[go: up one dir, main page]

JP7459778B2 - Power Conversion Equipment - Google Patents

Power Conversion Equipment Download PDF

Info

Publication number
JP7459778B2
JP7459778B2 JP2020207250A JP2020207250A JP7459778B2 JP 7459778 B2 JP7459778 B2 JP 7459778B2 JP 2020207250 A JP2020207250 A JP 2020207250A JP 2020207250 A JP2020207250 A JP 2020207250A JP 7459778 B2 JP7459778 B2 JP 7459778B2
Authority
JP
Japan
Prior art keywords
resistor
output voltage
circuit
voltage
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020207250A
Other languages
Japanese (ja)
Other versions
JP2022094402A (en
Inventor
拓実 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2020207250A priority Critical patent/JP7459778B2/en
Publication of JP2022094402A publication Critical patent/JP2022094402A/en
Application granted granted Critical
Publication of JP7459778B2 publication Critical patent/JP7459778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • X-Ray Techniques (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、固定抵抗、可変抵抗を組み合わせることで非線形出力を模擬する回路技術に関する。 The present invention relates to a circuit technology that simulates nonlinear output by combining fixed resistance and variable resistance.

エミッタ(電子源)には、電界電子放出を利用するものがあり、応用例として冷陰極X線管が挙げられる。図8に冷陰極X線管のI-V特性(出力特性)を示す。 Some emitters (electron sources) utilize field electron emission, and examples of applications include cold cathode X-ray tubes. Figure 8 shows the IV characteristics (output characteristics) of the cold cathode X-ray tube.

また、図1に負荷である冷陰極X線管に所望の高電圧を印加する冷陰極X線発生装置の代表構成図を示す。この構成の先行技術として、特許文献1が開示されている。 Further, FIG. 1 shows a typical configuration diagram of a cold cathode X-ray generator that applies a desired high voltage to a cold cathode X-ray tube that is a load. As a prior art of this configuration, Patent Document 1 is disclosed.

特開2019-57364号公報JP 2019-57364 A

エミッタのI-V特性は非線形であり、制御性を高めるためには工夫が必要となる。冷陰極X線発生装置内のポテンショメータ等の手動操作で出力電流を制御しようとすると、線形素子で非線形出力を調整することになるため、全区間で均一な変化量を持たせることが困難である。 The emitter's I-V characteristics are nonlinear, and ingenuity is required to improve controllability. If you try to control the output current by manually operating a potentiometer or other device inside the cold cathode X-ray generator, you end up adjusting the nonlinear output with a linear element, making it difficult to achieve a uniform amount of change across the entire range.

具体的には、図8に示すように、冷陰極X線管に印加する電圧が高電圧になればなるほど、ポテンショメータ等の操作量に対して出力電流の変化量が大きくなる。プログラムを製作することで制御性を高めることができるが、製作にはコストがかかる。 Specifically, as shown in Figure 8, the higher the voltage applied to the cold cathode X-ray tube, the greater the change in output current relative to the amount of operation of a potentiometer, etc. Controllability can be improved by creating a program, but this is costly.

以上示したようなことから、非線形なI-V特性を有する負荷に対して、全区間を均一な電流変化量で出力調整することを可能とし、かつ、設計の簡素化、低コスト化を実現した電力変換装置を提供することが課題となる。 From the above, it is possible to adjust the output with a uniform amount of current change over the entire section for loads with nonlinear IV characteristics, and it also simplifies the design and reduces costs. The challenge is to provide a power conversion device that is

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、コンデンサバンクと、前記コンデンサバンクに接続された直流電圧可変回路と、前記コンデンサバンクの直流電力を交流電力に変換するインバータと、前記インバータの交流側に接続され、または、前記インバータの交流側に他の機器を介して接続され、非線形なI-V特性を有する負荷と、を備えた電力変換装置であって、前記直流電圧可変回路は、抵抗値の可変調整機能を有する第4抵抗と、前記第4抵抗の一端に一端が接続され、前記第4抵抗に対して直列接続された第2抵抗と、前記第4抵抗の他端に一端が接続され、前記第2抵抗の他端に他端が接続され、前記第2抵抗,前記第4抵抗の直列回路に並列接続された第3抵抗と、前記第2抵抗,前記第3抵抗,前記第4抵抗の直並列回路に一端が接続された第1抵抗と、を備え、前記第1抵抗の他端が直流電源の正極に接続され、前記第2抵抗,前記第3抵抗,前記第4抵抗の直並列回路と前記第1抵抗との接続点が出力電圧指令として前記コンデンサバンクの一端に接続され、前記第2抵抗の他端と、前記第3抵抗の他端と、前記コンデンサバンクの他端と、が前記直流電源の負極に接続され、前記第4抵抗の抵抗値を調整することで、前記直流電圧可変回路の出力電圧を調整することを特徴とする。 The present invention has been devised in view of the above-mentioned conventional problems, and one aspect thereof includes a capacitor bank, a DC voltage variable circuit connected to the capacitor bank, and a converter converting DC power of the capacitor bank into AC power. A power conversion device comprising: an inverter to perform conversion; and a load having nonlinear IV characteristics, which is connected to the AC side of the inverter or connected to the AC side of the inverter via another device. The DC voltage variable circuit includes: a fourth resistor having a resistance value variable adjustment function; a second resistor, one end of which is connected to one end of the fourth resistor, and the second resistor is connected in series with the fourth resistor; a third resistor, one end of which is connected to the other end of the fourth resistor, the other end of which is connected to the other end of the second resistor, and the third resistor is connected in parallel to a series circuit of the second resistor and the fourth resistor; a first resistor, one end of which is connected to a series-parallel circuit of a second resistor, the third resistor, and the fourth resistor; the other end of the first resistor is connected to the positive electrode of a DC power supply; A connection point between a series-parallel circuit of a resistor, the third resistor, and the fourth resistor and the first resistor is connected to one end of the capacitor bank as an output voltage command, and the other end of the second resistor and the third resistor are connected to each other as an output voltage command. The other end of the resistor and the other end of the capacitor bank are connected to the negative electrode of the DC power supply, and the output voltage of the variable DC voltage circuit is adjusted by adjusting the resistance value of the fourth resistor. Features.

また、他の態様として、コンデンサバンクと、前記コンデンサバンクに接続された直流電圧生成回路と、前記コンデンサバンクの直流電力を交流電力に変換するインバータと、前記直流電圧生成回路の出力電圧もしくは前記インバータの出力電圧を制御する出力電圧制御回路と、前記インバータの交流側に接続され、または、前記インバータの交流側に他の機器を介して接続され、非線形なI-V特性を有する負荷と、を備えた電力変換装置であって、前記出力電圧制御回路は、抵抗値の可変調整機能を有する第4抵抗と、前記第4抵抗に直列接続された第2抵抗と、前記第2抵抗,前記第4抵抗の直列回路に並列接続された第3抵抗と、前記第2抵抗,前記第3抵抗,前記第4抵抗の直並列回路に一端が接続された第1抵抗と、を備え、前記第1抵抗の他端が電源電圧に接続され、前記第2抵抗,前記第3抵抗,前記第4抵抗の直並列回路と前記第1抵抗との接続点を出力電圧指令とし、前記第4抵抗の抵抗値を調整することで前記出力電圧指令を調整し、調整した前記出力電圧指令に基づいて、前記直流電圧生成回路の出力電圧もしくは前記インバータの出力電圧を制御することを特徴とする。 Further, as another aspect, a capacitor bank, a DC voltage generation circuit connected to the capacitor bank, an inverter that converts DC power of the capacitor bank into AC power, and an output voltage of the DC voltage generation circuit or the inverter. an output voltage control circuit that controls the output voltage of the inverter; and a load that is connected to the AC side of the inverter or connected to the AC side of the inverter via another device and has nonlinear IV characteristics. The output voltage control circuit includes a fourth resistor having a resistance value variable adjustment function, a second resistor connected in series to the fourth resistor, and the second resistor and the fourth resistor. a third resistor connected in parallel to a series circuit of four resistors; a first resistor having one end connected to a series-parallel circuit of the second resistor, the third resistor, and the fourth resistor; The other end of the resistor is connected to the power supply voltage, the connection point between the series-parallel circuit of the second resistor, the third resistor, and the fourth resistor and the first resistor is set as an output voltage command, and the resistance of the fourth resistor is The output voltage command is adjusted by adjusting a value, and the output voltage of the DC voltage generation circuit or the output voltage of the inverter is controlled based on the adjusted output voltage command.

また、その一態様として、前記第3抵抗は、抵抗値の可変調整機能を有することを特徴とする。 Moreover, as one aspect thereof, the third resistor is characterized in that it has a resistance value variable adjustment function.

本発明によれば、非線形なI-V特性を有する負荷に対して、全区間を均一な電流変化量で出力調整することを可能とし、かつ、設計の簡素化、低コスト化を実現した電力変換装置を提供することが可能となる。 The present invention makes it possible to provide a power conversion device that can adjust the output with a uniform current change amount over the entire range for a load with a nonlinear I-V characteristic, while also achieving simplified design and low cost.

冷陰極X線発生装置の全体構成図。FIG. 1 is an overall configuration diagram of a cold cathode X-ray generator. 実施形態1の直流電圧可変回路を示す回路構成図。1 is a circuit configuration diagram showing a DC voltage variable circuit of Embodiment 1. FIG. 第4抵抗R4と出力電圧指令Vrefの関係を示す図。The figure which shows the relationship between 4th resistance R4 and output voltage command Vref. 第1抵抗R1を調整したR4-V特性を示す図。FIG. 13 is a graph showing R4-V characteristics when the first resistor R1 is adjusted. 第2抵抗R2を調整したR4-V特性を示す図。FIG. 13 is a graph showing the R4-V characteristics when the second resistor R2 is adjusted. 第3抵抗R3を調整したR4-V特性を示す図。FIG. 13 is a graph showing the R4-V characteristics when the third resistor R3 is adjusted. 実施形態2の直流電圧可変回路を示す回路構成図。FIG. 3 is a circuit configuration diagram showing a DC voltage variable circuit according to a second embodiment. 冷陰極X線管のI-V特性(出力特性)を示す図。FIG. 3 is a diagram showing IV characteristics (output characteristics) of a cold cathode X-ray tube.

以下、本願発明における電力変換装置の実施形態1~3を図1~図7に基づいて詳述する。 Embodiments 1 to 3 of the power converter according to the present invention will be described in detail below based on FIGS. 1 to 7.

[実施形態1]
図1に冷陰極X線発生装置(電力変換装置)の全体概要を示す。冷陰極X線発生装置は、コンデンサバンク1と、インバータ(例えば、高周波インバータ)2と、昇圧トランス3と、コッククロフト回路4と、冷陰極X線管5と、分圧抵抗R5,R6と、を備える。
[Embodiment 1]
Figure 1 shows an overview of the cold cathode X-ray generator (power converter). The cold cathode X-ray generator includes a capacitor bank 1, an inverter (for example, a high frequency inverter) 2, a step-up transformer 3, a Cockcroft circuit 4, a cold cathode X-ray tube 5, and voltage dividing resistors R5 and R6. Be prepared.

なお、図1には示していないが、コンデンサバンク1の左側には直流電圧可変回路が接続されており、コンデンサバンク1の一端(正極)と他端(負極)に接続されている。 Although not shown in FIG. 1, a DC voltage variable circuit is connected to the left side of the capacitor bank 1 and is connected to one end (positive pole) and the other end (negative pole) of the capacitor bank 1.

インバータ2は、コンデンサバンク1の直流電力を交流電力に変換する。昇圧トランス3は、インバータ2の交流出力を昇圧する。コッククロフト回路4は、昇圧トランス3から出力された交流電圧から直流電圧を生成し、冷陰極X線管5に出力する。また、コンデンサバンク1には分圧抵抗R5,R6の直列回路が並列接続される。この分圧抵抗R5,R6の接続点が検出電圧Vcとなる。 Inverter 2 converts the DC power of capacitor bank 1 into AC power. Step-up transformer 3 steps up the AC output of inverter 2 . The Cockcroft circuit 4 generates a DC voltage from the AC voltage output from the step-up transformer 3 and outputs it to the cold cathode X-ray tube 5 . Further, a series circuit of voltage dividing resistors R5 and R6 is connected in parallel to the capacitor bank 1. The connection point between the voltage dividing resistors R5 and R6 becomes the detection voltage Vc.

コンデンサバンク1に充電される電圧を調整することで、コッククロフト回路4の出力電圧を変化させることができ、それにより冷陰極X線管5の出力を調整する。コンデンサバンク1の充電電圧とコッククロフト回路4の出力電圧は、昇圧トランス3の巻数比とコッククロフト回路4の段数によって決まり、比例関係にある。 By adjusting the voltage charged to the capacitor bank 1, the output voltage of the Cockcroft circuit 4 can be changed, thereby adjusting the output of the cold cathode X-ray tube 5. The charging voltage of the capacitor bank 1 and the output voltage of the Cockcroft circuit 4 are determined by the turns ratio of the step-up transformer 3 and the number of stages of the Cockcroft circuit 4, and are in a proportional relationship.

図2に本実施形態1の直流電圧可変回路の構成を示す。図2は、直流電圧可変回路の出力電圧指令Vrefを生成する回路である。直流電圧可変回路の他例として、チョッパ、PWMコンバータ、サイリスタ整流器などがある。 FIG. 2 shows the configuration of the variable DC voltage circuit according to the first embodiment. FIG. 2 shows a circuit that generates the output voltage command Vref of the variable DC voltage circuit. Other examples of variable DC voltage circuits include choppers, PWM converters, and thyristor rectifiers.

図2に示すように、端子VCCに直並列で第1~第4抵抗R1~4が接続される。第2抵抗R2の一端は第4抵抗の一端に接続され、第2抵抗R2は第4抵抗R4に対して直列接続される。第3抵抗R3の一端は第4抵抗R4の他端に接続され、第3抵抗R3の他端は第2抵抗R2の他端に接続され、第2抵抗R2,第4抵抗R4の直列回路に対して並列に第3抵抗R3が接続される。第2抵抗R2,第3抵抗R3,第4抵抗R4の直並列回路に対して第1抵抗R1の一端が接続される。また端子VCCは外部の直流電源(図示せず)の正極に接続される。 As shown in FIG. 2, the first to fourth resistors R1 to R4 are connected in series and parallel to the terminal VCC. One end of the second resistor R2 is connected to one end of the fourth resistor, and the second resistor R2 is connected in series to the fourth resistor R4. One end of the third resistor R3 is connected to the other end of the fourth resistor R4, and the other end of the third resistor R3 is connected to the other end of the second resistor R2, and the third resistor R3 is connected in parallel to the series circuit of the second resistor R2 and the fourth resistor R4. One end of the first resistor R1 is connected to the series-parallel circuit of the second resistor R2, the third resistor R3, and the fourth resistor R4. The terminal VCC is also connected to the positive pole of an external DC power supply (not shown).

第1抵抗R1の他端に端子VCCが接続される。第2抵抗R2,第3抵抗R3,第4抵抗R4の直並列回路と第1抵抗R1との接続点が出力電圧指令Vrefとしてコンデンサバンク1の一端に接続される。また、コンデンサバンク1の他端(負極)と第2抵抗R2の他端と、第3抵抗R3の他端は外部の直流電源(図示せず)の負極に接続される。 The other end of the first resistor R1 is connected to the terminal VCC. The connection point between the first resistor R1 and the series-parallel circuit of the second resistor R2, the third resistor R3, and the fourth resistor R4 is connected to one end of the capacitor bank 1 as the output voltage command Vref. In addition, the other end (negative pole) of the capacitor bank 1, the other end of the second resistor R2, and the other end of the third resistor R3 are connected to the negative pole of an external DC power source (not shown).

本実施形態1において、第1~第3抵抗R1~R3は固定抵抗とし、第4抵抗R4は抵抗値の可変調整機能を有する。第4抵抗R4は、デジタルポテンショメータが望ましいが、アナログの可変抵抗でも適用可能である。本実施形態1では、直流電圧可変回路を図2のような回路構成にすることで、ポテンショメータ等で第4抵抗R4を手動操作した場合、冷陰極X線管のI-V特性に対して全区間均一な電流変化量で出力調整が可能となる。 In the first embodiment, the first to third resistors R1 to R3 are fixed resistors, and the fourth resistor R4 has a resistance value variable adjustment function. The fourth resistor R4 is preferably a digital potentiometer, but an analog variable resistor is also applicable. In the first embodiment, by configuring the DC voltage variable circuit as shown in FIG. 2, when the fourth resistor R4 is manually operated using a potentiometer or the like, the I-V characteristics of the cold cathode X-ray tube are completely affected. It is possible to adjust the output with a uniform amount of current change in the section.

冷陰極X線管5のI-V特性は図8に示した通り、非線形である。よって、コンデンサバンク1の充電電圧を線形に変化させると、高電圧になるにつれて電流の変化量が多くなってしまい制御性が悪くなる。 The I-V characteristic of the cold cathode X-ray tube 5 is nonlinear, as shown in Figure 8. Therefore, if the charging voltage of the capacitor bank 1 is changed linearly, the amount of change in current increases as the voltage increases, resulting in poor controllability.

本実施形態1のような回路構成にし、ポテンショメータ等(第4抵抗R4)を操作すると図3のような分圧電圧(出力電圧指令)Vrefが得られる。この分圧電圧(出力電圧指令)Vrefは、図3に示すように第4抵抗R4の抵抗値に対して非線形に変化する。 When the circuit is configured as in the first embodiment and the potentiometer or the like (fourth resistor R4) is operated, a divided voltage (output voltage command) Vref as shown in FIG. 3 can be obtained. This divided voltage (output voltage command) Vref changes non-linearly with respect to the resistance value of the fourth resistor R4, as shown in FIG.

インバータ2の交流出力は分圧電圧(出力電圧指令)Vrefに比例した交流電圧を出力するので、全区間均一な電流変化量で冷陰極X線管5の電流を調整することが可能となる。分圧抵抗(出力電圧指令)Vrefは以下の(1)式となる。 Since the AC output of the inverter 2 outputs an AC voltage proportional to the divided voltage (output voltage command) Vref, it is possible to adjust the current of the cold cathode X-ray tube 5 with a uniform current variation over the entire section. The voltage dividing resistance (output voltage command) Vref is expressed by the following equation (1).

Figure 0007459778000001
Figure 0007459778000001

第1抵抗R1を調整することで、図4に示すようにR4-V特性を調整できるので、I-V特性をシフトすることが可能となる。 By adjusting the first resistor R1, the R4-V characteristic can be adjusted as shown in FIG. 4, so it is possible to shift the IV characteristic.

また、第2抵抗R2を調整することで、図5に示すようにR4-V特性を調整できるので、I-V特性のエミッション開始箇所を選択することが可能となる。さらに、第3抵抗R3を調整することで、図6のようにR4-V特性を調整できるので、I-V特性の傾きを選択することが可能となる。 Also, by adjusting the second resistor R2, the R4-V characteristic can be adjusted as shown in Figure 5, making it possible to select the emission start point of the I-V characteristic. Furthermore, by adjusting the third resistor R3, the R4-V characteristic can be adjusted as shown in Figure 6, making it possible to select the slope of the I-V characteristic.

エミッタのI-V特性は非線形であり、ポテンショメータ等で調整した場合、区間によって電流変化量が異なる。本実施形態1のような構成とすることで、全区間を均一な電流変化量で出力調整することができる。また、設計の簡素化、低コスト化を実現できる。 The IV characteristic of the emitter is nonlinear, and when adjusted with a potentiometer or the like, the amount of current change varies depending on the section. By adopting the configuration as in the first embodiment, it is possible to adjust the output with a uniform amount of current change over the entire section. Furthermore, it is possible to simplify the design and reduce costs.

実施形態1では線形の可変抵抗を変化させることで、非線形出力を模擬することができる。また、それぞれの抵抗を変化させることで様々なI-V特性を網羅することが可能となる。 In the first embodiment, a nonlinear output can be simulated by changing the linear variable resistor. Also, by changing each resistor, it is possible to cover a wide range of I-V characteristics.

[実施形態2]
図7に本実施形態2の直流電圧可変回路を示す。直流電圧可変回路は、実施形態1と同様な回路構成とするが、第3抵抗R3は抵抗値の可変調整機能を有する。第3抵抗R3は、例えばアナログの可変抵抗またはデジタルポテンショメータとする。
[Embodiment 2]
7 shows a DC voltage variable circuit according to the second embodiment. The DC voltage variable circuit has the same circuit configuration as that of the first embodiment, but the third resistor R3 has a resistance value variably adjusting function. The third resistor R3 is, for example, an analog variable resistor or a digital potentiometer.

本実施形態2のような構成にすることで、冷陰極X線管5の寿命特性に対応することができる。 By adopting a configuration like that of the second embodiment, it is possible to accommodate the life characteristics of the cold cathode X-ray tube 5.

エミッタは寿命特性があり、印加電圧に対して徐々に出力電流が低下することが知られている。そこで、コッククロフト回路4の出力電圧、電流をフィードバックして設定値と比較し、第3抵抗R3のデジタルポテンショメータ(つまり第3抵抗R3の抵抗値)を制御することで、寿命特性をとらえることができる。これにより、設定値と出力値を対比させて動作させることができる。 It is known that emitters have a lifespan characteristic, and that the output current gradually decreases with respect to the applied voltage. Therefore, by feeding back the output voltage and current of the Cockcroft circuit 4 and comparing them with the set values, and controlling the digital potentiometer of the third resistor R3 (i.e. the resistance value of the third resistor R3), it is possible to grasp the lifespan characteristic. This allows the output value to be compared with the set value for operation.

第3抵抗R3にアナログの可変抵抗を用いる場合は、定期的な点検の際、寿命特性が変化していた場合に手動で第3抵抗R3の抵抗値を変化させることによって、設定値と出力値の乖離を取り除くことができる。 If an analog variable resistor is used for the third resistor R3, if the life characteristics change during periodic inspection, the resistance value of the third resistor R3 can be manually changed to eliminate the discrepancy between the set value and the output value.

本実施形態2によれば、実施形態1と同様に、全区間を均一な電流変化量で出力調整することができる。 According to the second embodiment, similarly to the first embodiment, the output can be adjusted with a uniform amount of current change over the entire section.

また、実施形態2では寿命特性を考慮して動作させることができるため、常に正確な出力を得ることが可能となる。
[実施形態3]
実施形態1,2では、図2と図7の回路が生成する分圧電圧(出力電圧指令)Vrefを直流電圧可変回路の出力電圧とする構成として説明した。この構成の直流電圧可変回路の代わりにチョッパ、PWMコンバータ、サイリスタ整流器などの直流電圧生成装置に置き換えて、図2と図7の回路(出力電圧制御回路)が生成する分圧電圧(出力電圧指令)Vrefを直流電圧生成装置の出力電圧指令とする構成としてもよい。この場合、分圧電圧(出力電圧指令)Vrefとコンデンサバンク電圧を分圧した検出電圧Vcを比較制御し、直流電圧生成装置内のスイッチング素子のオンオフ動作によって、直流電圧生成装置の出力電圧を制御する。
Furthermore, in the second embodiment, the operation can be performed taking into consideration the life characteristics, so that an accurate output can always be obtained.
[Embodiment 3]
In the first and second embodiments, the divided voltage (output voltage command) Vref generated by the circuits in Fig. 2 and Fig. 7 is used as the output voltage of the DC voltage variable circuit . The DC voltage variable circuit of this configuration may be replaced with a DC voltage generating device such as a chopper, a PWM converter, or a thyristor rectifier, and the divided voltage (output voltage command) Vref generated by the circuits (output voltage control circuits) in Fig. 2 and Fig. 7 may be used as the output voltage command of the DC voltage generating device. In this case, the divided voltage (output voltage command) Vref and the detection voltage Vc obtained by dividing the capacitor bank voltage are compared and controlled, and the output voltage of the DC voltage generating device is controlled by the on/off operation of a switching element in the DC voltage generating device.

さらに、直流電圧生成装置をダイオード整流器のような一定の直流電圧を生成する装置(直流電圧生成装置)に置き換えて、図2と図7の回路(出力電圧制御回路)が生成する出力電圧指令Vrefをインバータ2の出力電圧指令とする構成としてもよい。この場合、インバータ2内のスイッチング素子のオンオフ動作によって、インバータ2の出力電圧が制御される。 Furthermore, by replacing the DC voltage generation device with a device that generates a constant DC voltage (DC voltage generation device) such as a diode rectifier, the output voltage command Vref generated by the circuits (output voltage control circuit) in FIGS. 2 and 7 The configuration may be such that the output voltage command of the inverter 2 is set as the output voltage command of the inverter 2. In this case, the output voltage of the inverter 2 is controlled by the on/off operation of the switching elements within the inverter 2.

さらに本発明の負荷は、冷陰極X線管に限らない。図8のような非線形なI-V特性を持つ負荷であれば、適用できる発明である。 Furthermore, the load of the present invention is not limited to a cold cathode X-ray tube. The invention can be applied to any load that has a nonlinear I-V characteristic as shown in Figure 8.

さらに、図1に示す昇圧トランス3やコッククロフト回路4を備えない装置にも適用できる技術である。すなわち、非線形なI-V特性を有する負荷(例えば、冷陰極X線管5)は、インバータ2の交流側、または、インバータ2の交流側に他の機器(例えば、昇圧トランス3やコッククロフト回路4)を介して接続される。 Furthermore, this technology can be applied to devices that do not have the step-up transformer 3 or Cockcroft circuit 4 shown in FIG. 1. That is, a load with a nonlinear I-V characteristic (e.g., a cold cathode X-ray tube 5) is connected to the AC side of the inverter 2, or to the AC side of the inverter 2 via another device (e.g., the step-up transformer 3 or the Cockcroft circuit 4).

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。 Although the present invention has been described in detail above only with respect to the specific examples, it will be clear to those skilled in the art that various modifications and alterations are possible within the scope of the technical concept of the present invention, and it goes without saying that such modifications and alterations fall within the scope of the claims.

1…コンデンサバンク
2…インバータ
3…昇圧トランス
4…コッククロフト回路
5…冷陰極X線管
R1…第1抵抗
R2…第2抵抗
R3…第3抵抗
R4…第4抵抗
R5,R6…分圧抵抗
Vref…出力電圧指令(分圧電圧)
VCC…電源電圧
Vc…検出電圧
1... Capacitor bank 2... Inverter 3... Step-up transformer 4... Cockcroft circuit 5... Cold cathode X-ray tube R1... First resistor R2... Second resistor R3... Third resistor R4... Fourth resistor R5, R6... Voltage dividing resistors Vref... Output voltage command (voltage dividing voltage)
VCC: Power supply voltage Vc: Detection voltage

Claims (3)

コンデンサバンクと、
前記コンデンサバンクに接続された直流電圧可変回路と、
前記コンデンサバンクの直流電力を交流電力に変換するインバータと、
前記インバータの交流側に接続され、または、前記インバータの交流側に他の機器を介して接続され、非線形なI-V特性を有する負荷と、を備えた電力変換装置であって、
前記直流電圧可変回路は、
抵抗値の可変調整機能を有する第4抵抗と、
前記第4抵抗の一端に一端が接続され、前記第4抵抗に対して直列接続された第2抵抗と、
前記第4抵抗の他端に一端が接続され、前記第2抵抗の他端に他端が接続され、前記第2抵抗,前記第4抵抗の直列回路に並列接続された第3抵抗と、
前記第2抵抗,前記第3抵抗,前記第4抵抗の直並列回路に一端が接続された第1抵抗と、
を備え、前記第1抵抗の他端が直流電源の正極に接続され、前記第2抵抗,前記第3抵抗,前記第4抵抗の直並列回路と前記第1抵抗との接続点が出力電圧として前記コンデンサバンクの一端に接続され、
前記第2抵抗の他端と、前記第3抵抗の他端と、前記コンデンサバンクの他端と、が前記直流電源の負極に接続され、
前記第4抵抗の抵抗値を調整することで、前記直流電圧可変回路の前記出力電圧を調整することを特徴とする電力変換装置。
capacitor bank,
a DC voltage variable circuit connected to the capacitor bank;
an inverter that converts the DC power of the capacitor bank into AC power;
A power conversion device comprising: a load connected to the alternating current side of the inverter, or connected to the alternating current side of the inverter via another device, and having nonlinear IV characteristics,
The DC voltage variable circuit is
a fourth resistor having a resistance value variable adjustment function;
a second resistor having one end connected to one end of the fourth resistor and connected in series with the fourth resistor;
a third resistor, one end of which is connected to the other end of the fourth resistor, the other end of which is connected to the other end of the second resistor, and the third resistor is connected in parallel to a series circuit of the second resistor and the fourth resistor;
a first resistor whose one end is connected to a series-parallel circuit of the second resistor, the third resistor, and the fourth resistor;
The other end of the first resistor is connected to the positive electrode of a DC power supply, and the connection point between the series-parallel circuit of the second resistor, the third resistor, and the fourth resistor and the first resistor is an output voltage . connected to one end of the capacitor bank;
The other end of the second resistor, the other end of the third resistor, and the other end of the capacitor bank are connected to the negative electrode of the DC power supply,
A power conversion device characterized in that the output voltage of the variable DC voltage circuit is adjusted by adjusting the resistance value of the fourth resistor.
コンデンサバンクと、
前記コンデンサバンクに接続された直流電圧生成装置と、
前記コンデンサバンクの直流電力を交流電力に変換するインバータと、
前記直流電圧生成装置の出力電圧もしくは前記インバータの出力電圧を制御する出力電圧制御回路と、
前記インバータの交流側に接続され、または、前記インバータの交流側に他の機器を介して接続され、非線形なI-V特性を有する負荷と、を備えた電力変換装置であって、
前記出力電圧制御回路は、
抵抗値の可変調整機能を有する第4抵抗と、
前記第4抵抗の一端に一端が接続され、前記第4抵抗に対して直列接続された第2抵抗と、
前記第4抵抗の他端に一端が接続され、前記第2抵抗の他端に他端が接続され、前記第2抵抗,前記第4抵抗の直列回路に並列接続された第3抵抗と、
前記第2抵抗,前記第3抵抗,前記第4抵抗の直並列回路に一端が接続された第1抵抗と、
を備え、前記第1抵抗の他端が直流電源の正極に接続され、前記第2抵抗,前記第3抵抗,前記第4抵抗の直並列回路と前記第1抵抗との接続点を出力電圧指令とし、
前記第2抵抗の他端と、前記第3抵抗の他端と、が前記直流電源の負極に接続され、
前記第4抵抗の抵抗値を調整することで前記出力電圧指令を調整し、調整した前記出力電圧指令に基づいて、前記直流電圧生成装置の出力電圧もしくは前記インバータの出力電圧を制御することを特徴とする電力変換装置。
capacitor bank,
a DC voltage generator connected to the capacitor bank;
an inverter that converts the DC power of the capacitor bank into AC power;
an output voltage control circuit that controls the output voltage of the DC voltage generation device or the output voltage of the inverter;
A power conversion device comprising: a load connected to the alternating current side of the inverter, or connected to the alternating current side of the inverter via another device, and having nonlinear IV characteristics,
The output voltage control circuit includes:
a fourth resistor having a resistance value variable adjustment function;
a second resistor having one end connected to one end of the fourth resistor and connected in series with the fourth resistor;
a third resistor, one end of which is connected to the other end of the fourth resistor, the other end of which is connected to the other end of the second resistor, and the third resistor is connected in parallel to a series circuit of the second resistor and the fourth resistor;
a first resistor whose one end is connected to a series-parallel circuit of the second resistor, the third resistor, and the fourth resistor;
The other end of the first resistor is connected to the positive electrode of a DC power supply , and the connection point between the series-parallel circuit of the second resistor, the third resistor, and the fourth resistor and the first resistor is set as an output voltage command. year,
The other end of the second resistor and the other end of the third resistor are connected to the negative electrode of the DC power supply,
The output voltage command is adjusted by adjusting the resistance value of the fourth resistor, and the output voltage of the DC voltage generation device or the output voltage of the inverter is controlled based on the adjusted output voltage command. power converter.
前記第3抵抗は、抵抗値の可変調整機能を有することを特徴とする請求項1または2記載の電力変換装置。 The power conversion device according to claim 1 or 2, characterized in that the third resistor has a variable resistance adjustment function.
JP2020207250A 2020-12-15 2020-12-15 Power Conversion Equipment Active JP7459778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020207250A JP7459778B2 (en) 2020-12-15 2020-12-15 Power Conversion Equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020207250A JP7459778B2 (en) 2020-12-15 2020-12-15 Power Conversion Equipment

Publications (2)

Publication Number Publication Date
JP2022094402A JP2022094402A (en) 2022-06-27
JP7459778B2 true JP7459778B2 (en) 2024-04-02

Family

ID=82162509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020207250A Active JP7459778B2 (en) 2020-12-15 2020-12-15 Power Conversion Equipment

Country Status (1)

Country Link
JP (1) JP7459778B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252094A (en) 1999-03-03 2000-09-14 Hitachi Medical Corp Inverter type x-ray high-voltage device
JP2014059746A (en) 2012-09-18 2014-04-03 Ricoh Co Ltd Reference voltage setting circuit, stepping motor drive circuit, image reading device, and image forming device
JP2017199073A (en) 2016-04-25 2017-11-02 エスアイアイ・セミコンダクタ株式会社 Reference voltage generation circuit and dc/dc converter including the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978499A (en) * 1982-10-27 1984-05-07 Hitachi Ltd X-ray device
JP3431985B2 (en) * 1994-03-17 2003-07-28 株式会社日立メディコ Inverter type X-ray high voltage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252094A (en) 1999-03-03 2000-09-14 Hitachi Medical Corp Inverter type x-ray high-voltage device
JP2014059746A (en) 2012-09-18 2014-04-03 Ricoh Co Ltd Reference voltage setting circuit, stepping motor drive circuit, image reading device, and image forming device
JP2017199073A (en) 2016-04-25 2017-11-02 エスアイアイ・セミコンダクタ株式会社 Reference voltage generation circuit and dc/dc converter including the same

Also Published As

Publication number Publication date
JP2022094402A (en) 2022-06-27

Similar Documents

Publication Publication Date Title
US7439682B2 (en) Current driving circuit for inductive loads
White et al. An average current modulation method for single-stage LED drivers with high power factor and zero low-frequency current ripple
TWI467908B (en) Voltage generator and voltage generating method with wide dynamic range
JPWO2011077583A1 (en) High voltage power supply
US10084380B2 (en) Asymmetric power flow controller for a power converter and method of operating the same
US20070013353A1 (en) Dc-dc converter and converter device
US20110316510A1 (en) Load drive device
TW200923607A (en) Power supplies, power supply controllers, and power supply controlling methods
JP7459778B2 (en) Power Conversion Equipment
CN102545808A (en) Error amplifier, controller and primary side feedback control AC ( alternating current)/ DC (direct current) converter
JPWO2014054271A1 (en) Output device, photovoltaic power generation device, and photovoltaic power generation output method
US20050219866A1 (en) Switching power source apparatus
JP5420384B2 (en) Constant current power supply
EP2421134A1 (en) Current-fed quadratic buck converter
Deepa et al. New hybrid Cuk-Landsman high gain dc-dc converter modelling and analysis
JP2015139321A (en) Reference voltage output circuit and power supply device
TWI717898B (en) Power conversion device
KR20180125444A (en) Power Factor Correction Device
EP3373439B1 (en) Method of converting direct voltage into pulse voltage
RU207151U1 (en) Secondary power supply for the image intensifier
Iqbal et al. A dual-mode phase-shift modulation control scheme for voltage multiplier based X-ray power supply
CN116113129B (en) Output voltage adjustable power supply control system for X-ray source
Suriyakulnaayudhya A Bootstrap Charge-Pump Technique for High Gain Boost Converter Applications
CN113872442B (en) Buck converter control circuit, buck converter control method, buck converter and electronic device
JP3042245B2 (en) High voltage power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240304

R150 Certificate of patent or registration of utility model

Ref document number: 7459778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150