[go: up one dir, main page]

JP7465458B2 - Piezoelectric transducer - Google Patents

Piezoelectric transducer Download PDF

Info

Publication number
JP7465458B2
JP7465458B2 JP2022533685A JP2022533685A JP7465458B2 JP 7465458 B2 JP7465458 B2 JP 7465458B2 JP 2022533685 A JP2022533685 A JP 2022533685A JP 2022533685 A JP2022533685 A JP 2022533685A JP 7465458 B2 JP7465458 B2 JP 7465458B2
Authority
JP
Japan
Prior art keywords
electrode
base member
resin
conductive
conductive filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022533685A
Other languages
Japanese (ja)
Other versions
JPWO2022004069A1 (en
JPWO2022004069A5 (en
Inventor
威哉 松村
慎介 河森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2022004069A1 publication Critical patent/JPWO2022004069A1/ja
Publication of JPWO2022004069A5 publication Critical patent/JPWO2022004069A5/ja
Application granted granted Critical
Publication of JP7465458B2 publication Critical patent/JP7465458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、圧電振動子に関する。 The present invention relates to a piezoelectric vibrator.

振動子は、移動通信端末、通信基地局、家電などの各種電子機器において、タイミングデバイス、センサ、発振器などの用途に用いられている。電子機器の高機能化に伴い、安価で高性能な振動素子が求められている。 Vibrators are used as timing devices, sensors, oscillators, etc. in various electronic devices such as mobile communication terminals, communication base stations, and home appliances. As electronic devices become more sophisticated, there is a demand for inexpensive, high-performance vibration elements.

特許文献1には、ベース部材と金属製の蓋部材とを導電性接着剤を介して接合し、この導電性接着剤によって蓋部材をベース部材の接地用電極に電気的に接続し、電磁波の出入りによるノイズを抑制した水晶振動子が開示されている。Patent Document 1 discloses a quartz crystal oscillator in which a base member and a metallic lid member are joined via a conductive adhesive, and the lid member is electrically connected to the grounding electrode of the base member by this conductive adhesive, thereby suppressing noise caused by the passage of electromagnetic waves.

特開2015-220749号公報JP 2015-220749 A

しかしながら、特許文献1に記載の水晶振動子では、導電性フィラーが小さ過ぎると、導電性フィラーと蓋部材との接触不良によって、蓋部材が接地できない場合がある。また、導電性フィラーが大き過ぎると、導電性接着剤の厚みの増大によって、封止性が低下する場合がある。However, in the quartz crystal unit described in Patent Document 1, if the conductive filler is too small, the cover member may not be able to be grounded due to poor contact between the conductive filler and the cover member. Also, if the conductive filler is too large, the increased thickness of the conductive adhesive may reduce sealing performance.

本発明はこのような事情に鑑みてなされたものであり、本発明の目的は、ノイズを抑制しつつ不良品の発生を抑制可能な圧電振動子の提供である。The present invention has been made in consideration of these circumstances, and the object of the present invention is to provide a piezoelectric vibrator that can suppress noise while reducing the occurrence of defective products.

本発明の一態様に係る圧電振動子は、圧電振動素子と、圧電振動素子が搭載されたベース部材と、ベース部材との間に導電性接着剤の接合部材を挟んで接合され、ベース部材との間に圧電振動素子が配置された内部空間を形成する導電性材料の蓋部材と、を備え、蓋部材は、天壁部と、天壁部の外縁からベース部材に向かって延びる側壁部とを有し、側壁部は、ベース部材に対向する対向面を有し、ベース部材には、圧電振動素子が接続される給電用電極と、接地に用いられる接地用電極とが設けられ、接地用電極は、接合部材を介して蓋部材に電気的に接続されており、導電性接着剤は、樹脂系接着剤と、樹脂系接着剤に分散した導電性フィラーとを有しており、導電性フィラーの粒径Rは、4μm≦R≦15μmの関係を満たす。A piezoelectric vibrator according to one aspect of the present invention comprises a piezoelectric vibration element, a base member on which the piezoelectric vibration element is mounted, and a lid member of a conductive material that is bonded to the base member with a bonding member of conductive adhesive sandwiched therebetween and forms an internal space between the base member and the piezoelectric vibration element, the lid member having a top wall portion and a side wall portion extending from the outer edge of the top wall portion toward the base member, the side wall portion having an opposing surface that faces the base member, the base member being provided with a power supply electrode to which the piezoelectric vibration element is connected and a grounding electrode used for grounding, the grounding electrode being electrically connected to the lid member via the bonding member, the conductive adhesive comprising a resin-based adhesive and a conductive filler dispersed in the resin-based adhesive, and the particle size R of the conductive filler satisfies the relationship 4 μm≦R≦15 μm.

本発明の一態様に係る圧電振動子は、圧電振動素子と、圧電振動素子が搭載されたベース部材と、ベース部材との間に導電性接着剤の接合部材を挟んで接合され、ベース部材との間に圧電振動素子が配置された内部空間を形成する導電性材料の蓋部材と、を備え、蓋部材は、天壁部と、天壁部の外縁からベース部材に向かって延びる側壁部とを有し、側壁部は、ベース部材に対向する対向面を有し、ベース部材には、圧電振動素子が接続される給電用電極と、接地に用いられる接地用電極とが設けられ、接地用電極は、接合部材を介して蓋部材に電気的に接続されており、導電性接着剤は、樹脂系接着剤と、樹脂系接着剤に分散した導電性フィラーとを有しており、ベース部材には、少なくとも対向面と対向する給電用電極の領域を覆う絶縁性材料の保護膜が設けられ、保護膜は、接合部材と接触しており、接地用電極と対向面との間のギャップG1と、保護膜と対向面との間のギャップG2とは、0≦G2-G1≦13μmの関係を満たす。A piezoelectric vibrator according to one aspect of the present invention includes a piezoelectric vibration element, a base member on which the piezoelectric vibration element is mounted, and a lid member of a conductive material that is bonded to the base member with a bonding member of conductive adhesive sandwiched therebetween and forms an internal space between the base member and the piezoelectric vibration element. The lid member has a top wall portion and a side wall portion extending from the outer edge of the top wall portion toward the base member. The side wall portion has an opposing surface that faces the base member. The base member is provided with a power supply electrode to which the piezoelectric vibration element is connected and a grounding electrode used for grounding. The grounding electrode is electrically connected to the lid member via the bonding member. The conductive adhesive includes a resin-based adhesive and a conductive filler dispersed in the resin-based adhesive. The base member is provided with a protective film of an insulating material that covers at least the area of the power supply electrode that faces the opposing surface. The protective film is in contact with the bonding member. A gap G1 between the grounding electrode and the opposing surface and a gap G2 between the protective film and the opposing surface satisfy the relationship 0≦G2-G1≦13 μm.

本発明によれば、ノイズを抑制しつつ不良品の発生を抑制可能な圧電振動子を提供できる。 The present invention provides a piezoelectric vibrator that can suppress noise while reducing the occurrence of defective products.

実施形態に係る水晶振動子の構成を概略的に示す分解斜視図である。1 is an exploded perspective view showing a schematic configuration of a quartz crystal resonator according to an embodiment; 実施形態に係る水晶振動子の構成を概略的に示す平面図である。1 is a plan view illustrating a schematic configuration of a crystal resonator according to an embodiment. 実施形態に係る水晶振動子の構成を概略的に示す断面図である。1 is a cross-sectional view illustrating a schematic configuration of a quartz crystal resonator according to an embodiment. ベース部材及び水晶振動素子の構成を概略的に示す平面図である。2 is a plan view illustrating a schematic configuration of a base member and a crystal vibration element. FIG. 接地用電極を含む水晶振動子の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a quartz crystal resonator including a ground electrode. 給電用電極を含む水晶振動子の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a quartz crystal resonator including a power supply electrode. 粒径Rを変化させた場合の接地不良率及びリーク不良率を示す表である。1 is a table showing the ground failure rate and the leakage failure rate when the particle size R is changed. ギャップG1及びギャップG2を変化させた場合のリーク不良率を示す表である。13 is a table showing the leakage defect rate when the gap G1 and the gap G2 are changed.

以下、図面を参照しながら本発明の実施形態について説明する。各実施形態の図面は例示であり、各部の寸法や形状は模式的なものであり、本願発明の技術的範囲を当該実施形態に限定して解するべきではない。Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The drawings of each embodiment are illustrative, and the dimensions and shapes of each part are schematic, and the technical scope of the present invention should not be interpreted as being limited to the embodiment.

図1~図4を参照しつつ、本発明の実施形態に係る水晶振動子1の構成について説明する。図1は、実施形態に係る水晶振動子の構成を概略的に示す分解斜視図である。図2は、実施形態に係る水晶振動子の構成を概略的に示す平面図である。図3は、実施形態に係る水晶振動子の構成を概略的に示す断面図である。図4は、ベース部材及び水晶振動素子の構成を概略的に示す平面図である。なお、図3は、図2に示した水晶振動子1のIII-III線に沿った断面図である。 The configuration of a quartz crystal resonator 1 according to an embodiment of the present invention will be described with reference to Figures 1 to 4. Figure 1 is an exploded perspective view that shows a schematic configuration of a quartz crystal resonator according to an embodiment. Figure 2 is a plan view that shows a schematic configuration of a quartz crystal resonator according to an embodiment. Figure 3 is a cross-sectional view that shows a schematic configuration of a quartz crystal resonator according to an embodiment. Figure 4 is a plan view that shows a schematic configuration of a base member and a quartz crystal resonator element. Note that Figure 3 is a cross-sectional view taken along line III-III of the quartz crystal resonator 1 shown in Figure 2.

各々の図面には、各々の図面相互の関係を明確にし、各部材の位置関係を理解する助けとするために、便宜的にX軸、Y´軸及びZ´軸からなる直交座標系を付すことがある。X軸、Y´軸及びZ´軸は各図面において互いに対応している。X軸、Y´軸及びZ´軸は、それぞれ、後述の水晶片11の結晶軸(Crystallographic Axes)に関係している。X軸が水晶結晶の電気軸(極性軸)、Y軸が水晶結晶の機械軸、Z軸が水晶結晶の光学軸に相当する。Y´軸及びZ´軸は、それぞれ、Y軸及びZ軸をX軸の周りにY軸からZ軸の方向に35度15分±1分30秒回転させた軸である。In order to clarify the relationship between the drawings and to help understand the positional relationship of each component, an orthogonal coordinate system consisting of the X-axis, Y'-axis, and Z'-axis may be conveniently attached to each drawing. The X-axis, Y'-axis, and Z'-axis correspond to each other in each drawing. The X-axis, Y'-axis, and Z'-axis each relate to the crystallographic axes of the quartz piece 11 described below. The X-axis corresponds to the electrical axis (polarity axis) of the quartz crystal, the Y-axis corresponds to the mechanical axis of the quartz crystal, and the Z-axis corresponds to the optical axis of the quartz crystal. The Y'-axis and Z'-axis are respectively axes rotated 35 degrees 15 minutes ± 1 minute 30 seconds around the X-axis from the Y-axis to the Z-axis.

以下の説明において、X軸に平行な方向を「X軸方向」、Y´軸に平行な方向を「Y´軸方向」、Z´軸に平行な方向を「Z´軸方向」という。また、X軸、Y´軸及びZ´軸の矢印の先端方向を「+(プラス)」、矢印とは反対の方向を「-(マイナス)」という。なお、便宜的に、+Y´軸方向を上方向、-Y´軸方向を下方向として説明するが、水晶振動子1の上下の向きは限定されるものではない。In the following explanation, the direction parallel to the X-axis is referred to as the "X-axis direction", the direction parallel to the Y'-axis is referred to as the "Y'-axis direction", and the direction parallel to the Z'-axis is referred to as the "Z'-axis direction". Additionally, the directions of the tips of the arrows on the X-axis, Y'-axis, and Z'-axis are referred to as "+ (plus)" and the directions opposite the arrows are referred to as "- (minus)". For convenience, the +Y'-axis direction will be described as the upward direction and the -Y'-axis direction as the downward direction, but the up and down orientation of the quartz crystal unit 1 is not limited to this.

水晶振動子1は、水晶振動素子10と、ベース部材30と、蓋部材40と、接合部材50とを備えている。水晶振動素子10は、ベース部材30と蓋部材40との間に設けられている。ベース部材30及び蓋部材40は、水晶振動素子10を収容するための保持器を構成しており、Y´軸方向に沿って重なっている。水晶振動素子10は、ベース部材30に搭載されている。The quartz crystal vibrator 1 comprises a quartz crystal vibrating element 10, a base member 30, a lid member 40, and a bonding member 50. The quartz crystal vibrating element 10 is provided between the base member 30 and the lid member 40. The base member 30 and the lid member 40 form a holder for housing the quartz crystal vibrating element 10, and are overlapped along the Y'-axis direction. The quartz crystal vibrating element 10 is mounted on the base member 30.

まず、水晶振動素子10について説明する。
水晶振動素子10は、圧電効果により水晶を振動させ、電気エネルギーと機械エネルギーとを変換する圧電振動素子である。水晶振動素子10は、薄片状の水晶片11と、一対の励振電極を構成する第1励振電極14a及び第2励振電極14bと、一対の引出電極を構成する第1引出電極15a及び第2引出電極15bと、一対の接続電極を構成する第1接続電極16a及び第2接続電極16bとを備えている。
First, the quartz crystal vibrating element 10 will be described.
The quartz crystal vibration element 10 is a piezoelectric vibration element that vibrates a quartz crystal by the piezoelectric effect and converts electrical energy into mechanical energy. The quartz crystal vibration element 10 includes a thin quartz crystal piece 11, a first excitation electrode 14a and a second excitation electrode 14b that constitute a pair of excitation electrodes, a first extraction electrode 15a and a second extraction electrode 15b that constitute a pair of extraction electrodes, and a first connection electrode 16a and a second connection electrode 16b that constitute a pair of connection electrodes.

水晶片11は、互いに対向する上面11A及び下面11Bを有している。上面11Aは、ベース部材30に対向する側とは反対側、すなわち後述する蓋部材40の天壁部41に対向する側に位置している。下面11Bは、ベース部材30に対向する側に位置している。The crystal piece 11 has an upper surface 11A and a lower surface 11B that face each other. The upper surface 11A is located on the side opposite the base member 30, i.e., the side facing the top wall portion 41 of the cover member 40 described below. The lower surface 11B is located on the side facing the base member 30.

水晶片11は、例えば、ATカット型の水晶結晶である。ATカット型の水晶片11は、互いに交差するX軸、Y´軸、及びZ´軸からなる直交座標系において、X軸及びZ´軸によって特定される面と平行な面(以下、「XZ´面」と呼ぶ。他の軸によって特定される面についても同様である。)が主面となり、Y´軸と平行な方向が厚さとなるように形成される。The quartz crystal piece 11 is, for example, an AT-cut quartz crystal. The AT-cut quartz crystal piece 11 is formed such that in an orthogonal coordinate system consisting of the mutually intersecting X-axis, Y'-axis, and Z'-axis, a plane parallel to the plane specified by the X-axis and Z'-axis (hereinafter referred to as the "XZ' plane"; the same applies to planes specified by the other axes) is the main surface, and the direction parallel to the Y'-axis is the thickness.

ATカット型の水晶片11を用いた水晶振動素子10は、広い温度範囲で高い周波数安定性を有する。ATカット型の水晶振動素子10では、厚みすべり振動モード(Thickness Shear Vibration Mode)が主要振動として用いられる。水晶片11は、ATカット以外の異なるカットを適用してもよい。例えばBTカット、GTカット、SCカットなどを適用してよい。また、水晶振動素子は、Z板と呼ばれるカット角の水晶片を用いた音叉型水晶振動素子であってもよい。The quartz crystal vibration element 10 using the AT-cut quartz crystal piece 11 has high frequency stability over a wide temperature range. In the AT-cut quartz crystal vibration element 10, the thickness shear vibration mode is used as the main vibration. The quartz crystal piece 11 may be cut in a different way other than the AT cut. For example, the BT cut, GT cut, SC cut, etc. may be applied. The quartz crystal vibration element may also be a tuning fork type quartz crystal vibration element using a quartz crystal piece with a cut angle called a Z-cut.

一例として、水晶片11は、X軸方向に平行な長辺が延在する長辺方向と、Z´軸方向に平行な短辺が延在する短辺方向と、Y´軸方向に平行な厚さが延在する厚さ方向を有する平板状である。水晶片11の上面11Aを平面視したとき、水晶片11の平面形状は矩形状をなしている。As an example, the quartz piece 11 is flat with a long side extending parallel to the X-axis direction, a short side extending parallel to the Z'-axis direction, and a thickness extending parallel to the Y'-axis direction. When the top surface 11A of the quartz piece 11 is viewed in plan, the planar shape of the quartz piece 11 is rectangular.

水晶片11は、平板状に限定されるものではなく、メサ型構造や逆メサ型構造であってもよい。この場合、水晶片11は、厚みが連続的に変化するテーパ形状、厚みが不連続に変化する階段形状、厚みの変化量が連続的に変化するコンベックス形状、又は厚みの変化量が不連続に変化するベベル形状であってもよい。The crystal blank 11 is not limited to a flat plate shape, and may have a mesa structure or an inverted mesa structure. In this case, the crystal blank 11 may have a tapered shape in which the thickness changes continuously, a stepped shape in which the thickness changes discontinuously, a convex shape in which the amount of change in thickness changes continuously, or a bevel shape in which the amount of change in thickness changes discontinuously.

第1励振電極14aは水晶片11の上面11Aに設けられ、第2励振電極14bは水晶片11の下面11Bに設けられている。第1励振電極14a及び第2励振電極14bは、水晶片11を挟んで互いに対向している。水晶片11の上面11Aを平面視したとき、第1励振電極14a及び第2励振電極14bは、それぞれ矩形状をなしており、互いの略全体が重なり合うように配置されている。The first excitation electrode 14a is provided on the upper surface 11A of the crystal piece 11, and the second excitation electrode 14b is provided on the lower surface 11B of the crystal piece 11. The first excitation electrode 14a and the second excitation electrode 14b face each other across the crystal piece 11. When the upper surface 11A of the crystal piece 11 is viewed in plan, the first excitation electrode 14a and the second excitation electrode 14b each have a rectangular shape and are arranged so that they overlap each other almost entirely.

第1引出電極15aは水晶片11の上面11Aに設けられ、第2引出電極15bは水晶片11の下面11Bに設けられている。第1引出電極15aは、第1励振電極14aと第1接続電極16aとを電気的に接続している。第2引出電極15bは、第2励振電極14bと第2接続電極16bとを電気的に接続している。The first extraction electrode 15a is provided on the upper surface 11A of the crystal piece 11, and the second extraction electrode 15b is provided on the lower surface 11B of the crystal piece 11. The first extraction electrode 15a electrically connects the first excitation electrode 14a and the first connection electrode 16a. The second extraction electrode 15b electrically connects the second excitation electrode 14b and the second connection electrode 16b.

第1接続電極16a及び第2接続電極16bは、それぞれ、第1励振電極14a及び第2励振電極14bをベース部材30に電気的に接続するための電極であり、水晶片11の下面11Bに設けられている。The first connection electrode 16a and the second connection electrode 16b are electrodes for electrically connecting the first excitation electrode 14a and the second excitation electrode 14b, respectively, to the base member 30, and are provided on the lower surface 11B of the quartz crystal piece 11.

励振電極、引出電極及び接続電極は、例えば、水晶片11との密着性が良好な下地層と、化学的安定性が良好な最表層とからなる積層体である。励振電極、引出電極及び接続電極を構成する材料は、例えば、クロム(Cr)、金(Au)、チタン(Ti)、モリブデン(Mo)、アルミニウム(Al)、ニッケル(Ni)、インジウム(In)、パラジウム(Pd)、銀(Ag)、銅(Cu)、錫(Sn)、鉄(Fe)などの金属材料から好適に選択される。励振電極、引出電極及び接続電極は、導電性セラミック、導電性樹脂、半導体などを含有してもよい。The excitation electrode, the extraction electrode, and the connection electrode are, for example, laminates consisting of a base layer having good adhesion to the crystal blank 11 and a top layer having good chemical stability. The materials constituting the excitation electrode, the extraction electrode, and the connection electrode are suitably selected from metal materials such as chromium (Cr), gold (Au), titanium (Ti), molybdenum (Mo), aluminum (Al), nickel (Ni), indium (In), palladium (Pd), silver (Ag), copper (Cu), tin (Sn), and iron (Fe). The excitation electrode, the extraction electrode, and the connection electrode may contain conductive ceramics, conductive resins, semiconductors, etc.

次に、ベース部材30について説明する。
ベース部材30は、平板状の基体31と、一対の電極パッドを構成する第1電極パッド33a及び第2電極パッド33bと、上面電極33cと、第1側面電極34aと、第2側面電極34bと、第3側面電極34cと、第4側面電極34dと、第1外部電極35aと、第2外部電極35bと、第3外部電極35cと、第4外部電極35dと、保護膜39とを備えている。
Next, the base member 30 will be described.
The base member 30 includes a flat substrate 31, a first electrode pad 33a and a second electrode pad 33b constituting a pair of electrode pads, a top electrode 33c, a first side electrode 34a, a second side electrode 34b, a third side electrode 34c, a fourth side electrode 34d, a first external electrode 35a, a second external electrode 35b, a third external electrode 35c, a fourth external electrode 35d, and a protective film 39.

基体31は、互いに対向する上面31A及び下面31Bを有している。上面31A及び下面31Bは、基体31の一対の主面に相当する。上面31Aは、水晶振動素子10及び蓋部材40に対向する側に位置し、下面31Bは、例えば、水晶振動子1を外部の回路基板に実装する際に、当該回路基板に対向する側に位置している。基体31は、例えば絶縁性セラミック(アルミナ)などの焼結材であるが、水晶やシリコンなどによって設けられてもよい。The base 31 has an upper surface 31A and a lower surface 31B that face each other. The upper surface 31A and the lower surface 31B correspond to a pair of main surfaces of the base 31. The upper surface 31A is located on the side facing the quartz crystal resonator element 10 and the lid member 40, and the lower surface 31B is located on the side facing the circuit board, for example, when the quartz crystal resonator 1 is mounted on the external circuit board. The base 31 is a sintered material such as insulating ceramic (alumina), but may also be made of quartz crystal, silicon, etc.

上面31Aを平面視したとき、基体31は、X軸方向に延びてZ´軸方向において対向する一対の長辺と、Z´軸方向に延びてX軸方向において対向する一対の短辺とを有している。基体31の4つの角部には扇状の凹部が設けられている。この凹部は、上面31Aから下面31Bに亘って基体31を貫通する貫通孔を分割したものである。When the upper surface 31A is viewed in plan, the base 31 has a pair of long sides that extend in the X-axis direction and face each other in the Z'-axis direction, and a pair of short sides that extend in the Z'-axis direction and face each other in the X-axis direction. Fan-shaped recesses are provided at the four corners of the base 31. These recesses are formed by dividing through holes that pass through the base 31 from the upper surface 31A to the lower surface 31B.

第1電極パッド33a及び第2電極パッド33bは、基体31の上面31Aに設けられている。第1電極パッド33a及び第2電極パッド33bは、ベース部材30に水晶振動素子10を電気的に接続するための端子である。基体31の上面31Aを平面視したとき、第1電極パッド33a及び第2電極パッド33bは、接合部材50によって囲まれている。The first electrode pad 33a and the second electrode pad 33b are provided on the upper surface 31A of the base 31. The first electrode pad 33a and the second electrode pad 33b are terminals for electrically connecting the quartz vibration element 10 to the base member 30. When the upper surface 31A of the base 31 is viewed in a plan view, the first electrode pad 33a and the second electrode pad 33b are surrounded by the bonding member 50.

上面電極33cは、蓋部材40と電気的に接続される電極である。上面電極33cは、ベース部材30の+X軸方向側且つ-Z´軸方向側の角部に設けられ、ベース部材30の蓋部材40側の最表面に位置している。The top electrode 33c is an electrode that is electrically connected to the lid member 40. The top electrode 33c is provided at the corners on the +X-axis direction side and the -Z'-axis direction side of the base member 30, and is located on the outermost surface of the base member 30 on the lid member 40 side.

第1側面電極34a~第4側面電極34dは、ベース部材30の上面31Aの最外縁と下面31Bの最外縁とをつなぐ側面部に設けられている。具体的には、基体31の角部に設けられた凹部の上面31A側の端部から下面31B側の端部に亘って設けられ、基体31の凹部を覆っている。第1側面電極34a~第4側面電極34dのそれぞれは、キャスタレーション電極に相当する。第1側面電極34aは、ベース部材30の-X軸方向側且つ+Z´軸方向側の角部に設けられた凹部に設けられている。第2側面電極34bは、ベース部材30の+X軸方向側且つ-Z´軸方向側の角部に設けられた凹部に設けられている。第3側面電極34cは、ベース部材30の+X軸方向側且つ+Z´軸方向側の角部に設けられた凹部に設けられている。第4側面電極34dは、ベース部材30の-X軸方向側且つ-Z´軸方向側の角部に設けられた凹部に設けられている。The first side electrode 34a to the fourth side electrode 34d are provided on the side surface connecting the outermost edge of the upper surface 31A and the outermost edge of the lower surface 31B of the base member 30. Specifically, they are provided from the end of the upper surface 31A side of the recess provided at the corner of the base 31 to the end of the lower surface 31B side, covering the recess of the base 31. Each of the first side electrode 34a to the fourth side electrode 34d corresponds to a castellation electrode. The first side electrode 34a is provided in a recess provided at a corner of the base member 30 on the -X axis side and the +Z' axis side. The second side electrode 34b is provided in a recess provided at a corner of the base member 30 on the +X axis side and the -Z' axis side. The third side electrode 34c is provided in a recess provided at a corner of the base member 30 on the +X axis side and the +Z' axis side. The fourth side electrode 34d is provided in a recess provided at a corner of the base member 30 on the -X axis side and the -Z' axis side.

第1側面電極34aは、上面31Aに設けられた配線電極37aを介して第1電極パッド33aに電気的に接続され、第2側面電極34bは、上面31Aに設けられた配線電極37bを介して第2電極パッド33bに電気的に接続されてる。第3側面電極34cは、上面電極33cから連続的に設けられており、上面電極33cと電気的に接続されている。第1側面電極34a、第1電極パッド33a及びこれらを接続する配線電極37aは、水晶振動素子10が接続される給電用電極に相当する。第2側面電極34b、第2電極パッド33b及びこれらを接続する配線電極37bも同様に給電用電極に相当する。第3側面電極34c及び上面電極33cは、蓋部材40の接地に用いられる接地用電極に相当する。The first side electrode 34a is electrically connected to the first electrode pad 33a via the wiring electrode 37a provided on the upper surface 31A, and the second side electrode 34b is electrically connected to the second electrode pad 33b via the wiring electrode 37b provided on the upper surface 31A. The third side electrode 34c is provided continuously from the upper surface electrode 33c and is electrically connected to the upper surface electrode 33c. The first side electrode 34a, the first electrode pad 33a, and the wiring electrode 37a connecting them correspond to the power supply electrode to which the quartz crystal vibration element 10 is connected. The second side electrode 34b, the second electrode pad 33b, and the wiring electrode 37b connecting them also correspond to the power supply electrode. The third side electrode 34c and the upper surface electrode 33c correspond to the grounding electrode used to ground the cover member 40.

給電用電極及び接地用電極は、例えば、基体31との密着性が良好な下地層と、化学的安定性が良好な最表層とからなる積層体である。給電用電極及び接地用電極を構成する材料は、例えば、クロム(Cr)、金(Au)、チタン(Ti)、モリブデン(Mo)、アルミニウム(Al)、ニッケル(Ni)、インジウム(In)、パラジウム(Pd)、銀(Ag)、銅(Cu)、錫(Sn)、鉄(Fe)などの金属材料から好適に選択される。給電用電極及び接地用電極は、導電性セラミック、導電性樹脂、半導体などを含有してもよい。The power supply electrode and the ground electrode are, for example, laminates consisting of a base layer having good adhesion to the substrate 31 and a top layer having good chemical stability. The materials constituting the power supply electrode and the ground electrode are suitably selected from metal materials such as chromium (Cr), gold (Au), titanium (Ti), molybdenum (Mo), aluminum (Al), nickel (Ni), indium (In), palladium (Pd), silver (Ag), copper (Cu), tin (Sn), and iron (Fe). The power supply electrode and the ground electrode may contain conductive ceramics, conductive resins, semiconductors, and the like.

第1外部電極35a~第4外部電極35dは、半田等によって水晶振動子1を外部の回路基板に実装するための電極である。第1外部電極35a~第4外部電極35dは、基体31の下面31Bに設けられている。第1外部電極35aは、ベース部材30の-X軸方向側且つ+Z´軸方向側の角部に設けられ、第1側面電極34aに電気的に接続されている。第1外部電極35aは、ベース部材30の+X軸方向側且つ-Z´軸方向側の角部に設けられ、第2側面電極34bに電気的に接続されている。第3外部電極35cは、ベース部材30の+X軸方向側且つ+Z´軸方向側の角部に設けられ、第3側面電極34cに電気的に接続されている。第4外部電極35dは、ベース部材30の-X軸方向側且つ-Z´軸方向側の角部に設けられ、第4側面電極34dに電気的に接続されている。第1外部電極35a及び第2外部電極35bは、一対の給電用電極に電気信号を供給するために用いられる。第3外部電極35cは、接地用電極を接地するために用いられる。第4外部電極35dは、電気信号等が入出力されないダミー電極である。第4外部電極35dは、第3外部電極35cとともに蓋部材40を接地するために用いられてもよく、省略されてもよい。The first external electrode 35a to the fourth external electrode 35d are electrodes for mounting the crystal unit 1 on an external circuit board by solder or the like. The first external electrode 35a to the fourth external electrode 35d are provided on the lower surface 31B of the base body 31. The first external electrode 35a is provided at a corner on the -X axis direction side and +Z' axis direction side of the base member 30, and is electrically connected to the first side electrode 34a. The first external electrode 35a is provided at a corner on the +X axis direction side and -Z' axis direction side of the base member 30, and is electrically connected to the second side electrode 34b. The third external electrode 35c is provided at a corner on the +X axis direction side and +Z' axis direction side of the base member 30, and is electrically connected to the third side electrode 34c. The fourth external electrode 35d is provided at a corner on the -X axis direction side and -Z' axis direction side of the base member 30, and is electrically connected to the fourth side electrode 34d. The first external electrode 35a and the second external electrode 35b are used to supply an electric signal to the pair of power supply electrodes. The third external electrode 35c is used to ground the ground electrode. The fourth external electrode 35d is a dummy electrode to which electric signals are not input or output. The fourth external electrode 35d may be used together with the third external electrode 35c to ground the cover member 40, or may be omitted.

保護膜39は、ベース部材30の蓋部材40と対向する側であって、接合部材50に接触する領域に設けられている。保護膜39は、絶縁性材料によって設けられている。保護膜39は、給電用電極の一部(蓋部材40の対向面43Bと対向する領域)を覆い、給電用電極と蓋部材40とを電気的に絶縁している。具体的には、保護膜39は、第1側面電極34aと第1電極パッド33aとを接続する配線電極37aの少なくとも一部を覆い、第2側面電極34bと第2電極パッド33bとを接続する配線電極37bの少なくとも一部を覆っている。保護膜39は、上面電極33cの外側の領域に設けられており、上面電極33cは保護膜39から露出している。保護膜39は、例えばソルダーレジストである。The protective film 39 is provided on the side of the base member 30 facing the lid member 40, in an area that contacts the joining member 50. The protective film 39 is provided by an insulating material. The protective film 39 covers a part of the power supply electrode (an area facing the opposing surface 43B of the lid member 40) and electrically insulates the power supply electrode from the lid member 40. Specifically, the protective film 39 covers at least a part of the wiring electrode 37a that connects the first side electrode 34a and the first electrode pad 33a, and covers at least a part of the wiring electrode 37b that connects the second side electrode 34b and the second electrode pad 33b. The protective film 39 is provided in an area outside the upper surface electrode 33c, and the upper surface electrode 33c is exposed from the protective film 39. The protective film 39 is, for example, a solder resist.

なお、後述する接合部材50の導電性が充分な異方性を有し、基体31の上面31Aに沿った方向における導電性が充分に低ければ、保護膜39は省略してもよい。この場合、給電用電極に接合部材50が接触したとしても、水晶振動素子10と蓋部材40との接合部材50を介した短絡は生じ難いためである。If the electrical conductivity of the bonding member 50 described later is sufficiently anisotropic and the electrical conductivity in the direction along the upper surface 31A of the base 31 is sufficiently low, the protective film 39 may be omitted. In this case, even if the bonding member 50 comes into contact with the power supply electrode, a short circuit between the quartz crystal vibration element 10 and the lid member 40 via the bonding member 50 is unlikely to occur.

ベース部材30は、一対の導電性保持部材を構成する第1導電性保持部材36a及び第2導電性保持部材36bを備えている。第1導電性保持部材36a及び第2導電性保持部材36bは、ベース部材30及び蓋部材40から間隔を空けて水晶振動素子10を保持している。第1導電性保持部材36a及び第2導電性保持部材36bは、水晶振動素子10とベース部材30とを電気的に接続している。具体的には、第1導電性保持部材36aが第1電極パッド33aと第1接続電極16aとを電気的に接続し、第2導電性保持部材36bが第2電極パッド33bと第2接続電極16bとを電気的に接続している。第1導電性保持部材36a及び第2導電性保持部材36bは、例えば、熱硬化性樹脂や光硬化性樹脂等を含む導電性接着剤の硬化物である。The base member 30 includes a first conductive holding member 36a and a second conductive holding member 36b that constitute a pair of conductive holding members. The first conductive holding member 36a and the second conductive holding member 36b hold the quartz crystal vibration element 10 at a distance from the base member 30 and the lid member 40. The first conductive holding member 36a and the second conductive holding member 36b electrically connect the quartz crystal vibration element 10 to the base member 30. Specifically, the first conductive holding member 36a electrically connects the first electrode pad 33a and the first connection electrode 16a, and the second conductive holding member 36b electrically connects the second electrode pad 33b and the second connection electrode 16b. The first conductive holding member 36a and the second conductive holding member 36b are, for example, a cured product of a conductive adhesive containing a thermosetting resin, a photocurable resin, or the like.

次に、蓋部材40について説明する。
蓋部材40は、ベース部材30に接合されている。蓋部材40は、ベース部材30との間に水晶振動素子10を収容する内部空間を形成する。蓋部材40はベース部材30の側に開口する凹部49を有しており、本実施形態における内部空間は、凹部49の内側の空間に相当する。凹部49は、液密封止されている。蓋部材40の材質は、導電性材料であり、さらに望ましくは気密性の高い金属材料である。蓋部材40が導電性材料で構成されることによって、内部空間への電磁波の出入りを低減する電磁シールド機能が蓋部材40に付与される。熱応力の発生を抑制する観点から、蓋部材40の材質は、基体31に近い熱膨張率を有する材料であることが望ましく、例えば常温付近での熱膨張率がガラスやセラミックと広い温度範囲で一致するFe-Ni-Co系合金である。
Next, the cover member 40 will be described.
The cover member 40 is bonded to the base member 30. The cover member 40 forms an internal space between the base member 30 and the cover member 40 to accommodate the crystal vibration element 10. The cover member 40 has a recess 49 that opens to the side of the base member 30, and the internal space in this embodiment corresponds to the space inside the recess 49. The recess 49 is liquid-tightly sealed. The material of the cover member 40 is a conductive material, and more preferably a metal material with high airtightness. By making the cover member 40 out of a conductive material, an electromagnetic shielding function that reduces the ingress and egress of electromagnetic waves into the internal space is imparted to the cover member 40. From the viewpoint of suppressing the occurrence of thermal stress, the material of the cover member 40 is preferably a material having a thermal expansion coefficient close to that of the base 31, for example, an Fe-Ni-Co alloy whose thermal expansion coefficient near room temperature matches that of glass or ceramics over a wide temperature range.

蓋部材40は、平板状の天壁部41と、天壁部41の外縁に接続された側壁部42とを有している。天壁部41は、基体31の上面31Aに沿って延在し、高さ方向において水晶振動素子10を挟んでベース部材30と対向している。また、側壁部42は、天壁部41からベース部材30に向かって延在しており、基体31の上面31Aと平行な方向において水晶振動素子10を囲んでいる。蓋部材40はさらに、側壁部42のベース部材30側の先端部に接続されており且つ基体31の上面31Aに沿って外側に延在するフランジ部を有してもよい。The lid member 40 has a flat top wall portion 41 and a side wall portion 42 connected to the outer edge of the top wall portion 41. The top wall portion 41 extends along the upper surface 31A of the base body 31 and faces the base member 30 in the height direction with the quartz vibration element 10 in between. The side wall portion 42 extends from the top wall portion 41 toward the base member 30 and surrounds the quartz vibration element 10 in a direction parallel to the upper surface 31A of the base body 31. The lid member 40 may further have a flange portion connected to the tip of the side wall portion 42 on the base member 30 side and extending outward along the upper surface 31A of the base body 31.

蓋部材40は、凹部49の側に位置する内面と、凹部49とは反対側であって外部に露出する外面とを有している。内面は、天壁部41及び側壁部42の水晶振動素子10に対向する側であり、外面は、天壁部41及び側壁部42の水晶振動素子10に対向する側とは反対側である。蓋部材40はさらに、ベース部材30に対向する対向面43Bを有している。対向面43Bは、ベース部材30の側壁部42の先端において基体31の上面31Aに沿って延在する面である。対向面43Bの面積は、フランジ部を設けることによって拡張可能である。The lid member 40 has an inner surface located on the side of the recess 49 and an outer surface opposite the recess 49 and exposed to the outside. The inner surface is the side of the top wall portion 41 and the side wall portion 42 facing the quartz vibration element 10, and the outer surface is the side opposite the side of the top wall portion 41 and the side wall portion 42 facing the quartz vibration element 10. The lid member 40 further has an opposing surface 43B facing the base member 30. The opposing surface 43B is a surface that extends along the upper surface 31A of the substrate 31 at the tip of the side wall portion 42 of the base member 30. The area of the opposing surface 43B can be expanded by providing a flange portion.

主面の法線方向から平面視したときの蓋部材40の平面形状は、例えば略矩形状である。蓋部材40の平面形状は上記に限定されるものではなく、多角形状、円形状、楕円形状及びこれらの組合せでもよい。The planar shape of the lid member 40 when viewed in a planar view from the normal direction of the main surface is, for example, approximately rectangular. The planar shape of the lid member 40 is not limited to the above, and may be a polygonal shape, a circular shape, an elliptical shape, or a combination thereof.

次に、接合部材50について説明する。
接合部材50は、ベース部材30と蓋部材40とを接合している。具体的には、接合部材50は、保護膜39と対向面43Bとを接合し、上面電極33cと対向面43Bとを接合している。また、接合部材50は、内部空間に相当する凹部49を封止している。具体的には、接合部材50は、ベース部材30及び蓋部材40のそれぞれの外縁部の全周に亘って設けられ、水晶振動素子10を囲むように矩形の枠状をなしている。
Next, the joining member 50 will be described.
The bonding member 50 bonds the base member 30 and the lid member 40. Specifically, the bonding member 50 bonds the protective film 39 and the opposing surface 43B, and bonds the upper electrode 33c and the opposing surface 43B. The bonding member 50 also seals the recess 49 that corresponds to the internal space. Specifically, the bonding member 50 is provided around the entire periphery of each of the base member 30 and the lid member 40, and forms a rectangular frame shape surrounding the quartz crystal vibration element 10.

接合部材50は、導電性接着剤であり、接地用電極と蓋部材40とを電気的に接続している。接合部材50の導電性は異方性を有している。具体的には、上面電極33cと対向面43Bとの間の領域において、基体31の上面31Aと交差する方向に沿った接合部材50の電気抵抗は低く、上面電極33cと対向面43Bとが接合部材50を介して電気的に接続されている。一方で、基体31の上面31Aに沿った接合部材50の電気抵抗は高く、接合部材50が給電用電極に接触した場合であっても、給電用電極と蓋部材40とは電気的に絶縁される。The bonding member 50 is a conductive adhesive and electrically connects the ground electrode and the lid member 40. The conductivity of the bonding member 50 is anisotropic. Specifically, in the region between the upper electrode 33c and the opposing surface 43B, the electrical resistance of the bonding member 50 along the direction intersecting with the upper surface 31A of the base 31 is low, and the upper electrode 33c and the opposing surface 43B are electrically connected via the bonding member 50. On the other hand, the electrical resistance of the bonding member 50 along the upper surface 31A of the base 31 is high, and even when the bonding member 50 comes into contact with the power supply electrode, the power supply electrode and the lid member 40 are electrically insulated.

次に、図5及び図6を参照しつつ、接合部材50による接合部分のより詳細な構成について説明する。図5は、接地用電極を含む水晶振動子の拡大断面図である。図6は、給電用電極を含む水晶振動子の拡大断面図である。Next, a more detailed configuration of the joint portion formed by the joining member 50 will be described with reference to Figures 5 and 6. Figure 5 is an enlarged cross-sectional view of a quartz crystal unit including a ground electrode. Figure 6 is an enlarged cross-sectional view of a quartz crystal unit including a power supply electrode.

接合部材50の導電性接着剤は、樹脂系接着剤51と、樹脂系接着剤51に分散した複数の導電性フィラー52と、樹脂系接着剤51に分散した複数の絶縁性フィラー53とを有している。The conductive adhesive of the joining member 50 has a resin-based adhesive 51, a plurality of conductive fillers 52 dispersed in the resin-based adhesive 51, and a plurality of insulating fillers 53 dispersed in the resin-based adhesive 51.

樹脂系接着剤51は、例えば、エポキシ系の熱硬化性樹脂である。樹脂系接着剤51は、エポキシ系、ビニル系、アクリル系、ウレタン系、イミド系又はシリコーン系の熱硬化性樹脂であってもよい。樹脂系接着剤51は、光硬化性樹脂を含んでもよい。The resin-based adhesive 51 is, for example, an epoxy-based thermosetting resin. The resin-based adhesive 51 may be an epoxy-based, vinyl-based, acrylic-based, urethane-based, imide-based, or silicone-based thermosetting resin. The resin-based adhesive 51 may include a photocurable resin.

導電性フィラー52は、例えば球状の樹脂コアを金属膜で覆った球状フィラーである。導電性フィラー52は変形可能であり、上面電極33cと対向面43Bとによって挟まれた導電性フィラー52は楕円体状に変形している。変形に伴い、導電性フィラー52は上面電極33c及び対向面43Bの両方と確実に接触する。これにより、上面電極33cと対向面43Bとが、導電性フィラー52を介して電気的に接続される。また、変形に伴い、導電性フィラー52と上面電極33cとの接触面積、及び、導電性フィラー52と対向面43Bとの接触面積が増大する。これにより、導電性フィラー52と上面電極33cとの間の電気抵抗は低下する。樹脂コアの材料は、例えば、スチレン系樹脂又はアクリル系樹脂である。これによれば、導電性フィラー52の弾性率を好適に設計可能である。金属膜の材料は、例えばNiである。これによれば、樹脂コアからの金属膜の剥離を抑制可能であり、電気抵抗の上昇を抑制可能である。The conductive filler 52 is, for example, a spherical filler in which a spherical resin core is covered with a metal film. The conductive filler 52 is deformable, and the conductive filler 52 sandwiched between the upper electrode 33c and the opposing surface 43B is deformed into an ellipsoid shape. With the deformation, the conductive filler 52 reliably contacts both the upper electrode 33c and the opposing surface 43B. As a result, the upper electrode 33c and the opposing surface 43B are electrically connected through the conductive filler 52. In addition, with the deformation, the contact area between the conductive filler 52 and the upper electrode 33c and the contact area between the conductive filler 52 and the opposing surface 43B increase. As a result, the electrical resistance between the conductive filler 52 and the upper electrode 33c decreases. The material of the resin core is, for example, a styrene-based resin or an acrylic-based resin. This makes it possible to suitably design the elastic modulus of the conductive filler 52. The material of the metal film is, for example, Ni. This makes it possible to prevent the metal film from peeling off from the resin core, and to prevent an increase in electrical resistance.

なお、樹脂コアは変形可能であればスチレン系樹脂及びアクリル系樹脂に限定されるものではない。また、金属膜は、Niに限定されるものではなく、Au、Ag、Cu、Al、Tiなどの金属材料によってもうけられてもよい。金属膜は、複数の金属層からなる多層膜であってもよい。導電性フィラー52は、Cu、Ni、C、Siなどの導電性材料を球状に加工したものであってもよい。 The resin core is not limited to styrene-based resin and acrylic-based resin as long as it is deformable. The metal film is not limited to Ni, and may be made of metal materials such as Au, Ag, Cu, Al, and Ti. The metal film may be a multi-layer film made of multiple metal layers. The conductive filler 52 may be a conductive material such as Cu, Ni, C, or Si processed into a spherical shape.

絶縁性フィラー53は、硬化前の導電性接着剤の粘度を調整し、硬化前の導電性接着剤の不所望な濡れ広がりによる給電用電極との接触を抑制する。絶縁性フィラー53の材料は、例えば球状シリカである。絶縁性フィラー53の材料は上記に限定されるものではなく、シリコーン、ウレタン、イミド、エポキシ、ビニル、アミン、フェノール、アミノ、アクリル、スチレン等の有機化合物、若しくは、酸化チタン、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、アルミナ、窒化ホウ素、窒化アルミニウム、グラスファイバー、グラファイト等の無機化合物であってもよい。The insulating filler 53 adjusts the viscosity of the conductive adhesive before hardening and prevents the conductive adhesive from contacting the power supply electrode due to undesired spreading before hardening. The material of the insulating filler 53 is, for example, spherical silica. The material of the insulating filler 53 is not limited to the above, and may be an organic compound such as silicone, urethane, imide, epoxy, vinyl, amine, phenol, amino, acrylic, or styrene, or an inorganic compound such as titanium oxide, magnesium oxide, magnesium carbonate, magnesium hydroxide, alumina, boron nitride, aluminum nitride, glass fiber, or graphite.

接合部材50の導電性接着剤の総体積に対する導電性フィラー52の体積の比率(以下、「体積比率」とする。)は、3vol%以上18vol%以下である。
体積比率が3vol%よりも小さい場合、上面電極33cと対向面43Bとの間の領域に導電性フィラー52が存在せず、上面電極33cと対向面43Bとの電気的な接続が得られない場合がある。すなわち、体積比率が3vol%以上である場合、蓋部材40が接地できない不良品の発生率を低減できる。
体積比率が18vol%よりも大きい場合、導電性フィラー52同士が接近又は接触し、基体31の上面31Aに沿った接合部材50の電気抵抗が低下する場合がある。すなわち、体積比率が18vol%以下の場合、水晶振動素子10と蓋部材40とが短絡した不良品の発生率を低減できる。
なお、蓋部材40が接地できない不良品の発生率を低減する観点から、体積比率は、7vol%以上であることがさらに満たすのが望ましい。また、水晶振動素子10と蓋部材40とが短絡した不良品の発生率を低減する観点から、体積比率は、10vol%以下であることがさらに望ましい。
The ratio of the volume of the conductive filler 52 to the total volume of the conductive adhesive of the bonding member 50 (hereinafter referred to as the "volume ratio") is not less than 3 vol % and not more than 18 vol %.
If the volume ratio is less than 3 vol%, the conductive filler 52 may not be present in the region between the upper electrode 33 c and the opposing surface 43 B, and electrical connection may not be obtained between the upper electrode 33 c and the opposing surface 43 B. In other words, if the volume ratio is 3 vol% or more, the occurrence rate of defective products in which the lid member 40 cannot be grounded can be reduced.
If the volume ratio is greater than 18 vol%, the conductive fillers 52 may approach or come into contact with each other, decreasing the electrical resistance of the bonding member 50 along the upper surface 31A of the base 31. In other words, if the volume ratio is 18 vol% or less, the occurrence rate of defective products in which the quartz crystal vibrating element 10 and the lid member 40 are short-circuited can be reduced.
In order to reduce the occurrence rate of defective products in which the lid member 40 cannot be grounded, it is more preferable that the volume ratio is 7 vol% or more. In order to reduce the occurrence rate of defective products in which the quartz crystal vibrating element 10 and the lid member 40 are short-circuited, it is more preferable that the volume ratio is 10 vol% or less.

導電性フィラー52を完全な球体と仮定した場合の直径(以下、「粒径R」とする。)は、4μm≦R≦15μmの関係を満たしている。
蓋部材40のうねりに起因して上面電極33cと対向面43Bとの間のギャップG1は平均3.8μm程度変動する。このため、R<4μmの場合、導電性フィラー52が上面電極33c及び対向面43Bの少なくとも一方に接触しない場合がある。すなわち、4μm≦Rの場合、蓋部材40が接地できない不良品の発生率を低減できる。なお、蓋部材40のうねりに起因したギャップG1の変動は最大で6μm程度であるため、6μm≦Rを満たすのがさらに望ましい。
導電性フィラー52はスペーサとして機能するため、15μm<Rの場合、上面電極33cと対向面43Bとの間の領域における接合部材50の厚みが増大し、封止性が低下する場合がある。すなわち、R≦15μmの場合、リーク不良によって周波数が変動する不良品の発生率を低減できる。
なお、粒径Rは、導電性フィラー52の樹脂コアのコールターカウンター法によって得た粒径分布から算出した算術平均粒径である。導電性フィラー52の金属膜の厚みは、樹脂コアの粒径に比べて充分小さいため、樹脂コアの粒径を導電性フィラー52の粒径Rとみなすことができる。ここで、導電性フィラー52の金属膜の厚みは、一例として10nm以上500nm以下である。金属膜の厚みが10nmよりも小さい場合、導電性フィラー52の電気抵抗が増大する場合がある。金属膜の厚みが500mよりも大きい場合、金属膜が導電性フィラー52の変形を阻害する場合や、金属膜が樹脂コアから剥離する場合がある。すなわち、金属膜の厚みが10nm以上500nm以下の場合、蓋部材40が接地できない不良品の発生率を低減できる。
When the conductive filler 52 is assumed to be a perfect sphere, the diameter (hereinafter referred to as "particle size R") satisfies the relationship 4 μm≦R≦15 μm.
The gap G1 between the upper electrode 33c and the opposing surface 43B varies by about 3.8 μm on average due to the waviness of the cover member 40. Therefore, when R<4 μm, the conductive filler 52 may not contact at least one of the upper electrode 33c and the opposing surface 43B. In other words, when 4 μm≦R, the occurrence rate of defective products in which the cover member 40 cannot be grounded can be reduced. Note that the variation in the gap G1 due to the waviness of the cover member 40 is a maximum of about 6 μm, so it is more desirable to satisfy 6 μm≦R.
Since the conductive filler 52 functions as a spacer, when 15 μm<R, the thickness of the bonding member 50 in the region between the upper electrode 33c and the opposing surface 43B increases, and the sealing performance may decrease. In other words, when R≦15 μm, the occurrence rate of defective products in which the frequency fluctuates due to leakage defects can be reduced.
The particle size R is an arithmetic mean particle size calculated from the particle size distribution obtained by the Coulter counter method of the resin core of the conductive filler 52. Since the thickness of the metal film of the conductive filler 52 is sufficiently smaller than the particle size of the resin core, the particle size of the resin core can be regarded as the particle size R of the conductive filler 52. Here, the thickness of the metal film of the conductive filler 52 is, for example, 10 nm or more and 500 nm or less. If the thickness of the metal film is smaller than 10 nm, the electrical resistance of the conductive filler 52 may increase. If the thickness of the metal film is larger than 500 nm, the metal film may inhibit the deformation of the conductive filler 52 or the metal film may peel off from the resin core. That is, if the thickness of the metal film is 10 nm or more and 500 nm or less, the occurrence rate of defective products in which the cover member 40 cannot be grounded can be reduced.

対向面43Bの短手方向の幅Wと、導電性フィラー52の粒径Rとは、4μm≦R≦W/2の関係を満たしている。
接地用電極と蓋部材40との間での導通を確立するために、上面電極33cと対向面43Bとによって挟まれた導電性フィラー52は加圧される。このとき、W/2<Rの場合、導電性フィラー52が上面電極33cと対向面43Bとの間の領域から押し出される場合がある。すなわち、R≦W/2の場合、蓋部材40が接地できない不良品の発生率を低減できる。
4μm≦Rの場合、前述の通り蓋部材40が接地できない不良品の発生率を低減できる。
The width W of the opposing surface 43B in the short side direction and the particle size R of the conductive filler 52 satisfy the relationship 4 μm≦R≦W/2.
In order to establish conduction between the grounding electrode and the lid member 40, pressure is applied to the conductive filler 52 sandwiched between the upper electrode 33c and the opposing surface 43B. At this time, if W/2<R, the conductive filler 52 may be pushed out of the region between the upper electrode 33c and the opposing surface 43B. In other words, if R≦W/2, the occurrence rate of defective products in which the lid member 40 cannot be grounded can be reduced.
When R is 4 μm or less, the rate of occurrence of defective products in which the lid member 40 cannot be grounded can be reduced, as described above.

絶縁性フィラー53を完全な球体と仮定した場合の直径(以下、「粒径r」とする。)と導電性フィラー52の粒径Rとは、r<Rの関係を満たしている。
R≦rの場合、絶縁性フィラー53がスペーサとして導電性フィラー52の変形を阻害する場合がある。例えば、絶縁性フィラー53の弾性率が導電性フィラー52の弾性率よりも大きい場合、R=rであれば導電性フィラー52の変形は絶縁性フィラー53によって阻害される。また、絶縁性フィラー53の弾性率が導電性フィラー52の弾性率よりも小さい場合であっても、R<<rであれば導電性フィラー52の変形は絶縁性フィラー53によって阻害される。したがって、r<Rの場合、蓋部材40が接地できない不良品の発生率を低減できる。
なお、粒径rは、マイクロトラック法によって得た粒径分布から算出したメジアン径D50である。
The diameter of the insulating filler 53 when it is assumed to be a perfect sphere (hereinafter referred to as "particle diameter r") and the particle diameter R of the conductive filler 52 satisfy the relationship r<R.
When R≦r, the insulating filler 53 may act as a spacer and inhibit the deformation of the conductive filler 52. For example, when the elastic modulus of the insulating filler 53 is greater than that of the conductive filler 52, if R=r, the deformation of the conductive filler 52 is inhibited by the insulating filler 53. Even if the elastic modulus of the insulating filler 53 is smaller than that of the conductive filler 52, if R<<r, the deformation of the conductive filler 52 is inhibited by the insulating filler 53. Therefore, when r<R, the occurrence rate of defective products in which the cover member 40 cannot be grounded can be reduced.
The particle size r is the median diameter D50 calculated from the particle size distribution obtained by the Microtrack method.

粒径Rと粒径rとは、R/20≦r≦R×8/10の関係を満たしている。
r<R/20の場合、導電性フィラー52と上面電極33cとの間に絶縁性フィラー53が侵入し、導電性フィラー52と上面電極33cとの接触が阻害される場合がある。同様に、導電性フィラー52と対向面43Bとの接触が阻害される場合がある。すなわち、R/20≦rの場合、蓋部材40が接地できない不良品の発生率を低減できる。
R×8/10<rの場合、上面電極33cと対向面43Bとの間の領域において絶縁性フィラー53がスペーサとして導電性フィラー52の変形を阻害する場合がある。すなわち、r≦R×8/10の場合、蓋部材40が接地できない不良品の発生率を低減できる。
なお、蓋部材40が接地できない不良品の発生率を低減する観点から、粒径Rと粒径rとは、R/10≦rの関係をさらに満たすのが望ましい。また、r≦R/2の関係をさらに満たすのが望ましい。
The particle size R and the particle size r satisfy the relationship R/20≦r≦R×8/10.
When r<R/20, the insulating filler 53 may penetrate between the conductive filler 52 and the upper electrode 33c, hindering contact between the conductive filler 52 and the upper electrode 33c. Similarly, contact between the conductive filler 52 and the opposing surface 43B may be hindered. In other words, when R/20≦r, the occurrence rate of defective products in which the cover member 40 cannot be grounded can be reduced.
If R×8/10<r, the insulating filler 53 may function as a spacer to inhibit deformation of the conductive filler 52 in the region between the upper electrode 33c and the opposing surface 43B. In other words, if r≦R×8/10, the occurrence rate of defective products in which the lid member 40 cannot be grounded can be reduced.
From the viewpoint of reducing the rate of defective products in which the lid member 40 cannot be grounded, it is preferable that the particle size R and the particle size r further satisfy the relationship R/10≦r. It is also preferable that the particle size R and the particle size r further satisfy the relationship r≦R/2.

上面電極33cと対向面43Bとの間のギャップG1と、保護膜39と対向面43Bとの間のギャップG2と、導電性フィラー52の粒径Rとは、G1<R<G2の関係を満たしている。
R≦G1の場合、導電性フィラー52が上面電極33c及び対向面43Bの少なくとも一方に接触しない場合がある。すなわち、G1<Rの場合、蓋部材40が接地できない不良品の発生率を低減できる。
G2≦Rの場合、保護膜39と対向面43Bとによって挟まれた導電性フィラー52が変形する。また、上面電極33cと対向面43Bとによって挟まれた導電性フィラー52を変形させるときに、保護膜39と対向面43Bとの間の領域から導電性フィラー52の一部が押し出される。これによれば、不所望な領域で導電性フィラー52同士が接近し、基体31の上面31Aに沿った方向における接合部材50の電気抵抗が低下する場合がある。すなわち、R<G2の場合、水晶振動素子10と蓋部材40とが短絡した不良品の発生率を低減できる。
A gap G1 between the upper electrode 33c and the opposing surface 43B, a gap G2 between the protective film 39 and the opposing surface 43B, and a particle size R of the conductive filler 52 satisfy the relationship G1<R<G2.
When R≦G1, the conductive filler 52 may not contact at least one of the upper electrode 33c and the opposing surface 43B. In other words, when G1<R, the occurrence rate of defective products in which the lid member 40 cannot be grounded can be reduced.
When G2≦R, the conductive filler 52 sandwiched between the protective film 39 and the opposing surface 43B is deformed. When the conductive filler 52 sandwiched between the upper electrode 33c and the opposing surface 43B is deformed, a part of the conductive filler 52 is pushed out from the region between the protective film 39 and the opposing surface 43B. This may cause the conductive fillers 52 to approach each other in undesired regions, decreasing the electrical resistance of the bonding member 50 in the direction along the upper surface 31A of the base 31. In other words, when R<G2, the occurrence rate of defective products in which the quartz crystal vibrating element 10 and the lid member 40 are short-circuited can be reduced.

ギャップG1とギャップG2とは、0≦G2-G1≦13μmの関係を満たしている。
G2-G1<0すなわちG2<G1の場合、保護膜39と対向面43Bとの間の領域に位置する導電性フィラー52がスペーサとして機能し、上面電極33cと対向面43Bとの間の領域における導電性フィラー52の充分な変形が阻害される場合がある。すなわち、0≦G2-G1の場合、蓋部材40が接地できない不良品の発生率を低減できる。
13μm<G2-G1の場合、保護膜39と対向面43Bとの間の領域における接合部材50の膜厚増大に伴って封止性が低下する場合がある。すなわち、G2-G1≦13μmの場合、リーク不良によって周波数が変動する不良品の発生率を低減できる。
The gaps G1 and G2 satisfy the relationship 0≦G2−G1≦13 μm.
When G2-G1<0, i.e., when G2<G1, the conductive filler 52 located in the region between the protective film 39 and the opposing surface 43B functions as a spacer, which may inhibit sufficient deformation of the conductive filler 52 in the region between the upper electrode 33c and the opposing surface 43B. In other words, when 0≦G2-G1, the occurrence rate of defective products in which the lid member 40 cannot be grounded can be reduced.
When 13 μm<G2−G1, the sealing performance may decrease with an increase in the film thickness of the bonding member 50 in the region between the protective film 39 and the opposing surface 43B. In other words, when G2−G1≦13 μm, the occurrence rate of defective products in which the frequency fluctuates due to leakage defects can be reduced.

ギャップG2は、2μm≦G2≦20μmの関係を満たしている。
ギャップG2は、粒径Rによって制限される。このため、ギャップG2を小さくするには、粒径Rを小さくする必要がある。G2<2μmの場合、粒径Rが小さ過ぎるため、蓋部材40のうねりに起因したギャップG1の変動によって、導電性フィラー52が上面電極33c及び対向面43Bの少なくとも一方に接触しない場合がある。すなわち、2μm≦G2の場合、蓋部材40が接地できない不良品の発生率を低減できる。
20μm<G2の場合、保護膜39と対向面43Bとの間の領域における接合部材50の膜厚増大に伴って封止性が低下する場合がある。すなわち、G2≦20μmの場合、リーク不良によって周波数が変動する不良品の発生率を低減できる。
The gap G2 satisfies the relationship 2 μm≦G2≦20 μm.
The gap G2 is limited by the grain size R. Therefore, to reduce the gap G2, it is necessary to reduce the grain size R. When G2<2 μm, the grain size R is too small, and the conductive filler 52 may not contact at least one of the upper surface electrode 33c and the opposing surface 43B due to the variation in the gap G1 caused by the waviness of the cover member 40. In other words, when 2 μm≦G2, the occurrence rate of defective products in which the cover member 40 cannot be grounded can be reduced.
When 20 μm<G2, the sealing performance may decrease with an increase in the film thickness of the bonding member 50 in the region between the protective film 39 and the opposing surface 43B. In other words, when G2≦20 μm, the occurrence rate of defective products in which the frequency fluctuates due to leakage defects can be reduced.

次に、図7及び図8を参照しつつ、実施例及び比較例について説明する。図7は、幅W及び粒径Rを変化させた場合の接地不良率を示す表である。図8は、粒径R及び粒径rを変化させた場合の接地不良率を示す表である。Next, examples and comparative examples will be described with reference to Figures 7 and 8. Figure 7 is a table showing the ground failure rate when the width W and particle size R are changed. Figure 8 is a table showing the ground failure rate when the particle size R and particle size r are changed.

図7の実施例1~3及び比較例1,2のそれぞれに係る水晶振動子は、本実施形態に係る水晶振動子1であって、導電性フィラー52の添加率を一定にし、粒径Rを変化させたものである。「導電性フィラー52の添加率」は、導電性接着剤の総重量に対する導電性フィラー52の重量の比率である。
(比較例1)
R=3.0μm、導電性フィラー52の添加率は10wt%である。
(実施例1)
R=5μm、導電性フィラー52の添加率は10wt%である。
(実施例2)
R=10μm、導電性フィラー52の添加率は10wt%である。
(実施例3)
R=15μm、導電性フィラー52の添加率は10wt%である。
(比較例2)
R=20μm、導電性フィラー52の添加率は10wt%である。
7 are the crystal resonators 1 according to the present embodiment, in which the additive rate of the conductive filler 52 is constant and the particle size R is varied. The "additive rate of the conductive filler 52" is the ratio of the weight of the conductive filler 52 to the total weight of the conductive adhesive.
(Comparative Example 1)
R=3.0 μm, and the additive rate of the conductive filler 52 is 10 wt %.
Example 1
R=5 μm, and the additive rate of the conductive filler 52 is 10 wt %.
Example 2
R=10 μm, and the additive rate of the conductive filler 52 is 10 wt %.
Example 3
R=15 μm, and the additive rate of the conductive filler 52 is 10 wt %.
(Comparative Example 2)
R=20 μm, and the additive rate of the conductive filler 52 is 10 wt %.

それぞれの水晶振動子1において、蓋部材40と給電用電極とが電気的に接続されていない不良品の発生率(以下、「接地不良率」とする。)、及びリーク不良によって周波数が変動する不良品の発生率(以下、「リーク不良率」とする。)を測定した。それぞれの測定サンプル数は、20個である。接地不良率の判定において、接地用電極と蓋部材40との間の電気抵抗が10Ω以下のものを良品と判定し、10Ωよりも大きいものを不良品と判定した。接地不良率が5%以下を〇とし、5%より大きいものを×とした。リーク不良率の判定において、ガルデン(登録商標、Solvay社製)に浸漬して減圧してもガルデンが内部に侵入しないものを良品と判定し、ガルデンに浸漬して減圧するとガルデンが内部に侵入するものを不良品と判定した。リーク不良率が5%以下を〇とし、5%より大きいものを×とした。For each crystal unit 1, the occurrence rate of defective products in which the cover member 40 and the power supply electrode are not electrically connected (hereinafter referred to as the "grounding failure rate") and the occurrence rate of defective products in which the frequency fluctuates due to leakage failure (hereinafter referred to as the "leakage failure rate") were measured. The number of samples measured for each was 20. In determining the grounding failure rate, products with an electrical resistance between the grounding electrode and the cover member 40 of 10 Ω or less were determined to be good products, and products with an electrical resistance greater than 10 Ω were determined to be defective products. A grounding failure rate of 5% or less was determined to be ◯, and a failure rate of more than 5% was determined to be ×. In determining the leakage failure rate, products in which Galden (registered trademark, manufactured by Solvay) does not penetrate into the interior even when immersed in Galden and reduced pressure was determined to be good products, and products in which Galden penetrates into the interior when immersed in Galden and reduced pressure was determined to be defective products. A leakage failure rate of 5% or less was determined to be ◯, and a failure rate of more than 5% was determined to be ×.

R<4μmを満たす比較例1では、リーク不良率が低かったものの接地不良率が高く、不良品の発生率を充分に低減できなかった。15μm<Rを満たす比較例2では、接地不良率が低かったもののリーク不良率が高く、不良品の発生率を充分に低減できなかった。4μm≦R≦15μmを満たす実施例1~3では、接地不良率及びリーク不のいずれもが低く、不良品の発生が抑制できていた。In Comparative Example 1, which satisfied R<4 μm, the leakage defect rate was low but the grounding defect rate was high, and the occurrence rate of defective products could not be sufficiently reduced. In Comparative Example 2, which satisfied 15 μm<R, the grounding defect rate was low but the leakage defect rate was high, and the occurrence rate of defective products could not be sufficiently reduced. In Examples 1 to 3, which satisfied 4 μm≦R≦15 μm, both the grounding defect rate and leakage defect rate were low, and the occurrence of defective products was suppressed.

図8の実施例4~6及び比較例3,4のそれぞれに係る水晶振動子は、本実施形態に係る水晶振動子1であって、ギャップG1及びギャップG2を変化させたものである。
(実施例4)
G1=15μm、G2=20μm、G2-G1=5μm
(実施例5)
G1=10μm、G2=20μm、G2-G1=10μm
(実施例6)
G1=7μm、G2=20μm、G2-G1=13μm
(比較例3)
G1=7μm、G2=22μm、G2-G1=15μm
(比較例4)
G1=15μm、G2=28μm、G2-G1=13μm
The quartz crystal resonators according to each of Examples 4 to 6 and Comparative Examples 3 and 4 in FIG. 8 are the quartz crystal resonators 1 according to the present embodiment, with the gaps G1 and G2 being changed.
Example 4
G1 = 15 μm, G2 = 20 μm, G2 - G1 = 5 μm
Example 5
G1 = 10 μm, G2 = 20 μm, G2 - G1 = 10 μm
Example 6
G1 = 7 μm, G2 = 20 μm, G2 - G1 = 13 μm
(Comparative Example 3)
G1 = 7 μm, G2 = 22 μm, G2 - G1 = 15 μm
(Comparative Example 4)
G1 = 15 μm, G2 = 28 μm, G2 - G1 = 13 μm

それぞれの水晶振動子1において、リーク不良率を測定した。それぞれの測定サンプル数は、20個である。リーク不良率の判定において、ガルデンに浸漬して減圧してもガルデンが内部に侵入しないものを良品と判定し、ガルデンに浸漬して減圧するとガルデンが内部に侵入するものを不良品と判定した。リーク不良率が5%以下を〇とし、5%より大きいものを×とした。 The leakage defect rate was measured for each crystal unit 1. The number of samples measured for each was 20. In judging the leakage defect rate, products in which Galden did not penetrate when immersed in Galden and reduced pressure were judged to be good products, and products in which Galden penetrated when immersed in Galden and reduced pressure were judged to be defective products. A leakage defect rate of 5% or less was rated as "good," and a leakage defect rate of more than 5% was rated as "bad."

13μm<G2-G1を満たす比較例3では、リーク不良率が高く、不良品の発生率を充分に低減できなかった。0≦G2-G1≦13μmを満たすが20μm<G2を満たす比較例4では、リーク不良率が高く、不良品の発生率を充分に低減できなかった。In Comparative Example 3, which satisfied 13 μm < G2 - G1, the leakage defect rate was high and the incidence of defective products could not be sufficiently reduced. In Comparative Example 4, which satisfied 0 ≦ G2 - G1 ≦ 13 μm but 20 μm < G2, the leakage defect rate was high and the incidence of defective products could not be sufficiently reduced.

以上のように、本実施形態では、4μm≦R≦15μmの関係を満たしている。
これによれば、導電性フィラー52を上面電極33c及び対向面43Bの両方に接触させつつ、接合部材50の厚みを低減できる。したがって、蓋部材40が接地できない不良品の発生率を低減しつつ、リーク不良によって周波数が変動する不良品の発生率も低減できる。
As described above, in this embodiment, the relationship 4 μm≦R≦15 μm is satisfied.
This allows the conductive filler 52 to be in contact with both the upper surface electrode 33c and the opposing surface 43B while reducing the thickness of the bonding member 50. Therefore, the rate of occurrence of defective products in which the cover member 40 cannot be grounded can be reduced, and the rate of occurrence of defective products in which the frequency fluctuates due to leakage defects can also be reduced.

他の実施態様では、0≦G2-G1≦13μmの関係を満たしている。
これによれば、導電性フィラー52を上面電極33c及び対向面43Bの両方に接触させつつ、接合部材50の厚みを低減できる。したがって、蓋部材40が接地できない不良品の発生率を低減しつつ、リーク不良によって周波数が変動する不良品の発生率も低減できる。
In another embodiment, the relationship 0≦G2−G1≦13 μm is satisfied.
This allows the conductive filler 52 to be in contact with both the upper surface electrode 33c and the opposing surface 43B while reducing the thickness of the bonding member 50. Therefore, the rate of occurrence of defective products in which the cover member 40 cannot be grounded can be reduced, and the rate of occurrence of defective products in which the frequency fluctuates due to leakage defects can also be reduced.

以下に、本発明の実施形態の一部又は全部を付記し、その効果について説明する。なお、本発明は以下の付記に限定されるものではない。Below, some or all of the embodiments of the present invention will be described, and their effects will be explained. Note that the present invention is not limited to the following notes.

本発明の一態様によれば、水晶振動素子と、水晶振動素子が搭載されたベース部材と、ベース部材との間に導電性接着剤の接合部材を挟んで接合され、ベース部材との間に水晶振動素子が配置された内部空間を形成する導電性材料の蓋部材と、を備え、蓋部材は、天壁部と、天壁部の外縁からベース部材に向かって延びる側壁部とを有し、側壁部は、ベース部材に対向する対向面を有し、ベース部材には、水晶振動素子が接続される給電用電極と、接地に用いられる接地用電極とが設けられ、接地用電極は、接合部材を介して蓋部材に電気的に接続されており、導電性接着剤は、樹脂系接着剤と、樹脂系接着剤に分散した導電性フィラーとを有しており、導電性フィラーの粒径Rは、4μm≦R≦15μmの関係を満たす、水晶振動子が提供される。
これによれば、接地によって電磁シールド機能を付与可能な蓋部材によって、電磁波の出入りに起因したノイズが低減できる。また、導電性フィラーを給電用電極及び蓋部材の両方に接触させつつ、接合部材の厚みを低減できる。したがって、蓋部材が接地できない不良品の発生率を低減しつつ、リーク不良によって周波数が変動する不良品の発生率も低減できる。
According to one aspect of the present invention, there is provided a quartz crystal oscillator comprising: a quartz crystal vibration element; a base member on which the quartz crystal vibration element is mounted; and a lid member of a conductive material bonded to the base member with a bonding member made of a conductive adhesive sandwiched therebetween, and forming an internal space between the lid member and the base member and in which the quartz crystal vibration element is disposed, wherein the lid member has a top wall portion and a side wall portion extending from an outer edge of the top wall portion toward the base member, the side wall portion having an opposing surface facing the base member, the base member being provided with a power supply electrode to which the quartz crystal vibration element is connected and a grounding electrode used for grounding, the grounding electrode being electrically connected to the lid member via the bonding member, the conductive adhesive comprising a resin-based adhesive and a conductive filler dispersed in the resin-based adhesive, and a particle size R of the conductive filler satisfying the relationship of 4 μm≦R≦15 μm.
According to this, the lid member, which can provide an electromagnetic shielding function by being grounded, can reduce noise caused by the ingress and egress of electromagnetic waves. Also, the thickness of the joining member can be reduced while the conductive filler is in contact with both the power supply electrode and the lid member. Therefore, the occurrence rate of defective products in which the lid member cannot be grounded can be reduced, while the occurrence rate of defective products in which the frequency fluctuates due to leakage defects can also be reduced.

一態様として、ベース部材には、少なくとも対向面と対向する給電用電極の領域を覆う絶縁性材料の保護膜が設けられ、保護膜は、接合部材と接触しており、接地用電極と対向面との間のギャップG1と、保護膜と対向面との間のギャップG2とは、0<G2-G1<13μmの関係を満たす。 In one embodiment, the base member is provided with a protective film made of an insulating material that covers at least the area of the power supply electrode that faces the opposing surface, the protective film is in contact with the joining member, and the gap G1 between the ground electrode and the opposing surface and the gap G2 between the protective film and the opposing surface satisfy the relationship 0 < G2 - G1 < 13 μm.

本発明の他の一態様によれば、水晶振動素子と、水晶振動素子が搭載されたベース部材と、ベース部材との間に導電性接着剤の接合部材を挟んで接合され、ベース部材との間に水晶振動素子が配置された内部空間を形成する導電性材料の蓋部材と、を備え、蓋部材は、天壁部と、天壁部の外縁からベース部材に向かって延びる側壁部とを有し、側壁部は、ベース部材に対向する対向面を有し、ベース部材には、水晶振動素子が接続される給電用電極と、接地に用いられる接地用電極とが設けられ、接地用電極は、接合部材を介して蓋部材に電気的に接続されており、導電性接着剤は、樹脂系接着剤と、樹脂系接着剤に分散した導電性フィラーとを有しており、ベース部材には、少なくとも対向面と対向する給電用電極の領域を覆う絶縁性材料の保護膜が設けられ、保護膜は、接合部材と接触しており、接地用電極と対向面との間のギャップG1と、保護膜と対向面との間のギャップG2とは、0≦G2-G1≦13μmの関係を満たす、水晶振動子が提供される。
これによれば、接地によって電磁シールド機能を付与可能な蓋部材によって、電磁波の出入りに起因したノイズが低減できる。また、導電性フィラーを給電用電極及び蓋部材の両方に接触させつつ、接合部材の厚みを低減できる。したがって、蓋部材が接地できない不良品の発生率を低減しつつ、リーク不良によって周波数が変動する不良品の発生率も低減できる。
According to another aspect of the present invention, there is provided a quartz crystal resonator comprising: a quartz crystal resonator element; a base member on which the quartz crystal resonator element is mounted; and a lid member of a conductive material that is bonded to the base member with a bonding member made of a conductive adhesive sandwiched therebetween and that forms an internal space in which the quartz crystal resonator element is disposed between the lid member and the base member, the lid member having a top wall portion and a side wall portion extending from an outer edge of the top wall portion toward the base member, the side wall portion having an opposing surface that faces the base member, the base member being provided with a power supply electrode to which the quartz crystal resonator element is connected and a grounding electrode used for grounding, the grounding electrode being electrically connected to the lid member via the bonding member, the conductive adhesive having a resin-based adhesive and a conductive filler dispersed in the resin-based adhesive, the base member being provided with a protective film made of an insulating material that covers at least an area of the power supply electrode that faces the opposing surface, the protective film being in contact with the bonding member, and a gap G1 between the grounding electrode and the opposing surface and a gap G2 between the protective film and the opposing surface satisfy the relationship 0≦G2−G1≦13 μm.
According to this, the lid member, which can provide an electromagnetic shielding function by being grounded, can reduce noise caused by the ingress and egress of electromagnetic waves. Also, the thickness of the joining member can be reduced while the conductive filler is in contact with both the power supply electrode and the lid member. Therefore, the occurrence rate of defective products in which the lid member cannot be grounded can be reduced, while the occurrence rate of defective products in which the frequency fluctuates due to leakage defects can also be reduced.

一態様として、保護膜と対向面との間のギャップG2は、2μm≦G2≦20μmの関係を満たす。
これによれば、導電性フィラーを給電用電極及び蓋部材の両方に接触させつつ、接合部材の厚みを低減できる。したがって、蓋部材が接地できない不良品の発生率を低減しつつ、リーク不良によって周波数が変動する不良品の発生率も低減できる。
As one aspect, the gap G2 between the protective film and the facing surface satisfies the relationship 2 μm≦G2≦20 μm.
This allows the thickness of the bonding member to be reduced while the conductive filler is in contact with both the power supply electrode and the lid member, thereby reducing the rate of defective products in which the lid member cannot be grounded and also reducing the rate of defective products in which the frequency fluctuates due to leakage defects.

一態様として、保護膜と対向面との間のギャップG2と、導電性フィラーの粒径Rとは、R<G2の関係を満たす。
これによれば、不所望な領域での導電性フィラー同士の接近を抑制できる。したがって、水晶振動素子と蓋部材とが短絡した不良品の発生率を低減できる。
As one embodiment, the gap G2 between the protective film and the facing surface and the particle size R of the conductive filler satisfy the relationship R<G2.
This can prevent conductive fillers from coming close to each other in undesired areas, thereby reducing the incidence of defective products in which the quartz crystal vibrating element and the lid member are short-circuited.

一態様として、導電性フィラーは、球状の樹脂コアと、樹脂コアを覆う金属膜とを有している。In one embodiment, the conductive filler has a spherical resin core and a metal film covering the resin core.

一態様として、樹脂コアは、スチレン系樹脂又はアクリル系樹脂であり、金属膜はニッケルである。In one embodiment, the resin core is a styrene-based resin or an acrylic-based resin, and the metal film is nickel.

一態様として、樹脂系接着剤は、エポキシ系の熱硬化性樹脂である。In one embodiment, the resin-based adhesive is an epoxy-based thermosetting resin.

一態様として、導電性接着剤は、樹脂系接着剤に分散した絶縁性フィラーをさらに有し、導電性フィラーの粒径Rと、絶縁性フィラーの粒径rとは、r<Rの関係を満たす。
これによれば、絶縁性フィラーによる導電性フィラーの変形の阻害が抑制できる。したがって、蓋部材が接地できない不良品の発生率を低減できる。
In one embodiment, the conductive adhesive further includes insulating filler dispersed in the resin-based adhesive, and the particle size R of the conductive filler and the particle size r of the insulating filler satisfy the relationship r<R.
This can suppress the insulating filler from hindering the deformation of the conductive filler, thereby reducing the incidence of defective products in which the lid member cannot be grounded.

本発明に係る実施形態は、水晶振動子に限定されるものではなく、圧電振動子にも適用可能である。圧電振動子(Piezoelectric Resonator Unit)の一例が、水晶振動素子(Quartz Crystal Resonator)を備えた水晶振動子(Quartz Crystal Resonator Unit)である。水晶振動素子は、圧電効果によって励振される圧電片として、水晶片(Quartz Crystal Element)を利用するが、圧電片は、圧電単結晶、圧電セラミック、圧電薄膜、又は、圧電高分子膜などの任意の圧電材料によって形成されてもよい。一例として、圧電単結晶は、ニオブ酸リチウム(LiNbO3)を挙げることができる。同様に、圧電セラミックは、チタン酸バリウム(BaTiO3)、チタン酸鉛(PbTiO3)、チタン酸ジルコン酸鉛(Pb(ZrxTi1-x)O3;PZT)、窒化アルミニウム(AlN)、ニオブ酸リチウム(LiNbO3)、メタニオブ酸リチウム(LiNb26)、チタン酸ビスマス(Bi4Ti312)、タンタル酸リチウム(LiTaO3)、四ホウ酸リチウム(Li247)、ランガサイト(La3Ga5SiO14)、又は、五酸化タンタル(Ta25)などを挙げることができる。圧電薄膜は、石英、又は、サファイアなどの基板上に上記の圧電セラミックをスパッタリング工法などによって成膜したものを挙げることができる。圧電高分子膜は、ポリ乳酸(PLA)、ポリフッ化ビニリデン(PVDF)、又は、フッ化ビニリデン/三フッ化エチレン(VDF/TrFE)共重合体などを挙げることができる。上記の各種圧電材料は、互いに積層して用いられてもよく、他の部材に積層されてもよい。 The embodiment according to the present invention is not limited to a quartz resonator, but can also be applied to a piezoelectric resonator. An example of a piezoelectric resonator (Piezoelectric Resonator Unit) is a quartz resonator (Quartz Crystal Resonator Unit) equipped with a quartz crystal resonator element (Quartz Crystal Resonator). The quartz crystal resonator element uses a quartz crystal element (Quartz Crystal Element) as a piezoelectric piece excited by the piezoelectric effect, but the piezoelectric piece may be formed of any piezoelectric material such as a piezoelectric single crystal, a piezoelectric ceramic, a piezoelectric thin film, or a piezoelectric polymer film. As an example, the piezoelectric single crystal can be lithium niobate (LiNbO 3 ). Similarly, examples of the piezoelectric ceramic include barium titanate ( BaTiO3 ), lead titanate ( PbTiO3 ), lead zirconate titanate (Pb(ZrxTi1 - x )O3; PZT), aluminum nitride (AlN), lithium niobate ( LiNbO3 ), lithium metaniobate ( LiNb2O6 ), bismuth titanate ( Bi4Ti3O12 ), lithium tantalate ( LiTaO3 ), lithium tetraborate ( Li2B4O7 ), langasite ( La3Ga5SiO14 ), and tantalum pentoxide ( Ta2O5 ). Examples of the piezoelectric thin film include a film formed by depositing the above-mentioned piezoelectric ceramic on a substrate such as quartz or sapphire by a sputtering method or the like. Examples of the piezoelectric polymer film include polylactic acid (PLA), polyvinylidene fluoride (PVDF), or vinylidene fluoride/trifluoroethylene (VDF/TrFE) copolymer. The above-mentioned various piezoelectric materials may be used by laminating them together, or may be laminated on other members.

本発明に係る実施形態は、タイミングデバイス、発音器、発振器、荷重センサなど、圧電効果により電気機械エネルギー変換を行うデバイスであれば、特に限定されることなく適宜適用可能である。 Embodiments of the present invention can be applied as appropriate to any device that performs electromechanical energy conversion through the piezoelectric effect, such as a timing device, a sound generator, an oscillator, or a load sensor, without any particular limitations.

以上説明したように、本発明の一態様によれば、ノイズを抑制しつつ不良品の発生を抑制可能な圧電振動子を提供できる。As described above, one aspect of the present invention provides a piezoelectric vibrator that can suppress noise while reducing the occurrence of defective products.

なお、以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。 Note that the above-described embodiments are intended to facilitate understanding of the present invention and are not intended to limit the present invention. The present invention may be modified/improved without departing from the spirit thereof, and equivalents are also included in the present invention. In other words, designs modified by a person skilled in the art as appropriate are also included within the scope of the present invention as long as they include the characteristics of the present invention. For example, the elements of each embodiment and their arrangement, materials, conditions, shapes, sizes, etc. are not limited to those exemplified and can be modified as appropriate. Furthermore, the elements of each embodiment can be combined to the extent technically possible, and combinations of these are also included within the scope of the present invention as long as they include the characteristics of the present invention.

1…水晶振動子、
10…水晶振動素子、
30…ベース部材、
31…基体、
33a,33b…電極パッド、
33c…上面電極、
34a~34d…側面電極、
35a~35d…外部電極、
39…保護膜、
40…蓋部材、
41…天壁部、
42…側壁部、
43B…対向面、
50…接合部材、
51…樹脂系接着剤、
52…導電性フィラー、
53…絶縁性フィラー、
1...quartz crystal unit,
10...quartz crystal vibration element,
30...base member,
31...base,
33a, 33b...electrode pads,
33c...top electrode,
34a to 34d: side electrodes,
35a to 35d: external electrodes,
39...protective film,
40...Cover member,
41...Ceiling wall portion,
42...side wall portion,
43B...opposing surface,
50...Joining member,
51...resin adhesive,
52...conductive filler,
53...insulating filler,

Claims (10)

圧電振動素子と、
前記圧電振動素子が搭載されたベース部材と、
前記ベース部材との間に前記圧電振動素子が配置された内部空間を形成する導電性材料の蓋部材と、
前記ベース部材と前記蓋部材とを接合する、導電性接着剤によって設けられた接合部材と、
を備え、
前記蓋部材は、天壁部と、前記天壁部の外縁から前記ベース部材に向かって延びる側壁部とを有し、前記側壁部は、前記ベース部材に対向する対向面を有し、
前記ベース部材には、前記圧電振動素子が接続される給電用電極と、接地に用いられる接地用電極とが設けられ、前記接地用電極は、前記接合部材を介して前記蓋部材に電気的に接続されており、
前記導電性接着剤は、樹脂系接着剤と、前記樹脂系接着剤に分散した導電性フィラーとを有しており、
前記導電性フィラーの粒径Rは、
4μm≦R≦15μm
の関係を満たし、
前記ベース部材には、少なくとも前記対向面と対向する前記給電用電極の領域を覆う保護膜が絶縁性材料によって設けられ、前記保護膜は、前記接合部材と接触しており、
前記接地用電極と前記対向面との間のギャップG1と、前記保護膜と前記対向面との間のギャップG2とは、
0≦G2-G1≦13μm
の関係を満たす、圧電振動子。
A piezoelectric vibration element;
A base member on which the piezoelectric vibration element is mounted;
a cover member made of a conductive material that defines an internal space in which the piezoelectric vibration element is disposed between the cover member and the base member;
a joining member that joins the base member and the lid member and is provided by a conductive adhesive;
Equipped with
The cover member has a top wall portion and a side wall portion extending from an outer edge of the top wall portion toward the base member, the side wall portion having an opposing surface opposing the base member,
the base member is provided with a power supply electrode to which the piezoelectric vibration element is connected and a ground electrode used for grounding, the ground electrode being electrically connected to the lid member via the joining member;
the conductive adhesive includes a resin-based adhesive and a conductive filler dispersed in the resin-based adhesive,
The particle diameter R of the conductive filler is
4 μm≦R≦15 μm
Fulfilling the relationship,
a protective film made of an insulating material is provided on the base member and covers at least a region of the power supply electrode facing the facing surface, the protective film being in contact with the bonding member;
A gap G1 between the ground electrode and the facing surface, and a gap G2 between the protective film and the facing surface are
0≦G2−G1≦13 μm
A piezoelectric vibrator that satisfies the relationship.
圧電振動素子と、
前記圧電振動素子が搭載されたベース部材と、
前記ベース部材との間に前記圧電振動素子が配置された内部空間を形成する導電性材料の蓋部材と、
前記ベース部材と前記蓋部材とを接合する、導電性接着剤によって設けられた接合部材と、
を備え、
前記蓋部材は、天壁部と、前記天壁部の外縁から前記ベース部材に向かって延びる側壁部とを有し、前記側壁部は、前記ベース部材に対向する対向面を有し、
前記ベース部材には、前記圧電振動素子が接続される給電用電極と、接地に用いられる接地用電極とが設けられ、前記接地用電極は、前記接合部材を介して前記蓋部材に電気的に接続されており、
前記導電性接着剤は、樹脂系接着剤と、前記樹脂系接着剤に分散した導電性フィラーとを有しており、
前記ベース部材には、少なくとも前記対向面と対向する前記給電用電極の領域を覆う保護膜が絶縁性材料によって設けられ、前記保護膜は、前記接合部材と接触しており、
前記接地用電極と前記対向面との間のギャップG1と、前記保護膜と前記対向面との間のギャップG2とは、
0≦G2-G1≦13μm
の関係を満たす、圧電振動子。
A piezoelectric vibration element;
A base member on which the piezoelectric vibration element is mounted;
a cover member made of a conductive material that defines an internal space in which the piezoelectric vibration element is disposed between the cover member and the base member;
a joining member that joins the base member and the lid member and is provided by a conductive adhesive;
Equipped with
The cover member has a top wall portion and a side wall portion extending from an outer edge of the top wall portion toward the base member, the side wall portion having an opposing surface opposing the base member,
the base member is provided with a power supply electrode to which the piezoelectric vibration element is connected and a ground electrode used for grounding, the ground electrode being electrically connected to the lid member via the joining member;
the conductive adhesive includes a resin-based adhesive and a conductive filler dispersed in the resin-based adhesive,
a protective film made of an insulating material is provided on the base member and covers at least a region of the power supply electrode facing the facing surface, the protective film being in contact with the bonding member;
A gap G1 between the ground electrode and the facing surface, and a gap G2 between the protective film and the facing surface are
0≦G2−G1≦13 μm
A piezoelectric vibrator that satisfies the relationship.
前記保護膜と前記対向面との間のギャップG2は、
2μm≦G2≦20μm
の関係を満たす、
請求項1又は2に記載の圧電振動子。
The gap G2 between the protective film and the facing surface is
2 μm≦G2≦20 μm
Satisfy the relationship
3. The piezoelectric vibrator according to claim 1 or 2.
前記保護膜と前記対向面との間のギャップG2と、前記導電性フィラーの粒径Rとは、
R<G2
の関係を満たす、
請求項1から3のいずれか1項に記載の圧電振動子。
The gap G2 between the protective film and the facing surface and the particle size R of the conductive filler are
R < G2
Satisfy the relationship
The piezoelectric vibrator according to claim 1 .
前記導電性フィラーは、球状の樹脂コアと、前記樹脂コアを覆う金属膜とを有している、
請求項1から4のいずれか1項に記載の圧電振動子。
The conductive filler has a spherical resin core and a metal film covering the resin core.
The piezoelectric vibrator according to claim 1 .
前記樹脂コアは、スチレン系樹脂又はアクリル系樹脂であり、
前記金属膜はニッケルである、
請求項5に記載の圧電振動子。
The resin core is a styrene-based resin or an acrylic-based resin,
The metal film is nickel.
The piezoelectric vibrator according to claim 5 .
前記樹脂系接着剤は、エポキシ系の熱硬化性樹脂である、
請求項1から6のいずれか1項に記載の圧電振動子。
The resin adhesive is an epoxy thermosetting resin.
The piezoelectric vibrator according to claim 1 .
前記導電性接着剤は、前記樹脂系接着剤に分散した絶縁性フィラーをさらに有し、
前記導電性フィラーの粒径Rと、前記絶縁性フィラーの粒径rとは、
r<R
の関係を満たす、
請求項1から7のいずれか1項に記載の圧電振動子。
The conductive adhesive further comprises an insulating filler dispersed in the resin-based adhesive,
The particle diameter R of the conductive filler and the particle diameter r of the insulating filler are
r < R
Satisfy the relationship
The piezoelectric vibrator according to claim 1 .
前記導電性フィラーの一部は、前記接地用電極と前記蓋部材とに挟まれて変形している、
請求項1から8のいずれか1項に記載の圧電振動子。
A portion of the conductive filler is deformed by being sandwiched between the ground electrode and the cover member.
The piezoelectric vibrator according to claim 1 .
前記給電用電極は、
前記ベース部材の前記蓋部材側の上面に設けられ、前記上面を平面視したときに前記接合部材によって囲まれた電極パッドと、
前記ベース部材の側面部に設けられた側面電極と、
前記上面に設けられ、前記電極パッドと前記側面電極とを電気的に接続する配線電極と、
を有する、
請求項1から9のいずれか1項に記載の圧電振動子。
The power supply electrode is
an electrode pad provided on an upper surface of the base member facing the lid member and surrounded by the bonding member when the upper surface is viewed in plan;
a side electrode provided on a side surface of the base member;
a wiring electrode provided on the upper surface and electrically connecting the electrode pad and the side electrode;
having
The piezoelectric vibrator according to claim 1 .
JP2022533685A 2020-07-02 2021-03-17 Piezoelectric transducer Active JP7465458B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020114621 2020-07-02
JP2020114621 2020-07-02
PCT/JP2021/010820 WO2022004069A1 (en) 2020-07-02 2021-03-17 Piezoelectric oscillator

Publications (3)

Publication Number Publication Date
JPWO2022004069A1 JPWO2022004069A1 (en) 2022-01-06
JPWO2022004069A5 JPWO2022004069A5 (en) 2023-01-10
JP7465458B2 true JP7465458B2 (en) 2024-04-11

Family

ID=79315734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022533685A Active JP7465458B2 (en) 2020-07-02 2021-03-17 Piezoelectric transducer

Country Status (3)

Country Link
JP (1) JP7465458B2 (en)
CN (1) CN115917967A (en)
WO (1) WO2022004069A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308217A (en) 2000-04-27 2001-11-02 Kyocera Corp Semiconductor device
JP2015220749A (en) 2014-05-13 2015-12-07 日本電波工業株式会社 Quartz crystal resonator and manufacturing method thereof
WO2019065519A1 (en) 2017-09-27 2019-04-04 株式会社村田製作所 Piezoelectric oscillator and method for producing piezoelectric oscillator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308217A (en) 2000-04-27 2001-11-02 Kyocera Corp Semiconductor device
JP2015220749A (en) 2014-05-13 2015-12-07 日本電波工業株式会社 Quartz crystal resonator and manufacturing method thereof
WO2019065519A1 (en) 2017-09-27 2019-04-04 株式会社村田製作所 Piezoelectric oscillator and method for producing piezoelectric oscillator

Also Published As

Publication number Publication date
JPWO2022004069A1 (en) 2022-01-06
CN115917967A (en) 2023-04-04
WO2022004069A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP4714214B2 (en) Surface acoustic wave device
JP2019021998A (en) Electronic component
JP5941162B2 (en) Piezoelectric parts
US11824521B2 (en) Vibration substrate having a pair of holding portions and a beam portion connecting the holding portions, vibrator, and vibrator unit
WO2021186790A1 (en) Crystal vibration element, crystal vibrator, and crystal oscillator
JP7465458B2 (en) Piezoelectric transducer
CN113765494A (en) Vibrators and Oscillators
JP7465454B2 (en) Piezoelectric vibration element, piezoelectric vibrator and electronic device
JP7416248B2 (en) piezoelectric vibrator
WO2022004071A1 (en) Piezoelectric oscillator
US12255599B2 (en) Piezoelectric resonator unit and oscillator provided with the same
JP7161709B2 (en) Electronic device and its manufacturing method
WO2021215040A1 (en) Piezoelectric oscillator
WO2021220542A1 (en) Piezoelectric vibrator
JP7497754B2 (en) Piezoelectric vibrator and its manufacturing method
US11233497B2 (en) Piezoelectric vibrator
JP2021175139A (en) Piezoelectric vibrator and manufacturing method thereof
JP7389410B2 (en) Piezoelectric vibrator and its manufacturing method
WO2021220544A1 (en) Piezoelectric vibrator and piezoelectric oscillator including same
US20240421797A1 (en) Quartz vibration element and manufacturing method of quartz vibration element
US20220173709A1 (en) Piezoelectric vibrator
JP7359210B2 (en) Crystal oscillators, electronic components and electronic equipment
WO2022158028A1 (en) Piezoelectric vibrator
JP2024170846A (en) Semiconductor device and vibration device
JP2016005162A (en) Electronic component device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240314

R150 Certificate of patent or registration of utility model

Ref document number: 7465458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150