrapment is prevented. The composition and temperature of the molten steel are adjusted to ensure that the temperature of the bull ladle is higher than the liquidus temperature of the molten steel, 35-45°C. After refining is completed, the argon gas soft blow time is ≧15min.

連続鋳造CC工程において、10マシン10フロー弧形連続鋳造機により鋳片を調製し、二次冷却強度を保証するために、鋳片断面≦160*160mmとする。鋳造機の孤形半径10mであり、末端電磁攪拌はメニスカスから7.2m離れる。末端電磁攪拌装置の長さ700mm、内径φ380mmである。連続鋳造による鋳片の偏析の制御キーポイントは、低過熱度、強い結晶器電磁攪拌と末端電磁攪拌、適切な引抜き速度、二次冷却強冷却及び熱ソフト圧下技術、鋳片中心炭素の偏析平均値≦1.07の保証である。具体的には、鋳片等軸晶の比率を向上させるために、連続鋳造は低過熱度鋳造を採用し、溶鋼の過熱度を10~25℃に制御する。強い電磁攪拌強度は、溶鋼温度の均一を促進し、柱状結晶の成長を断ち切り、核生成を促進し、等軸晶の比率を向上させ、凝固末端柱状結晶の「架橋」を回避することができるので、結晶器電磁攪拌電流250~350A、周波数2~4Hzで、末端電磁攪拌電流300~400A、周波数5~10Hzである。引抜き速度と末端電磁攪拌位置の適切な組み合わせを保証し、最適な末端攪拌効果を達成するために、引抜き速度を1.60~1.75m/minに制御し、目標1.70m/minである。鋳片凝固プロセスにおける元素の分別結晶を抑制するために、二次冷却全水分強冷却を採用し、二次冷却比水量を1.6~1.8L/kgに制御する。また、出末端の電磁攪拌箇所で鋳片を鋳造し、集中的な水冷を行うことで、鋳造流ハウジングを収縮させ、「熱ソフト圧下」という効果を奏し、鋳片の偏析が改善される。 In the continuous casting CC process, the slab is prepared by a 10-machine 10-flow arc-shaped continuous casting machine, and the cross section of the slab is ≦160* 160mm2 to ensure the secondary cooling strength. The arc radius of the casting machine is 10m, and the end electromagnetic stirring is 7.2m away from the meniscus. The length of the end electromagnetic stirring device is 700mm, and the inner diameter is φ380mm. The key points for controlling the segregation of the slab by continuous casting are low superheat, strong crystallizer electromagnetic stirring and end electromagnetic stirring, appropriate drawing speed, strong secondary cooling and thermal soft reduction technology, and ensuring the segregation average value of the slab center carbon ≦1.07. Specifically, in order to improve the ratio of the equiaxed crystals of the slab, continuous casting adopts low superheat casting, and the superheat of the molten steel is controlled at 10-25°C. Strong electromagnetic stirring strength can promote uniformity of molten steel temperature, cut off the growth of columnar crystals, promote nucleation, improve the ratio of equiaxed crystals, and avoid the "bridging" of solidification end columnar crystals, so the crystallizer electromagnetic stirring current is 250-350A, frequency is 2-4Hz, and the end electromagnetic stirring current is 300-400A, frequency is 5-10Hz. In order to ensure the appropriate combination of drawing speed and end electromagnetic stirring position and achieve the optimal end stirring effect, the drawing speed is controlled to 1.60-1.75m/min, with the target being 1.70m/min. In order to suppress the fractional crystallization of elements in the slab solidification process, the secondary cooling total water strong cooling is adopted, and the secondary cooling specific water amount is controlled to 1.6-1.8L/kg. In addition, the slab is cast at the electromagnetic stirring point at the discharge end and intensive water cooling is performed, which shrinks the casting flow housing and achieves the effect of "thermal soft reduction", improving the segregation of the slab.

さらに、鋳片の二次冷却プロセスの温度変化に応じて、異なる二次冷却段の冷却水流量を次のように変化させるように設定する。足置きローラ段(長さ約0.3m)9.0~11.0m3/h、二次冷却一段(長さ約2.0m)11.0~13.0m3/h、二次冷却二段(長さ約2.3m)8.0~10.0m3/h、二次冷却三段(長さ約1.4m)2.5~4.5m3/hである。また、末端電磁攪拌箇所における鋳片の空冷温度戻りのため、その後の空冷段に長さが1.5mであり、水流量を1.5~3.5m3/hに制御する全水分冷却領域(二次冷却四段)が追加され、レベラーに入れる前の鋳片の温度戻りを効果的に低減させ、熱送鋳片のひび割れの発生確率を低下させるとともに、「熱ソフト圧下」という効果を提供し、鋳片の中心偏析を低減させることができる。同時に、酸化鉄皮の構造を改善し、金属材料の収率を向上させることができる。 In addition, the cooling water flow rate of different secondary cooling stages is set to change according to the temperature change of the secondary cooling process of the slab as follows: Footrest roller stage (length about 0.3 m) 9.0-11.0 m3/h, secondary cooling stage 1 (length about 2.0 m) 11.0-13.0 m3/h, secondary cooling stage 2 (length about 2.3 m) 8.0-10.0 m3/h, secondary cooling stage 3 (length about 1.4 m) 2.5-4.5 m3/h. In addition, due to the air-cooled temperature return of the slab at the terminal electromagnetic stirring point, a total water cooling area (secondary cooling stage 4) with a length of 1.5 m and a water flow rate of 1.5-3.5 m3/h is added to the subsequent air-cooling stage, which effectively reduces the temperature return of the slab before entering the leveler, reduces the probability of cracking of the hot-transported slab, and provides the effect of "thermal soft reduction", which can reduce the central segregation of the slab. At the same time, it can improve the structure of the iron oxide skin and increase the yield of metal materials.

鋳片表面処理工程において、得られた鋳片を風防スタックにより100℃以下に冷却し、ショットブラスト機を用いて鋳片表面の酸化鉄皮を除去し、その後、鋳片の表面に高温脱炭防止塗料の層を塗布する。脱炭防止効果を保証し、線材表面の炭素量増加を防止するために、塗料配合比(粉体と液体の質量比)3:2、塗膜の厚さを0.2~1.0mmに制御し、塗料が乾燥した後に鋼片加熱工程に入る。 In the slab surface treatment process, the resulting slab is cooled to below 100°C using a windshield stack, and the iron oxide skin on the slab surface is removed using a shot blasting machine, after which a layer of high-temperature decarburization prevention paint is applied to the slab surface. In order to ensure the decarburization prevention effect and prevent the increase in the amount of carbon on the wire surface, the paint mixing ratio (powder to liquid mass ratio) is controlled to 3:2, and the coating thickness is controlled to 0.2-1.0 mm. After the paint has dried, the steel slab enters the heating process.

鋳片加熱工程において、高温脱炭防止塗料が塗布された鋳片を、高温拡散工程により加熱し、かつ、加熱炉において等速で前進させ、加熱炉の予熱段の時間を30~55minに制御し、加熱一段温度950-1000℃、時間は40~65minであり、加熱二段温度1200-1230℃、時間は65~105minであり、均熱段の温度1220-1250℃、時間は50~85minであり、初期圧延温度1180-1220℃である。当該鋳片加熱工程により、C、P、S、Mnなどの樹枝状結晶間の拡散が促進され、元素のミクロ偏析が低減され、かつ、鋳片中心の収縮孔のシーミングに有利である。 In the slab heating process, the slab coated with high-temperature decarburization prevention paint is heated by a high-temperature diffusion process and advanced at a constant speed in the heating furnace. The time of the preheating stage of the heating furnace is controlled to 30 to 55 min. The first heating stage temperature is 950-1000°C, the time is 40 to 65 min., the second heating stage temperature is 1200-1230°C, the time is 65 to 105 min. The soaking stage temperature is 1220-1250°C, the time is 50 to 85 min., and the initial rolling temperature is 1180-1220°C. This slab heating process promotes the diffusion of C, P, S, Mn, etc. between dendrites, reduces microsegregation of elements, and is advantageous for seaming of shrinkage holes in the center of the slab.

圧延材の脱炭を制御するために、加熱炉において還元性雰囲気で加熱し、空燃比を0.4~0.5に制御する。加熱炉抽出間隔は117-190s/本に従い、鋼片加熱合計時間190-300minである。 To control the decarburization of the rolled material, it is heated in a reducing atmosphere in the heating furnace and the air-fuel ratio is controlled to 0.4 to 0.5. The heating furnace withdrawal interval is 117-190 s/piece, and the total steel piece heating time is 190-300 min.

圧延制御工程において、高温レイング工程に従ってレイング温度を960~980℃に制御し、心部網状セメンタイトの析出を抑制すると同時に、酸化鉄皮の厚さを10~15μmに最適化し、線材の機械的剥離による酸化鉄皮の除去が容易になり、圧延線材の仕様はφ5.5mmである。 In the rolling control process, the laying temperature is controlled to 960-980°C in accordance with the high-temperature laying process, suppressing the precipitation of core network cementite while optimizing the thickness of the iron oxide skin to 10-15 μm, making it easy to remove the iron oxide skin by mechanically peeling the wire rod, and the specifications of the rolled wire rod are φ5.5 mm.

冷却制御工程において、線材を、レイングヘッドを経た後にステルモアローラーテーブルに散布し、ファンの空冷強度を調節することにより、空冷0~8sで温度降下速度30-35℃/s、風冷9-17sで温度降下速度15-30℃/s、相転移プロセスは、恒温変換に近似する。さらに、圧延ファンは、風量が200000m3/hである遠心式ファンであり、生産時に8台のファンをオンにする。線材の進行方向に沿った1~3台目のファンの風量を90%に制御し、4~6台目のファンの風量を80%にすることで、線材の温度を二次セメンタイトの析出温度区間を急速に通過させ、その後、線材を7台目及び8台目のファンの位置で相転移させる。7台目及び8台目のファンの風量を70%に調節し、相転移を制御するプロセスは、線材組織の十分な変換が保証されるように恒温変換に近似する(相転移温度上昇<30℃)。 In the cooling control process, the wire rod is dispersed on the Stelmor roller table after passing through the laying head, and the air cooling strength of the fan is adjusted to achieve a temperature drop rate of 30-35°C/s during air cooling 0-8s and a temperature drop rate of 15-30°C/s during air cooling 9-17s, and the phase transition process is approximated to isothermal transformation. In addition, the rolling fans are centrifugal fans with an air volume of 200,000 m3/h, and eight fans are turned on during production. The air volume of the first to third fans along the wire rod traveling direction is controlled to 90%, and the air volume of the fourth to sixth fans is controlled to 80%, so that the temperature of the wire rod quickly passes through the secondary cementite precipitation temperature zone, and then the wire rod undergoes phase transition at the seventh and eighth fan positions. The air volume of the seventh and eighth fans is adjusted to 70%, and the process of controlling the phase transition is approximated to isothermal transformation so that sufficient transformation of the wire rod structure is guaranteed (phase transition temperature rise < 30°C).

本発明によれば、従来技術と比較して、以下の技術的利点が得られる。 The present invention provides the following technical advantages over conventional techniques:

本発明の方法により製造されたφ5.5mm線材は、ソルバイト化率≧90%であり、線材中心の偏析が軽微であり、心部に網状セメンタイトがなく、ユーザの引抜き使用ニーズを満たしている。 The φ5.5 mm wire produced by the method of the present invention has a sorbite ratio of ≥90%, slight segregation in the center of the wire, and no reticulated cementite in the core, meeting the user's needs for drawing.

小ビレット連続鋳造+線材圧延により、線材の偏析及び網状炭化物が改善され、サイクル及びコストの大幅な低下が実現される。 Small billet continuous casting + wire rolling improves wire segregation and network carbide, resulting in significant cycle and cost reductions.

本発明の方法は、プロセスが単純であり、網状セメンタイトがなく、ソルバイト化率が高く、脱炭層が浅く、省エネを実現することができ、エコで環境に優しく、企業の競争力を高め、より良い利幅利益を創出することができる。 The method of the present invention has a simple process, is free of reticulated cementite, has a high sorbite conversion rate, has a shallow decarburized layer, can achieve energy saving, is eco-friendly and environmentally friendly, and can enhance the competitiveness of companies and create better profit margins.

本発明の実施例1で製造された線材の金属組織の写真である。1 is a photograph of the metal structure of a wire rod produced in Example 1 of the present invention. 本発明の実施例における鋳造機の二次冷却設備の概略図であり、図中標尺の単位:mm。FIG. 2 is a schematic diagram of a secondary cooling system of a casting machine in an embodiment of the present invention, in which the unit of the staff is mm. 本発明の実施例における加熱炉の平面視概略図であり、図中標尺の単位:mm。FIG. 2 is a schematic plan view of a heating furnace according to an embodiment of the present invention, in which the unit of the staff is mm.

本発明については、以下の実施例を参照しながらさらに詳細に説明する。
(実施例1-4)
The present invention will now be described in further detail with reference to the following examples.
(Examples 1 to 4)

86級高強度コード鋼線材の偏析及び網状炭化物の制御方法は、KR溶銑前(プリ)脱硫工程→BOF転炉製錬工程→LF炉精錬工程→連続鋳造CC工程→鋳片表面処理工程→鋳片加熱工程→圧延制御工程→冷却制御工程を含む。 The method for controlling segregation and reticulated carbides in 86-grade high-strength cord steel wire rod includes the KR pre-desulfurization process → BOF converter smelting process → LF furnace refining process → continuous casting CC process → slab surface treatment process → slab heating process → rolling control process → cooling control process.

製錬製品の成分制御において、C:0.85-0.90%、Si:0.15-0.35%、Mn:0.40-0.60%、P:≦0.010%、S:≦0.010%、Cr:≦0.010%、Al:≦0.005%、残りが、Fe及び不可避的不純物要素である。 The composition of the smelted product is controlled as follows: C: 0.85-0.90%, Si: 0.15-0.35%, Mn: 0.40-0.60%, P: ≦0.010%, S: ≦0.010%, Cr: ≦0.010%, Al: ≦0.005%, and the remainder is Fe and unavoidable impurity elements.

溶銑は、KR溶銑前処理を経て、S含有量≦0.003%となり、コード専用クリーン鋼屑(成分は、主成分Fe、C、Si、Mn及び他の不可避的微量元素であり、総量が総金属装入量の10%~30%を占める)を用いる。また、転炉BOF製錬は「ダブルスラグ」工程を採用し、すなわち、転炉における吹錬により4~51minのケイ素マンガン酸化期が終了する際に、出鋼のP含有量≦0.008%が保証されるようにガンを出し、脱Pスラグを除去し、ガンを再び入れ、スラグを作る。転炉出鋼は「ダブル止め」出鋼工程を採用し、スラグ流出検出技術を装備してスラグ流出量≦50kgとなるように制御する。実施例1~4の鋼片の主要化学成分の重量百分率を表1に示す。 The hot metal is pretreated with KR hot metal to a S content of ≦0.003%, and clean scrap steel (mainly Fe, C, Si, Mn and other unavoidable trace elements, total amount of which accounts for 10%-30% of the total metal charge) is used. In addition, the converter BOF smelting adopts a "double slag" process, that is, when the silicon-manganese oxidation period of 4-51 min is completed by blowing in the converter, the gun is removed to remove the de-P slag, and the gun is turned on again to make slag, so as to ensure that the P content of the tapped steel is ≦0.008%. The converter tapping adopts a "double stop" tapping process, and is equipped with slag outflow detection technology to control the amount of slag outflow to ≦50 kg. The weight percentages of the main chemical components of the steel pieces in Examples 1-4 are shown in Table 1.

Figure 0007479567000001
Figure 0007479567000001

LF炉精錬工程において、精錬プロセスで炭化珪素による脱酸を採用し、精錬スラグはCaO-SiO二元スラグ系を採用し、実施例1-4の精錬最終スラグのアルカリ度を0.7-1.0に制御する。精錬の後期に大きなアルゴンガスの攪拌を回避し(スラグ面をちょうど吹き分けるようにアルゴンガスの底吹きを制御する)、スラグ巻き込みを防止する。実施例1-4の加熱ブル取鍋の温度が溶鋼液相線の温度38℃、38℃、41℃、36℃よりも高くなるように溶鋼の成分と温度を調整する。精錬が終了し、アルゴンガスソフトブロー時間≧15minとする。連続鋳造CC工程において、10マシン10フロー弧形連続鋳造機により160*160mmの小ビレットを調製する。連続鋳造は、低過熱度鋳造を採用し、溶鋼の過熱度を10~25℃に制御し、結晶器電磁攪拌電流250~350A、周波数2~4Hzであり、末端電磁攪拌電流300~400A、周波数5~10Hzであり、引抜き速度を目標1.70m/minに従って制御し、二次冷却全水分強冷却を採用し、二次冷却比水量を1.6~1.8L/kgに制御する。また、出末端の電磁攪拌箇所で鋳片を鋳造し、水流量が3.0m/hに制御されるように集中的な水冷を行うことで、鋳造流ハウジングを収縮させ、「熱ソフト圧下」という効果を奏し、鋳片の偏析が改善される。鋳片の断面160mm*160mm、主要な連続鋳造工程パラメータを表2に示す。 In the LF furnace refining process, the refining process adopts silicon carbide deoxidation, the refining slag adopts CaO- SiO2 binary slag system, and the alkalinity of the final refining slag in Example 1-4 is controlled to 0.7-1.0. In the later stage of refining, large argon gas stirring is avoided (the bottom blowing of argon gas is controlled so as to just blow the slag surface apart), and slag entrapment is prevented. The composition and temperature of the molten steel are adjusted so that the temperature of the heating bull ladle in Example 1-4 is higher than the liquidus temperature of the molten steel, 38°C, 38°C, 41°C, and 36°C. Refining is completed, and the argon gas soft blow time is ≧15min. In the continuous casting CC process, a small billet of 160* 160mm2 is prepared by a 10-machine 10-flow arc-shaped continuous casting machine. The continuous casting adopts low superheat casting, the superheat of the molten steel is controlled to 10-25°C, the crystallizer electromagnetic stirring current is 250-350A, the frequency is 2-4Hz, the end electromagnetic stirring current is 300-400A, the frequency is 5-10Hz, the drawing speed is controlled according to the target of 1.70m/min, the secondary cooling total water intensive cooling is adopted, and the secondary cooling specific water amount is controlled to 1.6-1.8L/kg. In addition, the slab is cast at the electromagnetic stirring point at the discharge end, and intensive water cooling is performed so that the water flow rate is controlled to 3.0m 3 /h, which shrinks the casting flow housing, and the effect of "thermal soft reduction" is achieved, and the segregation of the slab is improved. The cross section of the slab is 160mm*160mm 2 , and the main continuous casting process parameters are shown in Table 2.

Figure 0007479567000002
Figure 0007479567000002

上記工程による鋳片は、炭素偏析平均値(5点ドリルサンプリング法によるサンプリングで得られる)≦1.07となるように制御される。 The cast pieces produced by the above process are controlled so that the average carbon segregation value (obtained by sampling using the five-point drill sampling method) is ≦1.07.

鋳片を風防スタックにより100℃以下に冷却し、ショットブラスト機を用いて鋳片表面の酸化鉄皮を除去し、その後、鋳片の表面に高温脱炭防止塗料(本実施例では、北京中科興業環境工程有限公司が製造するZK-003型鋼片用高温脱炭防止塗料を選定した)の層を塗布し、塗料が乾燥した後に圧延工場に送られて加熱される。高温脱炭防止塗料が塗布された鋳片を、高温拡散工程により加熱し、かつ、加熱炉において等速で前進させ、加熱炉(図3に示す)の予熱段の時間を30~55minに制御し、加熱一段温度950-1000℃、時間は40~65minであり、加熱二段温度1200-1230℃、時間は65~105minであり、均熱段の温度1220-1250℃、時間は50~85minであり、初期圧延温度1180-1220℃である。加熱炉において還元性雰囲気で加熱し、空燃比を0.4~0.5に制御し、加熱炉抽出間隔は117-190s/本に従い、鋼片加熱合計時間190-300minである。 The slab is cooled to below 100°C by a windshield stack, and the iron oxide skin on the surface of the slab is removed using a shot blast machine. Then, a layer of high-temperature decarburization prevention paint (ZK-003 type high-temperature decarburization prevention paint for steel slabs manufactured by Beijing Zhongke Xingye Environmental Engineering Co., Ltd. is applied to the surface of the slab. After the paint has dried, it is sent to the rolling factory for heating. The slab coated with the high-temperature decarburization prevention paint is heated by a high-temperature diffusion process and advanced at a uniform speed in the heating furnace. The time of the preheating stage of the heating furnace (shown in Figure 3) is controlled to 30-55 min, the first heating stage temperature is 950-1000°C, the time is 40-65 min, the second heating stage temperature is 1200-1230°C, the time is 65-105 min, the soaking stage temperature is 1220-1250°C, the time is 50-85 min, and the initial rolling temperature is 1180-1220°C. The steel pieces are heated in a reducing atmosphere in the heating furnace, the air-fuel ratio is controlled to 0.4-0.5, the heating furnace extraction interval is 117-190 s/piece, and the total steel piece heating time is 190-300 min.

高温レイング工程に従ってレイング温度を960~980℃に制御し、心部網状セメンタイトの析出を抑制すると同時に、酸化鉄皮の厚さを10~15μm(レイング温度と空冷工程を制御することにより酸化鉄の厚さを制御することができる)に最適化し、線材の機械的剥離による酸化鉄皮の除去が容易になる。 The high-temperature laying process controls the laying temperature to 960-980°C, suppressing the precipitation of core network cementite, while optimizing the thickness of the iron oxide skin to 10-15 μm (the thickness of the iron oxide can be controlled by controlling the laying temperature and air cooling process), making it easier to remove the iron oxide skin by mechanically peeling off the wire.

線材を、レイングヘッドを経た後にステルモアローラーテーブルに散布し、ファンの空冷強度を調節することにより、空冷0~8sで温度降下速度30-35℃/s、風冷9-17sで温度降下速度15-30℃/s、相転移プロセスは、恒温変換に近似する。具体的な実現方法は、以下のとおりである。圧延ファンは、風量が200000m3/hである遠心式ファンであり、生産時に8台のファンをオンにし、線材の進行方向に沿った1~3台目のファンの風量を90%に制御し、4~6台目のファンの風量を80%にすることで、線材の温度を二次セメンタイトの析出温度区間を急速に通過させ、7台目及び8台目のファンの風量を70%に調節し、等温での相転移が保証されるとともに線材組織の十分な変換が保証されるように相転移温度上昇を30℃以内に制御する。 After passing through the laying head, the wire is spread on the Stelmor roller table, and the air cooling strength of the fan is adjusted to achieve a temperature drop rate of 30-35℃/s during air cooling of 0-8s and a temperature drop rate of 15-30℃/s during air cooling of 9-17s. The phase transition process is close to isothermal transformation. The specific implementation method is as follows: The rolling fan is a centrifugal fan with an air volume of 200,000m3/h. During production, eight fans are turned on, and the air volume of the first to third fans along the wire's traveling direction is controlled to 90%, and the air volume of the fourth to sixth fans is controlled to 80%, so that the wire temperature quickly passes through the secondary cementite precipitation temperature zone, and the air volume of the seventh and eighth fans is adjusted to 70%, so that the phase transition is guaranteed at an isothermal temperature and the phase transition temperature rise is controlled to within 30℃ to ensure sufficient transformation of the wire structure.

上記工程により生産された線材の偏析、網状炭化物、脱炭に合格し、詳細は表3に示す。 The wire produced by the above process passed the tests for segregation, reticulated carbide, and decarburization, and the details are shown in Table 3.

Figure 0007479567000003
Figure 0007479567000003

上記は、本発明の具体的な好適実施形態に過ぎず、本発明の保護範囲は、これに限定されず、如何なる当業者が本発明に開示された技術的範囲において、本発明の技術的手段及びその構想に基づいて加える同等の置換又は変更は、いずれも本発明の保護範囲内に含まれるべきである。 The above is merely a specific preferred embodiment of the present invention, and the scope of protection of the present invention is not limited thereto. Any equivalent replacement or modification made by any person skilled in the art based on the technical means and concept of the present invention within the technical scope disclosed in the present invention should be included in the scope of protection of the present invention.

本発明は、上述した具体的な実施形態に限定されるものではなく、当業者は、本発明に開示された内容に基づいて、他の多くの具体的な実施形態により本発明を実施し、又は本発明の設計構造や構想により行った単純な変化又は変更は、いずれも本発明の保護範囲に収まる。なお、本発明における実施例及び実施例における特徴は、衝突しない限り、互いに組み合わせることができる。 The present invention is not limited to the specific embodiments described above, and a person skilled in the art may implement the present invention in many other specific embodiments based on the contents disclosed in the present invention, or simple changes or modifications made based on the design structure or concept of the present invention are all within the scope of protection of the present invention. In addition, the embodiments of the present invention and the features in the embodiments can be combined with each other as long as they do not conflict with each other.

Claims (6)

86級高強度コード鋼線材の偏析及び網状炭化物の制御方法であって、
順次行われるKR溶銑前脱硫工程、BOF転炉製錬工程、LF炉精錬工程、連続鋳造CC工程、鋳片表面処理工程、鋳片加熱工程、圧延制御工程及び冷却制御工程を含み、
前記86級高強度コード鋼線材の成分重量百分率は、C:0.85-0.90%、Si:0.15-0.35%、Mn:0.40-0.60%、P:≦0.015%、S:≦0.010%、Cr:≦0.010%、Al:≦0.005%であり、残りが、Fe及び不可避的不純物元素であり、
BOF転炉製錬工程において、完成品中のP質量含有量≦0.010%、S質量含有量≦0.008%、かつ、P及びSの総質量含有量≦0.016%となるように制御し、
LF炉精錬工程において、精錬プロセスで炭化珪素による脱酸を採用し、精錬スラグはCaO-SiO二元スラグ系を採用し、精錬最終スラグのアルカリ度を0.7-1.0に制御し、精錬の後期にボイラの底からアルゴンガスをブローしボイラの温度が溶鋼液相線の温度35~45℃よりも高いことが保証されるように溶鋼の成分と温度を調整し、精錬が終了し、アルゴンガスソフトブロー時間≧15minとし、
連続鋳造CC工程において、断面≦160*160mmの鋳片を調製し、連続鋳造は低過熱度鋳造を採用し、溶鋼の過熱度10~25℃となるように制御し、結晶器電磁攪拌電流250~350A、周波数2~4Hz、末端電磁攪拌電流300~400A、周波数5~10Hzであり、引抜き速度を1.60~1.75m/minに制御し、二次冷却全水分強冷却を採用し、二次冷却比水量を1.6~1.8L/kgに制御し、出末端電磁攪拌の箇所で鋳片を鋳造し、水冷を行い、
鋳片表面処理工程において、得られた鋳片を風防スタックにより100℃以下に冷却し、ショットブラスト機を用いて鋳片表面の酸化鉄皮を除去し、その後、鋳片の表面に高温脱炭防止塗料の層を塗布し、塗料中の粉体と液体の質量比が3:2であり、塗膜の厚さを0.2~1.0mmに制御し、塗料が乾燥した後に鋼片加熱工程に入り、
鋳片加熱工程において、高温脱炭防止塗料が塗布された鋳片を、高温拡散工程により加熱し、かつ、加熱炉において等速で前進させ、加熱炉の予熱段の時間を30~55minに制御し、加熱一段温度950-1000℃、時間は40~65minであり、加熱二段温度1200-1230℃、時間は65~105minであり、均熱段の温度1220-1250℃、時間は50~85minであり、初期圧延温度1180-1220℃であり、加熱炉において還元性雰囲気で加熱し、空燃比を0.4~0.5に制御し、加熱炉抽出間隔は117-190s/本に従い、鋼片加熱合計時間190-300minであり、
圧延制御工程において、レイング温度を960~980℃に制御し、心部網状セメンタイトの析出を抑制すると同時に、酸化鉄皮の厚さを10~15μmに最適化し、圧延線材の仕様はφ5.5mmであり、
冷却制御工程において、線材を、レイングヘッドを経た後にステルモアローラーテーブルに散布し、ファンを調節し、0~8sまで温度降下速度30-35℃/sの風冷、その後、9-17sで温度降下速度15-30℃/sの風冷を行うことで、前後の相対温度上昇が30℃よりも小さくなるように制御する、
ことを特徴とする86級高強度コード鋼線材の偏析及び網状炭化物の制御方法。
A method for controlling segregation and reticulated carbide in a 86-grade high-strength cord steel wire rod, comprising the steps of:
The process includes a KR hot metal pre-desulfurization process, a BOF converter smelting process, an LF furnace refining process, a continuous casting CC process, a slab surface treatment process, a slab heating process, a rolling control process, and a cooling control process, which are carried out in sequence.
The weight percentages of the components of the 86-grade high-strength cord steel wire rod are C: 0.85-0.90%, Si: 0.15-0.35%, Mn: 0.40-0.60%, P: ≦0.015%, S: ≦0.010%, Cr: ≦0.010%, Al: ≦0.005%, and the remainder being Fe and unavoidable impurity elements;
In the BOF converter smelting process, the P mass content in the finished product is controlled to be ≦0.010%, the S mass content ≦0.008%, and the total mass content of P and S is controlled to be ≦0.016%,
In the LF furnace refining process, the refining process adopts silicon carbide deoxidation, the refining slag adopts CaO- SiO2 binary slag system, the alkalinity of the final refining slag is controlled to 0.7-1.0, argon gas is blown from the bottom of the boiler in the later stage of refining, and the composition and temperature of the molten steel are adjusted to ensure that the temperature of the boiler is higher than the liquidus temperature of the molten steel, which is 35-45°C, and when refining is completed, the argon gas soft blowing time is ≧15min;
In the continuous casting CC process, a slab with a cross section of ≦160* 160mm2 is prepared. Continuous casting adopts low superheat casting, and the superheat of the molten steel is controlled to be 10-25°C. The crystallizer electromagnetic stirring current is 250-350A, the frequency is 2-4Hz, the end electromagnetic stirring current is 300-400A, the frequency is 5-10Hz, and the drawing speed is controlled to be 1.60-1.75m/min. Secondary cooling total water intensive cooling is adopted, and the secondary cooling specific water amount is controlled to be 1.6-1.8L/kg. The slab is cast at the outlet end electromagnetic stirring point and water cooling is performed.
In the slab surface treatment process, the slab is cooled to below 100°C by a windshield stack, and the iron oxide skin on the slab surface is removed by a shot blasting machine. Then, a layer of high-temperature decarburization prevention paint is applied to the surface of the slab. The powder and liquid mass ratio in the paint is 3:2, and the thickness of the paint film is controlled to be 0.2-1.0 mm. After the paint is dried, the slab enters the steel slab heating process.
In the slab heating process, the slab coated with high-temperature decarburization prevention paint is heated by a high-temperature diffusion process and moved forward at a uniform speed in a heating furnace; the time of the preheating stage of the heating furnace is controlled to 30-55 min; the first heating stage temperature is 950-1000°C, the time is 40-65 min; the second heating stage temperature is 1200-1230°C, the time is 65-105 min; the soaking stage temperature is 1220-1250°C, the time is 50-85 min; the initial rolling temperature is 1180-1220°C; the slab is heated in a reducing atmosphere in the heating furnace; the air-fuel ratio is controlled to 0.4-0.5; the heating furnace withdrawal interval is 117-190 s/piece; and the total slab heating time is 190-300 min;
In the rolling control process, the laying temperature is controlled to 960-980°C to suppress the precipitation of core network cementite, while optimizing the thickness of the iron oxide skin to 10-15μm, and the specification of the rolled wire rod is φ5.5mm;
In the cooling control process, the wire is spread on the Stelmor roller table after passing through the laying head, and the fan is adjusted to perform wind cooling at a temperature drop rate of 30-35°C/s from 0 to 8 s, and then wind cooling at a temperature drop rate of 15-30°C/s from 9 to 17 s, thereby controlling the relative temperature rise before and after to be less than 30°C .
2. A method for controlling segregation and reticulated carbide in a 86 class high strength cord steel wire rod.
KR溶銑前脱硫工程において、溶銑鍋に石灰などの脱硫剤を3~6kg/トン鋼添加し、強力な機械的攪拌を施すことにより、転炉における溶銑のS含有量≦0.003%が保証されるように溶銑中のS含有量を除去し、その後、脱Sスラグを除去する、
ことを特徴とする請求項1に記載の86級高強度コード鋼線材の偏析及び網状炭化物の制御方法。
In the KR hot metal pre-desulfurization process, 3-6 kg/ton of desulfurizing agent such as lime is added to the hot metal ladle and strong mechanical stirring is performed to remove the S content in the hot metal so that the S content of the hot metal in the converter is guaranteed to be ≦0.003%, and then the desulfurization slag is removed.
2. The method for controlling segregation and reticulated carbide in a 86-grade high-strength cord steel wire rod according to claim 1.
BOF転炉製錬工程におけるP及びSの含有量の制御方法は、BOF製錬にBOF転炉の総金属装入量の10%~30%を占めるコード専用クリーン鋼屑を用い、転炉における吹錬により5±1minのケイ素マンガン酸化期が終了する際に、出鋼のP含有量≦0.010%が保証されるようにガンを出し、脱Pスラグを除去し、ガンを再び入れ、スラグを作り、出鋼プロセスでスラグ止めコーンによるスラグ止めと滑り板によるスラグ止めの組み合わせを用いると同時に、スラグ流出検出技術を装備して出鋼プロセスにおけるスラグ流出量≦50kgとなるように制御する、
ことを特徴とする請求項1に記載の86級高強度コード鋼線材の偏析及び網状炭化物の制御方法。
The method for controlling the content of P and S in the BOF converter smelting process is to use special clean scrap steel for the code, which accounts for 10%-30% of the total metal charge of the BOF converter, and when the silicon-manganese oxidation period of 5±1 min is completed by blowing in the converter, the gun is removed to remove the de-P slag, the gun is turned on again to make slag, and a combination of slag stopper cone and slag stopper slide plate is used in the tapping process, and slag outflow detection technology is installed to control the amount of slag outflow in the tapping process to be ≦50 kg.
2. The method for controlling segregation and reticulated carbide in a 86-grade high-strength cord steel wire rod according to claim 1.
連続鋳造CC工程において、10マシン10フロー弧形連続鋳造機により鋳片を調製し、鋳造機の弧形半径10mであり、末端電磁攪拌はメニスカスから7.2m離れ、末端電磁攪拌装置の長さ700mm、内径φ380mmである、
ことを特徴とする請求項1に記載の86級高強度コード鋼線材の偏析及び網状炭化物の制御方法。
In the continuous casting CC process, the cast piece is prepared by a 10-machine 10-flow arc-shaped continuous casting machine, the arc radius of the casting machine is 10 m, the end electromagnetic stirrer is 7.2 m away from the meniscus, the length of the end electromagnetic stirrer is 700 mm, and the inner diameter is φ380 mm.
2. The method for controlling segregation and reticulated carbide in a 86-grade high-strength cord steel wire rod according to claim 1.
連続鋳造CC工程における二次冷却全水分強冷却は、二次冷却設備にて行われ、
前記二次冷却設備は、上流側から下流側に向かって順に配置された足置きローラ、二次冷却一段、二次冷却二段、二次冷却三段、二次冷却四段を備え、前記足置きローラ段の冷却水流量を9.0~11.0m/h、前記二次冷却一段の冷却水流量を11.0~13.0m/h、前記二次冷却二段の冷却水流量を8.0~10.0m/h、前記二次冷却三段の冷却水流量を2.5~4.5m/h、前記二次冷却四段の冷却水流量を1.5~3.5m/hに制御する
ことを特徴とする請求項1に記載の86級高強度コード鋼線材の偏析及び網状炭化物の制御方法。
The secondary cooling and total moisture cooling in the continuous casting CC process is carried out in the secondary cooling equipment.
The secondary cooling equipment includes a footrest roller, a first secondary cooling stage, a second secondary cooling stage, a third secondary cooling stage, and a fourth secondary cooling stage, which are arranged in this order from the upstream side to the downstream side, and the cooling water flow rate of the footrest roller stage is controlled to 9.0 to 11.0 m 3 /h, the cooling water flow rate of the first secondary cooling stage is controlled to 11.0 to 13.0 m 3 /h, the cooling water flow rate of the second secondary cooling stage is controlled to 8.0 to 10.0 m 3 /h, the cooling water flow rate of the third secondary cooling stage is controlled to 2.5 to 4.5 m 3 /h, and the cooling water flow rate of the fourth secondary cooling stage is controlled to 1.5 to 3.5 m 3 /h .
2. The method for controlling segregation and reticulated carbide in a 86-grade high-strength cord steel wire rod according to claim 1.
冷却制御工程において、ファンは、風量が200000m/hである遠心式ファンであり、生産時に8台のファンをオンにし、線材の進行方向に沿った1~3台目のファンの風量を90%に制御し、4~6台目のファンの風量を80%にし、その後、線材を7台目及び8台目のファンの位置で相転移させ、7台目及び8台目のファンの風量を70%に調節する、
ことを特徴とする請求項1に記載の86級高強度コード鋼線材の偏析及び網状炭化物の制御方法。
In the cooling control process, the fan is a centrifugal fan with an air volume of 200,000 m3 /h, during production, 8 fans are turned on, the air volume of the 1st to 3rd fans along the wire rod moving direction is controlled to 90%, the air volume of the 4th to 6th fans is controlled to 80%, and then the wire rod is phase-transitioned at the position of the 7th and 8th fans, and the air volume of the 7th and 8th fans is adjusted to 70%;
2. The method for controlling segregation and reticulated carbide in a 86-grade high-strength cord steel wire rod according to claim 1.
JP2023513991A 2020-10-15 2021-08-02 Method for controlling segregation and network carbide in 86-grade high-strength cord steel wire rod Active JP7479567B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202011105232.5A CN112359277B (en) 2020-10-15 2020-10-15 Control method for segregation and net carbon of 86-level high-strength cord steel wire rod
CN202011105232.5 2020-10-15
PCT/CN2021/109957 WO2022078018A1 (en) 2020-10-15 2021-08-02 Control method for segregation and net carbide of 86-grade high-strength cord steel wire rod

Publications (2)

Publication Number Publication Date
JP2023539662A JP2023539662A (en) 2023-09-15
JP7479567B2 true JP7479567B2 (en) 2024-05-08

Family

ID=74507429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023513991A Active JP7479567B2 (en) 2020-10-15 2021-08-02 Method for controlling segregation and network carbide in 86-grade high-strength cord steel wire rod

Country Status (3)

Country Link
JP (1) JP7479567B2 (en)
CN (1) CN112359277B (en)
WO (1) WO2022078018A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112359277B (en) * 2020-10-15 2021-12-17 中天钢铁集团有限公司 Control method for segregation and net carbon of 86-level high-strength cord steel wire rod
CN112760552B (en) * 2020-12-23 2022-03-11 安阳钢铁股份有限公司 Production method of steel for tire bead steel wire
CN113308638A (en) * 2021-05-27 2021-08-27 江苏永钢集团有限公司 Cord steel disc and abnormal structure improvement method thereof
CN113718171B (en) * 2021-07-19 2022-06-17 武汉钢铁有限公司 70-grade high-performance cord steel and rolling process thereof
CN113789466B (en) * 2021-08-11 2022-05-03 武汉钢铁有限公司 82-grade cord steel with coarse wire breaking rate lower than 3 times per kiloton and production method thereof
CN113789465B (en) * 2021-08-11 2022-05-03 武汉钢铁有限公司 92-grade cord steel with coarse wire breaking rate lower than 5 times per kiloton and production method thereof
CN113913681B (en) * 2021-08-26 2022-03-25 武汉钢铁有限公司 High-strength low-wire-breakage-rate cord steel, rolling method and application thereof
CN113714281A (en) * 2021-08-28 2021-11-30 金鼎重工有限公司 Method for producing phi 22mm large-size hot-rolled wire rod
CN113751683A (en) * 2021-09-08 2021-12-07 天津市新天钢钢铁集团有限公司 Method for improving internal quality of SWRH82B billet
CN113862564A (en) * 2021-09-16 2021-12-31 湖南华菱湘潭钢铁有限公司 Production method of deep-drawing high-carbon steel wire rod
CN114395723A (en) * 2021-11-25 2022-04-26 河南济源钢铁(集团)有限公司 Chromium-free SWRH82B high-carbon steel wire rod and production method thereof
CN114657471B (en) * 2022-03-27 2022-12-23 中天钢铁集团有限公司 Production method of low-carbon energy-saving wire rod for bridge cable rope with pressure of not less than 2060MPa
CN114774794B (en) * 2022-05-07 2023-03-28 张家港荣盛特钢有限公司 Cord steel and method for modifying inclusion of cord steel
CN115007821B (en) * 2022-05-07 2024-07-12 建龙北满特殊钢有限责任公司 Bloom GCr15SiMn bearing steel and smelting method thereof
CN114990437B (en) * 2022-05-25 2023-07-04 张家港荣盛特钢有限公司 Cold heading steel wire rod and production method thereof
CN114990446A (en) * 2022-06-21 2022-09-02 湖南华菱湘潭钢铁有限公司 Production method of weather-resistant high-strength high-carbon steel
CN115090671A (en) * 2022-06-30 2022-09-23 天津钢铁集团有限公司 High carbon steel wire rod with strength of 1200MPa and above and its production process
CN115161558B (en) * 2022-07-12 2024-04-16 鞍钢股份有限公司 Wire rod for ultra-high strength steel wire cord, steel wire, cord and manufacturing method
CN115161559B (en) * 2022-07-12 2024-04-16 鞍钢股份有限公司 Torsion fracture resistant ultra-high strength steel wire, wire rod for steel wire and manufacturing process
CN115491588A (en) * 2022-07-26 2022-12-20 邢台钢铁有限责任公司 Production method of high-speed wire for low-strain aging electronic lead
CN115637310A (en) * 2022-11-09 2023-01-24 芜湖新兴铸管有限责任公司 Process improvement method for improving quality of axle steel product
CN115927962A (en) * 2022-12-05 2023-04-07 宝武杰富意特殊钢有限公司 Steel for mandrel bar and method for producing same
CN115976415A (en) * 2022-12-30 2023-04-18 江苏永钢集团有限公司 Ultra-high strength 85-grade cord steel wire rod and production method thereof
CN116875874B (en) * 2023-07-10 2023-12-26 辛集市澳森特钢集团有限公司 Production method of 8.8-grade steel for fastener easy to heat treat
CN116891977B (en) * 2023-09-04 2023-11-21 江苏永钢集团有限公司 Wire rod for extra-high-strength diamond wire bus and production method thereof
CN116904863B (en) * 2023-09-07 2023-12-08 江苏省沙钢钢铁研究院有限公司 A kind of high cleanliness high carbon steel and its low carbon emission production method
CN116875912B (en) * 2023-09-07 2024-03-19 张家港荣盛特钢有限公司 High-purity high-carbon steel wire rod and production method thereof
CN117127122B (en) * 2023-10-27 2024-01-23 张家港荣盛特钢有限公司 Fatigue-resistant spring steel wire, wire rod and production method of wire rod
CN117840395B (en) * 2024-03-07 2024-05-03 江苏省沙钢钢铁研究院有限公司 Method for controlling quality of low temperature steel ingot casting and method for producing plate
CN117925988B (en) * 2024-03-22 2024-06-04 星泓智造装备有限公司 High-performance wind power tower flange and heat treatment shape control and control method thereof
CN118563068A (en) * 2024-08-05 2024-08-30 江苏永钢集团有限公司 Extra-high-strength 90-grade cord steel wire rod and production method thereof
CN119114889A (en) * 2024-11-14 2024-12-13 张家港荣盛特钢有限公司 A wire rod for cord steel and a preparation method thereof
CN119307802B (en) * 2024-12-13 2025-03-25 江苏永钢集团有限公司 A production method for inhibiting martensitic transformation in 80 grade cord steel wire rod

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297674A (en) 2006-04-28 2007-11-15 Kobe Steel Ltd High-carbon steel wire rod superior in cuppy break resistance
CN104789880A (en) 2015-03-03 2015-07-22 张家港联峰钢铁研究所有限公司 Steel strand wire rod with characteristics of low carbon, high strength and high toughness, and production process thereof
WO2015163409A1 (en) 2014-04-24 2015-10-29 新日鐵住金株式会社 Filament for high strength steel cord
CN107186192A (en) 2017-04-26 2017-09-22 江苏省沙钢钢铁研究院有限公司 Continuous casting method for improving segregation of billet cord steel
CN109047697A (en) 2018-09-25 2018-12-21 湖南华菱湘潭钢铁有限公司 A kind of production method of tyre cord steel
CN111254363A (en) 2020-03-31 2020-06-09 湖南华菱湘潭钢铁有限公司 Production method of cord wire rod steel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844739B2 (en) * 1977-09-06 1983-10-05 三菱製鋼株式会社 Steel that withstands aluminum attack
CN101597713A (en) * 2009-07-03 2009-12-09 首钢总公司 A kind of microalloying SWRH87B gren rod and manufacture method thereof
CN101775461B (en) * 2010-01-19 2011-05-25 南京钢铁股份有限公司 Method for improving central carbon segregation of tire cord steel
CN103805861B (en) * 2014-02-11 2016-06-01 江苏省沙钢钢铁研究院有限公司 High-carbon steel wire and preparation method thereof
EP3135786B1 (en) * 2014-04-24 2019-03-20 Nippon Steel & Sumitomo Metal Corporation Wire rod for high strength steel cord
CN105127386A (en) * 2015-08-19 2015-12-09 河北钢铁股份有限公司 Continuous casting method for controlling center carbon segregation of small high-carbon hard-wire steel square billet
CN110629132B (en) * 2019-09-26 2020-11-17 江苏省沙钢钢铁研究院有限公司 Wire rod for ultra-high strength steel cord and method for producing same
CN111687209B (en) * 2020-05-13 2022-03-01 中天钢铁集团有限公司 Rolling process of medium-carbon high-sulfur alloy steel wire rod
CN112359277B (en) * 2020-10-15 2021-12-17 中天钢铁集团有限公司 Control method for segregation and net carbon of 86-level high-strength cord steel wire rod

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297674A (en) 2006-04-28 2007-11-15 Kobe Steel Ltd High-carbon steel wire rod superior in cuppy break resistance
WO2015163409A1 (en) 2014-04-24 2015-10-29 新日鐵住金株式会社 Filament for high strength steel cord
CN104789880A (en) 2015-03-03 2015-07-22 张家港联峰钢铁研究所有限公司 Steel strand wire rod with characteristics of low carbon, high strength and high toughness, and production process thereof
CN107186192A (en) 2017-04-26 2017-09-22 江苏省沙钢钢铁研究院有限公司 Continuous casting method for improving segregation of billet cord steel
CN109047697A (en) 2018-09-25 2018-12-21 湖南华菱湘潭钢铁有限公司 A kind of production method of tyre cord steel
CN111254363A (en) 2020-03-31 2020-06-09 湖南华菱湘潭钢铁有限公司 Production method of cord wire rod steel

Also Published As

Publication number Publication date
JP2023539662A (en) 2023-09-15
CN112359277A (en) 2021-02-12
CN112359277B (en) 2021-12-17
WO2022078018A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
JP7479567B2 (en) Method for controlling segregation and network carbide in 86-grade high-strength cord steel wire rod
CN110629132B (en) Wire rod for ultra-high strength steel cord and method for producing same
CN108034895A (en) A kind of Valve Steel 50Cr21Mn9Ni4Nb2WN polishes the production method of bright as silver bar
CN106756507B (en) The method for producing Thin Specs high-carbon steel based on ESP bar strip continuous casting and rolling flow paths
CN116904863B (en) A kind of high cleanliness high carbon steel and its low carbon emission production method
CN112458356B (en) Phi 14mm wire rod for 1860MPa bridge cable galvanized steel wire and preparation method
CN112342452B (en) Manufacturing method of high-strength wire rod for tire bead steel wire
CN113088818A (en) Ultra-high strength steel cord, wire rod for ultra-high strength steel cord and production method thereof
CN114318154B (en) A kind of high-cleanliness welding wire steel L-S3 and its preparation method
CN106269869A (en) A kind of production method of Valve Steel 53Cr21Mn9Ni4N polishing bar
WO2015043061A1 (en) Non-quenched and tempered steel and manufacturing method therefor
CN103397250B (en) Large-piece-weight extremely-thick Q460-grade high-strength structural steel plate and manufacturing method thereof
CN114227065B (en) Gas shielded welding wire, gas shielded welding wire steel wire rod and production method thereof
CN110157988A (en) High-purity, the homogeneous rare earth cold roll steel alloy material of one kind and preparation method
WO2021052315A1 (en) 30crmo hot rolled steel sheet/strip and production method therefor
JP2022549175A (en) Thin high corrosion resistant steel and its manufacturing method
CN112176258A (en) Wire rod for 2500 MPa-grade steel strand and manufacturing method thereof
CN114875303A (en) A kind of hot-rolled wire rod for non-annealing gas shielded welding wire and preparation method thereof
CN118563068A (en) Extra-high-strength 90-grade cord steel wire rod and production method thereof
CN102492814B (en) Method for manufacturing straight-pull wire for high-carbon steel filament
CN112522593B (en) Thin 30CrMo hot rolled steel plate/strip and production method thereof
CN114737138B (en) High-mirror-surface high-toughness oversized-section ZW863 die steel
CN114657471B (en) Production method of low-carbon energy-saving wire rod for bridge cable rope with pressure of not less than 2060MPa
CN114836592B (en) 82/86/92 grade cord thread steel wire rod and aging-free production method thereof
CN116275914A (en) Production method of fireproof steel bar mechanical connecting sleeve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240315

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20240315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240423

R150 Certificate of patent or registration of utility model

Ref document number: 7479567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150