[go: up one dir, main page]

JP7472994B2 - Paramagnetic garnet-type transparent ceramics, magneto-optical device, and method for manufacturing paramagnetic garnet-type transparent ceramics - Google Patents

Paramagnetic garnet-type transparent ceramics, magneto-optical device, and method for manufacturing paramagnetic garnet-type transparent ceramics Download PDF

Info

Publication number
JP7472994B2
JP7472994B2 JP2022547491A JP2022547491A JP7472994B2 JP 7472994 B2 JP7472994 B2 JP 7472994B2 JP 2022547491 A JP2022547491 A JP 2022547491A JP 2022547491 A JP2022547491 A JP 2022547491A JP 7472994 B2 JP7472994 B2 JP 7472994B2
Authority
JP
Japan
Prior art keywords
type transparent
garnet
less
sintering
paramagnetic garnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022547491A
Other languages
Japanese (ja)
Other versions
JPWO2022054594A1 (en
Inventor
卓士 松本
真憲 碇
恵多 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Publication of JPWO2022054594A1 publication Critical patent/JPWO2022054594A1/ja
Application granted granted Critical
Publication of JP7472994B2 publication Critical patent/JP7472994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility
    • C04B2111/805Transparent material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、可視及び/又は近赤外域において透光性を有する常磁性ガーネット型透明セラミックスに関し、より詳細には、光アイソレータなどの磁気光学デバイスを構成するのに好適なテルビウムを含む常磁性ガーネット型透明セラミックス、該常磁性ガーネット型透明セラミックスを用いた磁気光学デバイス及び常磁性ガーネット型透明セラミックスの製造方法に関する。The present invention relates to paramagnetic garnet-type transparent ceramics having translucency in the visible and/or near-infrared range, and more specifically to terbium-containing paramagnetic garnet-type transparent ceramics suitable for forming magneto-optical devices such as optical isolators, magneto-optical devices using the paramagnetic garnet-type transparent ceramics, and a method for producing the paramagnetic garnet-type transparent ceramics.

産業用レーザー加工機には反射光などの光の逆戻りを防ぐ目的で光アイソレータが設けられており、その内部はテルビウム添加ガラスやテルビウムガリウムガーネット(TGG)結晶がファラデー回転子として搭載されている(例えば、特開2011-213552号公報(特許文献1))。ファラデー効果の大きさはベルデ定数で定量化され、TGG結晶のベルデ定数は40rad/(T・m)(=0.13min/(Oe・cm))、テルビウム添加ガラスでは0.098min/(Oe・cm)であり、TGG結晶のベルデ定数は比較的大きいことから、標準的なファラデー回転子として広く使用されている。その他に、テルビウムアルミニウムガーネット(TAG)結晶があり、TAG結晶のベルデ定数はTGG結晶の1.3倍程度であることから、ファラデー回転子の長さを短くできるため、ファイバーレーザーに使用可能かつ良好な結晶である(例えば、特開2002-293693号公報(特許文献2)、特許第4107292号公報(特許文献3))。 Industrial laser processing machines are equipped with optical isolators to prevent the return of light, such as reflected light, and inside these are mounted terbium-doped glass or terbium gallium garnet (TGG) crystals as Faraday rotators (for example, JP 2011-213552 A (Patent Document 1)). The magnitude of the Faraday effect is quantified by the Verdet constant, and the Verdet constant of TGG crystals is 40 rad/(T·m) (= 0.13 min/(Oe·cm)), while that of terbium-doped glass is 0.098 min/(Oe·cm). Since the Verdet constant of TGG crystals is relatively large, they are widely used as standard Faraday rotators. Another example is terbium aluminum garnet (TAG) crystal. The Verdet constant of the TAG crystal is about 1.3 times that of the TGG crystal, which allows the length of the Faraday rotator to be shortened, making it a good crystal that can be used in fiber lasers (for example, JP-A-2002-293693 (Patent Document 2) and JP-A-4107292 (Patent Document 3)).

近年、TAGを透明セラミックスで作製する方法が開示されている(例えば、国際公開第2017/033618号(特許文献4)、国際公開第2018/193848号(特許文献5)、“High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics”(非特許文献1))。またテルビウムの一部をイットリウムで置換したYTAG:(Tbx1-x3Al512(0.2≦x≦0.8、または0.5≦x≦1.0またはx=0.6)の透明セラミックスの作製方法も報告されている(例えば、“Fabrication and properties of (TbxY1-x)3Al5O12 transparent ceramics by hot isostatic pressing”(非特許文献2)、“Development of optical grade (TbxY1-x)3Al5O12 ceramics as Faraday rotator material”(非特許文献3)、“Effect of (Tb+Y)/Al ratio on Microstructure Evolution and Densification Process of (Tb0.6Y0.4)3Al5O12 Transparent Ceramics”(非特許文献4)。Tbを含有する希土類アルミニウムガーネットはTGGと比較して高い熱伝導率を示すため、熱レンズ効果が小さいファラデー素子になると期待されている。 In recent years, methods for producing TAG from transparent ceramics have been disclosed (for example, WO 2017/033618 (Patent Document 4), WO 2018/193848 (Patent Document 5), and “High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics” (Non-Patent Document 1)). Also, a method for producing transparent ceramics, YTAG: (TbxY1-x)3Al5O12 ( 0.2 x ≦0.8, or 0.5≦x≦1.0, or x=0.6), in which part of the terbium is replaced by yttrium, has been reported (for example, “Fabrication and properties of ( TbxY1 -x )3Al5O12 transparent ceramics by hot isostatic pressing” ( Non-Patent Document 2), “Development of optical grade (TbxY1-x)3Al5O12 ceramics as Faraday rotator material (Non-Patent Document 3), “Effect of (Tb+Y)/Al ratio on Microstructure Evolution and Densification Process of ( Tb0.6Y0.4 ) 3Al5O12 Transparent Since Tb-containing rare earth aluminum garnet exhibits a higher thermal conductivity than TGG, it is expected to be used as a Faraday element with a smaller thermal lens effect.

なお、熱レンズ効果とは、ファラデー素子が透過光を吸収して発熱することで屈折率の変化が生じ、レンズ状になる現象である。熱レンズ効果によりレーザー加工機の焦点位置が移動すると、加工点でデフォーカスされたビームになってしまい加工精度が低下するため好ましくない。そのためファラデー素子の熱レンズ効果を極力小さくする試みが日々行われている。The thermal lens effect is a phenomenon in which a Faraday element absorbs transmitted light and generates heat, causing a change in refractive index, resulting in a lens-like shape. If the focal position of a laser processing machine moves due to the thermal lens effect, the beam becomes defocused at the processing point, which is undesirable as it reduces processing accuracy. For this reason, efforts are being made daily to minimize the thermal lens effect of Faraday elements.

上記のように、近年のTbを含有する希土類アルミニウムガーネットの報告はセラミックスによるものが多い。これはTAGがインコングルーエント(不一致溶融)な組成のため、単結晶作製が困難であることに由来する。しかし一般的にセラミックスは系内に気泡や異相、異物、マイクロクラックなど多くの散乱源を含む。そのためファラデー回転子を想定した高度に透明なセラミックスを得るためには気泡や異物などの散乱源を徹底的に排除する試みが必要である。As mentioned above, many of the recent reports on rare earth aluminum garnets containing Tb have been based on ceramics. This is because TAG has an incongruent composition, making it difficult to produce single crystals. However, ceramics generally contain many scattering sources within the system, such as air bubbles, foreign phases, foreign matter, and microcracks. Therefore, in order to obtain highly transparent ceramics suitable for use in Faraday rotators, it is necessary to make every effort to thoroughly eliminate scattering sources such as air bubbles and foreign matter.

セラミックス内部の気泡や、マイクロクラックを減らす方法として加圧焼結(熱間等方圧プレス(HIP))処理がある。HIP処理は予め相対密度94%以上まで緻密化させておいた焼結体(予備焼結体)を、高温・高圧処理によりセラミックスの塑性流動を起こして欠陥を圧縮、除去することができる。HIP処理の際、多くの気泡は系外に排出されて除去されが、一部の気泡は圧縮されたまま系内に残っていることが多い。そのためHIP体を高温で常圧以下にさらすと、圧縮されて隠れていた気泡が再膨張し、散乱強度が増す現象が観測される。 One method for reducing air bubbles and microcracks inside ceramics is pressure sintering (hot isostatic pressing (HIP)). In HIP, a sintered body (pre-sintered body) that has already been densified to a relative density of 94% or more is subjected to high temperature and high pressure treatment to induce plastic flow of the ceramic, compressing and removing defects. During HIP, many air bubbles are expelled from the system and removed, but some air bubbles often remain compressed within the system. For this reason, when the HIPed body is exposed to high temperatures and below normal pressure, the compressed and hidden air bubbles re-expand, and the scattering intensity is observed to increase.

HIP処理で排出できなかったセラミックス内部の気泡や異相を更に減らす方法としてHIP処理後に再焼結を行い粒成長により系外に排出する方法がある。池末らはYAGセラミックスに対し真空下1,600℃で3時間予備焼結し、1,500~1,700℃で3時間HIP処理した透明セラミックスに対し、HIP処理温度より高い1,750℃で20時間再焼結する方法を示している(例えば、“Microstructure and Optical Properties of Hot Isostatic Pressed Nd:YAG Ceramics”(非特許文献5))。また、特許第2638669号公報(特許文献6)には、適切な形状と組成を有する生圧粉体を形成し、予備焼結工程を1,350~1,650℃の温度範囲で行い、HIP処理工程を1,350~1,700℃の温度で行い、そして再焼結工程を、1,650℃を超える温度で行うセラミックス体の製造方法が開示されており、これにより気孔を除去する方法が開示されている。A method for further reducing bubbles and heterogeneous phases inside ceramics that could not be removed by HIP treatment is to perform re-sintering after HIP treatment to remove them from the system by grain growth. Ikesue et al. have shown a method for pre-sintering YAG ceramics at 1,600°C for 3 hours in a vacuum, and then re-sintering transparent ceramics that have been HIP-treated at 1,500-1,700°C for 3 hours at 1,750°C, which is higher than the HIP treatment temperature, for 20 hours (for example, "Microstructure and Optical Properties of Hot Isostatic Pressed Nd:YAG Ceramics" (Non-Patent Document 5)). In addition, Patent Publication No. 2638669 (Patent Document 6) discloses a method for manufacturing a ceramic body in which green compacts having an appropriate shape and composition are formed, a pre-sintering process is performed in the temperature range of 1,350-1,650°C, a HIP treatment process is performed at a temperature of 1,350-1,700°C, and a re-sintering process is performed at a temperature exceeding 1,650°C, thereby removing pores.

ところで産業用レーザー加工機はその加工精度を高めるために高いビーム品質が要求される。レーザービーム品質の指標の一例としてM2値が挙げられる。M2値はビームの集光性を表す値であり理論上のガウシアンビームはM2=1となるが実際のレーザービームはM2>1となる。M2=1のとき、ビームは焦点において最小のスポットが得られ、M2値が大きくなるにつれて焦点でビームを絞ることができなくなる。そのため光アイソレータは、その透過光のビーム品質M2値が入射光のビーム品質M2値に対して極力大きくならないことが好ましいとされている。 Industrial laser processing machines require high beam quality to improve their processing accuracy. One example of an index of laser beam quality is the M2 value. The M2 value is a value that indicates the focusing ability of a beam, and while a theoretical Gaussian beam has M2 = 1, an actual laser beam has M2 > 1. When M2 = 1, the beam has the smallest spot at the focal point, and as the M2 value increases, the beam cannot be focused at the focal point. For this reason, it is considered preferable that the beam quality M2 value of the transmitted light of an optical isolator is not as large as possible relative to the beam quality M2 value of the incident light.

以上のように、パルスレーザー加工機の加工の微細化に伴い、高いビーム品質及び熱レンズ効果が小さいファラデー回転子が求められている。上記のような状況の中で、最近、組成が(Tbx1-x3(Al1-zScz512(x=0.5~1.0)である緻密なセラミックス焼結体が既存のTGG結晶に比べて消光比が高く(既存の35dBが39.5以上に改善)、挿入損失も低減できる(既存の0.05dBが0.01~0.05dBに改善)ことが開示された(非特許文献3)。この非特許文献3で開示された材料は、まずセラミックスであるため、TGG結晶で問題となっていたペロブスカイト異相の析出もなく、更にTbイオンの一部をYイオンで置換することで、更なる低損失化が可能になったものであり、きわめて高品質のガーネット型ファラデー回転子を得ることのできる材料である。 As described above, with the advancement of fine processing in pulsed laser processing machines, Faraday rotators with high beam quality and small thermal lens effect are required. In the above-mentioned circumstances, it has been recently disclosed that a dense ceramic sintered body having a composition of (Tb x Y 1-x ) 3 (Al 1-z Sc z ) 5 O 12 (x = 0.5 to 1.0) has a higher extinction ratio (improved from the existing 35 dB to 39.5 or more) and can reduce insertion loss (improved from the existing 0.05 dB to 0.01 to 0.05 dB) compared to the existing TGG crystal (Non-Patent Document 3). The material disclosed in Non-Patent Document 3 is, first of all, a ceramic, so there is no precipitation of perovskite heterophase, which was a problem in the TGG crystal, and furthermore, by replacing a part of the Tb ions with Y ions, it is possible to further reduce loss, and it is a material from which a very high quality garnet-type Faraday rotator can be obtained.

特開2011-213552号公報JP 2011-213552 A 特開2002-293693号公報JP 2002-293693 A 特許第4107292号公報Japanese Patent No. 4107292 国際公開第2017/033618号International Publication No. 2017/033618 国際公開第2018/193848号International Publication No. 2018/193848 特許第2638669号公報Japanese Patent No. 2638669

“High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics”, 0ptical Materials Express, Vol.6, No. 1, pp.191-196 (2016)“High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics”, Optical Materials Express, Vol.6, No. 1, pp.191-196 (2016) “Fabrication and properties of (TbxY1-x)3Al5O12 transparent ceramics by hot isostatic pressing”, Optical Materials, 72, 58-62 (2017)“Fabrication and properties of (TbxY1-x)3Al5O12 transparent ceramics by hot isostatic pressing”, Optical Materials, 72, 58-62 (2017) “Development of optical grade (TbxY1-x)3Al5O12 ceramics as Faraday rotator material”, Journal of American Ceramics Society, 100, 4081-4087 (2017)“Development of optical grade (TbxY1-x)3Al5O12 ceramics as Faraday rotator material”, Journal of American Ceramics Society, 100, 4081-4087 (2017) “Effect of (Tb+Y)/Al ratio on Microstructure Evolution and Densification Process of (Tb0.6Y0.4)3Al5O12 Transparent Ceramics”, Materials, 12, 300 (2019)“Effect of (Tb+Y)/Al ratio on Microstructure Evolution and Densification Process of (Tb0.6Y0.4)3Al5O12 Transparent Ceramics”, Materials, 12, 300 (2019) “Microstructure and Optical Properties of Hot Isostatic Pressed Nd:YAG Ceramics”, Journal of American Ceramics Society, 79, 1927-1933 (1996)“Microstructure and Optical Properties of Hot Isostatic Pressed Nd:YAG Ceramics”, Journal of American Ceramics Society, 79, 1927-1933 (1996) “Lineal Intercept Technique for Measuring Grain Size in Two-Phase Polycrystalline Ceramics”, Journal of the American Ceramic Society, 55, 109 (1972)“Linear Intercept Technique for Measuring Grain Size in Two-Phase Polycrystalline Ceramics”, Journal of the American Ceramic Society, 55, 109 (1972)

ところが、本発明者らが非特許文献3の材料を参考に実際に追試をしてみると、ハイパワー出力(例えば100W)の波長1,070nmのレーザー光を入射したときのビーム径変化率が13.1~17.0%と大きいことが判明し、熱レンズ効果の改善が必要であることが確認された。However, when the inventors actually conducted follow-up tests using the material in Non-Patent Document 3 as a reference, they found that the rate of change in beam diameter when high-power output (e.g., 100 W) laser light with a wavelength of 1,070 nm was incident was large, at 13.1 to 17.0%, and confirmed that the thermal lens effect needed to be improved.

本発明は、上記事情に鑑みなされたもので、Tb及びAl含有の常磁性ガーネット型酸化物の透明焼結体であって、レーザービーム品質が高く、熱レンズ効果の小さい常磁性ガーネット型透明セラミックス、該常磁性ガーネット型透明セラミックスを用いた磁気光学デバイス及び常磁性ガーネット型透明セラミックスの製造方法を提供することを目的とする。The present invention has been made in consideration of the above circumstances, and aims to provide a paramagnetic garnet-type transparent ceramic which is a transparent sintered body of a paramagnetic garnet-type oxide containing Tb and Al and has high laser beam quality and a small thermal lens effect, a magneto-optical device using the paramagnetic garnet-type transparent ceramic, and a method for manufacturing the paramagnetic garnet-type transparent ceramic.

本発明者らが上記課題に対し検討を行った結果、(i)セラミックスの結晶粒径を一定以上の大きさにし、セラミックス内部の気泡、粒界、異相、異物を一定の量まで減らすこと、(ii)セラミックスを透過したレーザーのビーム品質(M2)を一定の値まで小さくすること、(iii)酸化アニール処理することで酸素欠陥(例えばF又はF+センター)吸収を減らすことが熱レンズ効果の改善に対して効果的であることを発見した。この知見に基づき鋭意検討を行い本発明を成すに至った。 As a result of the inventors' investigation into the above-mentioned problem, they discovered that (i) making the crystal grain size of the ceramics larger than a certain size and reducing the amount of bubbles, grain boundaries, foreign phases, and foreign matter inside the ceramics to a certain level, (ii) reducing the beam quality ( M2 ) of the laser transmitted through the ceramics to a certain value, and (iii) reducing the absorption of oxygen defects (e.g., F or F+ centers) by performing an oxidation annealing treatment are effective in improving the thermal lens effect. Based on this knowledge, the inventors conducted extensive investigations and have completed the present invention.

即ち、本発明は、下記の常磁性ガーネット型透明セラミックス、磁気光学デバイス及び常磁性ガーネット型透明セラミックスの製造方法を提供する。
1.
下記式(1)
(Tb1-x-yxScy3(Al1-zScz512 (1)
(式中、0≦x<0.45、0≦y<0.08、0≦z<0.2、0.001<y+z<0.20である。)
で表されるTb含有希土類アルミニウムガーネットの焼結体であって、光学鏡面仕上げの両端面を有し、該両端面それぞれに反射防止膜を備える長さ20mmの円柱状又は角柱状のものとし、これにレーザー強度100W、ビーム品質M2値がm(1<m≦1.2)である波長1,070nmのレーザー光を入射させ、その透過光のビーム品質M2値をnとした場合のn/mが1.05以下であることを特徴とする常磁性ガーネット型透明セラミックス。
2.
光路長20mmにおける波長1,070nmのレーザー光をビーム径1.6mm、入射パワー100Wで入射した場合の熱レンズによるビーム径変化率が10%以下である1に記載の常磁性ガーネット型透明セラミックス。
3.
焼結助剤としてSiO2を0質量%超0.1質量%以下含有している1又は2に記載の常磁性ガーネット型透明セラミックス。
4.
平均焼結粒径が10μm以上40μm以下である1~3のいずれかに記載の常磁性ガーネット型透明セラミックス。
5.
1~4のいずれかに記載の常磁性ガーネット型透明セラミックスを用いて構成される磁気光学デバイス。
6.
上記常磁性ガーネット型透明セラミックスをファラデー回転子として備え、該ファラデー回転子の光学軸上の前後に偏光材料を備えた波長帯0.9μm以上1.1μm以下で利用可能な光アイソレータである5に記載の磁気光学デバイス。
7.
1~4のいずれかに記載の常磁性ガーネット型透明セラミックスの製造方法であって、下記式(1)
(Tb1-x-yxScy3(Al1-zScz512 (1)
(式中、0≦x<0.45、0≦y<0.08、0≦z<0.2、0.001<y+z<0.20である。)
で表されるTb含有希土類アルミニウムガーネットの焼結体について加圧焼結し、更にこの加圧焼結体を上記加圧焼結を超える温度に加熱して再焼結し、更に再焼結体について1,400℃以上の酸化雰囲気で酸化アニール処理を行うことを特徴とする常磁性ガーネット型透明セラミックスの製造方法。
8.
上記再焼結は、1.0×10-3Pa未満の減圧下で再焼結するものである7に記載の常磁性ガーネット型透明セラミックスの製造方法。
9.
上記加圧焼結の前の焼結体は、予備焼結により相対密度94%以上に緻密化されたものである7又は8に記載の常磁性ガーネット型透明セラミックスの製造方法。
10.
上記予備焼結は、1.0×10-3Pa未満の減圧下で予備焼結するものである9に記載の常磁性ガーネット型透明セラミックスの製造方法。
11.
上記加圧焼結の前の焼結体は、平均焼結粒径が5μm以下のものである7~10のいずれかに記載の常磁性ガーネット型透明セラミックスの製造方法。
12.
上記酸化アニール処理の後、その両端面を光学鏡面仕上げし、次いで両端面それぞれに反射防止膜を形成する7~11のいずれかに記載の常磁性ガーネット型透明セラミックスの製造方法。
That is, the present invention provides the following paramagnetic garnet-type transparent ceramics, magneto-optical devices, and methods for producing the paramagnetic garnet-type transparent ceramics.
1.
The following formula (1)
(Tb1 -xyYxScy ) 3 (Al1 - zScz ) 5O12 (1 )
(In the formula, 0≦x<0.45, 0≦y<0.08, 0≦z<0.2, and 0.001<y+z<0.20.)
a sintered body of Tb-containing rare earth aluminum garnet represented by the formula (1) and having both end faces finished to an optical mirror surface, each end face being provided with an anti-reflection film, and being in the shape of a cylinder or prism of 20 mm in length; wherein when a laser beam of 1,070 nm in wavelength and having a laser intensity of 100 W and a beam quality M2 value of m (1 < m ≦ 1.2) is incident on the sintered body, the ratio n/m is 1.05 or less when the beam quality M2 value of the transmitted light is n.
2.
2. The paramagnetic garnet-type transparent ceramic according to 1, wherein the rate of change in beam diameter due to thermal lensing is 10% or less when laser light having an optical path length of 20 mm, a beam diameter of 1.6 mm, and an incident power of 100 W is incident thereon.
3.
3. The paramagnetic garnet-type transparent ceramic according to 1 or 2, containing more than 0 mass % and 0.1 mass % or less of SiO 2 as a sintering aid.
4.
4. The paramagnetic garnet-type transparent ceramic according to any one of 1 to 3, wherein the average sintered grain size is 10 μm or more and 40 μm or less.
5.
5. A magneto-optical device comprising the paramagnetic garnet-type transparent ceramic according to any one of 1 to 4.
6.
6. The magneto-optical device according to claim 5, which is an optical isolator that has the paramagnetic garnet-type transparent ceramic as a Faraday rotator and has polarizing materials in front of and behind the optical axis of the Faraday rotator and can be used in the wavelength range of 0.9 μm to 1.1 μm.
7.
5. A method for producing the paramagnetic garnet-type transparent ceramic according to any one of 1 to 4, comprising the step of:
(Tb1 -xyYxScy ) 3 (Al1 - zScz ) 5O12 (1 )
(In the formula, 0≦x<0.45, 0≦y<0.08, 0≦z<0.2, and 0.001<y+z<0.20.)
a Tb-containing rare earth aluminum garnet sintered body represented by the formula (1) is pressure-sintered, the pressure-sintered body is heated to a temperature higher than that of the pressure-sintered body, and the resintered body is subjected to an oxidation annealing treatment in an oxidation atmosphere of 1,400° C. or higher.
8.
8. The method for producing a paramagnetic garnet-type transparent ceramic according to 7, wherein the resintering is carried out under a reduced pressure of less than 1.0×10 −3 Pa.
9.
9. A method for producing a paramagnetic garnet-type transparent ceramic according to claim 7 or 8, wherein the sintered body before pressure sintering has a relative density of 94% or more by pre-sintering.
10.
10. The method for producing a paramagnetic garnet-type transparent ceramic according to claim 9, wherein the pre-sintering is performed under a reduced pressure of less than 1.0×10 −3 Pa.
11.
11. The method for producing a paramagnetic garnet-type transparent ceramic according to any one of 7 to 10, wherein the sintered body before pressure sintering has an average sintered grain size of 5 μm or less.
12.
12. The method for producing a paramagnetic garnet-type transparent ceramic according to any one of 7 to 11, wherein after the oxidation annealing treatment, both end faces are finished to an optical mirror surface, and then an anti-reflection film is formed on each of the end faces.

本発明によれば、光路長20mmにおける波長1,070nmのレーザー光をビーム径1.6mm、入射パワー100Wで入射した場合のビーム径変化率が10%以下である熱レンズ効果の小さい常磁性ガーネット型透明セラミックスを提供でき、光アイソレータなどの磁気光学デバイスを構成するのに好適である。According to the present invention, it is possible to provide a paramagnetic garnet-type transparent ceramic having a small thermal lens effect, in which the beam diameter change rate is 10% or less when laser light having a wavelength of 1,070 nm and an optical path length of 20 mm is incident with a beam diameter of 1.6 mm and an incident power of 100 W, and which is suitable for constructing magneto-optical devices such as optical isolators.

本発明の常磁性ガーネット型透明セラミックスをファラデー回転子として用いた光アイソレータの構成例を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing an example of the configuration of an optical isolator using the paramagnetic garnet-type transparent ceramic of the present invention as a Faraday rotator.

[常磁性ガーネット型透明セラミックス]
以下、本発明に係る常磁性ガーネット型透明セラミックスについて説明する。
本発明に係る常磁性ガーネット型透明セラミックスは、下記式(1)
(Tb1-x-yxScy3(Al1-zScz512 (1)
(式中、0≦x<0.45、0≦y<0.08、0≦z<0.2、0.001<y+z<0.20である。)
で表されるTb含有希土類アルミニウムガーネットの焼結体であって、光学鏡面仕上げの両端面を有し、該両端面それぞれに反射防止膜を備える長さ20mmの円柱状又は角柱状のものとし、これにレーザー強度100W、ビーム品質M2値がm(1<m≦1.2)である波長1,070nmのレーザー光を入射させ、その透過光のビーム品質M2値をnとした場合のn/mが1.05以下であることを特徴とするものである。
[Paramagnetic garnet-type transparent ceramics]
The paramagnetic garnet-type transparent ceramics according to the present invention will now be described.
The paramagnetic garnet-type transparent ceramic according to the present invention has the following formula (1):
(Tb1 -xyYxScy ) 3 (Al1 - zScz ) 5O12 (1 )
(In the formula, 0≦x<0.45, 0≦y<0.08, 0≦z<0.2, and 0.001<y+z<0.20.)
The present invention relates to a sintered body of Tb-containing rare earth aluminum garnet represented by the formula (1), which has both end faces finished to an optical mirror surface, and has a cylindrical or rectangular column shape with a length of 20 mm, each end face being provided with an anti-reflection film. When a laser beam having a wavelength of 1,070 nm and a laser intensity of 100 W and a beam quality M2 value of m (1 < m ≦ 1.2) is incident on the body, the ratio n/m is 1.05 or less, where n is the beam quality M2 value of the transmitted light.

なお、式(1)で表されるガーネット結晶構造においてTbが主として占有するサイト、即ち式(1)の前半の括弧をAサイト、Alが主として占有するサイト、即ち式(1)の後半の括弧をBサイトと称する。In the garnet crystal structure represented by formula (1), the site primarily occupied by Tb, i.e., the first half of the parentheses in formula (1), is referred to as the A site, and the site primarily occupied by Al, i.e., the second half of the parentheses in formula (1), is referred to as the B site.

式(1)のAサイトにおいて、テルビウム(Tb)は、3価の希土類イオンの中で最大のベルデ定数を有する元素であり、ファイバーレーザーで使用する1,070nm領域(波長帯0.9μm以上1.1μm以下)で吸収が極めて小さいため、この波長域の光アイソレータ用材料に用いるには好適な最も適している元素である。ただし、Tb(III)イオンは容易に酸化されTb(IV)イオンが生じる。金属酸化物中にTb(IV)イオンが生じると紫外から近赤外域にかけて広範囲の波長で光を吸収し透過率を低下させるため、できる限り排除することが望ましい。Tb(IV)イオンを発生させない1つのストラテジーとしてTb(IV)イオンが不安定な結晶構造、つまりガーネット構造を採用することが有効である。In the A site of formula (1), terbium (Tb) is an element with the largest Verdet constant among trivalent rare earth ions, and has extremely small absorption in the 1,070 nm region (wavelength band 0.9 μm to 1.1 μm) used in fiber lasers, making it the most suitable element for use as an optical isolator material in this wavelength range. However, Tb(III) ions are easily oxidized to generate Tb(IV) ions. When Tb(IV) ions are generated in metal oxides, they absorb light over a wide range of wavelengths from ultraviolet to near infrared, reducing the transmittance, so it is desirable to eliminate them as much as possible. One strategy to prevent the generation of Tb(IV) ions is to adopt a crystal structure in which Tb(IV) ions are unstable, i.e., a garnet structure.

イットリウム(Y)はイオン半径がテルビウムよりも2%程度小さく、アルミニウムと化合して複合酸化物を形成する場合に、ペロブスカイト相よりもガーネット相を安定して形成できるため、本発明においては好ましく利用することのできる元素である。Yttrium (Y) has an ionic radius that is about 2% smaller than that of terbium, and when it combines with aluminum to form a complex oxide, it can form a garnet phase more stably than a perovskite phase, making it an element that can be preferably used in the present invention.

式(1)のBサイトにおいて、アルミニウム(Al)はガーネット構造を有する酸化物中で安定に存在できる3価のイオンの中で最小のイオン半径を有する材料であり、Tb含有の常磁性ガーネット型酸化物の格子定数を最も小さくすることのできる元素である。Tbの含有量を変えることなくガーネット構造の格子定数を小さくすることができると、単位長さあたりのベルデ定数を大きくすることができるため好ましい。更にアルミニウムは軽金属であるためガリウムと比較すると反磁性が弱く、ファラデー回転子内部に生じる磁束密度を相対的に高める効果が期待され、こちらも単位長さあたりのベルデ定数を大きくすることができるため好ましい。実際TAGセラミックスのベルデ定数はTGGのそれの1.25~1.5倍に向上する。そのためテルビウムイオンの一部をイットリウムイオンで置換することでテルビウムの相対濃度を低下させた場合でも、単位長さあたりのベルデ定数をTGG同等、ないしは若干下回る程度にとどめることが可能となるため、本発明においては好適な構成元素である。In the B site of formula (1), aluminum (Al) is a material with the smallest ionic radius among trivalent ions that can exist stably in an oxide having a garnet structure, and is an element that can minimize the lattice constant of a paramagnetic garnet-type oxide containing Tb. If the lattice constant of the garnet structure can be reduced without changing the Tb content, it is preferable because the Verdet constant per unit length can be increased. Furthermore, since aluminum is a light metal, it has weak diamagnetism compared to gallium, and is expected to have the effect of relatively increasing the magnetic flux density generated inside the Faraday rotator, which is also preferable because it can increase the Verdet constant per unit length. In fact, the Verdet constant of TAG ceramics is improved to 1.25 to 1.5 times that of TGG. Therefore, even if the relative concentration of terbium is reduced by replacing some of the terbium ions with yttrium ions, it is possible to keep the Verdet constant per unit length equal to or slightly lower than that of TGG, making it a suitable constituent element in the present invention.

ここで、構成元素がTb、Y及びAlだけの複合酸化物では微妙な秤量誤差によってガーネット構造を有さない場合があり、光学用途に使用可能な透明セラミックスを安定に製造することが難しい。そこで、本発明では構成元素としてスカンジウム(Sc)を添加することにより微妙な秤量誤差による組成ずれを解消する。Scは、ガーネット構造を有する酸化物中でAサイトにも、Bサイトにも固溶することができる中間的なイオン半径を有する材料であり、Tb及びYからなる希土類元素とAlとの配合比が秤量時のばらつきによって化学量論比からずれた場合に、ちょうど化学量論比に合うように、そしてこれにより結晶子の生成エネルギーを最小にするように、自らAサイト(Tb及びYからなる希土類サイト)とBサイト(アルミニウムサイト)への分配比を調整して固溶することのできるバッファ材料である。また、アルミナ異相のガーネット母相に対する存在割合を1ppm以下に制限し、かつ、ペロブスカイト型の異相のガーネット母相に対する存在割合を1ppm以下に制限することのできる元素であり、製品の歩留り向上のために添加できる元素である。Here, a composite oxide whose constituent elements are only Tb, Y, and Al may not have a garnet structure due to a subtle weighing error, making it difficult to stably manufacture transparent ceramics that can be used for optical applications. Therefore, in the present invention, scandium (Sc) is added as a constituent element to eliminate the composition deviation due to a subtle weighing error. Sc is a material with an intermediate ionic radius that can be dissolved in both the A site and the B site in an oxide having a garnet structure, and is a buffer material that can adjust the distribution ratio to the A site (rare earth site consisting of Tb and Y) and the B site (aluminum site) to exactly match the stoichiometric ratio and thereby minimize the energy of crystallite formation when the compounding ratio of rare earth elements consisting of Tb and Y and Al deviates from the stoichiometric ratio due to variations in weighing. In addition, it is an element that can limit the presence ratio of the alumina heterophase in the garnet parent phase to 1 ppm or less, and can limit the presence ratio of the perovskite type heterophase in the garnet parent phase to 1 ppm or less, and can be added to improve product yields.

式(1)中、xの範囲は0≦x<0.45であり、0.05≦x<0.45が好ましく、0.10≦x≦0.40がより好ましく、0.20≦x≦0.40が更に好ましい。xがこの範囲にあると、常温(23±15℃)、波長1,064nmでのベルデ定数が30rad/(T・m)以上となり、ファラデー回転子として使用することができる。またこの範囲においてxが大きいほど熱レンズ効果が小さくなる傾向があるため好ましい。更にこの範囲においてxが大きいほど拡散透過率が小さくなる傾向があるため好ましい。なお、波長1,070nmのレーザー光においても同様である。対して、xが0.45以上の場合、波長1,064nmでのベルデ定数が30rad/(T・m)未満となるため好ましくない。即ちTbの相対濃度が過剰に薄まると、一般的なマグネットを使用した場合、波長1,064nm(又は波長1,070nm)のレーザー光を45度回転させるのに必要なファラデー回転子の全長が30mmを超えて長くなり、製造が難しくなるため好ましくない。In formula (1), the range of x is 0≦x<0.45, preferably 0.05≦x<0.45, more preferably 0.10≦x≦0.40, and even more preferably 0.20≦x≦0.40. When x is in this range, the Verdet constant at room temperature (23±15°C) and wavelength of 1,064 nm is 30 rad/(T·m) or more, and it can be used as a Faraday rotator. In addition, the larger x in this range is preferable because the thermal lens effect tends to be smaller. Furthermore, in this range, the larger x is preferable because the diffuse transmittance tends to be smaller. The same applies to laser light with a wavelength of 1,070 nm. On the other hand, when x is 0.45 or more, the Verdet constant at a wavelength of 1,064 nm is less than 30 rad/(T·m), which is not preferable. In other words, if the relative concentration of Tb is excessively low, when a general magnet is used, the total length of the Faraday rotator required to rotate laser light with a wavelength of 1,064 nm (or 1,070 nm) by 45 degrees exceeds 30 mm, which is undesirable because it makes manufacturing difficult.

式(1)中、yの範囲は0≦y<0.08であり、0<y<0.08が好ましく、0.002≦y≦0.07がより好ましく、0.003≦y≦0.06が更に好ましい。yがこの範囲にあると、ペロブスカイト型異相をX線回折(XRD)分析で検出されないレベルまで減少させることができる。更に光学顕微鏡観察で150μm×150μmの視野におけるペロブスカイト型の異相(典型的なサイズが直径1~1.5μmで、薄茶色に着色して見える粒状のもの)の存在量が1個以下になるため好ましい。このときのペロブスカイト型の異相のガーネット母相に対する存在割合は1ppm以下となっている。In formula (1), the range of y is 0≦y<0.08, preferably 0<y<0.08, more preferably 0.002≦y≦0.07, and even more preferably 0.003≦y≦0.06. When y is in this range, the perovskite-type heterophase can be reduced to a level that is not detectable by X-ray diffraction (XRD) analysis. Furthermore, this is preferable because the number of perovskite-type heterophases (typically 1-1.5 μm in diameter and granular, light brown in color) present in a 150 μm x 150 μm field of view observed under an optical microscope is one or less. In this case, the ratio of the perovskite-type heterophase to the garnet parent phase is 1 ppm or less.

yが0.08以上の場合、Tbの一部をYで置換することに加えて、更にScでもTbの一部を置換してしまい、結果的にTbの固溶濃度が不必要に低下してしまうため、ベルデ定数が小さくなり好ましくない。また、Scは原料代が高額なため、Scを不必要に過剰ドープすることは製造コスト上からも好ましくない。なお、yが0.08以上の場合、Tb及びYがBサイトに、AlがAサイトに入るアンチサイト欠陥吸収が発生するリスクが高まる。 When y is 0.08 or more, in addition to substituting a portion of Tb with Y, Sc also substitutes a portion of Tb, resulting in an unnecessary decrease in the solid solution concentration of Tb, which is undesirable as it reduces the Verdet constant. In addition, since the raw material cost of Sc is expensive, it is undesirable from the viewpoint of manufacturing costs to unnecessarily over-do Sc. In addition, when y is 0.08 or more, there is an increased risk of antisite defect absorption, in which Tb and Y enter the B site and Al enters the A site.

式(1)中、zの範囲は0≦z<0.2であり、0<z<0.16が好ましく、0.01≦z≦0.15がより好ましく、0.03≦z≦0.15が更に好ましい。zがこの範囲にあると、ペロブスカイト型異相がXRD分析で検出されない。更に光学顕微鏡観察で150μm×150μmの視野におけるペロブスカイト型の異相(典型的なサイズが直径1~1.5μmで、薄茶色に着色して見える粒状のもの)の存在量が1個以下になるため好ましい。このときのペロブスカイト型の異相のガーネット母相に対する存在割合は1ppm以下となっている。In formula (1), the range of z is 0≦z<0.2, preferably 0<z<0.16, more preferably 0.01≦z≦0.15, and even more preferably 0.03≦z≦0.15. When z is in this range, the perovskite-type heterophase is not detected by XRD analysis. Furthermore, this is preferable because the number of perovskite-type heterophases (typically 1-1.5 μm in diameter and granular, light brown in color) present in a 150 μm x 150 μm field of view observed under an optical microscope is one or less. In this case, the ratio of the perovskite-type heterophase to the garnet parent phase is 1 ppm or less.

zが0.2以上の場合、ペロブスカイト型異相の析出抑制効果は飽和して変わらない中、zの値の増加に連動してyの値、即ちScによるTbの置換割合も高まってしまうため、結果的にTbの固溶濃度が不必要に低下してしまい、ベルデ定数が小さくなり好ましくない。更にまたScは原料代が高額なため、Scを不必要に過剰ドープすることは製造コスト上からも好ましくない。なお、zが0.16以上の場合、Tb及びYがBサイトに、AlがAサイトに入るアンチサイト欠陥吸収が発生するリスクが高まる。 When z is 0.2 or more, the effect of suppressing the precipitation of perovskite-type heterophases saturates and remains unchanged, but as the value of z increases, the value of y, i.e., the substitution ratio of Tb by Sc, also increases, resulting in an unnecessary decrease in the solid solution concentration of Tb and a small Verdet constant, which is undesirable. Furthermore, since the raw material cost of Sc is expensive, it is undesirable from the viewpoint of manufacturing costs to unnecessarily over-do Sc. In addition, when z is 0.16 or more, there is an increased risk of antisite defect absorption, in which Tb and Y enter the B site and Al enters the A site.

式(1)中、y+zの範囲は0.001<y+z<0.20である。y+zがこの範囲にあるとペロブスカイト型異相がXRD分析で検出されない。更に光学顕微鏡観察で150μm×150μmの視野におけるペロブスカイト型の異相(典型的なサイズが直径1~1.5μmで、薄茶色に着色して見える粒状のもの)の存在量が1個以下になるため好ましい。このときのペロブスカイト型の異相のガーネット母相に対する存在割合は1ppm以下となっている。なお、y+zの範囲が0≦y+z≦0.001の範囲であっても本発明の効果は得られるが、原料の秤量誤差によって異相が発生しやすくなり、その結果歩留まりが低下するため好ましくない。In formula (1), the range of y+z is 0.001<y+z<0.20. When y+z is in this range, the perovskite-type heterophase is not detected by XRD analysis. Furthermore, it is preferable because the number of perovskite-type heterophases (typically 1-1.5 μm in diameter and granular, light brown in color) present in a 150 μm x 150 μm field of view in optical microscope observation is one or less. In this case, the ratio of the perovskite-type heterophase to the garnet parent phase is 1 ppm or less. Note that the effect of the present invention can be obtained even if the range of y+z is 0≦y+z≦0.001, but this is not preferable because the heterophase is more likely to occur due to weighing errors in the raw materials, resulting in a decrease in yield.

また、本発明の常磁性ガーネット型透明セラミックスでは、上記焼結体が更に焼結助剤を含むものであることが好ましい。具体的には、焼結助剤としてSiO2を0質量%超0.1質量%以下(0ppm超1,000ppm以下)含有することが好ましい。含有量が0.1質量%(1,000ppm)超では過剰に含まれるSiによる結晶欠陥により微量な光吸収が発生するおそれがあり、製造した長さ(光路長)20mmの常磁性ガーネット型透明セラミックスに波長1,070nmの100Wレーザー光線を照射した際に熱レンズ効果が発生することにより、上記入射光のビーム品質M2の値をm、該透明セラミックスを透過したレーザー光のビーム品質M2の値をnとした場合のn/mが1.05より大きくなるため好ましくない。 In addition, in the paramagnetic garnet-type transparent ceramic of the present invention, it is preferable that the sintered body further contains a sintering aid. Specifically, it is preferable to contain SiO2 as a sintering aid in an amount of more than 0 mass% and 0.1 mass% or less (more than 0 ppm and 1,000 ppm or less). If the content exceeds 0.1 mass% (1,000 ppm), there is a risk of slight light absorption occurring due to crystal defects caused by the excessive Si contained, and when a 100W laser beam having a wavelength of 1,070 nm is irradiated onto a manufactured paramagnetic garnet-type transparent ceramic having a length (optical path length) of 20 mm, a thermal lens effect occurs, and when the value of the beam quality M2 of the incident light is m and the value of the beam quality M2 of the laser beam transmitted through the transparent ceramic is n, n/m becomes larger than 1.05, which is not preferable.

また、焼結助剤として更にマグネシウム(Mg)又はカルシウム(Ca)の酸化物を添加することができる。Mg及びCaは共に2価のイオンであり、4価であるSiO2添加に伴うガーネット構造内部のチャージバランスのずれを補償することのできる元素であるため、好適に添加することができる。その添加量はSiO2添加量に合わせるように調整することが好ましい。 In addition, an oxide of magnesium (Mg) or calcium (Ca) can be added as a sintering aid. Both Mg and Ca are divalent ions, and can be suitably added because they are elements that can compensate for the charge balance shift inside the garnet structure caused by the addition of tetravalent SiO2. The amount of addition is preferably adjusted to match the amount of SiO2 added.

また、本発明の常磁性ガーネット型透明セラミックスは、光学鏡面仕上げの両端面を有し、該両端面それぞれに反射防止膜を備える長さ20mmの円柱状又は角柱状のものとし、これにレーザー強度100W、ビーム品質M2値がm(1<m≦1.2)である波長1,070nmのレーザー光を入射させ、その透過光のビーム品質M2値をnとした場合のn/mが1.05以下であり、1.04以下が好ましく、1.02以下がより好ましい。これにより、そのレーザー光を透過させた場合、高いビーム品質M2が得られる。 The paramagnetic garnet-type transparent ceramic of the present invention is a cylindrical or prismatic ceramic having a length of 20 mm, both end faces of which are mirror-finished and each end face is provided with an anti-reflection film, and when a laser beam having a wavelength of 1,070 nm and a laser intensity of 100 W and a beam quality M2 value of m (1<m≦1.2) is incident thereon, and the beam quality M2 value of the transmitted light is n, the ratio n/m is 1.05 or less, preferably 1.04 or less, and more preferably 1.02 or less. As a result, when the laser beam is transmitted, a high beam quality M2 is obtained.

また、本発明の常磁性ガーネット型透明セラミックスは、光路長20mmにおける波長1,070nmのレーザー光をビーム径1.6mm、入射パワー100Wで入射した場合の熱レンズによるビーム径変化率が10%以下であることが好ましく、9%以下が好ましく、8%以下がより好ましく、7%以下が更に好ましい。ある入射パワーのもとで熱レンズ効果によるビーム径変化率が10%以下であると、当該入射パワーでのシステム搭載が可能、即ち熱レンズ特性が合格する。本発明の常磁性ガーネット型透明セラミックスは、100Wのハイパワー入射で熱レンズ効果によるビーム径変化率が10%以下に管理できるため、実質的に当該材料は100W用ハイパワーレーザーシステムに採用できる。 In addition, the paramagnetic garnet-type transparent ceramics of the present invention preferably have a beam diameter change rate due to thermal lensing of 10% or less when a laser beam having a wavelength of 1,070 nm with an optical path length of 20 mm is incident with a beam diameter of 1.6 mm and an incident power of 100 W, preferably 9% or less, more preferably 8% or less, and even more preferably 7% or less. If the beam diameter change rate due to the thermal lens effect at a certain incident power is 10% or less, the system can be installed at that incident power, that is, the thermal lens characteristics are satisfactory. Since the paramagnetic garnet-type transparent ceramics of the present invention can control the beam diameter change rate due to the thermal lens effect to 10% or less when a high power of 100 W is incident, the material can be used in a high-power laser system for 100 W.

また、本発明の常磁性ガーネット型透明セラミックスは、平均焼結粒径が10μm以上40μm以下であることが好ましく、20μm以上40μm以下がより好ましい。平均焼結粒径が10μm未満であるとセラミックス内部の散乱量が多くなり、結果として長さ20mmの円柱形状のものとしてレーザー加工機内部に搭載されるファラデー回転子として利用した際に、これにレーザー強度100W、ビーム品質M2値がm(1<m≦1.2)である波長1,070nmのレーザー光を入射させ、その透過光のビーム品質M2値をnとした場合のn/mが1.05を超えてしまう。 In addition, the paramagnetic garnet-type transparent ceramic of the present invention preferably has an average sintered grain size of 10 μm to 40 μm, more preferably 20 μm to 40 μm. If the average sintered grain size is less than 10 μm, the amount of scattering inside the ceramic increases, and as a result, when a cylindrical ceramic with a length of 20 mm is used as a Faraday rotator to be mounted inside a laser processing machine, when a laser beam with a wavelength of 1,070 nm and a laser intensity of 100 W and a beam quality M2 value of m (1<m≦1.2) is incident on the ceramic, and the beam quality M2 value of the transmitted light is n, the ratio n/m exceeds 1.05.

なお、常磁性ガーネット型透明セラミックス(再焼結体)における焼結粒子の平均粒径(平均焼結粒径)は、対象焼結体の焼結粒子の粒径を金属顕微鏡で測定して求められるものであり、詳しくは以下のようにして求められる。
即ち、再焼結体について金属顕微鏡の透過モードを使用し、50倍の対物レンズを使用して両端面が研磨された焼結体サンプルの透過オープンニコル像を撮影する。詳しくは、対象焼結体の所定深度における光学有効領域を撮影し、その撮影像に対角線を描き、当該対角線が横切る焼結粒子の総数をカウントしその上で対角線長をこのカウント総数で割った値をその画像中の焼結粒子の平均焼結粒径と定義する。更に解析処理で読み取った各撮影画像の平均粒径を合算したうえで、撮影枚数で割った値を対象焼結体の平均焼結粒径とする(以下、常磁性ガーネット型透明セラミックスの製造方法及び実施例において同じ)。
The average grain size (average sintered grain size) of the sintered grains in the paramagnetic garnet-type transparent ceramics (resintered body) is determined by measuring the grain size of the sintered grains of the target sintered body using a metallurgical microscope, and more specifically, is determined as follows.
That is, the transmission mode of the metal microscope is used for the resintered body, and a 50x objective lens is used to take a transmission open Nicol image of the sintered body sample with both end faces polished. In detail, the optically effective area of the target sintered body at a predetermined depth is photographed, a diagonal line is drawn on the photographed image, the total number of sintered grains that the diagonal line crosses is counted, and the value obtained by dividing the diagonal line length by this total count is defined as the average sintered grain size of the sintered grains in the image. Furthermore, the average grain sizes of each photographed image read in the analysis process are summed up, and the value divided by the number of photographs is defined as the average sintered grain size of the target sintered body (the same applies below in the manufacturing method and examples of paramagnetic garnet-type transparent ceramics).

[常磁性ガーネット型透明セラミックスの製造方法]
本発明に係る常磁性ガーネット型透明セラミックスの製造方法は、上述した本発明の常磁性ガーネット型透明セラミックスを製造するための方法であって、下記式(1)
(Tb1-x-yxScy3(Al1-zScz512 (1)
(式中、0≦x<0.45、0≦y<0.08、0≦z<0.2、0.001<y+z<0.20である。)
で表されるTb含有希土類アルミニウムガーネットの焼結体について加圧焼結し、更にこの加圧焼結体を上記加圧焼結を超える温度に加熱して再焼結し、更に再焼結体について1,400℃以上の酸化雰囲気で酸化アニール処理を行うことを特徴とするものである。
[Method of manufacturing paramagnetic garnet-type transparent ceramics]
The method for producing the paramagnetic garnet-type transparent ceramics according to the present invention is a method for producing the paramagnetic garnet-type transparent ceramics according to the present invention described above, which comprises reacting a compound represented by the following formula (1):
(Tb1 -xyYxScy ) 3 (Al1 - zScz ) 5O12 (1 )
(In the formula, 0≦x<0.45, 0≦y<0.08, 0≦z<0.2, and 0.001<y+z<0.20.)
The present invention is characterized in that a sintered body of Tb-containing rare earth aluminum garnet represented by the formula (I) is pressure-sintered, the pressure-sintered body is further heated to a temperature higher than that of the pressure-sintered body, and the resintered body is further subjected to an oxidation annealing treatment in an oxidation atmosphere of 1,400° C. or more.

ここでは、以下の手順で常磁性ガーネット型透明セラミックスを製造する。
(焼結用原料粉末)
まず、上述した式(1)のガーネット型複合酸化物組成に対応した焼結用原料粉末を作製する。
Here, the paramagnetic garnet-type transparent ceramics are manufactured according to the following procedure.
(raw powder for sintering)
First, a raw material powder for sintering corresponding to the garnet-type composite oxide composition of the above formula (1) is prepared.

本発明で用いる上記ガーネット型複合酸化物の焼結用原料粉末の作製方法は、特に限定されるものではないが、ガーネット型複合酸化物に対応した成分元素ごとの金属酸化物粉末を出発原料として式(1)に対応する組成となるようにそれぞれを所定量秤量し、混合して焼結用原料粉末としてもよい。このときの出発原料は、透明化可能なら特に限定されないが、不純物由来の吸収を抑える観点から、純度は99.9質量%以上が好ましく、99.99質量%以上がより好ましく、99.999質量%以上が最も好ましい。また、原料粉末の一次粒子の粒径は透明化可能であれば特に限定はされないが、易焼結性の観点から50nm以上1,000nm以下が好ましい。一次粒子の形状はカードハウス状、球状、棒状から選択され、透明化可能であれば特に限定されない。The method for preparing the raw powder for sintering of the garnet-type complex oxide used in the present invention is not particularly limited, but may be such that a predetermined amount of metal oxide powder for each component element corresponding to the garnet-type complex oxide is weighed as the starting material so as to obtain a composition corresponding to formula (1), and mixed to obtain the raw powder for sintering. The starting material in this case is not particularly limited as long as it can be made transparent, but from the viewpoint of suppressing absorption from impurities, the purity is preferably 99.9 mass% or more, more preferably 99.99 mass% or more, and most preferably 99.999 mass% or more. In addition, the particle size of the primary particles of the raw powder is not particularly limited as long as it can be made transparent, but from the viewpoint of easy sintering, it is preferably 50 nm or more and 1,000 nm or less. The shape of the primary particles is selected from a card house shape, a spherical shape, and a rod shape, and is not particularly limited as long as it can be made transparent.

あるいは、本発明で用いる上記ガーネット型複合酸化物の焼結用原料粉末の作製方法は、共沈法、粉砕法、噴霧熱分解法、ゾルゲル法、アルコキシド加水分解法、錯体重合法、均一沈殿法、その他あらゆる合成方法を用いてもよい。場合によって、得られた希土類複合酸化物のセラミックス原料を所望の粒径とするために適宜湿式ボールミル、ビーズミル、ジェットミル、乾式ジェットミル、ハンマーミル等によって処理してもよい。例えば、複数種の酸化物粒子を混ぜて焼成し、イオンの熱拡散によって均一性を生みだす固相反応法や、酸化物粒子を溶解させたイオン含有溶液から水酸化物、炭酸塩などを析出させ、焼成によって酸化物にすることで均一性を生みだす共沈法を用いて焼結用原料粉末とするとよい。Alternatively, the method for producing the raw powder for sintering of the above-mentioned garnet-type complex oxide used in the present invention may be a coprecipitation method, a pulverization method, a spray pyrolysis method, a sol-gel method, an alkoxide hydrolysis method, a complex polymerization method, a homogeneous precipitation method, or any other synthesis method. In some cases, the obtained ceramic raw material of rare earth complex oxide may be appropriately processed by a wet ball mill, a bead mill, a jet mill, a dry jet mill, a hammer mill, etc. to obtain a desired particle size. For example, a solid-phase reaction method in which multiple types of oxide particles are mixed and fired to produce uniformity by thermal diffusion of ions, or a coprecipitation method in which hydroxides, carbonates, etc. are precipitated from an ion-containing solution in which oxide particles are dissolved, and then fired to produce oxides to produce uniformity, may be used to produce the raw powder for sintering.

複数種の金属酸化物粒子を混ぜて焼成し、イオンの熱拡散によって均一性を生みだす固相反応法の場合、出発原料としては、テルビウム、イットリウム、スカンジウム、アルミニウムからなる金属粉末、ないしは前記金属粉末を硝酸、硫酸、尿酸等の水溶液で溶解したもの、あるいは上記元素の酸化物粉末等が好適に利用できる。また、上記原料の純度は99.9質量%以上が好ましく、99.99質量%以上が特に好ましい。それらの出発原料を式(1)に対応する組成となるように所定量秤量し、混合してから焼成して所望の金属酸化物の焼成原料を得、これを粉砕して焼結用原料粉末としてもよい。ただし、このときの焼成温度は1,100℃以下が好ましく、1,050℃以下がより好ましく、1,000℃以下が更に好ましい。1,100℃を超えると原料粉の焼きしまりが起こり、続く粉砕工程で十分に粉砕できないことがある。焼成時間は1時間以上行えばよく、そのときの昇温速度は100℃/h以上500℃/h以下が好ましい。焼成の雰囲気は、大気、酸素の酸素含有雰囲気が好ましく、窒素雰囲気やアルゴン雰囲気、水素雰囲気等は不適である。また、焼成装置は縦型マッフル炉、横型管状炉、ロータリーキルン等が例示され、目標の温度に到達及び酸素フローができれば特に限定されない。In the case of the solid-phase reaction method in which multiple types of metal oxide particles are mixed and fired to produce uniformity by thermal diffusion of ions, metal powders consisting of terbium, yttrium, scandium, and aluminum, or the above metal powders dissolved in an aqueous solution of nitric acid, sulfuric acid, uric acid, etc., or oxide powders of the above elements can be suitably used as starting materials. The purity of the above raw materials is preferably 99.9% by mass or more, and particularly preferably 99.99% by mass or more. The starting materials are weighed in a predetermined amount so as to have a composition corresponding to formula (1), mixed, and then fired to obtain a fired raw material of the desired metal oxide, which can be crushed to obtain a raw material powder for sintering. However, the firing temperature at this time is preferably 1,100°C or less, more preferably 1,050°C or less, and even more preferably 1,000°C or less. If the temperature exceeds 1,100°C, the raw material powder will be sintered and may not be sufficiently crushed in the subsequent crushing process. The firing time may be 1 hour or more, and the heating rate is preferably 100° C./h or more and 500° C./h or less. The firing atmosphere is preferably air or an oxygen-containing atmosphere, and nitrogen atmosphere, argon atmosphere, hydrogen atmosphere, etc. are not suitable. The firing apparatus is not particularly limited as long as it can reach the target temperature and oxygen flow. Examples of the firing apparatus include a vertical muffle furnace, a horizontal tubular furnace, a rotary kiln, etc.

また、焼結用原料粉末は焼結助剤を含むことが好ましい。例えば、上記出発原料と共に焼結助剤としてテトラエトキシシラン(TEOS)をSiO2換算で原料粉末全体(ガーネット型複合酸化物粉末十焼結助剤)において0ppm超1,000ppm以下(0質量%超0.1質量%以下)添加し、又はSiO2粉末を原料粉末全体(ガーネット型複合酸化物粉末十焼結助剤)において0ppm超1,000ppm以下(0質量%超0.1質量%以下)添加し、混合し必要に応じて成して焼結用原料粉末とするとよい。添加量が1,000ppm超では過剰に含まれるSiによる結晶欠陥により微量な光吸収が発生するおそれがある。なお、その純度は99.9質量%以上が好ましい。焼結助剤は原料粉末スラリーの調製時に添加してもよい。なお、Si元素は製造工程で用いるガラス器具など環境から混入することがあったり、また減圧下で焼結を行うと一部のSi元素が揮発することがあったりして、最終的なセラミックス中に含まれるSiの含有量を分析すると意図せず増えていたり減っていたりすることがあるため注意が必要である。また、焼結助剤を添加しない場合には、使用する焼結用原料粉末(即ち、上記出発原料混合粉末又は複合酸化物粉末)についてその一次粒子の粒径がナノサイズであって焼結活性が極めて高いものを選定するとよい。こうした選択は適宜なされてよい。 In addition, the raw powder for sintering preferably contains a sintering aid. For example, tetraethoxysilane (TEOS) is added as a sintering aid together with the above starting materials in an amount of more than 0 ppm and not more than 1,000 ppm (more than 0 mass% and not more than 0.1 mass%) in terms of SiO 2 in the entire raw powder (garnet-type complex oxide powder + sintering aid), or SiO 2 powder is added in an amount of more than 0 ppm and not more than 1,000 ppm (more than 0 mass% and not more than 0.1 mass%) in the entire raw powder (garnet-type complex oxide powder + sintering aid), mixed, and formed as necessary to obtain a raw powder for sintering. If the amount added exceeds 1,000 ppm, there is a risk of a slight amount of light absorption occurring due to crystal defects caused by the excessive Si contained. The purity is preferably 99.9 mass% or more. The sintering aid may be added when preparing the raw powder slurry. Note that Si element may be mixed in from the environment, such as glassware used in the manufacturing process, or may volatilize when sintering is performed under reduced pressure, so that the Si content in the final ceramic may be unintentionally increased or decreased when analyzed. In addition, when no sintering aid is added, it is advisable to select the raw material powder for sintering (i.e., the starting material mixed powder or composite oxide powder) to be used, which has a primary particle size of nano-size and has extremely high sintering activity. Such a selection may be made appropriately.

焼成原料を粉砕して焼結用原料粉末とする場合は、粉砕方法は乾式、湿式のどちらでも選択できるが、目的のセラミックスが高度に透明になるように粉砕する必要がある。例えば湿式粉砕の場合、焼成原料をボールミル、ビーズミル、ホモジナイザー、ジェットミル、超音波照射等の各種粉砕(分散)方法によってスラリー化し一次粒子まで粉砕(分散)する。この湿式スラリーの分散媒としては最終的に得られるセラミックスの高度の透明化が可能であれば特に制限されず、例えば炭素数1~4の低級アルコール等のアルコール類、純水が挙げられる。またこの湿式スラリーはその後のセラミックス製造工程での品質安定性や歩留り向上の目的で、各種の有機添加剤が添加される場合がある。本発明においては、これらについても特に限定されない。即ち、各種の分散剤、結合剤、潤滑剤、可塑剤等が好適に利用できる。ただし、これらの有機添加剤としては、不要な金属イオンが含有されない、高純度のタイプを選定することが好ましい。湿式粉砕の場合、最終的にスラリーの分散媒を除去することで焼結用原料粉末とする。When the raw material to be fired is pulverized to obtain raw material powder for sintering, either a dry or wet pulverization method can be selected, but it is necessary to pulverize so that the target ceramics become highly transparent. For example, in the case of wet pulverization, the raw material to be fired is slurried by various pulverization (dispersion) methods such as a ball mill, a bead mill, a homogenizer, a jet mill, and ultrasonic irradiation, and then pulverized (dispersed) to primary particles. The dispersion medium of this wet slurry is not particularly limited as long as it can make the final ceramic highly transparent, and examples of such dispersion medium include alcohols such as lower alcohols with 1 to 4 carbon atoms and pure water. In addition, various organic additives may be added to this wet slurry for the purpose of improving the quality stability and yield in the subsequent ceramic manufacturing process. In the present invention, these are also not particularly limited. In other words, various dispersants, binders, lubricants, plasticizers, etc. can be suitably used. However, it is preferable to select high-purity types of organic additives that do not contain unnecessary metal ions. In the case of wet pulverization, the dispersion medium of the slurry is finally removed to obtain raw material powder for sintering.

[製造工程]
本発明では、上記焼結用原料粉末を含むスラリー用いて、所定形状に成形した後に脱脂を行い、次いで予備焼結を行って相対密度94%以上に緻密化した複合酸化物からなる焼結体(予備焼結体)とし、次いで焼結体について加圧焼結し、更にこの加圧焼結体を上記加圧焼結を超える温度に加熱して再焼結し、更に再焼結体について所定の酸化アニール処理を行う。
[Manufacturing process]
In the present invention, a slurry containing the above-mentioned sintering raw material powder is used to form a desired shape, which is then degreased and pre-sintered to form a sintered body (pre-sintered body) made of a complex oxide densified to a relative density of 94% or more. The sintered body is then pressure sintered, and the pressure sintered body is further heated to a temperature exceeding that of the pressure sintering temperature and re-sintered, and the re-sintered body is then subjected to a specified oxidation annealing treatment.

(成形)
上記のようにスラリー化したものについて固液分離を施し、所定の形状に成形する。成形方法としては、乾式成形と湿式成形に大別されるが、所定の形状が安定に得られるなら特に限定はされない。乾式成形の場合、スプレードライを用いてスラリーから顆粒を作り、冶具の中に顆粒を充填したのちにプレス成形を行う手法が例示される。また、湿式成形としては、スラリーを石膏型に流し込んで溶媒を揮発させる鋳込み成形法が例示される。ほかにも、押出成形法、シート成形法、遠心鋳込み成形法、冷間等方圧加圧法が例示されるが、どれも所定の形状が得られるので限定はされない。
(Molding)
The slurry thus obtained is subjected to solid-liquid separation and molded into a desired shape. The molding method is broadly divided into dry molding and wet molding, but is not particularly limited as long as the desired shape can be stably obtained. In the case of dry molding, a method of making granules from the slurry using spray drying, filling a jig with the granules, and then performing press molding is exemplified. In addition, an example of wet molding is a casting molding method in which the slurry is poured into a plaster mold and the solvent is volatilized. Other examples include extrusion molding, sheet molding, centrifugal casting molding, and cold isostatic pressing, but all of these methods are not limited as they can obtain the desired shape.

成形を行う前に、スラリーにバインダーを添加してもよい。バインダーは成形体の保持力を高めることができ、クラックやワレを起こしにくくする効果がある。バインダーの種類は特に限定されないが、溶媒と相溶性があり、かつ熱処理によって残渣の残りにくいものが好ましく、ポリビニルアルコール、ポリビニルブチラール、ポリ酢酸ビニル、ポリアクリル酸が例示され、これらのうち2種類以上を共重合させたポリマーを使用してもよい。バインダーの量は成形方法又はバインダー種類によって異なるが、焼結用原料粉末に対して0.5質量%は最低限必要であり、上限は8質量%である。なお、バインダーの添加は湿式粉砕中が最も好ましい。Before molding, a binder may be added to the slurry. The binder can increase the retention of the molded body and has the effect of making cracks and breaks less likely to occur. There are no particular limitations on the type of binder, but it is preferable to use one that is compatible with the solvent and does not leave a residue when heat treated. Examples of binders include polyvinyl alcohol, polyvinyl butyral, polyvinyl acetate, and polyacrylic acid, and polymers obtained by copolymerizing two or more of these may also be used. The amount of binder varies depending on the molding method or binder type, but a minimum of 0.5% by mass of the sintering raw material powder is required, and the upper limit is 8% by mass. It is most preferable to add the binder during wet grinding.

なお、上記プレス成形としては、通常のプレス成形工程を好適に利用できる。即ち、ごく一般的な、型に充填して一定方向から加圧する一軸プレス工程や変形可能な防水容器に密閉収納して静水圧で加圧する冷間静水圧加圧(CIP(Cold Isostatic Pressing))工程や温間静水圧加圧(WIP(Warm Isostatic Pressing))工程が好適に利用できる。なお、印加圧力は得られる成形体の相対密度を確認しながら適宜調整すればよく、特に制限されないが、例えば市販のCIP装置やWIP装置で対応可能な300MPa以下程度の圧力範囲で管理すると製造コストが抑えられてよい。 As the press molding, a normal press molding process can be suitably used. That is, a very common uniaxial pressing process in which the material is filled into a mold and pressed from a certain direction, a cold isostatic pressing (CIP) process in which the material is sealed in a deformable waterproof container and pressed with isostatic pressure, or a warm isostatic pressing (WIP) process can be suitably used. The applied pressure can be adjusted appropriately while checking the relative density of the resulting molded body, and is not particularly limited. For example, the manufacturing cost can be reduced by controlling the pressure within a pressure range of about 300 MPa or less that can be handled by commercially available CIP and WIP devices.

ただし、本発明においては異相、異物、汚れ、マイクロクラックなどの散乱源のサイズや量を規定の範囲内に管理するために、成形用治具、並びに成形機は十分に洗浄、乾燥された清浄な専用のものを使用し、かつ成形作業を行う環境はクラス1000以下のクリーン空間であることが好ましい。However, in the present invention, in order to control the size and amount of scattering sources such as foreign phases, foreign objects, dirt, and microcracks within specified ranges, it is preferable that the molding jigs and molding machines used are clean and dedicated ones that have been thoroughly washed and dried, and that the environment in which the molding work is carried out is a clean space of class 1000 or less.

(脱脂)
本発明の製造方法においては、通常の脱脂工程を好適に利用できる。即ち、加熱炉による昇温脱脂工程を経ることが可能である。また、この時の雰囲気ガスの種類も特に制限はなく、空気、酸素、水素等が好適に利用できる。脱脂温度も特に制限はないが、もしも有機添加剤が混合されている原料を用いる場合には、その有機成分が分解消去できる温度まで昇温することが好ましい。
(Degreasing)
In the manufacturing method of the present invention, a normal debinding process can be suitably used. That is, a heating debinding process using a heating furnace can be used. The type of atmospheric gas used at this time is not particularly limited, and air, oxygen, hydrogen, etc. can be suitably used. There is no particular limit to the debinding temperature, but if a raw material containing an organic additive is used, it is preferable to heat the raw material to a temperature at which the organic component can be decomposed and eliminated.

(予備焼結)
本工程において加熱焼結前の焼結体として、好ましくは相対密度94%以上に緻密化され、また好ましくは平均焼結粒径5μm以下の予備焼結体を作製する。この際、焼結粒径が所望の範囲内に収まるように温度と保持時間の条件を詰める必要がある。
(Pre-sintering)
In this process, a pre-sintered body is prepared as a sintered body before heat sintering, which is preferably densified to a relative density of 94% or more and preferably has an average sintered grain size of 5 μm or less. At this time, it is necessary to determine the conditions of temperature and holding time so that the sintered grain size falls within the desired range.

ここでは、一般的な焼結工程を好適に利用できる。即ち、抵抗加熱方式、誘導加熱方式等の加熱焼結工程を好適に利用できる。このときの雰囲気は特に制限されず、大気、不活性ガス、酸素ガス、水素ガス、ヘリウムガス等の各種雰囲気が好適に利用できるが、より好ましくは減圧下(真空中)での焼結が利用できる。予備焼結の真空度は1×10-1Pa未満が好ましく、1×10-2Pa未満がより好ましく、1×10-3Pa未満が特に好ましい。 Here, a general sintering process can be preferably used. That is, a heating sintering process such as a resistance heating method or an induction heating method can be preferably used. The atmosphere is not particularly limited, and various atmospheres such as air, inert gas, oxygen gas, hydrogen gas, and helium gas can be preferably used, but sintering under reduced pressure (in a vacuum) can be more preferably used. The degree of vacuum for pre-sintering is preferably less than 1×10 −1 Pa, more preferably less than 1×10 −2 Pa, and particularly preferably less than 1×10 −3 Pa.

本発明の予備焼結工程における焼結温度は、1,450~1,650℃が好ましく、1,500~1,600℃が特に好ましい。焼結温度がこの範囲にあると、異相析出並びに粒成長を抑制しつつ緻密化が促進されるため好ましい。本発明の予備焼結工程における焼結保持時間は数時間程度で十分だが、予備焼結体の相対密度は94%以上に緻密化させることが好ましい。なお、予備焼結体の相対密度が99%を超えて高くなると、その後の加圧焼結(HIP)で焼結体内部粒子塑性変形が起こりにくくなり、焼結体内に残留した気泡の除去が困難となる。そのため予備焼結体の相対密度は最高でも99%以下が好ましく、98%以下が更に好ましい。The sintering temperature in the pre-sintering step of the present invention is preferably 1,450 to 1,650°C, and particularly preferably 1,500 to 1,600°C. This range of sintering temperature is preferable because it promotes densification while suppressing heterophase precipitation and grain growth. A sintering holding time of several hours in the pre-sintering step of the present invention is sufficient, but it is preferable to densify the relative density of the pre-sintered body to 94% or more. If the relative density of the pre-sintered body exceeds 99%, it becomes difficult for plastic deformation of the internal particles of the sintered body to occur in the subsequent hot-press sintering (HIP), and it becomes difficult to remove air bubbles remaining in the sintered body. Therefore, the relative density of the pre-sintered body is preferably 99% or less at most, and more preferably 98% or less.

本発明の予備焼結体の結晶粒の平均焼結粒径は5μm以下が好ましく、3μm以下がより好ましく、2.5μm以下が更に好ましく、1μm以下が特に好ましい。該焼結粒の平均焼結粒径は原料種、雰囲気、焼結温度、保持時間との兼ね合いで調整可能である。焼結粒径が5μmより大きいと続く加圧焼結(HIP)で塑性変形が起こりにくくなり、予備焼結体内に残留した気泡の除去が困難となるおそれがある。なお、予備焼結体の結晶粒の平均焼結粒径は次工程で得られる透明な加圧焼結(HIP)体の表面の結晶粒の焼結粒径を光学顕微鏡で観察することにより判定可能である。The average sintered grain size of the pre-sintered body of the present invention is preferably 5 μm or less, more preferably 3 μm or less, even more preferably 2.5 μm or less, and particularly preferably 1 μm or less. The average sintered grain size of the sintered grains can be adjusted by taking into account the raw material type, atmosphere, sintering temperature, and holding time. If the sintered grain size is larger than 5 μm, plastic deformation is less likely to occur in the subsequent hot-ip sintering, and it may be difficult to remove bubbles remaining in the pre-sintered body. The average sintered grain size of the pre-sintered body can be determined by observing the sintered grain size of the crystal grains on the surface of the transparent hot-ip sintered body obtained in the next process with an optical microscope.

(加圧焼結(熱間等方圧プレス(HIP)))
本発明の製造方法においては、予備焼結工程を経た後に予備焼結体を好ましくは圧力50MPa以上300MPa以下、温度1,000℃以上1,780℃以下で加圧焼結する(HIP処理を行う)工程を設ける。なお、このときの加圧ガス媒体種類は、アルゴン、窒素等の不活性ガス、又はAr-O2が好適に利用できる。加圧ガス媒体により加圧する圧力は、50~300MPaが好ましく、100~300MPaがより好ましい。圧力50MPa未満では透明性改善効果が得られない可能性があり、300MPa超では圧力を増加させてもそれ以上の透明性改善が得られず、装置への負荷が過多となり装置を損傷するおそれがある。印加圧力は市販のHIP装置で処理できる196MPa以下であると簡便で好ましい。また、その際の処理温度(所定保持温度)は好ましくは1,000~1,780℃、より好ましくは1,100~1,700℃の範囲で設定される。熱処理温度が1,780℃より高い温度ではHIP処理中に粒成長が生じ気泡の除去が困難となるため好ましくない。また、熱処理温度が1,000℃未満では焼結体の透明性改善効果がほとんど得られないおそれがある。なお、熱処理温度の保持時間については特に制限されないが、あまり長時間保持すると酸素欠損の発生するリスクが増大するため好ましくない。典型的には1~3時間の範囲で好ましく設定される。なお、HIP処理するヒーター材、断熱材、処理容器は特に制限されないが、グラファイト(C)、ないしはモリブデン(Mo)、タングステン(W)、白金(Pt)が好適に利用でき、処理容器として更に酸化イットリウム、酸化ガドリニウムも好適に利用できる。処理温度が1,500℃以上である場合にはヒーター材、断熱材としてグラファイトが好ましいが、この場合は処理容器としてグラファイト、モリブデン、タングステンのいずれかを選定し、更にその内側に二重容器として酸化イットリウム、酸化ガドリニウムのいずれかを選定したうえで、容器内に酸素放出材を充填しておくと、HIP処理中の酸素欠損発生量を極力少なく抑えられるため好ましい。
(Pressure sintering (hot isostatic pressing (HIP)))
In the manufacturing method of the present invention, after the pre-sintering step, a step of pressure sintering (HIP treatment) is provided, preferably at a pressure of 50 MPa to 300 MPa and a temperature of 1,000 ° C to 1,780 ° C. The type of pressurized gas medium at this time is preferably an inert gas such as argon or nitrogen, or Ar-O 2. The pressure applied by the pressurized gas medium is preferably 50 to 300 MPa, more preferably 100 to 300 MPa. If the pressure is less than 50 MPa, the transparency improvement effect may not be obtained, and if the pressure exceeds 300 MPa, even if the pressure is increased, no further transparency improvement is obtained, and the load on the device may be excessive, which may damage the device. It is convenient and preferable that the applied pressure is 196 MPa or less, which can be processed with a commercially available HIP device. In addition, the processing temperature (predetermined holding temperature) at this time is preferably set in the range of 1,000 to 1,780 ° C., more preferably 1,100 to 1,700 ° C. Heat treatment temperatures higher than 1,780°C are not preferred because grain growth occurs during HIP treatment, making it difficult to remove bubbles. Heat treatment temperatures lower than 1,000°C may not provide much improvement in the transparency of the sintered body. There is no particular restriction on the time to hold the heat treatment temperature, but holding it for too long increases the risk of oxygen deficiency, which is not preferred. Typically, it is preferably set in the range of 1 to 3 hours. There are no particular restrictions on the heater material, heat insulating material, and treatment container used in the HIP treatment, but graphite (C), molybdenum (Mo), tungsten (W), and platinum (Pt) can be preferably used, and yttrium oxide and gadolinium oxide can also be preferably used as the treatment container. When the treatment temperature is 1,500° C. or higher, graphite is preferred as the heater material and heat insulating material. In this case, it is preferable to select either graphite, molybdenum, or tungsten as the treatment container, and further select either yttrium oxide or gadolinium oxide as a double container inside, and then fill the container with an oxygen release material, since this minimizes the amount of oxygen deficiency that occurs during HIP treatment.

(再焼結)
本発明の製造方法においては、HIP処理を終えた後に、加圧焼結体を上記加圧焼結を超える温度に加熱して再焼結して粒成長させて再焼結体を得る。この際、最終的に得られる焼結粒径が所望の範囲内に収まるように温度と保持時間の条件を詰める必要がある。
(Resintering)
In the manufacturing method of the present invention, after the HIP treatment, the pressure-sintered compact is heated to a temperature higher than that of the pressure-sintering process, and re-sintered to grow grains to obtain a re-sintered compact. At this time, it is necessary to determine the temperature and holding time conditions so that the final sintered grain size falls within a desired range.

このときの雰囲気ガスの種類は特に制限はなく、空気、酸素、水素等が好適に利用できるが、減圧下(1×10-3Pa未満の真空下)で処理することがより好ましい。再焼結の温度は1,650℃以上1,800℃以下が好ましく、1,700℃以上1,800℃以下がより好ましい。1,650℃未満では粒成長が生じないため好ましくない。
再焼結による結晶粒の平均焼結粒径は10μm以上が好ましく、15μm以上がより好ましく、20μm以上が更に好ましい。また好ましくは40μm以下である。再焼結工程の保持時間は特に制限されないが5時間以上が好ましく、10時間以上がより好ましく、20時間以上が特に好ましい。一般的に保持時間を延ばせば延ばすほど焼結体の粒成長が進む。再焼結工程の温度と保持時間は平均焼結粒径を確認して適宜調整してよい。ただし、一般的には焼結温度を上げ過ぎると予期せぬ異常粒成長が起こってしまい、均質な焼結体が得にくくなる。そこで再焼結する温度にはある程度の余裕を持たせ、再焼結体の平均焼結粒径のサイズ調整は保持時間を延ばすことにより調整することが好ましい。
The type of atmospheric gas used in this process is not particularly limited, and air, oxygen, hydrogen, etc. can be suitably used, but it is more preferable to carry out the process under reduced pressure (under a vacuum of less than 1×10 −3 Pa). The resintering temperature is preferably 1,650° C. to 1,800° C., more preferably 1,700° C. to 1,800° C. A temperature below 1,650° C. is not preferable because grain growth does not occur.
The average sintered grain size of the crystal grains by resintering is preferably 10 μm or more, more preferably 15 μm or more, and even more preferably 20 μm or more. It is also preferably 40 μm or less. The holding time of the resintering process is not particularly limited, but is preferably 5 hours or more, more preferably 10 hours or more, and particularly preferably 20 hours or more. In general, the longer the holding time, the more the grain growth of the sintered body progresses. The temperature and holding time of the resintering process may be appropriately adjusted by checking the average sintered grain size. However, in general, if the sintering temperature is raised too much, unexpected abnormal grain growth occurs, making it difficult to obtain a homogeneous sintered body. Therefore, it is preferable to allow a certain amount of leeway in the resintering temperature, and to adjust the size of the average sintered grain size of the resintered body by extending the holding time.

(酸化アニール)
以上の一連の処理を経た再焼結体は、特にHIP処理工程などにおいて還元されるため、若干の酸素欠損を生じてしまい、灰色~濃紺の外観を呈する場合がある。そのため、大気中などの酸化雰囲気(含酸素雰囲気)下で酸化アニール処理(酸素欠損回復処理)を施す。アニール処理温度は1,400℃以上であり、好ましくは1,450℃以上である。また、1,500℃以下であることが好ましい。この場合の保持時間は特に制限されないが、酸素欠損が回復するのに十分な時間以上で、かつ無駄に長時間処理して電気代を消耗しない時間内で選択されることが好ましい。また、微酸化HIP処理を施してもよい。これらの処理により、たとえ着色してしまった再焼結体であっても、酸素欠損を回復させることができることから散乱源(散乱コントラスト源)のサイズや数量を規定の範囲内に管理でき、かつ酸素欠陥由来の吸収の少ない常磁性ガーネット型透明セラミックスとすることができる。勿論、機能を付与するためのドーパントや不純物等の有色の元素が添加されたことによる材料の本質的な着色(吸収)は除去することができない。
(Oxidation annealing)
The resintered body that has undergone the above series of treatments may have some oxygen deficiency due to reduction, particularly in the HIP treatment process, and may have a gray to dark blue appearance. Therefore, an oxidation annealing treatment (oxygen deficiency recovery treatment) is performed in an oxidizing atmosphere (oxygen-containing atmosphere) such as air. The annealing temperature is 1,400°C or higher, preferably 1,450°C or higher. It is also preferable that it is 1,500°C or lower. In this case, the holding time is not particularly limited, but it is preferable to select a time that is sufficient to recover the oxygen deficiency and is within a time that does not consume electricity by performing the treatment for a long time unnecessarily. In addition, a slight oxidation HIP treatment may be performed. By these treatments, even if the resintered body has become colored, the oxygen deficiency can be restored, so that the size and number of the scattering source (scattering contrast source) can be controlled within a specified range, and a paramagnetic garnet-type transparent ceramic with little absorption due to oxygen deficiency can be obtained. Of course, the essential coloring (absorption) of the material due to the addition of colored elements such as dopants and impurities for imparting functions cannot be removed.

なお、当該酸化アニール工程においてあまりに高温長時間処理をしてしまうと、焼結体内部の残存気泡のサイズや量が増加する場合がある。すると最終的な焼結体内部に残る気泡やマイクロクラックなどのサイズや量を規定の範囲内に管理することができなくなるため好ましくない。この場合には、当該焼結体に再度HIP処理を施したうえで、改めて酸素雰囲気アニール処理を施すと、焼結体内部に残る気泡やマイクロクラックなどのサイズや量を規定の範囲内に管理することができるため好ましい。 If the oxidation annealing process is performed at too high a temperature for too long a period of time, the size and amount of bubbles remaining inside the sintered body may increase. This is not preferable because it makes it impossible to control the size and amount of bubbles and microcracks remaining inside the final sintered body within the specified range. In this case, it is preferable to perform HIP treatment on the sintered body again and then perform oxygen atmosphere annealing again, since this makes it possible to control the size and amount of bubbles and microcracks remaining inside the sintered body within the specified range.

本発明の常磁性ガーネット型透明セラミックスの製造方法では、上記酸化アニール処理の後、その両端面を光学鏡面仕上げし、次いで両端面それぞれに反射防止膜を形成することが好ましい。In the manufacturing method of the paramagnetic garnet-type transparent ceramics of the present invention, after the above-mentioned oxidation annealing treatment, it is preferable to finish both end faces to an optical mirror finish and then form an anti-reflection film on each of the end faces.

(光学研磨)
本発明の製造方法においては、上記一連の製造工程を経た常磁性ガーネット型透明セラミックスについて、その形状が円柱状又は角柱状であることが好ましく、その光学的に利用する軸上にある両端面(光学端面)を光学研磨して仕上げる(光学鏡面仕上げする)ことが好ましい。このときの光学面精度は測定波長λ=633nmの場合、λ/2以下が好ましく、λ/8以下が特に好ましい。
(Optical Polishing)
In the manufacturing method of the present invention, the paramagnetic garnet-type transparent ceramics that have been subjected to the above-mentioned series of manufacturing steps preferably have a cylindrical or prismatic shape, and both end faces (optical end faces) on the optically utilized axis are preferably optically polished and finished (optically mirror finished). In this case, the optical surface precision is preferably λ/2 or less, particularly preferably λ/8 or less, when the measurement wavelength λ is 633 nm.

なお、光学研磨された面に適宜反射防止膜(ARコート)を成膜することで光学損失を更に低減させることも可能である。この際、光学両端面上に汚れが残らないよう、反射防止膜処理を施す前に入念に光学面を薬液で洗浄し、実体鏡や顕微鏡などで清浄度を検査することが好ましい。清浄度の検査で清浄度が低いと判断した場合は拭き洗浄することもできる。当該拭き洗浄工程で光学面にキズをつけたり、汚れをこすり付けたりすることのないよう、取扱い治具は柔らかい材質でできているものを、拭くものは低発塵性のものを選定することが好ましい。It is also possible to further reduce optical loss by forming an appropriate anti-reflection film (AR coating) on the optically polished surface. In this case, it is preferable to thoroughly clean the optical surface with a chemical solution and inspect the cleanliness with a stereoscope or microscope before applying the anti-reflection coating treatment so that no dirt remains on both optical end faces. If the cleanliness inspection determines that the cleanliness is low, it can be wiped clean. In order not to scratch the optical surface or rub dirt on it during the wipe-cleaning process, it is preferable to select a handling jig made of a soft material and a wiper that generates little dust.

以上のようにして、少なくともテルビウム・アルミニウムを含有した常磁性ガーネット型複合酸化物の焼結体であって、光学鏡面仕上げの両端面を有し、該両端面それぞれに反射防止膜を備える長さ20mmの円柱状又は角柱状のものとし、これにレーザー強度100W、ビーム品質M2値がm(1<m≦1.2)である波長1,070nmのレーザー光を入射させ、その透過光のビーム品質M2値をnとした場合のn/mが1.05以下である常磁性ガーネット型透明セラミックスが得られる。また、好ましくは光路長20mmにおける波長1,070nmのレーザー光をビーム径1.6mm、入射パワー100Wで入射した場合の熱レンズによるビーム径変化率が10%以下であるものを提供することができる。 In the above manner, a paramagnetic garnet-type transparent ceramic is obtained, which is a sintered body of a paramagnetic garnet-type complex oxide containing at least terbium-aluminum, has both end faces finished to an optical mirror surface, and is cylindrical or prismatic with a length of 20 mm, each end face being provided with an antireflection film, and has an n/m ratio of 1.05 or less when a laser beam having a wavelength of 1,070 nm and a beam quality M2 value of m (1<m≦1.2) is incident thereon with a laser intensity of 100 W and a beam quality M2 value of n of the transmitted light. In addition, it is possible to provide a paramagnetic garnet-type transparent ceramic in which the beam diameter change rate due to thermal lensing is 10% or less when a laser beam having a wavelength of 1,070 nm is incident with a beam diameter of 1.6 mm and an incident power of 100 W in an optical path length of 20 mm.

[磁気光学デバイス]
更に、本発明の常磁性ガーネット型透明セラミックスは磁気光学材料として利用することを想定しているため、該常磁性ガーネット型透明セラミックスにその光学軸と平行に磁場を印加したうえで、偏光子、検光子とを互いにその光軸が45度ずれるようにセットして磁気光学デバイスを構成するよう利用することが好ましい。即ち、本発明の常磁性ガーネット型透明セラミックスは、磁気光学デバイス用途に好適であり、特に波長0.9~1.1μmの光アイソレータのファラデー回転子として好適に使用される。
[Magneto-optical devices]
Furthermore, since the paramagnetic garnet-type transparent ceramic of the present invention is intended to be used as a magneto-optical material, it is preferable to use the paramagnetic garnet-type transparent ceramic to configure a magneto-optical device by applying a magnetic field parallel to the optical axis of the paramagnetic garnet-type transparent ceramic and setting a polarizer and an analyzer so that their optical axes are shifted by 45 degrees from each other. In other words, the paramagnetic garnet-type transparent ceramic of the present invention is suitable for magneto-optical device applications, and is particularly suitable for use as a Faraday rotator in an optical isolator with a wavelength of 0.9 to 1.1 μm.

図1は、本発明の磁気光学材料からなるファラデー回転子を光学素子として有する光学デバイスである光アイソレータの一例を示す断面模式図である。
図1において、光アイソレータ100は、本発明の常磁性ガーネット型透明セラミックスから構成されるファラデー回転子110を備え、該ファラデー回転子110の前後には、偏光材料である偏光子120及び検光子130が備えられている。また、光アイソレータ100は、偏光子120、ファラデー回転子110、検光子130の順序で配置され、それらの側面のうちの少なくとも1面に磁石140が載置されていることが好ましい。
FIG. 1 is a schematic cross-sectional view showing an example of an optical isolator, which is an optical device having a Faraday rotator made of the magneto-optical material of the present invention as an optical element.
1, an optical isolator 100 includes a Faraday rotator 110 made of the paramagnetic garnet-type transparent ceramics of the present invention, and a polarizer 120 and an analyzer 130, which are polarizing materials, are provided in front of and behind the Faraday rotator 110. In the optical isolator 100, the polarizer 120, the Faraday rotator 110, and the analyzer 130 are arranged in this order, and it is preferable that a magnet 140 is placed on at least one of the side surfaces of these elements.

また、上記光アイソレータ100は産業用ファイバーレーザー装置に好適に利用できる。即ち、レーザー光源から発したレーザー光の反射光が光源に戻り、発振が不安定になるのを防止するのに好適である。 The optical isolator 100 can also be used effectively in industrial fiber laser devices. That is, it is effective in preventing the reflected light of the laser light emitted from the laser light source from returning to the light source, causing the oscillation to become unstable.

以下に、実施例、比較例及び参考例を挙げて、本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。The present invention will be explained in more detail below with reference to examples, comparative examples and reference examples, but the present invention is not limited to these examples.

[実施例1]
実施例1として式(1)中のy=0.004、z=0.03、y+z=0.034に固定し、xの値を0≦x≦0.396とした場合について示す。
信越化学工業(株)製の酸化テルビウム粉末、酸化イットリウム粉末、酸化スカンジウム粉末、及び大明化学(株)製の酸化アルミニウム粉末を入手した。更にキシダ化学(株)製のオルトケイ酸テトラエチル(TEOS)及び関東化学(株)製のポリエチレングリコール200の液体を入手した。純度は粉末原料がいずれも99.9質量%以上、液体原料が99.999質量%以上であった。上記原料を用いて、混合比率を調整して表1に示す最終組成となる計4種類の結晶構造をもつ以下の酸化物原料を作製した。
[Example 1]
Example 1 shows a case where y=0.004, z=0.03, and y+z=0.034 in formula (1), and the value of x is set to 0≦x≦0.396.
Terbium oxide powder, yttrium oxide powder, and scandium oxide powder manufactured by Shin-Etsu Chemical Co., Ltd., and aluminum oxide powder manufactured by Taimei Chemical Co., Ltd. were obtained. In addition, tetraethyl orthosilicate (TEOS) manufactured by Kishida Chemical Co., Ltd. and polyethylene glycol 200 liquid manufactured by Kanto Chemical Co., Ltd. were obtained. The purity of the powder raw materials was 99.9% by mass or more, and the purity of the liquid raw materials was 99.999% by mass or more. Using the above raw materials, the mixing ratio was adjusted to prepare the following oxide raw materials having a total of four types of crystal structures with the final composition shown in Table 1.

(実施例1-1及び比較例1-1用原料)
テルビウム、イットリウム、スカンジウム及びアルミニウムのモル数がそれぞれTb:Y:Sc:Al=1.794:1.194:0.162:4.850となるよう秤量した(Tb0.5980.398Sc0.0043(Al0.97Sc0.03512用混合粉末を用意した。続いて焼結助剤としてTEOSを、その添加量がSiO2換算で100ppmになるように秤量して加え、原料とした。
(Raw materials for Example 1-1 and Comparative Example 1-1)
Terbium, yttrium, scandium and aluminum were weighed out so that the mole numbers were Tb:Y:Sc:Al=1.794: 1.194 : 0.162 :4.850, respectively, to prepare a mixed powder for ( Tb0.598Y0.398Sc0.004 ) 3 ( Al0.97Sc0.03 ) 5O12 . Next, TEOS was added as a sintering aid, weighed out so that the amount added was 100 ppm in terms of SiO2 , to prepare a raw material.

(実施例1-2及び比較例1-2用原料)
テルビウム、イットリウム、スカンジウム及びアルミニウムのモル数がそれぞれTb:Y:Sc:Al=2.091:0.897:0.162:4.850となるよう秤量した(Tb0.6970.299Sc0.0043(Al0.97Sc0.03512用混合粉末を用意した。続いて焼結助剤としてTEOSを、その添加量がSiO2換算で100ppmになるように秤量して加え、原料とした。
(Raw materials for Examples 1-2 and Comparative Examples 1-2)
Terbium, yttrium, scandium and aluminum were weighed out so that the mole numbers were Tb:Y:Sc:Al=2.091: 0.897 : 0.162 :4.850, respectively, to prepare a mixed powder for ( Tb0.697Y0.299Sc0.004 ) 3 ( Al0.97Sc0.03 ) 5O12 . Next, TEOS was added as a sintering aid, weighed out so that the amount added was 100 ppm in terms of SiO2 , to prepare a raw material.

(実施例1-3及び比較例1-3用原料)
テルビウム、イットリウム、スカンジウム及びアルミニウムのモル数がそれぞれTb:Y:Sc:Al=2.391:0.597:0.162:4.850となるよう秤量した(Tb0.7970.199Sc0.0043(Al0.97Sc0.03512用混合粉末を用意した。続いて焼結助剤としてTEOSを、その添加量がSiO2換算で100ppmになるように秤量して加え、原料とした。
(Raw materials for Examples 1-3 and Comparative Examples 1-3)
Terbium, yttrium, scandium and aluminum were weighed out so that the mole numbers were Tb:Y:Sc:Al=2.391: 0.597 : 0.162 :4.850, respectively, to prepare a mixed powder for ( Tb0.797Y0.199Sc0.004 ) 3 ( Al0.97Sc0.03 ) 5O12 . Next, TEOS was added as a sintering aid, weighed out so that the amount added was 100 ppm in terms of SiO2 , to prepare a raw material.

(実施例1-4及び比較例1-4用原料)
テルビウム、スカンジウム及びアルミニウムのモル数がそれぞれTb:Sc:Al=2.988:0.162:4.850となるよう秤量した(Tb0.996Sc0.0043(Al0.97Sc0.03512用混合粉末を用意した。続いて焼結助剤としてTEOSを、その添加量がSiO2換算で100ppmになるように秤量して加え、原料とした。
(Raw materials for Examples 1-4 and Comparative Examples 1-4)
Terbium, scandium and aluminum were weighed out so that the mole numbers were Tb:Sc:Al=2.988: 0.162 :4.850 to prepare a mixed powder for ( Tb0.996Sc0.004 ) 3 ( Al0.97Sc0.03 ) 5O12 . Then, TEOS was added as a sintering aid, weighed out so that the amount added was 100 ppm in terms of SiO2 , to prepare a raw material.

次に、それぞれ互いの混入を防止するよう注意しながらポリエチレン製のポットに入れ、分散剤としてポリエチレングリコール200を酸化物粉末に対して0.5質量%になるように添加した。それぞれエタノール中でボールミル装置にて分散・混合処理した。処理時間は24時間であった。その後スプレードライ処理を行って、いずれも平均粒径が20μmの顆粒状原料を作製した。Next, each was placed in a polyethylene pot, taking care to prevent mixing, and polyethylene glycol 200 was added as a dispersant to the oxide powder at 0.5% by mass. Each was dispersed and mixed in ethanol using a ball mill. The processing time was 24 hours. After that, a spray drying process was carried out to produce granular raw materials with an average particle size of 20 μm.

続いて、得られた4種類の粉末原料につき、それぞれ一軸プレス成形、198MPaの圧力での静水圧プレス処理を施してCIP成形体を得た。得られた成形体をマッフル炉中で1,000℃、2時間の条件にて脱脂処理した。Next, the four types of powder raw materials obtained were each subjected to uniaxial press molding and isostatic pressing at a pressure of 198 MPa to obtain CIP compacts. The obtained compacts were degreased in a muffle furnace at 1,000°C for 2 hours.

実施例として当該脱脂成形体を真空加熱炉に仕込み、1.0×10-3Pa未満の減圧下で1,600℃で2時間予備焼結処理して計4種類の予備焼結体を得た。このとき、サンプルの焼結相対密度はいずれも94%以上99%以下であった。得られた各予備焼結体をカーボンヒーター製HIP炉に仕込み、Ar中、196MPa、1,600℃、3時間の条件で加圧焼結(HIP)処理して透明な加圧焼結体を得た。この透明な加圧焼結体の表面の結晶粒を光学顕微鏡で観察したところ、5μmを超える粒子は見つからなかった。これより予備焼結体の焼結粒径も5μm以下であったと判定した。続いてHIP処理した加圧焼結体を再び真空加熱炉に仕込み、1.0×10-3Pa未満の減圧下で1,700℃、20時間再焼結処理した。最後に再焼結体を常圧大気下で1,450℃、30時間酸化アニール処理して計4種類の酸化アニール体を得た。酸化アニール処理後のセラミックス外観は全て無色透明であった。 As an example, the degreased molded body was placed in a vacuum heating furnace and pre-sintered at 1,600°C for 2 hours under reduced pressure of less than 1.0 x 10-3 Pa to obtain a total of four types of pre-sintered bodies. At this time, the sintered relative density of each sample was 94% or more and 99% or less. Each pre-sintered body obtained was placed in a HIP furnace made of a carbon heater and subjected to pressure sintering (HIP) treatment under conditions of 196 MPa, 1,600°C, and 3 hours in Ar to obtain a transparent pressure sintered body. When the crystal grains on the surface of this transparent pressure sintered body were observed with an optical microscope, no particles exceeding 5 μm were found. From this, it was determined that the sintered grain size of the pre-sintered body was also 5 μm or less. Next, the HIP-treated pressure sintered body was placed in a vacuum heating furnace again and re-sintered at 1,700°C for 20 hours under reduced pressure of less than 1.0 x 10-3 Pa. Finally, the re-sintered body was subjected to oxidation annealing at 1,450°C for 30 hours under normal pressure atmosphere to obtain a total of four types of oxidation annealed bodies. After the oxidation annealing treatment, the ceramics all had a colorless and transparent appearance.

比較例として上記脱脂成形体を真空加熱炉に仕込み、1.0×10-3Pa未満の減圧下で1,600℃で2時間処理して計4種類の予備焼結体を得た。このとき、サンプルの焼結相対密度はいずれも94%以上99%未満であった。得られた各予備焼結体をカーボンヒーター製HIP炉に仕込み、Ar中、196MPa、1,600℃、3時間の条件で加圧焼結(HIP)処理して透明な加圧焼結体を得た。この透明な加圧焼結体の表面の結晶粒を光学顕微鏡で観察したところ、5μmを超える粒子は見つからなかった。先行技術文献に従い、HIP処理した加圧焼結体の再焼結処理及び酸化アニール処理は行わなかった。 As a comparative example, the above-mentioned degreased molded body was placed in a vacuum heating furnace and treated at 1,600°C for 2 hours under a reduced pressure of less than 1.0 x 10-3 Pa to obtain a total of four types of pre-sintered bodies. At this time, the sintered relative density of each sample was 94% or more and less than 99%. Each of the obtained pre-sintered bodies was placed in a HIP furnace made of a carbon heater and subjected to pressure sintering (HIP) treatment under conditions of 196 MPa, 1,600°C, and 3 hours in Ar to obtain a transparent pressure sintered body. When the crystal grains on the surface of this transparent pressure sintered body were observed with an optical microscope, no particles larger than 5 μm were found. In accordance with the prior art, the HIP-treated pressure sintered body was not subjected to re-sintering treatment and oxidation annealing treatment.

こうして得られた酸化アニール体(実施例)及び加圧焼結体(比較例)について直径5mmとなるようにそれぞれ円柱状に研削し、それらを長さ20mmとして両端面を光学面精度λ/8(測定波長λ=633nmの場合)で光学研磨した。
なお、ビーム品質変化量及び熱レンズによるビーム径変化率の評価用に光学研磨したサンプルについて中心波長が1,064nm、反射率が0.1%以下となるように設計された反射防止膜を両端面に施した。
以上のようにして得られたサンプルについて以下の測定を行った。
The thus obtained oxidized annealed body (Example) and pressure sintered body (Comparative Example) were each ground into a cylindrical shape with a diameter of 5 mm, and then each was cut to a length of 20 mm, and both end faces were optically polished with an optical surface precision of λ/8 (when the measurement wavelength λ=633 nm).
In addition, for an optically polished sample for evaluating the amount of change in beam quality and the rate of change in beam diameter due to thermal lensing, an anti-reflection film designed to have a center wavelength of 1,064 nm and a reflectance of 0.1% or less was applied to both end faces.
The samples thus obtained were subjected to the following measurements.

(平均焼結粒径D)
サンプルの結晶粒の平均焼結粒径は、“Lineal Intercept Technique for Measuring Grain Size in Two-Phase Polycrystalline Ceramics”, Journal of the American Ceramic Society, 55, 109 (1972)(非特許文献6)を参考に決定した。具体的には鏡面研磨された透明セラミックスサンプルを大気下1,300℃、6時間処理することでサーマルエッチングされた端面の粒界を光学顕微鏡で観察することにより決定した。このとき、サンプル端面の任意に引いた線の長さをC(μm)とし、この線上の粒子数をN、画像の倍率をMとして、下記式から求められる数値の有効数字2桁の値を平均焼結粒径D(μm)とした。
D=1.56C/(MN)
(Average sintered particle size D)
The average sintered grain size of the crystal grains of the sample was determined with reference to "Linear Intercept Technique for Measuring Grain Size in Two-Phase Polycrystalline Ceramics", Journal of the American Ceramic Society, 55, 109 (1972) (Non-Patent Document 6). Specifically, a mirror-polished transparent ceramic sample was treated in air at 1,300°C for 6 hours, and the grain boundaries of the thermally etched end surface were observed with an optical microscope to determine the average sintered grain size. At this time, the length of a line drawn arbitrarily on the end surface of the sample was C (μm), the number of particles on this line was N, and the magnification of the image was M, and the value with two significant digits of the value calculated from the following formula was taken as the average sintered grain size D (μm).
D = 1.56C/(M N )

(ビーム品質(M2)変化量(n/m)評価)
ビーム品質の測定は、波長1,070nm、出射パワー100W、直径1.6mmのコリメートされたCWレーザー光を用いて測定した。このレーザー光をコヒーレント社製ModeMaster PC M2ビーム伝搬アナライザを用いてビーム品質M2値を測定した。出射パワーが高いためレーザー光をビームセパレータにより強度を1,000分の1以下に減衰させたのちビームプロファイラに導入した。ビームプロファイラのリファレンスプレーン(全面ベゼル)とサンプルホルダーの距離は1.9m、リファレンスプレーンとコリメータの距離は2.1mとした。まずオリジナルビーム(入射光)のM2値を測定し、このときの値をmとした。次に光路中に長さ20mmの各サンプルを配置し、それぞれの透過光のM2値を測定し、nとした。本発明におけるビーム品質変化量としてn/mを計算した。なお、サンプルのセラミックス内部の粗大な異物等により透過ビームのビーム形状が大きく崩れるものは評価から除いた。また本光学系ではm=1.12であった。
(Beam quality ( M2 ) change amount (n/m) evaluation)
The beam quality was measured using a collimated CW laser light with a wavelength of 1,070 nm, an output power of 100 W, and a diameter of 1.6 mm. The beam quality M2 value of this laser light was measured using a ModeMaster PC M2 beam propagation analyzer manufactured by Coherent. Since the output power was high, the intensity of the laser light was attenuated to 1/1000 or less by a beam separator and then introduced into the beam profiler. The distance between the reference plane (full bezel) of the beam profiler and the sample holder was 1.9 m, and the distance between the reference plane and the collimator was 2.1 m. First, the M2 value of the original beam (incident light) was measured, and the value at this time was taken as m. Next, each sample with a length of 20 mm was placed in the optical path, and the M2 value of each transmitted light was measured and taken as n. The amount of change in beam quality in the present invention, n/m, was calculated. In addition, samples in which the beam shape of the transmitted beam was greatly deformed due to coarse foreign matter inside the ceramics of the sample were excluded from the evaluation. In addition, in this optical system, m = 1.12.

(ビーム径変化率評価)
ビーム径変化率の測定は、ビーム品質変化量測定評価と同じ構成の光学系を用いて測定した。即ち、波長1,070nm,出射パワー100W,直径1.6mmのコリメートされた(株)IPG社製CWレーザー光を用いた。このレーザー光をコヒーレント社製ModeMaster PC M2ビーム伝搬アナライザを用いてプロファイラのリファレンスプレーン(全面ベゼル)におけるビーム径を測定した。まずオリジナルビーム(入射光)のビーム径を測定し、このときの値をr0とした。次に光路中に長さ20mmの各サンプルを配置し、それぞれの透過光のビーム径を測定し、rとした。本発明におけるビーム径変化率として、(1-r/r0)×100(%)を計算し、10%以下を合格、10%より大きい場合は不合格とした。
以上の結果及び参考例1-1としてNorthrop Grumman製のTGG単結晶(長さ20mm)の測定値を表1にまとめて示す。
(Beam diameter change rate evaluation)
The beam diameter change rate was measured using an optical system with the same configuration as that used for the beam quality change measurement evaluation. That is, a collimated CW laser light manufactured by IPG Co., Ltd. with a wavelength of 1,070 nm, an output power of 100 W, and a diameter of 1.6 mm was used. The beam diameter of this laser light was measured at the reference plane (full bezel) of the profiler using a ModeMaster PC M2 beam propagation analyzer manufactured by Coherent. First, the beam diameter of the original beam (incident light) was measured, and the value at this time was taken as r 0. Next, each sample with a length of 20 mm was placed in the optical path, and the beam diameter of each transmitted light was measured and taken as r. As the beam diameter change rate in the present invention, (1-r/r 0 )×100(%) was calculated, and a value of 10% or less was considered to be acceptable, and a value of more than 10% was considered to be unacceptable.
The above results and the measured values of a TGG single crystal (length 20 mm) manufactured by Northrop Grumman as Reference Example 1-1 are summarized in Table 1.

Figure 0007472994000001
Figure 0007472994000001

上記結果から、平均焼結粒径が22μm以上であり、100Wレーザー入射時におけるビーム品質変化量(n/m)が1.04以下であったサンプル(実施例1-1~1-4)は、100Wレーザー入射時における熱レンズによるビーム径変化率が全て10%以下であった。一方、平均焼結粒径が4.5μm以下であり、100Wレーザー入射時におけるビーム品質変化量(n/m)が1.06以上であったサンプル(比較例1-1~1-4)は、100Wレーザー入射時における熱レンズによるビーム径変化率が全て10%より大きかった。即ち、常磁性ガーネット型透明セラミックスの平均焼結粒径が22μm以上であり、100Wレーザー入射時におけるビーム品質変化量(n/m)が1.04以下である場合、熱レンズ効果の小さいものが得られることが確認された。特に、実施例1-1~1-4はTGG単結晶の半分以下の熱レンズによるビーム径変化率であることが確かめられた。From the above results, the samples (Examples 1-1 to 1-4) in which the average sintered grain size was 22 μm or more and the beam quality change amount (n/m) when a 100 W laser was incident was 1.04 or less all had a beam diameter change rate due to thermal lensing when a 100 W laser was incident of 10% or less. On the other hand, the samples (Comparative Examples 1-1 to 1-4) in which the average sintered grain size was 4.5 μm or less and the beam quality change amount (n/m) when a 100 W laser was incident was 1.06 or more all had a beam diameter change rate due to thermal lensing when a 100 W laser was incident of more than 10%. In other words, it was confirmed that when the average sintered grain size of the paramagnetic garnet-type transparent ceramic is 22 μm or more and the beam quality change amount (n/m) when a 100 W laser is incident is 1.04 or less, a small thermal lens effect can be obtained. In particular, it was confirmed that the beam diameter change rate due to thermal lensing in Examples 1-1 to 1-4 is less than half that of TGG single crystal.

[実施例2]
実施例2として式(1)中のx=0.40に固定し、y=0.001、z=0.001、y+z=0.002とした場合、y=0.04、z=0.08、y+z=0.12とした場合、y=0.05、z=0.13、y+z=0.18とした場合について示す。また、参考例2-1としてy=z=y+z=0とした場合について示す。
実施例1と同様に、信越化学工業(株)製の酸化テルビウム粉末、酸化イットリウム粉末、酸化スカンジウム粉末、及び大明化学(株)製の酸化アルミニウム粉末を入手した。更にキシダ化学(株)製のオルトケイ酸テトラエチル(TEOS)及び関東化学(株)製のポリエチレングリコール200の液体を入手した。純度は粉末原料がいずれも99.9質量%以上、液体原料が99.999質量%以上であった。上記原料を用いて、混合比率を調整して表2に示す最終組成となる計4種類の結晶構造をもつ以下の酸化物原料を作製した。
[Example 2]
As Example 2, the cases where x in formula (1) is fixed at 0.40, y = 0.001, z = 0.001, y + z = 0.002, y = 0.04, z = 0.08, y + z = 0.12, and y = 0.05, z = 0.13, y + z = 0.18 are shown. Also, as Reference Example 2-1, the case where y = z = y + z = 0 is shown.
As in Example 1, terbium oxide powder, yttrium oxide powder, and scandium oxide powder manufactured by Shin-Etsu Chemical Co., Ltd., and aluminum oxide powder manufactured by Taimei Chemical Co., Ltd. were obtained. In addition, tetraethyl orthosilicate (TEOS) manufactured by Kishida Chemical Co., Ltd. and polyethylene glycol 200 liquid manufactured by Kanto Chemical Co., Ltd. were obtained. The purity of the powder raw materials was 99.9% by mass or more, and the purity of the liquid raw materials was 99.999% by mass or more. Using the above raw materials, the mixing ratio was adjusted to prepare the following oxide raw materials having a total of four types of crystal structures with the final composition shown in Table 2.

(実施例2-1用原料)
テルビウム、イットリウム、スカンジウム及びアルミニウムのモル数がそれぞれTb:Y:Sc:Al=1.797:1.200:0.008:4.995となるよう秤量した(Tb0.5990.4Sc0.0013(Al0.999Sc0.001512用混合粉末を用意した。続いて焼結助剤としてTEOSを、その添加量がSiO2換算で100ppmになるように秤量して加え、原料とした。
(Raw material for Example 2-1)
Terbium, yttrium, scandium and aluminum were weighed out so that the mole numbers were Tb:Y:Sc:Al=1.797: 1.200 :0.008:4.995, respectively, to prepare a mixed powder for ( Tb0.599Y0.4Sc0.001 ) 3 ( Al0.999Sc0.001 ) 5O12 . Next , TEOS was added as a sintering aid, weighed out so that the amount added was 100 ppm in terms of SiO2 , to prepare a raw material.

(実施例2-2用原料)
テルビウム、イットリウム、スカンジウム及びアルミニウムのモル数がそれぞれTb:Y:Sc:Al=1.68:1.20:0.52:4.60となるよう秤量した(Tb0.560.4Sc0.043(Al0.92Sc0.08512用混合粉末を用意した。続いて焼結助剤としてTEOSを、その添加量がSiO2換算で100ppmになるように秤量して加え、原料とした。
(Materials for Example 2-2)
Terbium, yttrium, scandium and aluminum were weighed out so that the mole numbers were Tb:Y:Sc:Al=1.68: 1.20 : 0.52 :4.60, respectively, to prepare a mixed powder for ( Tb0.56Y0.4Sc0.04 ) 3 ( Al0.92Sc0.08 ) 5O12 . Next, TEOS was added as a sintering aid in an amount of 100 ppm calculated as SiO2 , to prepare a raw material.

(実施例2-3用原料)
テルビウム、イットリウム、スカンジウム及びアルミニウムのモル数がそれぞれTb:Y:Sc:Al=1.65:1.20:0.80:4.35となるよう秤量した(Tb0.550.4Sc0.053(Al0.87Sc0.13512用混合粉末を用意した。続いて焼結助剤としてTEOSを、その添加量がSiO2換算で100ppmになるように秤量して加え、原料とした。
(Raw materials for Examples 2-3)
Terbium, yttrium, scandium and aluminum were weighed out so that the mole numbers were Tb:Y:Sc:Al=1.65: 1.20 : 0.80 : 4.35, respectively, to prepare a mixed powder for ( Tb0.55Y0.4Sc0.05 ) 3 ( Al0.87Sc0.13 ) 5O12 . Next, TEOS was added as a sintering aid, weighed out so that the amount added was 100 ppm in terms of SiO2 , to prepare a raw material.

(参考例2-1用原料)
テルビウム、イットリウム及びアルミニウムのモル数がそれぞれTb:Y:Al=1.8:1.2:5.0となるよう秤量した(Tb0.60.43Al512用混合粉末を用意した。続いて焼結助剤としてTEOSを、その添加量がSiO2換算で100ppmになるように秤量して加え、原料とした。
(Raw material for Reference Example 2-1)
A mixed powder for ( Tb0.6Y0.4 ) 3Al5O12 was prepared by weighing out terbium, yttrium, and aluminum so that the mole numbers of Tb: Y :Al were 1.8:1.2:5.0, respectively. Then, TEOS was added as a sintering aid, weighing out the amount of TEOS added so that the amount was 100 ppm in terms of SiO2 , to prepare a raw material.

次に、それぞれ互いの混入を防止するよう注意しながらポリエチレン製のポットに入れ、分散剤としてポリエチレングリコール200を酸化物粉末に対して0.5質量%になるように添加した。それぞれエタノール中でボールミル装置にて分散・混合処理した。処理時間は24時間であった。その後スプレードライ処理を行って、いずれも平均粒径が20μmの顆粒状原料を作製した。Next, each was placed in a polyethylene pot, taking care to prevent mixing, and polyethylene glycol 200 was added as a dispersant to the oxide powder at 0.5% by mass. Each was dispersed and mixed in ethanol using a ball mill. The processing time was 24 hours. After that, a spray drying process was carried out to produce granular raw materials with an average particle size of 20 μm.

続いて、得られた4種類の粉末原料につき、それぞれ一軸プレス成形、198MPaの圧力での静水圧プレス処理を施してCIP成形体を得た。得られた成形体をマッフル炉中で1,000℃、2時間の条件にて脱脂処理した。Next, the four types of powdered raw materials obtained were each subjected to uniaxial press molding and isostatic pressing at a pressure of 198 MPa to obtain CIP compacts. The obtained compacts were degreased in a muffle furnace at 1,000°C for 2 hours.

当該脱脂成形体を真空炉に仕込み、1.0×10-3Pa未満の減圧下で1,600℃、2時間予備焼結処理して計4種類の予備焼結体を得た。このとき、サンプルの焼結相対密度はいずれも94%以上99%以下であった。得られた各予備焼結体をカーボンヒーター製HIP炉に仕込み、Ar中、196MPa、1,600℃、3時間の条件で加圧焼結(HIP)処理して透明な加圧焼結体を得た。この透明な加圧焼結体の表面の結晶粒を光学顕微鏡で観察したところ、5μmを超える粒子は見つからなかった。続いて加圧焼結体を再度真空炉に仕込み、1.0×10-3Pa未満の減圧下で1,700℃、20時間再焼結処理して再焼結体を得た。最後に、再焼結体を大気下1,450℃で30時間酸化アニール処理した。 The degreased molded body was placed in a vacuum furnace and pre-sintered at 1,600°C for 2 hours under reduced pressure of less than 1.0× 10-3 Pa to obtain a total of four types of pre-sintered bodies. At this time, the sintered relative density of each sample was 94% or more and 99% or less. Each pre-sintered body obtained was placed in a HIP furnace made of a carbon heater and subjected to pressure sintering (HIP) treatment under conditions of 196 MPa, 1,600°C, and 3 hours in Ar to obtain a transparent pressure sintered body. When the crystal grains on the surface of this transparent pressure sintered body were observed with an optical microscope, no particles exceeding 5 μm were found. Next, the pressure sintered body was placed in a vacuum furnace again and re-sintered at 1,700°C for 20 hours under reduced pressure of less than 1.0× 10-3 Pa to obtain a re-sintered body. Finally, the re-sintered body was subjected to oxidation annealing treatment at 1,450°C in air for 30 hours.

こうして得られた酸化アニール体についてそれぞれ実施例1と同様にして、円柱状に研削し、両端面が鏡面になるように光学研磨を行って、直径5mm、長さ20mmのサンプルを用意した。なお、ビーム品質変化量及び熱レンズによるビーム径変化率の評価用に光学研磨したサンプルについて中心波長が1,064nm、反射率が0.1%以下となるように設計された反射防止膜を両端面に施した。
以上のようにして得られたサンプルについて実施例1と同様に、平均焼結粒径、ビーム品質変化量及び熱レンズによるビーム径変化率を評価した。
以上の結果を表2にまとめて示す。
The oxidized annealed bodies thus obtained were each ground into a cylindrical shape and optically polished to give mirror finishes to both end faces, to prepare samples with a diameter of 5 mm and a length of 20 mm, in the same manner as in Example 1. In addition, for the optically polished samples for evaluating the amount of change in beam quality and the rate of change in beam diameter due to thermal lensing, antireflection films designed to have a central wavelength of 1,064 nm and a reflectance of 0.1% or less were applied to both end faces.
The samples thus obtained were evaluated in the same manner as in Example 1 for average sintered grain size, amount of change in beam quality, and rate of change in beam diameter due to thermal lensing.
The above results are summarized in Table 2.

Figure 0007472994000002
Figure 0007472994000002

上記結果から、実施例2-1~2-3のサンプルの平均焼結粒径は27μm以上、100Wレーザー入射時におけるビーム径品質変化量(n/m)は1.04以下であり、100Wレーザー入射時における熱レンズによるビーム径変化率は10%以下であり、高出力のレーザー光を入射しても熱レンズ効果の小さい常磁性ガーネット型透明セラミックスが得られることが確認された。From the above results, it was confirmed that the average sintered grain size of the samples of Examples 2-1 to 2-3 was 27 μm or more, the beam diameter quality change (n/m) when a 100 W laser was incident was 1.04 or less, and the beam diameter change rate due to thermal lensing when a 100 W laser was incident was 10% or less, and that paramagnetic garnet-type transparent ceramics with a small thermal lens effect could be obtained even when high-power laser light was incident.

[実施例3]
実施例2-2において、再焼結の時間を2時間(比較例3-1)、6時間(実施例3-1)、40時間(実施例3-2)とし、それ以外は実施例2-2と同じ条件として常磁性ガーネット型透明セラミックスのサンプルを作製した。
その評価結果を表3に示す。
[Example 3]
In Example 2-2, the resintering time was changed to 2 hours (Comparative Example 3-1), 6 hours (Example 3-1), and 40 hours (Example 3-2), but the other conditions were the same as those of Example 2-2 to prepare paramagnetic garnet-type transparent ceramic samples.
The evaluation results are shown in Table 3.

Figure 0007472994000003
Figure 0007472994000003

上記結果から、実施例3-1、3-2のサンプルの平均焼結粒径は12~40μmであり、100Wレーザー入射時におけるビーム品質変化量(n/m)は1.05~1.01であり、100Wレーザー入射時における熱レンズによるビーム径変化率は9.7~5.9%であった。これに対して比較例3-1のサンプルの平均焼結粒径は6.9μmであり、100Wレーザー入射時におけるビーム品質変化量(n/m)は1.07であり、100Wレーザー入射時における熱レンズによるビーム径変化率は15.7%であった。即ち、100Wレーザー入射時におけるビーム品質変化量(n/m)が1.05の場合、100Wレーザー入射時における熱レンズによるビーム径変化率が10%以下という熱レンズ効果の小さい常磁性ガーネット型透明セラミックスが得られることが確認された。From the above results, the average sintered grain size of the samples of Examples 3-1 and 3-2 was 12 to 40 μm, the beam quality change (n/m) when a 100 W laser was incident was 1.05 to 1.01, and the beam diameter change rate due to thermal lensing when a 100 W laser was incident was 9.7 to 5.9%. In contrast, the average sintered grain size of the sample of Comparative Example 3-1 was 6.9 μm, the beam quality change (n/m) when a 100 W laser was incident was 1.07, and the beam diameter change rate due to thermal lensing when a 100 W laser was incident was 15.7%. In other words, it was confirmed that when the beam quality change (n/m) when a 100 W laser was incident was 1.05, a paramagnetic garnet-type transparent ceramic with a small thermal lens effect was obtained, in which the beam diameter change rate due to thermal lensing when a 100 W laser was incident was 10% or less.

[実施例4]
実施例2-2において、酸化アニール処理の温度を1,300℃(比較例4-1)、1,400℃(実施例4-1)、1,500℃(実施例4-2)とし、それ以外は実施例2-2と同じ条件として常磁性ガーネット型透明セラミックスのサンプルを作製した。
その評価結果を表4に示す。
[Example 4]
In Example 2-2, the temperature of the oxidation annealing treatment was set to 1,300° C. (Comparative Example 4-1), 1,400° C. (Example 4-1), and 1,500° C. (Example 4-2), and other conditions were the same as those in Example 2-2 to prepare samples of paramagnetic garnet-type transparent ceramics.
The evaluation results are shown in Table 4.

Figure 0007472994000004
Figure 0007472994000004

上記結果から、実施例4-1、4-2のサンプルの平均焼結粒径は29~30μmであり、100Wレーザー入射時におけるビーム品質変化量(n/m)は1.02~1.01であり、100Wレーザー入射時における熱レンズによるビーム径変化率は6.5~6.3%であった。これに対して比較例4-1のサンプルの平均焼結粒径は30μmであるものの、100Wレーザー入射時におけるビーム品質変化量(n/m)は1.06であり、100Wレーザー入射時における熱レンズによるビーム径変化率は13.8%であった。即ち、酸化アニール温度が1,400℃以上の場合、100Wレーザー入射時における熱レンズによるビーム径変化率が10%以下という熱レンズ効果の小さい常磁性ガーネット型透明セラミックスが得られることが確認された。From the above results, the average sintered grain size of the samples of Examples 4-1 and 4-2 was 29 to 30 μm, the beam quality change (n/m) when a 100 W laser was incident was 1.02 to 1.01, and the beam diameter change rate due to thermal lensing when a 100 W laser was incident was 6.5 to 6.3%. In contrast, the average sintered grain size of the sample of Comparative Example 4-1 was 30 μm, but the beam quality change (n/m) when a 100 W laser was incident was 1.06, and the beam diameter change rate due to thermal lensing when a 100 W laser was incident was 13.8%. In other words, it was confirmed that when the oxidation annealing temperature was 1,400°C or higher, a paramagnetic garnet-type transparent ceramic with a small thermal lens effect was obtained, in which the beam diameter change rate due to thermal lensing when a 100 W laser was incident was 10% or less.

なお、これまで本発明を、上記実施形態をもって説明してきたが、本発明はこれら実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれるものである。Although the present invention has been described above using the above embodiments, the present invention is not limited to these embodiments and can be modified within the scope of what a person skilled in the art can imagine, including other embodiments, additions, modifications, deletions, etc., and any aspect is within the scope of the present invention as long as it achieves the effects of the present invention.

100 光アイソレータ
110 ファラデー回転子
120 偏光子
130 検光子
140 磁石
100 Optical isolator 110 Faraday rotator 120 Polarizer 130 Analyzer 140 Magnet

Claims (12)

下記式(1)
(Tb1-x-yxScy3(Al1-zScz512 (1)
(式中、0≦x<0.45、0≦y<0.08、0≦z<0.2、0.001<y+z<0.20である。)
で表されるTb含有希土類アルミニウムガーネットの焼結体であって、光学鏡面仕上げの両端面を有し、該両端面それぞれに反射防止膜を備える長さ20mmの円柱状又は角柱状のものとし、これにレーザー強度100W、ビーム品質M2値がm(1<m≦1.2)である波長1,070nmのレーザー光を入射させ、その透過光のビーム品質M2値をnとした場合のn/mが1.05以下であることを特徴とする常磁性ガーネット型透明セラミックス。
The following formula (1)
(Tb1 -xyYxScy ) 3 (Al1 - zScz ) 5O12 (1 )
(In the formula, 0≦x<0.45, 0≦y<0.08, 0≦z<0.2, and 0.001<y+z<0.20.)
a sintered body of Tb-containing rare earth aluminum garnet represented by the formula (1) and having both end faces finished to an optical mirror surface, each end face being provided with an anti-reflection film, and being in the shape of a cylinder or prism of 20 mm in length; wherein when a laser beam of 1,070 nm in wavelength and having a laser intensity of 100 W and a beam quality M2 value of m (1 < m ≦ 1.2) is incident on the sintered body, and the beam quality M2 value of the transmitted light is n, the ratio n/m is 1.05 or less.
光路長20mmにおける波長1,070nmのレーザー光をビーム径1.6mm、入射パワー100Wで入射した場合の熱レンズによるビーム径変化率が10%以下である請求項1に記載の常磁性ガーネット型透明セラミックス。 The paramagnetic garnet-type transparent ceramic according to claim 1, in which the rate of change in beam diameter due to thermal lensing is 10% or less when laser light having a wavelength of 1,070 nm and an optical path length of 20 mm is incident with a beam diameter of 1.6 mm and an incident power of 100 W. 焼結助剤としてSiO2を0質量%超0.1質量%以下含有している請求項1又は2に記載の常磁性ガーネット型透明セラミックス。 3. The paramagnetic garnet-type transparent ceramic according to claim 1, further comprising more than 0% by mass and not more than 0.1% by mass of SiO2 as a sintering aid. 平均焼結粒径が10μm以上40μm以下である請求項1~3のいずれか1項に記載の常磁性ガーネット型透明セラミックス。 A paramagnetic garnet-type transparent ceramic according to any one of claims 1 to 3, having an average sintered grain size of 10 μm or more and 40 μm or less. 請求項1~4のいずれか1項に記載の常磁性ガーネット型透明セラミックスを用いて構成される磁気光学デバイス。A magneto-optical device constructed using the paramagnetic garnet-type transparent ceramics described in any one of claims 1 to 4. 上記常磁性ガーネット型透明セラミックスをファラデー回転子として備え、該ファラデー回転子の光学軸上の前後に偏光材料を備えた波長帯0.9μm以上1.1μm以下で利用可能な光アイソレータである請求項5に記載の磁気光学デバイス。The magneto-optical device according to claim 5 is an optical isolator that has the paramagnetic garnet-type transparent ceramic as a Faraday rotator and has polarizing materials in front of and behind the optical axis of the Faraday rotator and can be used in the wavelength range of 0.9 μm to 1.1 μm. 請求項1~4のいずれか1項に記載の常磁性ガーネット型透明セラミックスの製造方法であって、下記式(1)
(Tb1-x-yxScy3(Al1-zScz512 (1)
(式中、0≦x<0.45、0≦y<0.08、0≦z<0.2、0.001<y+z<0.20である。)
で表されるTb含有希土類アルミニウムガーネットの焼結体について加圧焼結し、更にこの加圧焼結体を上記加圧焼結を超える温度に加熱して再焼結し、更に再焼結体について1,400℃以上の酸化雰囲気で酸化アニール処理を行うことを特徴とする常磁性ガーネット型透明セラミックスの製造方法。
A method for producing the paramagnetic garnet-type transparent ceramics according to any one of claims 1 to 4, comprising the step of:
(Tb1 -xyYxScy ) 3 (Al1 - zScz ) 5O12 (1 )
(In the formula, 0≦x<0.45, 0≦y<0.08, 0≦z<0.2, and 0.001<y+z<0.20.)
a Tb-containing rare earth aluminum garnet sintered body represented by the formula (1) is pressure-sintered, the pressure-sintered body is heated to a temperature higher than that of the pressure-sintered body, and the resintered body is subjected to an oxidation annealing treatment in an oxidation atmosphere of 1,400° C. or higher.
上記再焼結は、1.0×10-3Pa未満の減圧下で再焼結するものである請求項7に記載の常磁性ガーネット型透明セラミックスの製造方法。 8. The method for producing a paramagnetic garnet-type transparent ceramic according to claim 7, wherein the re-sintering is performed under a reduced pressure of less than 1.0×10 −3 Pa. 上記加圧焼結の前の焼結体は、予備焼結により相対密度94%以上に緻密化されたものである請求項7又は8に記載の常磁性ガーネット型透明セラミックスの製造方法。 The method for producing paramagnetic garnet-type transparent ceramics described in claim 7 or 8, wherein the sintered body before the pressure sintering is densified to a relative density of 94% or more by pre-sintering. 上記予備焼結は、1.0×10-3Pa未満の減圧下で予備焼結するものである請求項9に記載の常磁性ガーネット型透明セラミックスの製造方法。 10. The method for producing a paramagnetic garnet-type transparent ceramic according to claim 9, wherein the pre-sintering is performed under a reduced pressure of less than 1.0×10 −3 Pa. 上記加圧焼結の前の焼結体は、平均焼結粒径が5μm以下のものである請求項7~10のいずれか1項に記載の常磁性ガーネット型透明セラミックスの製造方法。 A method for producing paramagnetic garnet-type transparent ceramics as described in any one of claims 7 to 10, in which the sintered body before the pressure sintering has an average sintered grain size of 5 μm or less. 上記酸化アニール処理の後、その両端面を光学鏡面仕上げし、次いで両端面それぞれに反射防止膜を形成する請求項7~11のいずれか1項に記載の常磁性ガーネット型透明セラミックスの製造方法。 A method for producing a paramagnetic garnet-type transparent ceramic according to any one of claims 7 to 11, in which, after the oxidation annealing treatment, both end faces are optically mirror-finished, and then an anti-reflection film is formed on each of the end faces.
JP2022547491A 2020-09-09 2021-08-26 Paramagnetic garnet-type transparent ceramics, magneto-optical device, and method for manufacturing paramagnetic garnet-type transparent ceramics Active JP7472994B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020151176 2020-09-09
JP2020151176 2020-09-09
PCT/JP2021/031347 WO2022054594A1 (en) 2020-09-09 2021-08-26 Paramagnetic garnet-type transparent ceramic, magneto-optical device, and production method for paramagnetic garnet-type transparent ceramic

Publications (2)

Publication Number Publication Date
JPWO2022054594A1 JPWO2022054594A1 (en) 2022-03-17
JP7472994B2 true JP7472994B2 (en) 2024-04-23

Family

ID=80632364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022547491A Active JP7472994B2 (en) 2020-09-09 2021-08-26 Paramagnetic garnet-type transparent ceramics, magneto-optical device, and method for manufacturing paramagnetic garnet-type transparent ceramics

Country Status (3)

Country Link
JP (1) JP7472994B2 (en)
TW (1) TW202225124A (en)
WO (1) WO2022054594A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282447A (en) 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd Translucent material and manufacturing method thereof
WO2017033618A1 (en) 2015-08-27 2017-03-02 神島化学工業株式会社 Translucent rare earth element aluminum garnet ceramic
JP2019199386A (en) 2018-05-18 2019-11-21 信越化学工業株式会社 Paramagnetic garnet transparent ceramic, magnetic optical material and magnetic optical device
JP2019202916A (en) 2018-05-24 2019-11-28 信越化学工業株式会社 Manufacturing method of composite oxide powder for sintering and manufacturing method of transparent ceramic
JP2019207340A (en) 2018-05-30 2019-12-05 信越化学工業株式会社 Method for manufacturing transparent ceramics for faraday rotator
CN111592347A (en) 2019-12-11 2020-08-28 中国科学院福建物质结构研究所 A kind of terbium scandium aluminum garnet and its doped magneto-optical transparent ceramics, and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019380B2 (en) * 2007-09-27 2012-09-05 コバレントマテリアル株式会社 Translucent yttrium oxide aluminum garnet sintered body and manufacturing method thereof.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282447A (en) 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd Translucent material and manufacturing method thereof
WO2017033618A1 (en) 2015-08-27 2017-03-02 神島化学工業株式会社 Translucent rare earth element aluminum garnet ceramic
JP2019199386A (en) 2018-05-18 2019-11-21 信越化学工業株式会社 Paramagnetic garnet transparent ceramic, magnetic optical material and magnetic optical device
JP2019202916A (en) 2018-05-24 2019-11-28 信越化学工業株式会社 Manufacturing method of composite oxide powder for sintering and manufacturing method of transparent ceramic
JP2019207340A (en) 2018-05-30 2019-12-05 信越化学工業株式会社 Method for manufacturing transparent ceramics for faraday rotator
CN111592347A (en) 2019-12-11 2020-08-28 中国科学院福建物质结构研究所 A kind of terbium scandium aluminum garnet and its doped magneto-optical transparent ceramics, and preparation method thereof

Also Published As

Publication number Publication date
JPWO2022054594A1 (en) 2022-03-17
TW202225124A (en) 2022-07-01
WO2022054594A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
US11161274B2 (en) Method for manufacturing transparent ceramic material for faraday rotator
EP3569582B1 (en) Paramagnetic garnet-type transparent ceramic, magneto-optical material and magneto-optical device
TWI634093B (en) Magneto-optical materials and magneto-optical devices
JP7472996B2 (en) Paramagnetic garnet-type transparent ceramics, magneto-optical device, and method for manufacturing paramagnetic garnet-type transparent ceramics
JP6743970B2 (en) Paramagnetic garnet type transparent ceramics, magneto-optical material and magneto-optical device
JP2019156666A (en) Method for producing transparent ceramics, the transparent ceramics, and magneto-optical device
US20230335319A1 (en) Paramagnetic garnet-based transparent ceramic and method for producing same
JP6341284B2 (en) Method for producing transparent ceramics
JP7472994B2 (en) Paramagnetic garnet-type transparent ceramics, magneto-optical device, and method for manufacturing paramagnetic garnet-type transparent ceramics
JP7472995B2 (en) Paramagnetic garnet-type transparent ceramics, magneto-optical device, and method for manufacturing paramagnetic garnet-type transparent ceramics
WO2022054593A1 (en) Paramagnetic garnet-type transparent ceramic production method, paramagnetic garnet-type transparent ceramic, magnetic optical material, and magnetic optical device
JP7135920B2 (en) Manufacturing method of transparent complex oxide sintered body, transparent complex oxide sintered body, and magneto-optical device
JP2025003006A (en) Paramagnetic garnet-type transparent ceramics and magneto-optical devices
EP4450476A1 (en) Transparent ceramic for magneto-optical element, and magneto-optical element
JP7567920B2 (en) Laser damage resistance evaluation method for paramagnetic garnet-type transparent ceramics
WO2024135132A1 (en) Paramagnetic garnet-type transparent ceramic, magneto-optical material, and magneto-optical device
WO2024237198A1 (en) Terbium-containing paramagnetic garnet-type transparent ceramic, production method therefor, raw-material mixture therefor, and magneto-optical device obtained using same and production method therefor
JP2023128117A (en) Terbium-containing paramagnetic garnet-type transparent ceramic, and magneto-optical devices
WO2024247801A1 (en) Transparent ceramic for magneto-optical elements and magneto-optical device
WO2023085107A1 (en) Paramagnetic garnet-type transparent ceramic, magneto-optical material, and magneto-optical device
JP2023109324A (en) Method of producing paramagnetic garnet type transparent ceramic
JP2023064774A (en) Method for producing paramagnetic garnet-type transparent ceramics, and pressurized sintered body for producing paramagnetic garnet-type transparent ceramics
JP2023129992A (en) Transparent ceramic and magneto-optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240325

R150 Certificate of patent or registration of utility model

Ref document number: 7472994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150