[go: up one dir, main page]

JP7442374B2 - Dirt detection device, paper sheet processing device, dirt detection method and program - Google Patents

Dirt detection device, paper sheet processing device, dirt detection method and program Download PDF

Info

Publication number
JP7442374B2
JP7442374B2 JP2020065615A JP2020065615A JP7442374B2 JP 7442374 B2 JP7442374 B2 JP 7442374B2 JP 2020065615 A JP2020065615 A JP 2020065615A JP 2020065615 A JP2020065615 A JP 2020065615A JP 7442374 B2 JP7442374 B2 JP 7442374B2
Authority
JP
Japan
Prior art keywords
intensity
received
light intensity
fluorescence
received light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020065615A
Other languages
Japanese (ja)
Other versions
JP2021163297A (en
Inventor
晶 坊垣
史哲 嶋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glory Ltd
Original Assignee
Glory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glory Ltd filed Critical Glory Ltd
Priority to JP2020065615A priority Critical patent/JP7442374B2/en
Publication of JP2021163297A publication Critical patent/JP2021163297A/en
Application granted granted Critical
Publication of JP7442374B2 publication Critical patent/JP7442374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、紙葉類の汚れに関して判定する汚れ判定装置、およびそれに関連する技術に関する。 The present invention relates to a stain determination device that determines stains on paper sheets, and related techniques.

従来、紙幣などの紙葉類の汚れに関する判定を行う技術が存在する。たとえば、特許文献1,2においては、可視光源から出射される光を紙葉類に照射し、当該紙葉類からの反射光を利用して、紙幣の汚れ度合いを判定する技術が記載されている。 BACKGROUND ART Conventionally, there exists a technique for determining dirt on paper sheets such as banknotes. For example, Patent Documents 1 and 2 describe a technique of irradiating paper sheets with light emitted from a visible light source and using reflected light from the paper sheets to determine the degree of dirt on banknotes. There is.

特開2010-039765号公報Japanese Patent Application Publication No. 2010-039765 特開2010-277252号公報Japanese Patent Application Publication No. 2010-277252

しかしながら、可視光源からの光の紙葉類での反射光を利用して汚れ度合いを判定する上述のような技術においては、微妙な程度の汚れの有無等を判定することが困難である。たとえば、可視光源を光源とする場合、全く新しい紙幣(官封券等)からの反射光と、唾液などの体液、および/または手垢等が付着することによって若干汚れた紙幣(見た目には綺麗な紙幣)からの反射光との強度差は小さい。それ故、前者の紙幣(官封券等)と後者の紙幣(見た目には綺麗な紙幣)とを汚れ度合いによって正確に区別することは困難である。換言すれば、後者の紙幣の汚れ度合いを正確に把握することは困難である。 However, in the above-mentioned technique that uses the reflected light from a visible light source on a paper sheet to determine the degree of contamination, it is difficult to determine the presence or absence of minute degrees of contamination. For example, when a visible light source is used as a light source, reflected light from completely new banknotes (official tickets, etc.) and banknotes that are slightly soiled due to body fluids such as saliva and/or hand grime (visually clean). The difference in intensity from the reflected light from the banknotes is small. Therefore, it is difficult to accurately distinguish between the former banknotes (official tickets, etc.) and the latter banknotes (visually clean banknotes) based on the degree of dirt. In other words, it is difficult to accurately grasp the degree of dirt on the latter banknote.

そこで、この発明は、紙葉類の汚れに関する高精度の判定を実現することが可能な技術を提供することを課題とする。 Therefore, an object of the present invention is to provide a technique that can realize highly accurate determination regarding stains on paper sheets.

上記課題を解決すべく、本発明に係る汚れ判定装置は、励起光を紙葉類に照射して前記紙葉類に蛍光を発生させる発光部と、前記紙葉類にて発生した蛍光を受光する受光部と、前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生し前記受光部によって受光される蛍光の受光強度である第1受光強度に基づき、前記紙葉類の汚れに関して判定する制御部と、を備えることを特徴とする。
前記制御部は、前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域を、蛍光インクが元来塗布されている領域と区別して特定するとともに、前記第1領域から発生し前記受光部によって受光される蛍光の受光強度である第1受光強度に基づき、前記紙葉類の汚れに関して判定してもよい。
In order to solve the above problems, a stain determination device according to the present invention includes a light emitting section that irradiates excitation light onto paper sheets to generate fluorescence on the paper sheets, and a light emitting section that receives the fluorescence generated on the paper sheets. and a first light receiving intensity that is the light receiving intensity of fluorescence generated from a first region within the paper sheet to which fluorescent ink is not originally applied and received by the light receiving section. and a control unit that determines whether the paper sheet is soiled based on the following.
The control unit specifies a first area within the paper sheet that is not originally coated with fluorescent ink, distinguishing it from an area that is originally coated with fluorescent ink, and The dirt on the paper sheet may be determined based on the first received light intensity, which is the received light intensity of the fluorescence generated from the first area and received by the light receiving section.

前記制御部は、前記紙葉類の汚れ度合いを判定することにより、前記紙葉類の汚れに関して判定してもよい。 The control unit may determine the degree of dirt on the paper sheet by determining the degree of dirt on the paper sheet.

前記制御部は、前記紙葉類が汚れているか否かを判定することにより、前記紙葉類の汚れに関して判定してもよい。 The control unit may determine whether the paper sheet is soiled by determining whether or not the paper sheet is soiled.

前記制御部は、前記第1受光強度が大きいほど前記紙葉類の汚れ度合いが大きいと判定してもよい。 The control unit may determine that the greater the first received light intensity, the greater the degree of dirt on the paper sheet.

前記制御部は、前記第1受光強度が所定の基準値よりも大きい場合、前記紙葉類が汚れていると判定してもよい。 The control unit may determine that the paper sheet is dirty when the first received light intensity is greater than a predetermined reference value.

前記制御部は、前記第1領域よりも汚れが検出されにくいと推定される第2領域であって蛍光インクが元来は塗布されていない第2領域から発生し前記受光部によって受光される蛍光の受光強度である第2受光強度と、前記第1受光強度とに基づき、前記紙葉類の汚れに関して判定してもよい。 The control unit is configured to detect fluorescence that is generated from a second area where it is estimated that dirt is less likely to be detected than the first area and is not originally coated with fluorescent ink and is received by the light receiving unit. The soiling of the paper sheet may be determined based on the second received light intensity, which is the received light intensity, and the first received light intensity.

前記制御部は、元来は一定程度の蛍光反応を示す基準領域である第2領域から発生し前記受光部によって受光される蛍光の受光強度である第2受光強度と、前記第1受光強度とに基づき、前記紙葉類の汚れに関して判定してもよい。 The control section is configured to control a second received light intensity that is a received light intensity of fluorescence generated from a second region, which is a reference region that originally exhibits a certain level of fluorescence reaction, and is received by the light receiving section, and the first received light intensity. The soiling of the paper sheet may be determined based on the following.

前記第2領域は、前記紙葉類内の、前記第1領域とは異なる領域であってもよい。 The second area may be a different area from the first area within the paper sheet.

前記第2領域は、前記汚れ判定装置内の所定部材に設けられた所定領域であってもよい。 The second area may be a predetermined area provided on a predetermined member within the dirt determination device.

前記制御部は、前記第1領域よりも汚れが検出されにくいと推定される第2領域であって蛍光インクが元来は塗布されていない第2領域から発生し前記受光部によって受光される蛍光の受光強度である第2受光強度と、前記第1受光強度との差異に基づき、前記紙葉類の汚れに関して判定してもよい。
前記制御部は、前記第1受光強度と前記第2受光強度との差異が大きいほど前記紙葉類の汚れ度合いが大きいと判定してもよい。
The control unit is configured to detect fluorescence that is generated from a second area where it is estimated that dirt is less likely to be detected than the first area and is not originally coated with fluorescent ink and is received by the light receiving unit. The dirt on the paper sheet may be determined based on the difference between the second received light intensity, which is the received light intensity, and the first received light intensity.
The control unit may determine that the greater the difference between the first received light intensity and the second received light intensity, the greater the degree of dirt on the paper sheet.

前記制御部は、前記第1受光強度と前記第2受光強度との差異が所定程度よりも大きい場合、前記紙葉類が汚れていると判定してもよい。 The control unit may determine that the paper sheet is dirty when the difference between the first received light intensity and the second received light intensity is larger than a predetermined value.

前記制御部は、元来は一定程度の蛍光反応を示す基準領域である第2領域から発生し前記受光部によって受光される蛍光の受光強度である第2受光強度と、前記第1受光強度との差異に基づき、前記紙葉類の汚れに関して判定してもよい。
前記制御部は、前記第1受光強度と前記第2受光強度との差異が小さいほど前記紙葉類の汚れ度合いが大きいと判定してもよい。
The control section is configured to control a second received light intensity that is a received light intensity of fluorescence generated from a second region, which is a reference region that originally exhibits a certain level of fluorescence reaction, and is received by the light receiving section, and the first received light intensity. The soiling of the paper sheet may be determined based on the difference.
The control unit may determine that the smaller the difference between the first received light intensity and the second received light intensity, the greater the degree of dirt on the paper sheet.

前記制御部は、前記第1受光強度と前記第2受光強度との差異が所定程度よりも小さい場合、前記紙葉類が汚れていると判定してもよい。 The control unit may determine that the paper sheet is dirty when the difference between the first received light intensity and the second received light intensity is smaller than a predetermined value.

前記差異とは、前記第1受光強度と前記第2受光強度との差分、または、前記第1受光強度と前記第2受光強度との比であってもよい。 The difference may be a difference between the first received light intensity and the second received light intensity, or a ratio between the first received light intensity and the second received light intensity.

前記第1受光強度および前記第2受光強度は、特定波長域の蛍光の受光強度であってもよい。 The first received light intensity and the second received light intensity may be received light intensities of fluorescence in a specific wavelength range.

前記第1受光強度は、第1波長域の蛍光の受光強度であり、前記第2受光強度は、第2波長域の蛍光の受光強度であり、前記第1波長域と前記第2波長域とは互いに異なる波長域であってもよい。 The first received light intensity is the received intensity of fluorescence in a first wavelength range, and the second received light intensity is the received intensity of fluorescence in a second wavelength range, and the first wavelength range and the second wavelength range are different from each other. may be in different wavelength ranges.

前記制御部は、前記第1領域からの蛍光のうち第1波長域の光の受光強度である第1強度と、前記第1領域からの蛍光のうち前記第1波長域とは異なる第2波長域の光の受光強度である第2強度との差異に基づき、前記紙葉類の汚れに関して判定してもよい。 The control unit is configured to control a first intensity that is a received intensity of light in a first wavelength range among the fluorescence from the first region, and a second wavelength different from the first wavelength range among the fluorescence from the first region. The soiling of the paper sheet may be determined based on the difference from the second intensity which is the received light intensity of the area.

前記制御部は、前記第1領域からの蛍光のうち第1波長域の光の受光強度である第1強度と、前記第1領域からの蛍光のうち前記第1波長域とは異なる第2波長域の光の受光強度である第2強度との差異である第1差異と、前記第2領域からの蛍光のうち前記第1波長域の光の受光強度である第3強度と、前記第2領域からの蛍光のうち前記第2波長域の光の受光強度である第4強度との差異である第2差異とに基づき、前記紙葉類の汚れに関して判定してもよい。 The control unit is configured to control a first intensity that is a received intensity of light in a first wavelength range among the fluorescence from the first region, and a second wavelength different from the first wavelength range among the fluorescence from the first region. a third intensity that is the received intensity of light in the first wavelength range among the fluorescence from the second area; The soiling of the paper sheet may be determined based on a second difference between a fourth intensity that is a received intensity of light in the second wavelength range among the fluorescence from the area.

前記第1波長域は、緑色の波長域であり、前記第2波長域は、赤色の波長域であってもよい。 The first wavelength range may be a green wavelength range, and the second wavelength range may be a red wavelength range.

前記第1領域は、前記紙葉類内の無模様の領域であってもよい。 The first area may be a patternless area within the paper sheet.

前記第1領域は、前記紙葉類内の透かし領域であってもよい。 The first area may be a watermark area within the paper sheet.

本発明に係る紙葉類処理装置は、上記のいずれかの特徴を有する汚れ判定装置、を備えることを特徴とする。 A paper sheet processing apparatus according to the present invention is characterized by comprising a stain determination device having any of the above characteristics.

また、本発明に係る汚れ判定方法は、a)コンピュータが、紙葉類内において、蛍光インクが元来は塗布されていない第1領域を、蛍光インクが元来は塗布されている領域と区別して特定するステップと、b)前記コンピュータが、前記紙葉類への励起光の照射に応じて前記第1領域から発生した蛍光の受光強度である第1受光強度を取得するステップと、c)前記コンピュータが、前記第1受光強度に基づき、前記紙葉類の汚れに関して判定するステップと、を備えることを特徴とする。
また、本発明に係る汚れ判定方法は、a)紙葉類への励起光の照射に応じて前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生した蛍光の受光強度である第1受光強度と、前記第1領域よりも汚れが検出されにくいと推定される第2領域であって蛍光インクが元来は塗布されていない第2領域から発生した蛍光の受光強度である第2受光強度とをコンピュータが取得するステップと、b)前記コンピュータが、前記第1受光強度と前記第2受光強度との差異に基づき、前記紙葉類の汚れに関して判定するステップと、を備えることを特徴とする。
また、本発明に係る汚れ判定方法は、a)紙葉類への励起光の照射に応じて前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生した蛍光の受光強度である第1受光強度と、元来は一定程度の蛍光反応を示す基準領域である第2領域から発生した蛍光の受光強度である第2受光強度とをコンピュータが取得するステップと、b)前記コンピュータが、前記第1受光強度と前記第2受光強度との差異に基づき、前記紙葉類の汚れに関して判定するステップと、を備えることを特徴とする。
また、本発明に係る汚れ判定方法は、a)紙葉類への励起光の照射に応じて前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生した蛍光の受光強度である第1受光強度をコンピュータが取得するステップと、b)前記コンピュータが、前記第1受光強度に基づき、前記紙葉類の汚れに関して判定するステップと、を備え、ステップb)は、b-1)前記コンピュータが、前記第1領域からの蛍光のうち第1波長域の光の受光強度である第1強度と、前記第1領域からの蛍光のうち前記第1波長域とは異なる第2波長域の光の受光強度である第2強度との差異に基づき、前記紙葉類の汚れに関して判定するステップ、を備えることを特徴とする。
また、本発明に係る汚れ判定方法は、a)紙葉類への励起光の照射に応じて前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生した蛍光の受光強度である第1受光強度と、前記第1領域よりも汚れが検出されにくいと推定される第2領域であって蛍光インクが元来は塗布されていない第2領域から発生した蛍光の受光強度である第2受光強度とをコンピュータが取得するステップと、b)前記コンピュータが、前記第1受光強度と前記第2受光強度とに基づき、前記紙葉類の汚れに関して判定するステップと、を備え、前記ステップb)は、b-1)前記第1領域からの蛍光のうち第1波長域の光の受光強度である第1強度と、前記第1領域からの蛍光のうち前記第1波長域とは異なる第2波長域の光の受光強度である第2強度との差異である第1差異と、前記第2領域からの蛍光のうち前記第1波長域の光の受光強度である第3強度と、前記第2領域からの蛍光のうち前記第2波長域の光の受光強度である第4強度との差異である第2差異とに基づき、前記コンピュータが前記紙葉類の汚れに関して判定するステップ、を備えることを特徴とする。
また、本発明に係る汚れ判定方法は、a)紙葉類への励起光の照射に応じて前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生した蛍光の受光強度である第1受光強度と、元来は一定程度の蛍光反応を示す基準領域である第2領域から発生した蛍光の受光強度である第2受光強度とをコンピュータが取得するステップと、b)前記コンピュータが、前記第1受光強度と前記第2受光強度とに基づき、前記紙葉類の汚れに関して判定するステップと、を備え、前記ステップb)は、b-1)前記第1領域からの蛍光のうち第1波長域の光の受光強度である第1強度と、前記第1領域からの蛍光のうち前記第1波長域とは異なる第2波長域の光の受光強度である第2強度との差異である第1差異と、前記第2領域からの蛍光のうち前記第1波長域の光の受光強度である第3強度と、前記第2領域からの蛍光のうち前記第2波長域の光の受光強度である第4強度との差異である第2差異とに基づき、前記コンピュータが前記紙葉類の汚れに関して判定するステップ、を備えることを特徴とする。
Further, in the stain determination method according to the present invention, a) a computer distinguishes a first area in a paper sheet to which fluorescent ink is not originally applied from an area to which fluorescent ink is originally applied; b) the computer obtains a first received light intensity that is the received light intensity of fluorescence generated from the first region in response to irradiation of the excitation light onto the paper sheet; c) The method is characterized in that the computer comprises a step of determining whether the paper sheet is soiled based on the first received light intensity.
Further, the stain determination method according to the present invention includes: a) a first area in the paper sheet that is not originally coated with fluorescent ink; a first received light intensity that is the received light intensity of fluorescence generated from the second area, and a second area where it is estimated that dirt is less likely to be detected than the first area and which is not originally coated with fluorescent ink. a step in which the computer acquires a second received light intensity that is the received light intensity of the generated fluorescence; b) the computer detects dirt on the paper sheet based on the difference between the first received light intensity and the second received light intensity; The method is characterized by comprising a step of making a determination regarding.
Further, the stain determination method according to the present invention includes: a) a first area in the paper sheet that is not originally coated with fluorescent ink; The computer acquires the first received light intensity, which is the received light intensity of the fluorescence generated from the second region, which is the received light intensity of the fluorescence generated from the second region, which is originally the reference region that shows a certain degree of fluorescence reaction. and b) the computer determines whether the paper sheet is soiled based on the difference between the first received light intensity and the second received light intensity.
Further, the stain determination method according to the present invention includes: a) a first area in the paper sheet that is not originally coated with fluorescent ink; b) a step in which the computer determines whether the paper sheet is soiled based on the first received light intensity; In step b), b-1) the computer receives a first intensity that is a received light intensity of light in a first wavelength range among the fluorescence from the first region; The present invention is characterized by comprising a step of determining whether the paper sheet is soiled based on a difference from a second intensity that is a received light intensity of light in a second wavelength range different from the wavelength range.
Further, the stain determination method according to the present invention includes: a) a first area in the paper sheet that is not originally coated with fluorescent ink; a first received light intensity that is the received light intensity of fluorescence generated from the second area, and a second area where it is estimated that dirt is less likely to be detected than the first area and which is not originally coated with fluorescent ink. a step in which the computer obtains a second received light intensity that is the received light intensity of the generated fluorescence; b) the computer determines whether the paper sheet is soiled based on the first received light intensity and the second received light intensity; The step b) comprises b-1) a first intensity that is the received intensity of light in a first wavelength range among the fluorescence from the first region, and a first intensity of the fluorescence from the first region. A first difference is a difference between the received intensity of light in a second wavelength range different from the first wavelength range, and a first difference is a difference between the received intensity of light in a second wavelength range different from the first wavelength range; Based on the third intensity, which is the received light intensity, and the second difference, which is the difference between the fourth intensity, which is the received light intensity of the light in the second wavelength range among the fluorescence from the second region, the computer The method is characterized by comprising a step of determining whether the leaves are soiled.
Further, the stain determination method according to the present invention includes: a) a first area in the paper sheet that is not originally coated with fluorescent ink; The computer acquires the first received light intensity, which is the received light intensity of the fluorescence generated from the second region, which is the received light intensity of the fluorescence generated from the second region, which is originally the reference region that shows a certain degree of fluorescence reaction. and b) the computer determines whether the paper sheet is soiled based on the first received light intensity and the second received light intensity, and the step b) includes b-1). A first intensity that is the received intensity of light in a first wavelength range among the fluorescence from the first region, and reception of light in a second wavelength range different from the first wavelength range among the fluorescence from the first region. a first difference, which is the difference between the second intensity, which is the intensity; a third intensity, which is the received intensity of the light in the first wavelength range among the fluorescence from the second region; and a third intensity, which is the received intensity of the light in the first wavelength range among the fluorescence from the second region; The present invention is characterized by comprising a step in which the computer determines whether the paper sheet is soiled based on a second difference that is a difference from a fourth intensity that is the received light intensity of the light in the second wavelength range.

また、本発明に係るプログラムは、上記いずれかの特徴を有する汚れ判定方法をコンピュータに実行させるためのプログラムであることを特徴とする。 Further, a program according to the present invention is characterized in that it is a program for causing a computer to execute a stain determination method having any of the above characteristics.

本発明によれば、蛍光インクが元来は塗布されていない第1領域からの蛍光の受光強度である第1受光強度に基づき、紙葉類の汚れに関して判定される。よって、紙葉類の汚れに関する高精度の判定を実現することが可能である。 According to the present invention, dirt on the paper sheet is determined based on the first received light intensity, which is the received light intensity of fluorescence from the first region where fluorescent ink is not originally applied. Therefore, it is possible to realize highly accurate determination regarding dirt on paper sheets.

紙葉類処理装置の外観を示す斜視図である。It is a perspective view showing the appearance of a paper sheet processing device. 紙葉類処理装置の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a paper sheet processing device. 汚れ判定装置の概略構成を模式的に示す縦断面図である。FIG. 1 is a vertical cross-sectional view schematically showing a schematic configuration of a dirt determination device. 上部ユニット(ラインセンサユニット)を下方から見た図である。FIG. 3 is a diagram of the upper unit (line sensor unit) viewed from below. 画素単位ユニット内の構成等を示す概略図である。FIG. 2 is a schematic diagram showing the configuration, etc. inside a pixel unit. 紙幣を可視光源で照明して撮影した画像等を示す図である。It is a figure which shows the image etc. which were photographed by illuminating a banknote with a visible light source. 紙幣に励起光を照射して発生した蛍光に関する画像等を示す図である。It is a figure which shows the image etc. regarding the fluorescence generated by irradiating a banknote with excitation light. 紙幣に励起光を照射して発生した蛍光に関する画像等を示す図である。It is a figure which shows the image etc. regarding the fluorescence generated by irradiating a banknote with excitation light. 紙幣に励起光を照射して発生した蛍光に関する画像等を示す図である。It is a figure which shows the image etc. regarding the fluorescence generated by irradiating a banknote with excitation light. 紙幣に励起光を照射して発生した蛍光に関する画像等を示す図である。It is a figure which shows the image etc. regarding the fluorescence generated by irradiating a banknote with excitation light. 汚れ度合いに関する分類例を示す図である。FIG. 6 is a diagram illustrating an example of classification regarding degree of contamination. 差異の変化を示す概念図である。FIG. 3 is a conceptual diagram showing changes in differences. 2つの紙幣に関する検出結果を簡略化して示す概念図である。It is a conceptual diagram which shows the detection result regarding two banknotes in a simplified form. ラインセンサユニット内の板状部材等をも示す縦断面図である。FIG. 3 is a longitudinal cross-sectional view also showing a plate-like member and the like inside the line sensor unit. 図14の上部ユニットを下方から見た図である。FIG. 15 is a view of the upper unit of FIG. 14 viewed from below. 差異の変化を示す概念図である。FIG. 3 is a conceptual diagram showing changes in differences. ラインセンサユニット内の蛍光板等をも示す縦断面図である。FIG. 3 is a longitudinal cross-sectional view also showing a fluorescent screen and the like inside the line sensor unit. 図17の上部ユニットを下方から見た図である。FIG. 18 is a view of the upper unit of FIG. 17 viewed from below. 差異の変化を示す概念図である。FIG. 3 is a conceptual diagram showing changes in differences. 差異の変化を示す概念図である。FIG. 3 is a conceptual diagram showing changes in differences. 差異の変化を示す概念図である。FIG. 3 is a conceptual diagram showing changes in differences. 汚れ判定装置の制御部における処理を示すフローチャートである。It is a flowchart which shows the process in the control part of a dirt determination apparatus.

以下、本発明の実施形態を図面に基づいて説明する。なお、本出願において、「蛍光」は、励起光を照射することにより生じる発光(広義の蛍光)を意味する。特に、本出願における「蛍光」は、励起光(励起のための光)を止めてから発光が持続する寿命が短い(ほぼ無い)蛍光(狭義の蛍光)と、寿命が長く残光する燐光とのいずれをも含むものとする。 Embodiments of the present invention will be described below based on the drawings. In addition, in this application, "fluorescence" means light emission (fluorescence in a broad sense) produced by irradiation with excitation light. In particular, "fluorescence" in this application refers to fluorescence (in the narrow sense), which has a short lifetime (nearly no fluorescence) in which light emission continues after the excitation light (light for excitation) is stopped, and phosphorescence, which has a long lifetime and has an afterglow. This shall include any of the following.

<1.第1実施形態>
<紙葉類処理装置の概要>
図1は、紙葉類処理装置10の外観を示す斜視図であり、図2は、紙葉類処理装置10の概略構成を示すブロック図である。ここでは、紙葉類処理装置10として、紙幣処理装置、より詳細には、テーブル上に設置して利用する小型の紙幣処理装置を例示する。また、ここでは紙葉類として主に紙幣を例示するが、これに限定されず、紙葉類は、商品券、小切手、有価証券、および/またはその他のカード状媒体等であってもよい。
<1. First embodiment>
<Overview of paper sheet processing equipment>
FIG. 1 is a perspective view showing the appearance of the paper sheet processing device 10, and FIG. 2 is a block diagram showing the schematic configuration of the paper sheet processing device 10. As shown in FIG. Here, as the paper sheet processing apparatus 10, a banknote processing apparatus, more specifically, a small banknote processing apparatus installed on a table and utilized is illustrated. Moreover, although banknotes are mainly illustrated as paper sheets here, the paper sheets are not limited thereto, and may be gift certificates, checks, securities, and/or other card-like media.

紙葉類処理装置10は、紙葉類の識別処理(具体的には、紙葉類の種類、真偽、および/または汚れ等に関する識別処理)を行う紙葉類識別装置20(図2参照)を備える。紙葉類識別装置20は、紙葉類処理装置10の筐体19の内部に配置(内蔵)されている。紙葉類識別装置20は、後に詳述するように紙葉類の汚れに関する判定処理をも行う装置であり、汚れ判定装置とも称される。 The paper sheet processing device 10 includes a paper sheet identification device 20 (see FIG. 2) that performs paper sheet identification processing (specifically, identification processing regarding the type of paper sheet, authenticity, and/or dirt, etc.). ). The paper sheet identification device 20 is arranged (built-in) inside the casing 19 of the paper sheet processing device 10 . The paper sheet identification device 20 is a device that also performs determination processing regarding dirt on paper sheets, as will be described in detail later, and is also referred to as a dirt determination device.

また、紙葉類処理装置10は、図1に示されるように、操作部13と表示部15とホッパ11と複数(ここでは2つ)のリジェクト部12と複数(ここでは4つ)のスタッカ部16とを備えている。 Further, as shown in FIG. 1, the paper sheet processing apparatus 10 includes an operation section 13, a display section 15, a hopper 11, a plurality of (here, two) reject sections 12, and a plurality of (here, four) stackers. 16.

操作部13は、複数のボタン等を備えて構成される。操作部13は、当該複数のボタン等を用いてオペレータからの指示を入力するための操作入力部である。表示部15は、液晶ディスプレイ等を備えて構成される。表示部15には、紙葉類の識別計数結果および各スタッカ部16の集積状況等の情報が表示される。 The operation unit 13 includes a plurality of buttons and the like. The operation unit 13 is an operation input unit for inputting instructions from an operator using the plurality of buttons and the like. The display unit 15 includes a liquid crystal display and the like. The display section 15 displays information such as the identification and counting results of paper sheets and the stacking status of each stacker section 16.

紙葉類処理装置10においては、複数の紙葉類の分類処理(整理処理とも称される)等が行われる。まず、ホッパ11には、処理対象の複数の紙葉類が積層状態で載置される。その後、ホッパ11から1枚ずつ繰り出された紙葉類が筐体19内部の紙葉類識別装置20へと搬送され、複数の紙葉類に対して紙葉類識別装置20による識別処理が順次に施される。そして、当該複数の紙葉類は、紙葉類識別装置20の識別結果等に基づいて分類される。具体的には、当該複数の紙葉類は、それぞれ、複数のリジェクト部12と複数のスタッカ部16とを含む複数の排出部(収容部とも称される)のうち紙葉類識別装置20の識別結果等に応じた排出部に排出される。この結果、当該複数の紙葉類は、当該複数の排出部にて分類された状態で収容される。 In the paper sheet processing device 10, classification processing (also referred to as arrangement processing) and the like are performed on a plurality of paper sheets. First, a plurality of paper sheets to be processed are placed in a stacked state in the hopper 11 . Thereafter, the paper sheets fed out one by one from the hopper 11 are conveyed to the paper sheet identification device 20 inside the housing 19, and the paper sheet identification device 20 sequentially performs identification processing on the plurality of paper sheets. It is applied to Then, the plurality of paper sheets are classified based on the identification results of the paper sheet identification device 20 and the like. Specifically, the plurality of paper sheets are respectively stored in the paper sheet identification device 20 among the plurality of ejection sections (also referred to as storage sections) including the plurality of reject sections 12 and the plurality of stacker sections 16. It is discharged to a discharge section according to the identification result, etc. As a result, the plurality of paper sheets are stored in the plurality of discharge sections in a sorted state.

たとえば、ホッパ11から筐体19内に繰り出された紙葉類が偽券等のリジェクト紙幣であると判定される場合、当該リジェクト紙幣がリジェクト部12に排出される。また、複数のスタッカ部16においては、紙葉類識別装置20により真券であると判定された紙葉類(紙幣等)が、その種類(紙幣の場合は金種)および/またはその汚れに関する判定結果(識別結果とも称する)等に基づいて、分類されて集積される。詳細には、「汚れている」と判定された紙幣が、4つのスタッカ部16のうち一のスタッカ部16に収容され、「汚れていない」と判定された紙幣が、他の3つのスタッカ部16に金種毎に分類されて収容される。あるいは、紙葉類の汚れ度合い(および金種等)に基づいて、各紙葉類が複数のスタッカ部16に分類されて収容されてもよい。 For example, when it is determined that the paper sheet fed into the housing 19 from the hopper 11 is a rejected banknote such as a counterfeit banknote, the rejected banknote is discharged to the reject section 12 . In addition, in the plurality of stacker units 16, the paper sheets (banknotes, etc.) that are determined to be genuine notes by the paper sheet identification device 20 are checked for their type (denomination in the case of banknotes) and/or dirt They are classified and accumulated based on the determination results (also referred to as identification results) and the like. Specifically, banknotes determined to be "dirty" are stored in one of the four stacker units 16, and banknotes determined to be "uncontaminated" are stored in the other three stacker units 16. 16 are classified and stored by denomination. Alternatively, each paper sheet may be sorted and stored in a plurality of stacker sections 16 based on the degree of soiling of the paper sheet (and denomination, etc.).

ただし、これに限定されず、偽券又は真偽不確定券と判断された紙葉類は、リジェクト部12に返却されてもよいし、いずれかのスタッカ部16に収容されてもよい。また、「汚れている」と判定された紙葉類(真券等)が、2つのリジェクト部12の一方(あるいは双方)に排出されてもよい。 However, the present invention is not limited to this, and paper sheets determined to be counterfeit bills or bills of uncertain authenticity may be returned to the reject section 12 or may be stored in any of the stacker sections 16. Furthermore, paper sheets (genuine bills, etc.) that are determined to be "dirty" may be discharged to one (or both) of the two reject sections 12.

また、図2に示されるように、紙葉類処理装置10は、搬送部30および制御部40をも備えている。 Further, as shown in FIG. 2, the paper sheet processing apparatus 10 also includes a conveyance section 30 and a control section 40.

搬送部30は、紙葉類を搬送するための搬送ローラ、および当該搬送ローラを駆動する駆動機構(駆動源および駆動力伝達機構)等を備えて構成される。 The conveyance unit 30 includes a conveyance roller for conveying paper sheets, a drive mechanism (a drive source and a driving force transmission mechanism), etc. that drives the conveyance roller.

制御部40は、汚れ判定装置20の制御部70(後述)と同様、CPU(Central Processing Unit)等を備えるコンピュータシステムとして構成される。なお、紙葉類処理装置10の制御部40は、汚れ判定装置20の制御部70と区別するため、本体制御部あるいは全体制御部とも称される。 The control unit 40 is configured as a computer system including a CPU (Central Processing Unit) and the like, like the control unit 70 (described later) of the dirt determination device 20. Note that the control section 40 of the paper sheet processing device 10 is also referred to as a main body control section or an overall control section to distinguish it from the control section 70 of the stain determination device 20.

制御部40は、そのCPUにおいて、後述する記憶部60(あるいは記憶部60とは別に設けられた記憶部)内に格納されている所定のソフトウエアプログラムを実行することによって、各種の処理部を実現する。具体的には、図2に示すように、制御部40は、当該ソフトウエアプログラムの実行により、操作制御部41と表示制御部42と搬送制御部43とを含む各種の処理部を実現する。操作制御部41は、操作部13における操作入力処理等を制御する処理部であり、表示制御部42は、表示部15における表示処理等を制御する処理部である。また、搬送制御部43は、搬送部30による紙葉類の搬送等を制御する処理部である。たとえば、搬送制御部43は、搬送部30の駆動機構等を利用して、紙葉類の搬送処理(汚れ判定装置20への搬送処理、汚れ判定装置20内での搬送処理、および汚れ判定装置20による判定結果に基づく分類処理(分類搬送処理)等)を制御する。 The control unit 40 controls various processing units by executing a predetermined software program stored in a storage unit 60 (or a storage unit provided separately from the storage unit 60), which will be described later, in its CPU. Realize. Specifically, as shown in FIG. 2, the control unit 40 implements various processing units including an operation control unit 41, a display control unit 42, and a conveyance control unit 43 by executing the software program. The operation control unit 41 is a processing unit that controls operation input processing and the like in the operation unit 13, and the display control unit 42 is a processing unit that controls display processing and the like in the display unit 15. Further, the conveyance control section 43 is a processing section that controls the conveyance of paper sheets by the conveyance section 30 and the like. For example, the conveyance control unit 43 uses the drive mechanism of the conveyance unit 30, etc. to carry out conveyance processing of paper sheets (conveyance processing to the stain determination device 20, conveyance processing within the stain determination device 20, and conveyance processing to the stain determination device 20 (classification processing (classification transport processing), etc.) based on the determination result.

<紙葉類識別装置(汚れ判定装置)20の概要>
つぎに、汚れ判定装置20の概略構成について説明する。
<Overview of paper sheet identification device (stain determination device) 20>
Next, a schematic configuration of the stain determination device 20 will be described.

図2に示されるように、汚れ判定装置20は、ラインセンサユニット50と記憶部60と制御部(コントローラとも称する)70とを備えている。また、汚れ判定装置20は、当該汚れ判定装置20内において紙葉類を搬送するための搬送ローラをも備えている。汚れ判定装置20内の当該搬送ローラは、上述の搬送制御部43、および搬送部30の駆動機構等によって駆動される。なお、これに限定されず、汚れ判定装置20内の当該搬送ローラは、制御部70内の搬送制御部(不図示)等によって駆動されてもよい。 As shown in FIG. 2, the dirt determination device 20 includes a line sensor unit 50, a storage section 60, and a control section (also referred to as a controller) 70. The stain determination device 20 also includes a conveyance roller for conveying paper sheets within the stain determination device 20. The conveyance roller in the dirt determination device 20 is driven by the above-described conveyance control section 43, the drive mechanism of the conveyance section 30, and the like. Note that the present invention is not limited to this, and the conveyance roller in the dirt determination device 20 may be driven by a conveyance control section (not shown) in the control section 70 or the like.

ラインセンサユニット50は、搬送部30によって搬送されてくる紙葉類に関する画像を取得する。 The line sensor unit 50 acquires images related to paper sheets conveyed by the conveyance section 30.

汚れ判定装置20は、ラインセンサユニット50として、紙葉類の上面(詳細には、上面の画像)を読み取るための上部ユニット50aと、紙葉類の下面(詳細には、下面の画像)を読み取るための下部ユニット50bとの双方を備えている。これにより、汚れ判定装置20は、紙葉類(紙幣等)の両面を同時に読み取ることが可能である。なお、これに限定されず、汚れ判定装置20は、紙葉類(紙幣等)の片面のみを読み取るように構成されてもよい。 The stain determination device 20 includes an upper unit 50a as a line sensor unit 50 for reading the upper surface of paper sheets (more specifically, an image of the upper surface), and an upper unit 50a for reading the upper surface of paper sheets (more specifically, an image of the lower surface). and a lower unit 50b for reading. Thereby, the stain determination device 20 can read both sides of paper sheets (banknotes, etc.) at the same time. Note that the stain determination device 20 is not limited to this, and may be configured to read only one side of paper sheets (banknotes, etc.).

記憶部60は、各種の半導体メモリ(RAMおよびROM)等を備えて構成される。記憶部60は、揮発性の記憶装置(たとえば、一時記憶用の半導体メモリ(RAM等))、および不揮発性の記憶装置(たとえば、不揮発性メモリ(ROM等)、ハードディスク)を備えて構成される。 The storage unit 60 includes various semiconductor memories (RAM and ROM) and the like. The storage unit 60 includes a volatile storage device (e.g., semiconductor memory for temporary storage (RAM, etc.)) and a non-volatile storage device (e.g., non-volatile memory (ROM, etc.), hard disk). .

制御部70は、汚れ判定装置20に内蔵され、汚れ判定装置20を制御する制御装置(コントローラとも称する)である。制御部70は、汚れ判定装置20(紙葉類識別装置20)を制御する処理部であることから、汚れ判定制御部あるいは識別制御部とも称される。 The control unit 70 is a control device (also referred to as a controller) that is built into the dirt determination device 20 and controls the dirt determination device 20. Since the control section 70 is a processing section that controls the stain determination device 20 (sheet identification device 20), it is also referred to as a stain determination control section or an identification control section.

制御部70は、CPU(Central Processing Unit)(マイクロプロセッサあるいはハードウエアプロセッサなどとも称される)等を備えるコンピュータシステムとして構成される。制御部70は、CPUにおいて、記憶部60内に格納されている所定のソフトウエアプログラム(以下、単にプログラムとも称する)を実行することによって、各種の処理部を実現する。なお、当該プログラム(詳細にはプログラムモジュール群)は、USBメモリなどの可搬性の記録媒体に記録され、当該記録媒体から読み出されて汚れ判定装置20にインストールされるようにしてもよい。あるいは、当該プログラムは、通信ネットワーク等を経由してダウンロードされて汚れ判定装置20にインストールされるようにしてもよい。 The control unit 70 is configured as a computer system including a CPU (Central Processing Unit) (also referred to as a microprocessor, hardware processor, etc.). The control unit 70 realizes various processing units by executing a predetermined software program (hereinafter also simply referred to as a program) stored in the storage unit 60 in the CPU. Note that the program (specifically, the program module group) may be recorded on a portable recording medium such as a USB memory, read from the recording medium, and installed in the stain determination device 20. Alternatively, the program may be downloaded via a communication network or the like and installed in the stain determination device 20.

具体的には、図2に示すように、制御部70は、当該プログラムの実行により、光源制御部71と画像データ生成部72と判定部73とを含む各種の処理部を実現する。 Specifically, as shown in FIG. 2, the control unit 70 implements various processing units including a light source control unit 71, an image data generation unit 72, and a determination unit 73 by executing the program.

光源制御部71は、発光部52(図3参照)の各光源の点灯および消灯等を制御する処理部である。 The light source control unit 71 is a processing unit that controls lighting and extinguishing of each light source of the light emitting unit 52 (see FIG. 3).

画像データ生成部72は、受光部55(図3参照)で受光された光の受光強度等に基づき、紙葉類の画像データを生成する処理部である。画像データ生成部72は、可視光源からの光のうち紙葉類で反射した反射光の受光強度に基づき、紙葉類の画像データ(可視光画像データ等)を生成する。また、画像データ生成部72は、励起光照射用の光源(たとえばUV光源)からの励起光の照射に応じて紙葉類にて発生し受光部55で受光される蛍光の受光強度に基づき、紙葉類の画像データ(蛍光画像データとも称する)を生成する。 The image data generation section 72 is a processing section that generates image data of paper sheets based on the intensity of light received by the light receiving section 55 (see FIG. 3). The image data generation unit 72 generates image data of paper sheets (visible light image data, etc.) based on the received light intensity of the reflected light reflected by the paper sheets among the light from the visible light source. In addition, the image data generation unit 72 generates a signal based on the intensity of the received fluorescence generated on the paper sheet and received by the light receiving unit 55 in response to the excitation light irradiation from the excitation light irradiation light source (for example, a UV light source). Generate image data (also referred to as fluorescent image data) of paper sheets.

たとえば、可視光源の照射に応じて可視光画像データを生成する処理と、励起光の照射に応じて蛍光画像データを生成する処理とが、紙葉類(紙幣90(図3参照)等)内の各走査ラインごとに交互に繰り返される。詳細には、紙葉類が搬送方向(副走査方向)に搬送されつつ、これら2種類の処理が複数の走査ラインについて繰り返される。換言すれば、2種類のライン状画像を交互に取得する処理が繰り返される。これにより、紙葉類の2次元状領域に関する2種類の画像データ(可視光画像データおよび蛍光画像データ)がほぼ同時に生成される。なお、可視光画像データは、たとえば、赤外光画像データを含むデータとして生成される。ただし、これに限定されず、可視光画像データは、赤外光画像データを含まないデータとして生成されてもよい。また、可視光画像データとは別個のデータとして、赤外光画像データが独立して生成されてもよい。 For example, the process of generating visible light image data in response to irradiation with a visible light source and the process of generating fluorescence image data in response to irradiation with excitation light are performed on paper sheets (such as banknotes 90 (see FIG. 3)). is repeated alternately for each scan line. Specifically, these two types of processing are repeated for a plurality of scanning lines while the paper sheet is being transported in the transport direction (sub-scanning direction). In other words, the process of alternately acquiring two types of line-shaped images is repeated. As a result, two types of image data (visible light image data and fluorescent image data) regarding a two-dimensional area of the paper sheet are generated almost simultaneously. Note that the visible light image data is generated as data including, for example, infrared light image data. However, the present invention is not limited to this, and the visible light image data may be generated as data that does not include infrared light image data. Moreover, infrared light image data may be generated independently as data separate from visible light image data.

判定部73は、紙葉類の汚れに関する判定処理を実行する処理部である。判定部73は、後に詳述するように、紙葉類内の或る領域C1(後述)から発生した蛍光の受光強度(蛍光画像データ等)に基づき、紙葉類の汚れに関して判定する。 The determination unit 73 is a processing unit that executes determination processing regarding stains on paper sheets. As will be described in detail later, the determination unit 73 determines whether the paper sheet is soiled based on the received intensity of fluorescence (fluorescence image data, etc.) generated from a certain area C1 (described later) within the paper sheet.

<汚れ判定装置20の詳細構成>
図3は、汚れ判定装置20の概略構成を模式的に示す縦断面図である。図3は、紙幣90の搬送面(水平面)に垂直な断面(且つ搬送方向に沿った断面)で汚れ判定装置20を切断し、当該断面を当該断面に垂直な方向(側方)から見た概略図である。紙幣90は、処理対象の紙葉類の一例である。
<Detailed configuration of dirt determination device 20>
FIG. 3 is a vertical cross-sectional view schematically showing a schematic configuration of the stain determination device 20. As shown in FIG. FIG. 3 shows the dirt determination device 20 cut at a cross section perpendicular to the transport surface (horizontal surface) of banknotes 90 (and along the transport direction), and the cross section is viewed from the direction (side) perpendicular to the cross section. It is a schematic diagram. Banknotes 90 are an example of paper sheets to be processed.

図3に示されるように、上部ユニット50aの筐体51の下面と下部ユニット50bの筐体51の上面との間に、数mm程度(たとえば1mm~3mm)の間隙(ギャップ)39が設けられている。紙幣90は、当該間隙39を通過して搬送方向(図の左右方向)に移動する。 As shown in FIG. 3, a gap 39 of approximately several mm (for example, 1 mm to 3 mm) is provided between the lower surface of the casing 51 of the upper unit 50a and the upper surface of the casing 51 of the lower unit 50b. ing. The banknote 90 passes through the gap 39 and moves in the transport direction (left-right direction in the figure).

各ラインセンサユニット50(上部ユニット50aおよび下部ユニット50b)は、それぞれ、発光部52と集光レンズ53と受光部55と基板57とを筐体51内に備える。上部ユニット50aと下部ユニット50bとは同様の構成を備える。下部ユニット50bは、上部ユニット50aを上下反転させた構成を有し、上部ユニット50aよりも搬送方向の上流側(あるいは下流側)に配置される。 Each line sensor unit 50 (upper unit 50a and lower unit 50b) includes a light emitting section 52, a condensing lens 53, a light receiving section 55, and a substrate 57 within a housing 51. The upper unit 50a and the lower unit 50b have the same configuration. The lower unit 50b has a configuration in which the upper unit 50a is upside down, and is disposed upstream (or downstream) of the upper unit 50a in the transport direction.

発光部52は、可視光を発する白色光源と、励起光を発するUV光源(紫外光源)とを備える。白色光源は、可視光の波長域(400nm~700nm)の光を発する光源である。白色光源は、可視光の波長域(400nm~700nm)の光のみを発するものであってもよく、赤外光の波長域(700nm~1000nm)の光をも発するものであってもよい。ここでは、可視光の波長域と赤外光の波長域との双方の波長域の光を発する白色光源を採用する。また、UV光源は、紫外光の波長域(10nm~400nm(たとえば、300nm~400nm))の光を発する光源である。ここでは、紙幣90(紙葉類)にて蛍光を発生させるために励起光を紙幣90に照射する光源として、紫外光(UV光)を照射するUV光源を例示する。換言すれば、当該励起光として紫外光を例示する。 The light emitting unit 52 includes a white light source that emits visible light and a UV light source (ultraviolet light source) that emits excitation light. The white light source is a light source that emits light in the visible wavelength range (400 nm to 700 nm). The white light source may emit only light in the visible wavelength range (400 nm to 700 nm), or may also emit light in the infrared wavelength range (700 nm to 1000 nm). Here, a white light source that emits light in both visible light wavelength ranges and infrared light wavelength ranges is employed. Further, the UV light source is a light source that emits light in the wavelength range of ultraviolet light (10 nm to 400 nm (for example, 300 nm to 400 nm)). Here, a UV light source that irradiates ultraviolet light (UV light) is exemplified as a light source that irradiates the banknote 90 with excitation light to generate fluorescence in the banknote 90 (paper sheet). In other words, ultraviolet light is exemplified as the excitation light.

白色光源とUV光源(紫外光源)とはそれぞれ別のタイミングで点灯され得る。たとえば、可視光に関する画像データを取得する際には白色光源が点灯され、蛍光に関する画像データを取得する際にはUV光源が点灯される。より詳細には、紙幣90内の各走査ラインごとに、白色光源とUV光源とが微小時間間隔で交番点灯される。このような動作が複数の走査ライン(主走査ライン)について繰り返されることによって、紙幣90の可視光画像データと当該紙幣90の蛍光画像データとがほぼ同時に生成される。ただし、これに限定されず、たとえば、可視光源のみを常に点灯しつつ紙幣90を副走査方向に搬送することによって、可視光画像データが取得されてもよい。また、UV光源(紫外光源)のみを常に点灯しつつ紙幣90を副走査方向に搬送することによって、蛍光画像データが取得されてもよい。 The white light source and the UV light source (ultraviolet light source) may be turned on at different timings. For example, a white light source is turned on when acquiring image data regarding visible light, and a UV light source is turned on when acquiring image data regarding fluorescence. More specifically, for each scanning line within the banknote 90, a white light source and a UV light source are alternately turned on at minute time intervals. By repeating such an operation for a plurality of scanning lines (main scanning lines), visible light image data of the banknote 90 and fluorescence image data of the banknote 90 are generated almost simultaneously. However, the present invention is not limited thereto, and visible light image data may be acquired by, for example, conveying the bill 90 in the sub-scanning direction while only the visible light source is always turned on. Further, the fluorescence image data may be acquired by conveying the banknote 90 in the sub-scanning direction while only the UV light source (ultraviolet light source) is always turned on.

発光部52は、水平方向(詳細には、図3の紙面に垂直な方向)に直線状に伸延して配置される。詳細には、発光部52は、その伸延方向における両端部(あるいは一方端部)に配置された光源(LED等)と当該光源からの光を導く直線状の導光体とを備えて構成される。発光部52において光源から導光体に導かれた光は、当該導光体の伸延方向における各位置(各水平位置)から紙幣90の搬送路に向けて出射される。詳細には、当該光は、発光部52の伸延方向に垂直な平面内(図3の紙面内)において所定方向(図3における黒矢印の方向)への指向性を有する状態で、紙幣90の搬送面における所定の線状領域へと進行する。 The light emitting section 52 is arranged to extend linearly in the horizontal direction (specifically, in the direction perpendicular to the paper surface of FIG. 3). Specifically, the light emitting section 52 is configured to include a light source (such as an LED) disposed at both ends (or one end) in the extension direction and a linear light guide that guides light from the light source. Ru. The light guided from the light source to the light guide in the light emitting unit 52 is emitted toward the conveyance path of the banknote 90 from each position (each horizontal position) in the extending direction of the light guide. Specifically, the light has directivity in a predetermined direction (the direction of the black arrow in FIG. 3) in a plane perpendicular to the extending direction of the light emitting part 52 (in the paper plane of FIG. 3), and It progresses to a predetermined linear area on the conveyance surface.

図4に示されるように、発光部52は、紙幣の幅(搬送面において搬送方向に垂直な方向の長さ)より大きな範囲に亘って伸延するように配置される。なお、図4は、上部ユニット50aを下方から見た図である。図4では、受光部55および基板57等の図示を省略している。 As shown in FIG. 4, the light emitting section 52 is arranged so as to extend over a wider range than the width of the banknote (the length in the direction perpendicular to the transport direction on the transport surface). Note that FIG. 4 is a diagram of the upper unit 50a viewed from below. In FIG. 4, illustration of the light receiving section 55, the substrate 57, etc. is omitted.

受光部55は、1次元状(ライン状)に伸延するラインセンサ(受光素子群)などを備えて構成される。受光部55は、基板57(図3)に固定されている。受光部55も、発光部52と同様に、図3の紙面に垂直な方向に直線状に伸延して配置される。受光部55は、発光部52に対して略平行に設けられる。 The light receiving section 55 includes a line sensor (a group of light receiving elements) extending one-dimensionally (in a line shape), and the like. The light receiving section 55 is fixed to a substrate 57 (FIG. 3). Similarly to the light emitting section 52, the light receiving section 55 is also disposed to extend linearly in a direction perpendicular to the paper surface of FIG. The light receiving section 55 is provided substantially parallel to the light emitting section 52.

ラインセンサは、複数(たとえば1600個)の画素単位ユニットがライン状に配列されて構成される。画素単位ユニットは、4つの受光素子56B,56R,56G,56I(図5参照)を有している。図5は、画素単位ユニット内の構成等を示す概略図である。 A line sensor is composed of a plurality of (for example, 1600) pixel units arranged in a line. The pixel unit has four light receiving elements 56B, 56R, 56G, and 56I (see FIG. 5). FIG. 5 is a schematic diagram showing the configuration inside the pixel unit.

当該4つの受光素子56B,56R,56G,56Iは、それぞれ、特定の波長域のみを透過させるバンドパスフィルタを有している。これにより、各受光素子56B,56R,56G,56Iは、それぞれ、対応する特定波長域の光を受光する。 The four light receiving elements 56B, 56R, 56G, and 56I each have a bandpass filter that transmits only a specific wavelength range. As a result, each of the light receiving elements 56B, 56R, 56G, and 56I receives light in a corresponding specific wavelength range.

受光素子56Bは、青色の光(概ね400nm~500nmの波長域の光)を透過するバンドパスフィルタ54Bを有しており、青色の光を受光する。受光素子56Gは、緑色の光(概ね500nm~600nmの波長域の光)を透過するバンドパスフィルタ54Gを有しており、緑色の光を受光する。受光素子56Rは、赤色の光(概ね600nm~700nmの波長域の光)を透過するバンドパスフィルタ54Rを有しており、赤色の光を受光する。また、受光素子56Iは、赤外光(概ね700nm~1000nmの波長域の光)を透過するバンドパスフィルタ54Iを有しており、赤外光(IR光)を受光する。 The light receiving element 56B has a bandpass filter 54B that transmits blue light (light in a wavelength range of approximately 400 nm to 500 nm), and receives the blue light. The light-receiving element 56G includes a bandpass filter 54G that transmits green light (light in a wavelength range of approximately 500 nm to 600 nm), and receives green light. The light-receiving element 56R includes a bandpass filter 54R that transmits red light (light in a wavelength range of approximately 600 nm to 700 nm), and receives red light. Further, the light receiving element 56I includes a bandpass filter 54I that transmits infrared light (light in a wavelength range of approximately 700 nm to 1000 nm), and receives infrared light (IR light).

なお、受光素子56Rは、赤色光と赤外光との双方を透過するバンドパスフィルタによって、赤色の光(概ね600nm~700nmの波長域の光)と赤外光(概ね700nm~1000nmの波長域の光)との双方を受光してもよい。また、図5では、4つの受光素子56B,56R,56G,56Iが縦横2個ずつ(格子状に)配置されているが、これに限定されない。たとえば、4つの受光素子56B,56R,56G,56Iは、搬送方向に沿って一列に配置されてもよく、あるいは、搬送方向に垂直な方向に沿って一列に配置されてもよい。 The light-receiving element 56R has a bandpass filter that transmits both red light and infrared light, so that it can transmit red light (light in the wavelength range of approximately 600 nm to 700 nm) and infrared light (light in the wavelength range of approximately 700 nm to 1000 nm). It is also possible to receive both light. Further, in FIG. 5, the four light receiving elements 56B, 56R, 56G, and 56I are arranged two in each direction (in a grid pattern), but the invention is not limited to this. For example, the four light receiving elements 56B, 56R, 56G, and 56I may be arranged in a line along the transport direction, or may be arranged in a line in a direction perpendicular to the transport direction.

発光部52から白色光源による光が発せられる場合、当該光は、透明樹脂(あるいは透明ガラス等)で構成された透光部58(図2)を透過し、紙幣90で反射された後、集光レンズ53で集光され、受光部55で受光される。詳細には、受光部55の受光素子56B,56R,56G,56Iは、それぞれ、特定の波長域の光を受光する。そして、各受光素子での受光強度(受光量)に応じた値が、その画素単位ユニットの画素値(詳細には、色成分(波長域別成分)ごとの画素値)として、受光部55から出力される。換言すれば、或る画素単位ユニット内の受光素子56B,56R,56G,56Iからの各出力値(色成分ごとの画素値)は、紙幣90内の対応位置からの反射光の受光強度(詳細には、波長域別の受光強度)の検出値(測定値)として取得される。 When light from a white light source is emitted from the light emitting section 52, the light passes through the light transmitting section 58 (FIG. 2) made of transparent resin (or transparent glass, etc.), is reflected by the banknote 90, and is then collected. The light is focused by the optical lens 53 and received by the light receiving section 55. Specifically, the light receiving elements 56B, 56R, 56G, and 56I of the light receiving section 55 each receive light in a specific wavelength range. Then, a value corresponding to the intensity of light received by each light receiving element (amount of light received) is sent from the light receiving unit 55 as a pixel value (in detail, a pixel value for each color component (wavelength range component)) of that pixel unit. Output. In other words, each output value (pixel value for each color component) from the light receiving elements 56B, 56R, 56G, and 56I in a certain pixel unit is determined by the received light intensity (details) of the reflected light from the corresponding position in the banknote 90. is obtained as a detected value (measured value) of the received light intensity for each wavelength range.

また、上述のように、発光部52からは白色光源ではなくUV光源による光を発することもできる。UV光源は、紫外光(UV光)を照射する光源である。当該紫外光(UV光)が励起光として紙葉類に照射されると、当該紙葉類から蛍光が発生する。 Furthermore, as described above, the light emitting section 52 can also emit light from a UV light source instead of a white light source. The UV light source is a light source that emits ultraviolet light (UV light). When paper sheets are irradiated with the ultraviolet light (UV light) as excitation light, fluorescence is generated from the paper sheets.

発光部52からUV光源による光が発せられる場合、当該光(UV光)は、透明樹脂(あるいは透明ガラス等)で構成された透光部58を透過し、紙幣90に到達する。そして、UV光は、紙幣90の表面(ひょうめん)にて蛍光に変化する。すなわち、紙幣90の表面から蛍光が発生する。当該蛍光は、集光レンズ53で集光され、受光部55で受光される。詳細には、受光部55の受光素子56B,56R,56G,56Iは、それぞれ、特定の波長域の光を受光する。そして、各受光素子での受光強度(受光量)に応じた値が、その画素単位ユニットの画素値(詳細には、色成分ごとの画素値)として、受光部55から出力される。換言すれば、或る画素単位ユニット内の受光素子56B,56R,56G,56Iからの各出力値(色成分ごとの画素値)は、紙幣90内の対応位置からの「蛍光」の受光強度(詳細には、波長域別の受光強度)の検出値(測定値)として取得される。 When light from a UV light source is emitted from the light emitting section 52, the light (UV light) passes through the light transmitting section 58 made of transparent resin (or transparent glass, etc.) and reaches the banknote 90. Then, the UV light changes to fluorescence on the surface of the banknote 90. That is, fluorescence is generated from the surface of the banknote 90. The fluorescence is collected by a condensing lens 53 and received by a light receiving section 55. Specifically, the light receiving elements 56B, 56R, 56G, and 56I of the light receiving section 55 each receive light in a specific wavelength range. Then, a value corresponding to the intensity of light received by each light receiving element (amount of light received) is output from the light receiving section 55 as a pixel value of that pixel unit (specifically, a pixel value for each color component). In other words, each output value (pixel value for each color component) from the light-receiving elements 56B, 56R, 56G, and 56I in a certain pixel unit is determined by the received light intensity of "fluorescence" from the corresponding position in the banknote 90 ( Specifically, it is acquired as a detected value (measured value) of the received light intensity for each wavelength range.

また、ラインセンサは、主走査方向(搬送方向に垂直な方向)に沿って一次元状(ライン状)に配置された複数の画素単位ユニットの画素値(詳細には、色成分ごとの画素値)をほぼ同時に取得する。換言すれば、ラインセンサは、紙幣90内のライン状領域の画像(詳細には、複数の色成分のそれぞれに関する各ライン状画像)を微小時間内に取得する。そして、紙幣90が副走査方向(搬送方向)に搬送されつつ、同様のライン状領域の画像取得処理が繰り返される。これによって、紙幣90の2次元状領域に関する画像(2次元カラー画像)が取得される。 In addition, a line sensor uses pixel values (in detail, pixel values for each color component) of multiple pixel units arranged one-dimensionally (in a line) along the main scanning direction (perpendicular to the transport direction). ) are obtained almost simultaneously. In other words, the line sensor acquires an image of a line-shaped area within the banknote 90 (specifically, each line-shaped image regarding each of a plurality of color components) within a minute time. Then, while the banknote 90 is being conveyed in the sub-scanning direction (conveyance direction), similar image acquisition processing of the line-shaped area is repeated. As a result, an image (two-dimensional color image) regarding the two-dimensional area of the banknote 90 is obtained.

詳細には、白色光源からの光が紙幣90に照射される場合、ラインセンサは、紙幣90の2次元状領域内の各位置からの反射光の受光強度(画素値)を色成分(波長域別成分)ごとに取得する。換言すれば、可視光照射に応じた2次元カラー画像(紙幣90における反射光の2次元カラー画像)が取得される。 Specifically, when the banknote 90 is irradiated with light from a white light source, the line sensor detects the received light intensity (pixel value) of the reflected light from each position within the two-dimensional area of the banknote 90 using the color component (wavelength range). Separate components). In other words, a two-dimensional color image (a two-dimensional color image of reflected light on the banknote 90) corresponding to visible light irradiation is obtained.

また、UV光源(励起用光源)からの光(励起光)が紙幣90に照射される場合、ラインセンサは、紙幣90の2次元状領域内の各位置からの「蛍光」の受光強度(画素値)を色成分(波長域別成分)ごとに取得する。換言すれば、励起光照射に応じた2次元カラー画像(紙幣90における「蛍光」の2次元カラー画像)が取得される。 In addition, when the banknote 90 is irradiated with light (excitation light) from a UV light source (excitation light source), the line sensor detects the received light intensity (pixel value) for each color component (component by wavelength range). In other words, a two-dimensional color image (a two-dimensional color image of "fluorescence" on the banknote 90) corresponding to the excitation light irradiation is acquired.

<紙幣90>
つぎに、紙幣90について説明する。
<Banknote 90>
Next, the banknote 90 will be explained.

図6は、紙幣90を可視光源で照明して撮影した画像(可視光画像)に関する情報を示す図である。図6の上段の画像は、紙幣90を可視光源で照明して撮影した画像である。また、図6の下段のグラフは、紙幣90の可視光画像内の1本のラインL1上の各位置での画素値を示している。詳細には、図6の下段のグラフ(曲線Lr,Lg,Lb)は、紙幣90上の或る主走査ラインL1内の各位置における画素値(受光強度分布)を波長域成分(赤色(R)波長域成分,緑色(G)波長域成分,青色(B)波長域成分)ごとに示している。図6において、R波長域成分は実線の曲線Lrで、G波長域成分は破線の曲線Lgで、B波長域成分は一点鎖線の曲線Lbでそれぞれ示されている。なお、図示の簡略化等のため、図6等は、細部等を捨象して示されている。 FIG. 6 is a diagram showing information regarding an image (visible light image) captured by illuminating the banknote 90 with a visible light source. The upper image in FIG. 6 is an image captured by illuminating the bill 90 with a visible light source. Further, the lower graph in FIG. 6 shows pixel values at each position on one line L1 in the visible light image of the banknote 90. In detail, the lower graph (curves Lr, Lg, Lb) in FIG. ) wavelength range component, green (G) wavelength range component, and blue (B) wavelength range component). In FIG. 6, the R wavelength range component is shown by a solid curve Lr, the G wavelength range component is shown by a broken curve Lg, and the B wavelength range component is shown by a dashed-dotted curve Lb. Note that, for the sake of simplification of illustration, etc., FIG. 6 and the like are shown with details etc. abstracted away.

図6の上段に示されるように、紙幣90は、透かし領域91と肖像衣服領域92と印影領域93とを有している。各領域91,92,93は、それぞれ、紙幣90内の所定の位置に配置されている。 As shown in the upper part of FIG. 6, the banknote 90 has a watermark area 91, a portrait clothing area 92, and a seal impression area 93. Each region 91, 92, 93 is arranged at a predetermined position within the banknote 90, respectively.

透かし領域91は、透かし模様が配置された領域であり、紙幣90の略中央部に設けられている。透かし領域91は、見た目では大まかに白色の領域であり、白色領域あるいは淡色領域とも称される。図6の下段に示されるように、透かし領域91における各成分値(R,G,B)は、それぞれ、紙幣90内の他の領域(たとえば肖像衣服領域92)における各成分値(R,G,B)よりも大きい。 The watermark area 91 is an area where a watermark pattern is arranged, and is provided approximately at the center of the banknote 90. The watermark area 91 is a roughly white area in appearance, and is also referred to as a white area or a light-colored area. As shown in the lower part of FIG. 6, each component value (R, G, B) in the watermark area 91 is different from each component value (R, G, B) in another area (for example, portrait clothing area 92) in the banknote 90. , B).

肖像衣服領域92は、透かし領域91よりも右側に設けられている。肖像衣服領域92は、所定の人物の肖像画のうち衣服が描かれている領域である。肖像衣服領域92は、見た目では大まかに黒っぽい領域(濃色)の領域であり、黒色領域あるいは濃色領域とも称される。 The portrait clothing area 92 is provided on the right side of the watermark area 91. The portrait clothing area 92 is an area where clothing is depicted in a portrait of a predetermined person. The portrait clothing area 92 is a roughly blackish area (dark color) in appearance, and is also referred to as a black area or a dark color area.

印影領域93は、透かし領域91よりも左側に設けられている。印影領域93は、所定の印鑑(たとえば、日本銀行総裁の印鑑)の印影が描かれている領域である。印影領域93は、見た目では大まかに赤色の領域であり、赤色領域とも称される。 The seal imprint area 93 is provided on the left side of the watermark area 91. The seal impression area 93 is an area in which the seal impression of a predetermined seal (for example, the seal of the Governor of the Bank of Japan) is drawn. The seal imprint area 93 is a roughly red area in appearance, and is also referred to as a red area.

また、印影領域93には、偽造防止等のため、特定色の蛍光インクが塗布されている。印影領域93に対して励起光(UV光)を照射すると、印影領域93は例えば赤色(あるいはオレンジ色等)に発光する。ここでは、紙幣90内においては、印影領域93のみに対して蛍光インクが塗布されているものとする。換言すれば、紙幣90内において、印影領域93以外の領域には、蛍光インクは元来は塗布されていない。ただし、これに限定されず、紙幣90内において、蛍光インクが元来塗布されている領域として、印影領域93以外の領域が存在してもよい。 In addition, fluorescent ink of a specific color is applied to the stamp area 93 to prevent forgery. When the imprint area 93 is irradiated with excitation light (UV light), the imprint area 93 emits red (or orange, etc.) light, for example. Here, it is assumed that within the banknote 90, fluorescent ink is applied only to the seal impression area 93. In other words, within the banknote 90, fluorescent ink is not originally applied to areas other than the seal impression area 93. However, the present invention is not limited thereto, and an area other than the stamp area 93 may exist within the banknote 90 as an area originally coated with fluorescent ink.

なお、汚れ判定装置20の制御部70(判定部73等)は、透かし領域91、肖像衣服領域92および印影領域93の各位置を、記憶部60内に予め格納された紙幣仕様データ等に基づいて特定することが可能である。紙幣仕様データには、紙幣の種類(金種)ごとに、当該各領域91,92,93の位置および大きさ等が記録されている。紙幣90に関する、蛍光画像データ(および/または可視光画像データ)と紙幣仕様データとに基づき、紙幣90内における各領域91,92,93の位置等が特定され得る。 Note that the control unit 70 (determination unit 73, etc.) of the stain determination device 20 determines the positions of the watermark area 91, portrait clothing area 92, and seal imprint area 93 based on banknote specification data etc. stored in advance in the storage unit 60. It is possible to specify the The banknote specification data records the position, size, etc. of each area 91, 92, 93 for each banknote type (denomination). Based on the fluorescence image data (and/or visible light image data) and the banknote specification data regarding the banknote 90, the position of each area 91, 92, 93 within the banknote 90, etc. can be specified.

<汚れに関する判定処理>
さて、上述したように、可視光源からの光のうち紙葉類での反射光を利用して汚れ度合いを判定する技術(比較例に係る技術とも称する)においては、微妙な程度の汚れの有無等を判定することが困難である。
<Determination process regarding dirt>
Now, as mentioned above, in the technology (also referred to as the technology related to the comparative example) that uses the light reflected from paper sheets out of the light from a visible light source to determine the degree of dirt, it is possible to etc. is difficult to determine.

たとえば、可視光源を光源とする場合、全く新しい紙幣(官封券等)からの反射光と、唾液などの体液、および/または手垢等が付着することによって若干汚れた紙幣(見た目には綺麗な紙幣)からの反射光との強度差は小さい。具体的には、前者の紙幣(官封券等)と後者の紙幣(見た目には綺麗な紙幣)とのいずれもが、図6の下段と同様の受光強度分布(換言すれば、同程度の受光強度)を示すことが多い。そのため、比較例に係る技術では、前者の紙幣と後者の紙幣とを汚れ度合いによって正確に区別することは困難である。 For example, when a visible light source is used as a light source, reflected light from completely new banknotes (official tickets, etc.) and banknotes that are slightly soiled due to body fluids such as saliva and/or hand grime (visually clean). The difference in intensity from the reflected light from the banknotes is small. Specifically, both the former banknotes (official tickets, etc.) and the latter banknotes (visually beautiful banknotes) have the same received light intensity distribution as in the lower part of FIG. (received light intensity). Therefore, with the technology according to the comparative example, it is difficult to accurately distinguish between the former banknotes and the latter banknotes based on the degree of dirt.

ここにおいて、見た目には綺麗な紙幣であっても、唾液などの体液、および/または手垢等が付着することによって実際には若干汚れている紙幣は、官封券よりも大きな蛍光反応を生じる。このような事情に本願発明者は着目した。以下、図7~図10を参照して、当該事情について詳細に説明する。 Here, even if a banknote looks clean, a banknote that is actually slightly soiled due to adhesion of body fluids such as saliva and/or hand grime will cause a greater fluorescence reaction than an official seal ticket. The inventor of the present application paid attention to such circumstances. This situation will be described in detail below with reference to FIGS. 7 to 10.

図7~図10は、紙幣90に励起光を照射して発生した蛍光に関する情報を示す図である。図7~図10の各図の下段の画像は、紙幣90に対する励起光(UV光)の照射に応じて発生した蛍光の画像である。また、当該各図の上段のグラフ(曲線Lr,Lg,Lb)は、紙幣90上の或る主走査ラインL1内の各位置における画素値(受光強度分布)を波長域成分(R波長域成分,G波長域成分,B波長域成分)ごとに示している。R波長域成分は実線の曲線Lrで、G波長域成分は破線の曲線Lgで、B波長域成分は一点鎖線の曲線Lbでそれぞれ示されている。なお、図示の簡略化等のため、これらの図も、細部等を捨象して示されている。 7 to 10 are diagrams showing information regarding fluorescence generated by irradiating the banknote 90 with excitation light. The lower images in each of FIGS. 7 to 10 are images of fluorescence generated in response to irradiation of the banknote 90 with excitation light (UV light). In addition, the graphs (curves Lr, Lg, Lb) in the upper row of each figure show the pixel values (received light intensity distribution) at each position within a certain main scanning line L1 on the banknote 90 in terms of wavelength range components (R wavelength range components). , G wavelength range component, and B wavelength range component). The R wavelength range component is shown by a solid curve Lr, the G wavelength range component is shown by a broken line Lg, and the B wavelength range component is shown by a dashed-dotted curve Lb. Note that, for the sake of simplification of illustration, these figures are also shown with details etc. abstracted away.

図7~図10は、互いに異なる市場流通期間(換言すれば、汚れの程度)を有する紙幣90の蛍光反応等を示している。図7は、全く新しい紙幣(官封券等)90(90Aとも称する)の蛍光反応を示す図である。図8は、若干の期間に亘って市場に流通した紙幣90(90Bとも称する)の蛍光反応を示す図である。図8の紙幣90Bは、図7の紙幣90Aよりも若干汚れている。図9は、より長い期間に亘って市場に流通した紙幣90(90Cとも称する)の蛍光反応を示す図である。図9の紙幣90Cは、図8の紙幣90Bよりも汚れている。図10は、さらに長い期間に亘って市場に流通した紙幣90(90Dとも称する)の蛍光反応を示す図である。図10の紙幣90Dは、図9の紙幣90Cよりも汚れている。 7 to 10 show the fluorescence reactions, etc. of banknotes 90 having different market distribution periods (in other words, degrees of contamination). FIG. 7 is a diagram showing the fluorescence reaction of a completely new banknote (official ticket, etc.) 90 (also referred to as 90A). FIG. 8 is a diagram showing the fluorescence reaction of a banknote 90 (also referred to as 90B) that has been distributed on the market for a certain period of time. The banknote 90B in FIG. 8 is slightly dirtier than the banknote 90A in FIG. FIG. 9 is a diagram showing the fluorescence reaction of a banknote 90 (also referred to as 90C) that has been distributed in the market for a longer period of time. The banknote 90C in FIG. 9 is dirtier than the banknote 90B in FIG. FIG. 10 is a diagram showing the fluorescence reaction of a banknote 90 (also referred to as 90D) that has been distributed in the market for a longer period of time. The banknote 90D in FIG. 10 is dirtier than the banknote 90C in FIG.

このように、図7の紙幣90Aから図10の紙幣90Dへと変遷するにつれてその汚れの度合いが徐々に増大していく。ただし、これらのうち最も汚れの度合いが大きい紙幣90D(図10)でも、見た目には十分に綺麗である。図10の紙幣90Dを可視光源で撮影した画像と全く新しい紙幣90A(官封券等)を可視光源で撮影した画像との両者を比較しても、当該両者の相違は殆ど無い。 In this way, as the banknote 90A in FIG. 7 changes to the banknote 90D in FIG. 10, the degree of dirt gradually increases. However, even the banknote 90D (FIG. 10), which has the highest degree of dirt among them, looks sufficiently clean. Even when comparing the image of the banknote 90D in FIG. 10 taken with a visible light source and the image of a completely new banknote 90A (official ticket, etc.) taken with a visible light source, there is almost no difference between the two.

ここにおいて、図7から図10に示すように、市場での紙幣90の使用期間の経過等に伴って徐々に汚れ度合いが大きくなるにつれて、紙幣90からの蛍光の受光強度は徐々に大きくなっていく。 Here, as shown in FIGS. 7 to 10, as the degree of dirt gradually increases as the period of use of the banknote 90 in the market progresses, the intensity of fluorescence received from the banknote 90 gradually increases. go.

図7の下段に示されるように、図7の紙幣90Aは、(その一部の領域93以外では)蛍光反応をほとんど有さず、紙幣90Aの蛍光画像は全体的に暗い画像である。一方、図8の紙幣90Bの蛍光画像は、紙幣90A(図7)の蛍光画像よりも若干明るい。これは、紙幣90Bにて蛍光反応が生じ、当該蛍光反応による蛍光が検出されているからである。さらに、図9の紙幣90Cでは、より大きな蛍光反応が生じ、図10の紙幣90Dではさらに大きな蛍光反応が生じている。これに伴い、紙幣90D(図10)の蛍光画像は、紙幣90A(図7)、紙幣90B(図8)、紙幣90C(図9)の各蛍光画像よりも明るい画像として取得される。 As shown in the lower part of FIG. 7, the banknote 90A in FIG. 7 has almost no fluorescence reaction (other than a part of the area 93), and the fluorescence image of the banknote 90A is a dark image as a whole. On the other hand, the fluorescence image of the banknote 90B in FIG. 8 is slightly brighter than the fluorescence image of the banknote 90A (FIG. 7). This is because a fluorescent reaction occurs in the banknote 90B, and the fluorescence due to the fluorescent reaction is detected. Furthermore, a larger fluorescent reaction occurs in the banknote 90C in FIG. 9, and an even larger fluorescent reaction occurs in the banknote 90D in FIG. Accordingly, the fluorescent image of the banknote 90D (FIG. 10) is acquired as an image brighter than each of the fluorescent images of the banknote 90A (FIG. 7), the banknote 90B (FIG. 8), and the banknote 90C (FIG. 9).

たとえば、透かし領域91および肖像衣服領域92からの蛍光の受光強度は、紙幣90全体の汚れ度合いの増大に伴って徐々に大きくなっていく。 For example, the intensity of received fluorescence from the watermark area 91 and the portrait clothing area 92 gradually increases as the degree of dirt on the banknote 90 as a whole increases.

ただし、元来は蛍光インクが塗布されていた印影領域93は、他の領域とは異なる変化傾向を示す。具体的には、印影領域93においては、元来塗布されていた蛍光インクが、紙幣90の市場流通期間の経過等に伴って徐々に損耗していく。その結果、印影領域93からの蛍光の受光強度は、市場での紙幣90の流通期間の経過等に伴って徐々に低下していく。 However, the stamp area 93, to which the fluorescent ink was originally applied, exhibits a different tendency of change than other areas. Specifically, in the seal imprint area 93, the fluorescent ink that was originally applied gradually wears out as the banknote 90 is marketed for a period of time. As a result, the intensity of the fluorescent light received from the seal imprint area 93 gradually decreases as the circulation period of the banknote 90 in the market passes.

逆に言えば、紙幣90内の領域であって蛍光インクが元来は塗布されていない領域(「蛍光インク非塗布領域」とも称する)からの蛍光の受光強度は、徐々に大きくなる。より具体的には、印影領域93以外の領域(たとえば、透かし領域91および/または肖像衣服領域92等)からの蛍光の受光強度は、流通期間の長大化(ひいては汚れの増大)に伴って、徐々に大きくなる。 In other words, the intensity of fluorescence received from an area within the banknote 90 to which fluorescent ink is not originally applied (also referred to as a "non-applied area of fluorescent ink") gradually increases. More specifically, the intensity of fluorescence received from areas other than the seal area 93 (for example, the watermark area 91 and/or the portrait clothing area 92, etc.) increases as the distribution period increases (and as a result, the amount of dirt increases). It gradually becomes larger.

そこで、このような事情を考慮して、この実施形態では、紙幣90内の一の蛍光インク非塗布領域C1(たとえば透かし領域91)からの蛍光の受光強度V1に基づき、汚れに関する判定処理が制御部70等によって実行される。 Therefore, in consideration of such circumstances, in this embodiment, the determination process regarding stains is controlled based on the received intensity V1 of fluorescence from one fluorescent ink non-applied area C1 (for example, the watermark area 91) in the banknote 90. The process is executed by the unit 70 or the like.

具体的には、当該判定処理に先立って、蛍光を発生させるための励起光(ここではUV光)が紙幣90に照射され、当該紙幣90にて発生した蛍光が受光部55によって受光される。そして、紙幣90に関する蛍光の画像データが制御部70によって生成(取得)される(ステップS1(図22参照))。さらに、制御部70は、蛍光の画像データに基づき、紙幣90内の蛍光インク非塗布領域C1(透かし領域91等)からの蛍光の受光強度V1を算出(取得)する(ステップS2)。そして、制御部70は、当該受光強度V1に基づき、汚れに関する当該判定処理を実行する(ステップS3)。また、当該判定処理における判定結果が制御部(識別制御部)70から本体制御部40へと出力される(ステップS4)。そして、本体制御部40は、当該判定結果に基づく分類処理を実行する。具体的には、本体制御部40は、各紙幣90を各判定結果等に応じた排出部(リジェクト部12およびスタッカ部16等)にそれぞれ排出する。なお、図22は、汚れ判定装置20の制御部70における処理を示すフローチャートである。 Specifically, prior to the determination process, the banknote 90 is irradiated with excitation light (here, UV light) for generating fluorescence, and the fluorescence generated by the banknote 90 is received by the light receiving unit 55. Fluorescent image data regarding the banknote 90 is then generated (obtained) by the control unit 70 (step S1 (see FIG. 22)). Further, the control unit 70 calculates (obtains) the received intensity V1 of the fluorescence from the fluorescent ink non-applied area C1 (watermark area 91, etc.) in the banknote 90 based on the fluorescence image data (step S2). Then, the control unit 70 executes the determination process regarding dirt based on the received light intensity V1 (step S3). Further, the determination result in the determination process is output from the control section (identification control section) 70 to the main body control section 40 (step S4). Then, the main body control unit 40 executes classification processing based on the determination result. Specifically, the main body control section 40 discharges each banknote 90 to a discharge section (such as the reject section 12 and the stacker section 16) according to each determination result. Note that FIG. 22 is a flowchart showing the processing in the control unit 70 of the dirt determination device 20.

ここにおいて、紙幣90内の蛍光インク非塗布領域C1からの蛍光の受光強度V1は、たとえば、透かし領域91の全領域(2次元的(面的)な拡がりを有する全領域)に亘る複数の位置における蛍光の受光強度の平均値(あるいは最大値)として算出されればよい。ただし、これに限定されず、たとえば、透かし領域91の一部の領域(2次元状領域あるいは1次元状領域)内の複数の位置での蛍光の受光強度の平均値(あるいは最大値)として受光強度V1が算出されてもよい。また、紙幣90内の各位置での蛍光の受光強度としては、たとえば、当該蛍光の複数の波長域別成分のうちの一の波長域成分(たとえば、緑色の波長域成分)のみに関する受光強度が用いられればよい。ただし、これに限定されず、たとえば、当該蛍光の複数の波長域別成分に関する受光強度の平均値(換言すれば、グレースケール画像の各画素値)が、紙幣90内の各位置での蛍光の受光強度として用いられてもよい。 Here, the intensity V1 of the received fluorescence from the fluorescent ink non-applied area C1 in the banknote 90 is determined, for example, at a plurality of positions over the entire area of the watermark area 91 (the entire area having two-dimensional (area) expansion). It may be calculated as the average value (or maximum value) of the received fluorescence intensity at . However, the present invention is not limited to this, and for example, light is received as the average value (or maximum value) of the received fluorescence intensity at multiple positions within a part of the watermark area 91 (two-dimensional area or one-dimensional area). The intensity V1 may be calculated. Furthermore, the received intensity of the fluorescence at each position within the banknote 90 may be, for example, the received light intensity of only one wavelength range component (for example, the green wavelength range component) among the plurality of wavelength range components of the fluorescence. It is fine as long as it is used. However, the present invention is not limited to this, and for example, the average value of the received light intensity regarding the plurality of wavelength range components of the fluorescence (in other words, each pixel value of the grayscale image) is It may also be used as the received light intensity.

制御部70(判定部73)は、透かし領域91からの蛍光の受光強度V1を汚れに関する指標値として利用する。たとえば、判定部73は、受光強度V1の値(自体)を、汚れ度合いを表す指標値として用いる。より詳細には、判定部73は、受光強度V1が大きいほど紙幣90の汚れ度合いが大きい、と判定する。ここでは更に、受光強度V1に基づき、紙幣90の汚れ度合いが複数の段階に分けて判定される(図11参照)。図11は、汚れ度合いに関する分類例を示す図である。 The control unit 70 (determination unit 73) uses the received intensity V1 of fluorescence from the watermark area 91 as an index value regarding dirt. For example, the determination unit 73 uses the value (itself) of the received light intensity V1 as an index value representing the degree of contamination. More specifically, the determining unit 73 determines that the higher the received light intensity V1 is, the higher the degree of dirt on the banknote 90 is. Here, the degree of dirt on the banknote 90 is further determined in a plurality of stages based on the received light intensity V1 (see FIG. 11). FIG. 11 is a diagram showing an example of classification regarding the degree of contamination.

たとえば、図11に示されるように、受光強度V1が閾値TH1未満の場合には、汚れ度合いがレベルE4である(「非常に綺麗」(全く汚れていない))と判定される。また、受光強度V1が閾値TH1以上且つ閾値TH2未満(ただし、TH2>TH1)の場合には、汚れ度合いがレベルE3である(「綺麗」(ほぼ汚れていない))と判定される。また、受光強度V1が閾値TH2以上且つ閾値TH3未満(ただし、TH3>TH2)の場合には、汚れ度合いがレベルE2であると判定される。さらに、受光強度V1が閾値TH3以上の場合には、汚れ度合いがレベルE1である(「かなり汚れている」(許容できない汚れが存在する状態である))と判定される。各紙幣90の汚れは、最も大きな汚れ度合いを有するレベルE1から、最も小さな汚れ度合いを有するレベルE4までの複数の段階(4つの段階)のいずれかに類別される。なお、レベルE2は、レベルE1とレベルE3との間の汚れ度合いを示している。レベルE2は、たとえば、「若干汚れている」(或る程度の汚れが存在する状態である)ことを示すレベルである。ただし、これに限定されず、レベルE2は、「まだ綺麗」(まだ汚れていない状態)との意義を示すレベルであってもよい。 For example, as shown in FIG. 11, when the received light intensity V1 is less than the threshold value TH1, it is determined that the degree of contamination is level E4 ("very clean" (no contamination at all)). Further, when the received light intensity V1 is greater than or equal to the threshold value TH1 and less than the threshold value TH2 (TH2>TH1), the degree of contamination is determined to be level E3 ("clean" (almost not soiled)). Further, when the received light intensity V1 is greater than or equal to the threshold value TH2 and less than the threshold value TH3 (TH3>TH2), the degree of contamination is determined to be level E2. Furthermore, when the received light intensity V1 is equal to or greater than the threshold value TH3, it is determined that the degree of contamination is level E1 ("considerably dirty" (a state in which unacceptable contamination exists)). The dirt on each banknote 90 is classified into one of a plurality of stages (four stages) from level E1, which has the highest degree of dirt, to level E4, which has the smallest degree of dirt. Note that level E2 indicates the degree of contamination between level E1 and level E3. Level E2 is, for example, a level indicating that it is "slightly dirty" (a state in which a certain degree of dirt exists). However, the present invention is not limited to this, and the level E2 may be a level indicating the meaning of "still clean" (not yet dirty).

なお、ここでは汚れ度合いを4段階に類別しているが、これに限定されず、各紙幣90の汚れは、より少数の段階(2段階~3段階)、あるいは、より多数の段階(5段階~)の度合いのいずれかに類別されるようにしてもよい。 Note that although the degree of dirt is classified here into four levels, the degree of dirt on each banknote 90 is not limited to this. ) may be classified into any of the following degrees.

以上のような態様によれば、汚れ判定装置20は、紙幣90内の蛍光インク非塗布領域C1(蛍光インクが元来は塗布されていない領域)からの蛍光の受光強度V1に基づき、紙幣90(紙葉類)の汚れに関して判定する。したがって、紙幣90の汚れに関する高精度の判定を実現することが可能である。特に、可視光源からの光の紙葉類での反射光を利用して汚れ度合いを判定する従来技術に比べて、紙葉類(紙幣90)の汚れに関する高精度の判定を実現することが可能である。 According to the aspect described above, the stain determination device 20 determines whether the banknote 90 is stained based on the received fluorescence intensity V1 from the fluorescent ink non-applied area C1 (area to which no fluorescent ink is originally applied) within the banknote 90. Judgment is made regarding dirt on (paper sheets). Therefore, it is possible to realize highly accurate determination regarding dirt on banknotes 90. In particular, compared to conventional technology that uses light reflected from a visible light source on paper sheets to determine the degree of dirt, it is possible to realize highly accurate judgment regarding dirt on paper sheets (banknotes 90). It is.

なお、上記実施形態においては、透かし領域91からの蛍光の受光強度V1が大きいほど、紙幣90の汚れ度合いが大きい、と判定されている。すなわち、汚れ判定装置20は、紙幣90の汚れ度合いを判定することにより、紙幣90の汚れに関して判定している。換言すれば、紙幣90の汚れ度合いを判定する処理が、紙幣90の汚れに関する判定処理の一例として行われている。 In the embodiment described above, it is determined that the greater the received intensity V1 of fluorescence from the watermark area 91, the greater the degree of dirt on the banknote 90. That is, the dirt determining device 20 determines the dirt on the banknote 90 by determining the degree of dirt on the banknote 90. In other words, the process of determining the degree of contamination of the banknotes 90 is performed as an example of the process of determining the degree of contamination of the banknotes 90.

しかしながら、これに限定されず、紙葉類の汚れの有無を判定する処理(「紙葉類が汚れている」か否かを判定する処理)が、紙幣90の汚れに関する判定処理として実行されてもよい。具体的には、受光強度V1と所定の閾値との大小関係に基づいて、汚れ(詳細には、所定程度よりも大きな汚れ)の有無が判定されてもよい。詳細には、当該受光強度V1が所定の基準値よりも大きい場合には紙幣90は「汚れている」(所定程度よりも汚れている)と判定され、当該受光強度V1が当該所定の基準値よりも小さい場合には紙幣90は「汚れていない」と判定されてもよい。当該所定の基準値としては、たとえば、閾値TH3(あるいは閾値TH2)が用いられればよい。このように、汚れ判定装置20は、紙幣90が汚れているか否かを判定することにより、紙幣90の汚れに関して判定してもよい。 However, the present invention is not limited to this, and the process of determining whether or not paper sheets are soiled (the process of determining whether or not "paper sheets are soiled") may be executed as a determination process regarding soiling of banknotes 90. Good too. Specifically, the presence or absence of dirt (specifically, dirt larger than a predetermined level) may be determined based on the magnitude relationship between the received light intensity V1 and a predetermined threshold value. Specifically, when the received light intensity V1 is larger than a predetermined reference value, the banknote 90 is determined to be "dirty" (more dirty than a predetermined level), and the received light intensity V1 is determined to be more than the predetermined reference value. If it is smaller than , the banknote 90 may be determined to be "not dirty". For example, threshold value TH3 (or threshold value TH2) may be used as the predetermined reference value. In this way, the dirt determining device 20 may determine whether the banknote 90 is dirty by determining whether the banknote 90 is dirty.

また、ここでは、蛍光インク非塗布領域C1として、透かし領域91を主に例示したが、これに限定されない。蛍光インク非塗布領域C1は、たとえば、紙幣90の人物の顔面皮膚領域、紙幣90の肖像衣服領域92、紙幣90の辺縁領域、紙幣90の背景領域など、その他の領域であってもよい。あるいは、蛍光インク非塗布領域C1は、紙幣あるいはその他の紙葉類内の「無模様の領域」であってもよい。なお、蛍光インク非塗布領域C1は、透かし領域91(あるいは無模様の領域)などの淡色領域であることが好ましい。透かし領域91などの淡色領域は、肖像衣服領域92などの濃色領域よりも、汚れに起因する蛍光が検出され易い領域である(後述)からである。 Further, here, although the watermark area 91 is mainly illustrated as the fluorescent ink non-applied area C1, the present invention is not limited thereto. The fluorescent ink non-applied area C1 may be other areas, such as the facial skin area of the person on the banknote 90, the portrait clothing area 92 of the banknote 90, the peripheral area of the banknote 90, or the background area of the banknote 90, for example. Alternatively, the fluorescent ink non-applied area C1 may be a "patternless area" within a banknote or other paper sheet. Note that the fluorescent ink non-applied area C1 is preferably a light-colored area such as the watermark area 91 (or a patternless area). This is because light-colored areas such as the watermark area 91 are areas where fluorescence caused by dirt is more easily detected than dark-colored areas such as the portrait clothing area 92 (described later).

<2.第2実施形態>
上記第1実施形態では、紙幣90内の一の蛍光インク非塗布領域C1(たとえば透かし領域91)における受光強度V1のみに基づいて、紙幣90の汚れに関する判定処理が行われているが、これに限定されない。たとえば、紙幣90内の一の蛍光インク非塗布領域C1における受光強度V1のみならず、紙幣90内の他の蛍光インク非塗布領域C2(領域C1とは異なる領域)における受光強度V2にも基づいて、紙幣90の汚れに関する判定処理が行われてもよい。受光強度V2を用いた正規化を行うことにより、紙幣90の汚れに関して更に高精度の判定を実現することが可能である。第2実施形態では、このような態様について説明する。後述するように、蛍光インク非塗布領域C2は、蛍光インク非塗布領域C1よりも汚れが検出されにくいと推定される領域(肖像衣服領域92等)である。
<2. Second embodiment>
In the first embodiment, the judgment process regarding dirt on the banknote 90 is performed based only on the received light intensity V1 in one fluorescent ink non-applied area C1 (for example, the watermark area 91) within the banknote 90. Not limited. For example, based on not only the received light intensity V1 in one fluorescent ink non-coated area C1 in the banknote 90, but also the received light intensity V2 in another fluorescent ink non-coated area C2 (a different area from the area C1) in the banknote 90. , a determination process regarding dirt on the banknote 90 may be performed. By performing normalization using the received light intensity V2, it is possible to realize a more accurate determination regarding dirt on the banknote 90. In the second embodiment, such an aspect will be described. As will be described later, the fluorescent ink non-applied area C2 is an area (such as the portrait clothing area 92) where stains are estimated to be less likely to be detected than the fluorescent ink non-applied area C1.

受光強度V1としては、第1実施形態と同様に、たとえば、透かし領域91の全部あるいは一部の領域内の複数の位置における受光強度の平均値(あるいは最大値)が用いられればよい。また、受光強度V2としては、たとえば、肖像衣服領域92の全部あるいは一部の領域内の複数の位置における受光強度の平均値(あるいは最大値)が用いられればよい。 As the received light intensity V1, as in the first embodiment, for example, the average value (or maximum value) of the received light intensities at a plurality of positions within all or a part of the watermark area 91 may be used. Further, as the received light intensity V2, for example, the average value (or maximum value) of the received light intensities at a plurality of positions within all or part of the portrait clothing area 92 may be used.

また、紙幣90内の各位置での蛍光の受光強度としては、当該蛍光の複数の波長域別成分のうちの一の波長域成分(たとえば、緑色の波長域成分)のみに関する受光強度が用いられればよい。 Furthermore, as the received intensity of the fluorescent light at each position within the banknote 90, the received light intensity of only one wavelength range component (for example, the green wavelength range component) among the plurality of wavelength range components of the fluorescence is used. Bye.

たとえば、蛍光インク非塗布領域C1(透かし領域91)の各位置に関しては、励起光の照射に応じた蛍光インク非塗布領域C1からの蛍光のうち、緑色波長域の蛍光の受光強度が、受光強度V1として算出されればよい。さらに、蛍光インク非塗布領域C2(肖像衣服領域92)の各位置に関しても、励起光の照射に応じた蛍光インク非塗布領域C1からの蛍光のうち、同じ緑色波長域の蛍光の受光強度が、受光強度V2として算出されればよい。 For example, for each position of the fluorescent ink non-applied area C1 (watermark area 91), among the fluorescence from the fluorescent ink non-applied area C1 in response to excitation light irradiation, the received intensity of fluorescence in the green wavelength range is the received light intensity. It is sufficient if it is calculated as V1. Furthermore, regarding each position of the fluorescent ink non-applied area C2 (portrait clothing area 92), among the fluorescence from the fluorescent ink non-applied area C1 according to the irradiation with the excitation light, the received intensity of fluorescence in the same green wavelength range is It may be calculated as the received light intensity V2.

ただし、これに限定されず、蛍光インク非塗布領域C2の各位置に関しては、蛍光インク非塗布領域C1とは互いに異なる波長域(たとえば、青色波長域(、赤色波長域あるいは赤外波長域))の蛍光の受光強度が受光強度V2として算出されてもよい。あるいは、紙幣90内の各位置における蛍光の複数の波長域別成分に関する受光強度の平均値(換言すれば、グレースケール画像の各画素値)が、紙幣90内の各位置での蛍光の受光強度として用いられてもよい。 However, the present invention is not limited to this, and each position of the fluorescent ink non-applied area C2 has a wavelength range that is different from that of the fluorescent ink non-applied area C1 (for example, a blue wavelength area (, red wavelength area, or infrared wavelength area)). The received light intensity of fluorescence may be calculated as the received light intensity V2. Alternatively, the average value (in other words, each pixel value of a grayscale image) of the received light intensity of a plurality of wavelength range components of fluorescence at each position within the banknote 90 is the received light intensity of fluorescence at each position within the banknote 90. It may be used as

この第2実施形態においては、複数の領域における複数の受光強度V1,V2の相対的な関係(差異D2)に基づいて、紙葉類の汚れに関する判定が行われる。したがって、単一の受光強度V1の絶対的な値に基づいて汚れに関する判定が行われる場合に比べて、各汚れ判定装置の個体差の影響、光源の劣化の影響、および温度消光現象の影響を抑制することが可能である。 In the second embodiment, a determination regarding dirt on paper sheets is made based on the relative relationship (difference D2) between a plurality of received light intensities V1 and V2 in a plurality of regions. Therefore, compared to the case where dirt determination is made based on the absolute value of a single received light intensity V1, the influence of individual differences between each dirt determination device, the influence of light source deterioration, and the influence of temperature quenching phenomenon can be reduced. It is possible to suppress it.

さて、図7~図10を再び参照する。上述のように、紙幣90の市場流通期間の増大(ひいては紙幣90の全体における汚れの増大)に応じて、紙幣90内における、印影領域93以外の領域(透かし領域91および肖像衣服領域92等)の蛍光反応は徐々に大きくなる。 Now, referring again to FIGS. 7 to 10. As described above, as the period of market circulation of the banknote 90 increases (as a result, the dirt on the entire banknote 90 increases), areas other than the stamp area 93 within the banknote 90 (watermark area 91, portrait clothing area 92, etc.) The fluorescence reaction gradually increases.

また、図7~図10を参照すると判るように、蛍光反応の増大の程度(詳細には、蛍光の受光強度の増大の程度)は、領域ごとに互いに相違する。図7と図10とを比較すると判るように、たとえば、透かし領域91からの蛍光の受光強度V1の増大の程度は、肖像衣服領域92からの蛍光の受光強度V2の増大の程度よりも大きい。 Further, as can be seen from FIGS. 7 to 10, the degree of increase in the fluorescence reaction (specifically, the degree of increase in the received fluorescence intensity) differs from region to region. As can be seen by comparing FIGS. 7 and 10, for example, the degree of increase in the received fluorescence intensity V1 from the watermark area 91 is greater than the increase in the received fluorescence intensity V2 from the portrait clothing area 92.

肖像衣服領域92は、見た目では、大まかに黒っぽい領域(濃色)の領域(黒色領域あるいは濃色領域)である。このような黒色領域(あるいは濃色領域)における蛍光反応の増大の程度は、透かし領域91などの白色領域(あるいは淡色領域)における蛍光反応の増大の程度に比べて小さい。換言すれば、肖像衣服領域92は、蛍光反応によっては汚れが検出されにくい領域である。これは、蛍光発生のために照射された励起光(UV光)のうちの一部の光が黒色部分で吸収され易いことなどに起因して、肖像衣服領域92では蛍光の発生量が低減しているものと推測される。このように、肖像衣服領域92は、透かし領域91よりも汚れが検出されにくい領域であると推定される。換言すれば、透かし領域91と肖像衣服領域92とで、汚れの検出され易さが互いに異なっている。 The portrait clothing area 92 appears to be a roughly black area (dark color) (black area or dark color area). The degree of increase in fluorescence reaction in such a black area (or dark color area) is smaller than the degree of increase in fluorescence reaction in a white area (or light color area) such as the watermark area 91. In other words, the portrait clothing area 92 is an area where dirt is difficult to be detected by fluorescence reaction. This is because part of the excitation light (UV light) irradiated to generate fluorescence is easily absorbed by the black area, and the amount of fluorescence generated is reduced in the portrait clothing area 92. It is assumed that In this way, it is estimated that the portrait clothing area 92 is an area where stains are less likely to be detected than the watermark area 91. In other words, the watermark area 91 and the portrait clothing area 92 differ in the ease with which stains are detected.

このような事情等に起因して、図7~図10に示されるように、紙幣90の市場流通期間の増大(ひいては汚れの増大)に伴って、受光強度V1と受光強度V2との差異D2が徐々に大きくなる(図12も参照)。なお、図12は、汚れの増大に応じて差異D2が増大する様子を簡略化して示す概念図である。図12の左側には紙幣90Aに関する受光強度が示されており、図12の右側には紙幣90Dに関する受光強度が示されている。 Due to such circumstances, as shown in FIGS. 7 to 10, the difference D2 between the received light intensity V1 and the received light intensity V2 increases with the increase in the market circulation period of the banknotes 90 (and the increase in dirt) gradually increases (see also FIG. 12). Note that FIG. 12 is a conceptual diagram showing, in a simplified manner, how the difference D2 increases as the dirt increases. The left side of FIG. 12 shows the received light intensity for the banknote 90A, and the right side of FIG. 12 shows the received light intensity for the banknote 90D.

具体的には、まず、図7の紙幣90A(図20の左側も参照)では、透かし領域91における受光強度V1と肖像衣服領域92における受光強度V2との差異D2は小さい。その後、市場流通期間の増大等に応じて当該差異は徐々に増大する。その結果、たとえば、図10の紙幣90Dでは、受光強度V1と受光強度V2との差異D2が、図7の紙幣90Aに比べて増大している(図12の右側も参照)。このように、紙幣90の汚れの増大に応じて差異D2が増大する。 Specifically, first, in the banknote 90A of FIG. 7 (see also the left side of FIG. 20), the difference D2 between the received light intensity V1 in the watermark area 91 and the received light intensity V2 in the portrait clothing area 92 is small. Thereafter, the difference gradually increases as the market distribution period increases. As a result, for example, in the banknote 90D of FIG. 10, the difference D2 between the received light intensity V1 and the received light intensity V2 is increased compared to the banknote 90A of FIG. 7 (see also the right side of FIG. 12). In this way, the difference D2 increases as the dirt on the banknote 90 increases.

このような事情を考慮し、この第2実施形態では、蛍光インク非塗布領域C1(透かし領域91)における受光強度V1と、蛍光インク非塗布領域C2(肖像衣服領域92)における受光強度V2との差異D2に着目する。そして、当該差異D2に基づいて、紙幣90の汚れに関する判定処理(汚れ度合いを判定する処理等)が行われる。具体的には、差異D2が大きいほど紙幣90の汚れ度合いが大きいと判定される。 Considering these circumstances, in this second embodiment, the received light intensity V1 in the fluorescent ink non-applied area C1 (watermark area 91) and the received light intensity V2 in the fluorescent ink non-applied area C2 (portrait clothing area 92) are adjusted. Let's focus on the difference D2. Then, based on the difference D2, determination processing regarding dirt on the banknote 90 (processing for determining the degree of dirt, etc.) is performed. Specifically, it is determined that the greater the difference D2, the greater the degree of dirt on the banknote 90.

ここでは、受光強度V1と受光強度V2との当該差異D2として、まず受光強度V1,V2の比α(=V1/V2)を例示する。この比αに基づいて紙葉類の汚れ度合いが判定される。換言すれば、比αが、汚れ度合いを表す指標値として用いられる。詳細には、比αが大きいほど、紙幣90の汚れ度合いが大きい、と判定される。 Here, as the difference D2 between the received light intensity V1 and the received light intensity V2, the ratio α (=V1/V2) of the received light intensities V1 and V2 is first exemplified. The degree of soiling of the paper sheet is determined based on this ratio α. In other words, the ratio α is used as an index value representing the degree of contamination. Specifically, it is determined that the larger the ratio α, the greater the degree of dirt on the banknote 90.

ここでは更に、差異D2に基づき、紙幣90の汚れ度合いが複数の段階に分けて判定される。 Here, the degree of dirt on the banknote 90 is further determined in a plurality of stages based on the difference D2.

たとえば、比αが閾値H1未満の場合には、紙幣90の汚れ度合いがレベルE4であると判定される。また、比αが閾値H1以上且つ閾値H2未満(ただし、H2>H1)の場合には、紙幣90の汚れ度合いがレベルE3であると判定される。また、比αが閾値H2以上且つ閾値H3未満(ただし、H3>H2)の場合には、紙幣90の汚れ度合いがレベルE2であると判定される。さらに、比αが閾値H3以上の場合には、紙幣90の汚れ度合いがレベルE1であると判定される。なお、レベルE4が最も低い汚れ度合いを表し、レベルE1が最も高い汚れ度合いを表す。 For example, when the ratio α is less than the threshold value H1, it is determined that the degree of dirt on the banknote 90 is level E4. Further, when the ratio α is greater than or equal to the threshold value H1 and less than the threshold value H2 (however, H2>H1), it is determined that the degree of dirt on the banknote 90 is level E3. Further, when the ratio α is greater than or equal to the threshold value H2 and less than the threshold value H3 (however, H3>H2), it is determined that the degree of dirt on the banknote 90 is level E2. Further, when the ratio α is equal to or greater than the threshold value H3, it is determined that the degree of dirt on the banknote 90 is level E1. Note that level E4 represents the lowest degree of contamination, and level E1 represents the highest degree of contamination.

ただし、これに限定されず、比αに基づいて紙葉類の汚れの有無を判定する処理が実行されてもよい。具体的には、比αと所定の基準値との大小関係に基づいて、汚れの有無が判定されてもよい。詳細には、比αが所定の基準値(たとえば、閾値H3あるいは閾値H2)よりも大きい場合には紙幣90は「汚れている」(所定程度以上に汚れている)と判定され、比αが当該所定の基準値よりも小さい場合には紙幣90は「汚れていない」と判定されてもよい。 However, the present invention is not limited to this, and a process of determining the presence or absence of stains on paper sheets based on the ratio α may be performed. Specifically, the presence or absence of dirt may be determined based on the magnitude relationship between the ratio α and a predetermined reference value. Specifically, if the ratio α is larger than a predetermined reference value (for example, threshold H3 or threshold H2), the banknote 90 is determined to be “dirty” (stained to a predetermined degree or more), and the ratio α is If it is smaller than the predetermined reference value, the banknote 90 may be determined to be "not soiled".

以上のような態様によれば、第1実施形態と同様に、蛍光インク非塗布領域C1からの蛍光の受光強度V1に基づいて、紙幣90(紙葉類)の汚れに関する判定処理が行われる。したがって、紙幣90の汚れに関する高精度の判定を実現することが可能である。 According to the aspect described above, similarly to the first embodiment, the determination process regarding dirt on the banknote 90 (paper sheet) is performed based on the received intensity V1 of fluorescence from the fluorescent ink non-applied area C1. Therefore, it is possible to realize highly accurate determination regarding dirt on banknotes 90.

また、特に、受光強度V1のみならず、蛍光インク非塗布領域C2からの蛍光の受光強度V2にも基づき、紙幣90(紙葉類)の汚れに関する判定処理が行われている。詳細には、受光強度V1と受光強度V2との差異D2(より詳細には比α)に基づいて、紙幣90(紙葉類)の汚れに関する判定処理が行われている。受光強度V1,V2の差異D2は、(受光強度V1と)基準としての受光強度V2(基準受光強度)との比較結果であり、受光強度V1自体に比べて正規化されている。換言すれば、受光強度V1は、受光強度V2を用いて正規化されている。また、蛍光インク非塗布領域C2は、蛍光インク非塗布領域C1からの蛍光の受光強度V1を正規化するための基準領域である、とも表現される。 Further, in particular, determination processing regarding dirt on the banknote 90 (paper sheet) is performed based not only on the received light intensity V1 but also on the received light intensity V2 of the fluorescence from the fluorescent ink non-applied area C2. Specifically, a determination process regarding dirt on the banknote 90 (paper sheet) is performed based on the difference D2 (more specifically, the ratio α) between the received light intensity V1 and the received light intensity V2. The difference D2 between the received light intensities V1 and V2 is a comparison result between the received light intensity V1 and the received light intensity V2 as a reference (reference received light intensity), and is normalized compared to the received light intensity V1 itself. In other words, the received light intensity V1 is normalized using the received light intensity V2. The fluorescent ink non-applied area C2 is also expressed as a reference area for normalizing the received fluorescence intensity V1 from the fluorescent ink non-applied area C1.

このような判定処理によれば、紙幣90の汚れに関して更に高精度の判定を実現することが可能である。より詳細には、たとえば、汚れ判定装置の個体差の影響を抑制することが可能である。また、光源の劣化の影響を抑制することが可能である。さらに、蛍光の温度消光現象の影響を抑制することが可能である。以下、このような利点について詳細に説明する。 According to such a determination process, it is possible to realize a more accurate determination regarding dirt on the banknote 90. More specifically, for example, it is possible to suppress the influence of individual differences in dirt determination devices. Further, it is possible to suppress the influence of deterioration of the light source. Furthermore, it is possible to suppress the influence of temperature quenching phenomenon of fluorescence. These advantages will be explained in detail below.

まず、基準となる汚れ判定装置における判定内容について説明する。たとえば、図7の紙幣90Aに関して受光強度V2が「5」であり且つ受光強度V1が「10」であるとし、図10の紙幣90Dに関して受光強度V2が「10」であり且つ受光強度V1が「30」であるとする(図12も参照)。なお、上述のように、受光強度V1は透かし領域91からの蛍光の受光強度(たとえば緑色波長域の受光強度)であり、受光強度V2は肖像衣服領域92からの蛍光の受光強度(たとえば緑色波長域の受光強度)である。 First, the content of the determination made by the standard stain determination device will be explained. For example, assume that the received light intensity V2 is "5" and the received light intensity V1 is "10" for the banknote 90A in FIG. 7, and the received light intensity V2 is "10" and the received light intensity V1 is "10" for the banknote 90D in FIG. 30'' (see also FIG. 12). As described above, the received light intensity V1 is the received light intensity of fluorescence from the watermark area 91 (for example, the received light intensity in the green wavelength range), and the received light intensity V2 is the received light intensity of the fluorescence from the portrait clothing area 92 (for example, the received light intensity in the green wavelength range). (received light intensity in the area).

仮に第1実施形態において閾値TH3が「28」に設定される場合、受光強度V1(「30」)は閾値TH3(「28」)よりも大きいことに基づいて、汚れ度合いはレベルE1であると正確に判定される。 If the threshold value TH3 is set to "28" in the first embodiment, the degree of contamination is determined to be level E1 based on the fact that the received light intensity V1 ("30") is greater than the threshold value TH3 ("28"). judged accurately.

しかしながら、汚れ判定装置の個体差に起因して受光強度(V1,V2等)が変動することがある。たとえば、基準となる汚れ判定装置に対して、全般的に若干低めの受光強度を検出する汚れ判定装置が存在し得る。あるいは、逆に、基準となる装置に対して、全般的に若干高めの受光強度を検出する汚れ判定装置が存在し得る。 However, the received light intensity (V1, V2, etc.) may vary due to individual differences in dirt determination devices. For example, there may be a stain determining device that detects a generally slightly lower received light intensity than a standard stain determining device. Or, conversely, there may be a dirt determination device that detects a slightly higher received light intensity overall than the reference device.

同様に、光源が劣化すると、発光強度の減少に伴い受光強度も減少する。すなわち、光源の劣化に起因して受光強度が変動することもある。 Similarly, when the light source deteriorates, the received light intensity also decreases as the emitted light intensity decreases. That is, the received light intensity may fluctuate due to deterioration of the light source.

さらに、蛍光の温度消光現象に起因して、受光強度が変動することもある。蛍光の温度消光現象は、蛍光物質(蛍光インク等)の温度上昇に伴って受光強度Vが減少する(蛍光の発光量が減少する)現象である。なお、逆に、蛍光物質(蛍光インク等)の温度が下降すると受光強度Vが増大する。このように、蛍光物質の温度変化に伴って、受光強度Vが変化し得る。 Furthermore, the received light intensity may fluctuate due to the temperature quenching phenomenon of fluorescence. The temperature quenching phenomenon of fluorescence is a phenomenon in which the received light intensity V decreases (the amount of fluorescence emitted decreases) as the temperature of a fluorescent substance (fluorescent ink, etc.) increases. Note that, conversely, when the temperature of the fluorescent substance (fluorescent ink, etc.) decreases, the received light intensity V increases. In this way, the received light intensity V can change as the temperature of the fluorescent material changes.

仮に第1実施形態のように、1つの領域C1の受光強度V1のみに基づく判定が行われる場合には、各汚れ判定装置の個体差の影響等を受ける可能性がある。その場合、適切な閾値を設定することが比較的困難であり、汚れに関する誤判定が生じ得る。 If the determination is made based only on the received light intensity V1 of one area C1 as in the first embodiment, there is a possibility that the determination may be influenced by individual differences among the dirt determination devices. In that case, it is relatively difficult to set an appropriate threshold value, and an erroneous determination regarding dirt may occur.

たとえば、汚れ判定装置の個体差の影響等に起因して、図10の紙幣90D(図12の右側も参照)に関して、受光強度V2が「9」に低下し且つ受光強度V1が「27」に低下した状況を想定する(図13の右側も参照)。 For example, due to the influence of individual differences in dirt determination devices, for the banknote 90D in FIG. 10 (see also the right side of FIG. 12), the received light intensity V2 decreases to "9" and the received light intensity V1 decreases to "27". Assume a degraded situation (see also the right side of Figure 13).

このような状況においては、受光強度V1(「27」)は閾値TH3(「28」)よりも小さい。そのため、汚れ度合いは、レベルE1であると正確には判定されず、レベルE2(あるいはE3等)であると誤判定され得る。すなわち、各汚れ判定装置の個体差等の影響を受けて誤判定が生じ得る。また、この場合、第1実施形態に係る判定処理では、受光強度V1(「27」)が次の2種類の装置のいずれによるものかを区別することが困難である。具体的には、標準装置による検出結果であるのか、あるいは、標準装置とは異なる検出レベルを有する装置(標準装置との間に有意の個体差を有する装置)による検出結果であるのかを区別することが困難である。 In this situation, the received light intensity V1 ("27") is smaller than the threshold value TH3 ("28"). Therefore, the degree of contamination is not accurately determined to be level E1, but may be erroneously determined to be level E2 (or E3, etc.). That is, an erroneous determination may occur due to the influence of individual differences among each dirt determination device. Furthermore, in this case, in the determination process according to the first embodiment, it is difficult to distinguish which of the following two types of devices caused the received light intensity V1 ("27"). Specifically, it is distinguished whether the results are detected by a standard device or by a device with a detection level different from the standard device (a device with significant individual differences from the standard device). It is difficult to do so.

これに対して、第2実施形態においては、受光強度V1と受光強度V2との差異D2が考慮される。具体的には、受光強度V1と受光強度V2との比αが考慮される。 On the other hand, in the second embodiment, the difference D2 between the received light intensity V1 and the received light intensity V2 is taken into consideration. Specifically, the ratio α between the received light intensity V1 and the received light intensity V2 is taken into consideration.

たとえば、標準装置による蛍光検出が行われる場合(温度消光現象の影響等を受けていない場合)には、図7の紙幣90Aに関する比αは「2」(=10/5)であり、図10の紙幣90Dに関する比αは「3」(=30/10)である(図12も参照)。 For example, when fluorescence detection is performed using a standard device (not affected by temperature quenching phenomenon, etc.), the ratio α for the banknote 90A in FIG. 7 is "2" (=10/5), and the ratio α in FIG. The ratio α for the banknote 90D is “3” (=30/10) (see also FIG. 12).

一方、非標準装置による蛍光検出が行われる場合(温度消光現象等が発生する場合)、蛍光インク非塗布領域C1における受光強度V1と蛍光インク非塗布領域C2における受光強度V2との双方が変化する。仮に、装置の個体差(あるいは温度消光現象)等に起因して受光強度V1と受光強度V2とが同じ割合で減少し、上述のように、紙幣90D(図10)に関して、受光強度V1が「27」になり且つ受光強度V2が「9」になったとする。このとき、紙幣90Dに関する比αは「3」(=27/9)である。装置の個体差が存在しても(温度消光現象等が発生しても)、比αはほとんど変化しない。同様に、図7の紙幣90Aに関する比αは「2」(=8/4)であり、比αはほとんど変化しない。このように比αは、正規化された指標値として機能する。それ故、適切な閾値THαが第1実施形態よりも容易に設定され得る。例えば、閾値THαは、「2」と「3」との間の適宜の値、たとえば「2.4」に設定される。この場合、図10の紙幣90Dに関する比α(=「3」)が当該閾値THα(=「2.4」)以上であることに基づいて、「汚れている」と適切に判定される。 On the other hand, when fluorescence detection is performed using a non-standard device (when a temperature quenching phenomenon, etc. occurs), both the received light intensity V1 in the fluorescent ink non-applied area C1 and the received light intensity V2 in the fluorescent ink non-applied area C2 change. . Suppose that the received light intensity V1 and the received light intensity V2 decrease at the same rate due to individual differences in devices (or temperature quenching phenomenon), etc., and as described above, for the banknote 90D (FIG. 10), the received light intensity V1 becomes " 27'' and the received light intensity V2 becomes 9. At this time, the ratio α regarding the banknote 90D is "3" (=27/9). Even if there are individual differences between devices (even if a temperature quenching phenomenon occurs), the ratio α hardly changes. Similarly, the ratio α regarding the banknote 90A in FIG. 7 is "2" (=8/4), and the ratio α hardly changes. In this way, the ratio α functions as a normalized index value. Therefore, an appropriate threshold value THα can be set more easily than in the first embodiment. For example, the threshold value THα is set to an appropriate value between "2" and "3", for example "2.4". In this case, the banknote 90D in FIG. 10 is appropriately determined to be "dirty" based on the fact that the ratio α (= "3") is greater than or equal to the threshold value THα (= "2.4").

以上のように、受光強度V1,V2の双方(具体的には、受光強度V1,V2の比α)を用いることによれば、受光強度V1のみで判定する場合よりも、装置の個体差の影響が軽減される。詳細には、受光強度V2をも用いて正規化された指標値である比αを用いることによって、装置の個体差の影響が軽減される。したがって、より正確に、汚れに関する判定処理を実行することが可能である。また、受光強度に関する低下は、光源の劣化および/または温度消光現象等によっても、同様に招来される。受光強度V1,V2の比αを用いることによれば、これらの要因に起因する影響も、受光強度V1のみで判定する場合よりも、同様に低減され得る。 As described above, by using both the received light intensities V1 and V2 (specifically, the ratio α of the received light intensities V1 and V2), individual differences between devices can be The impact is reduced. Specifically, by using the ratio α, which is an index value normalized also using the received light intensity V2, the influence of individual differences between devices is reduced. Therefore, it is possible to more accurately perform the determination process regarding dirt. Further, a decrease in the received light intensity is similarly caused by deterioration of the light source and/or temperature quenching phenomenon. By using the ratio α of the received light intensities V1 and V2, the influence caused by these factors can be similarly reduced compared to the case where the determination is made only based on the received light intensity V1.

また、上記実施形態においては、受光強度V1と受光強度V2との差異D2は、受光強度V1と受光強度V2との比αとして求められているが、これに限定されない。受光強度V1と受光強度V2との差異D2は、受光強度V1と受光強度V2との差分ΔV2(=V1-V2)として求められてもよい。そして、差分ΔV2に基づいて紙葉類の汚れ度合いを判定する処理が実行されればよい。詳細には、当該差分ΔV2が大きいほど、紙幣90の汚れ度合いが大きいと判定されればよい。 Further, in the embodiment described above, the difference D2 between the received light intensity V1 and the received light intensity V2 is determined as the ratio α between the received light intensity V1 and the received light intensity V2, but the difference is not limited thereto. The difference D2 between the received light intensity V1 and the received light intensity V2 may be determined as the difference ΔV2 (=V1-V2) between the received light intensity V1 and the received light intensity V2. Then, a process for determining the degree of staining of the paper sheet based on the difference ΔV2 may be executed. Specifically, it may be determined that the greater the difference ΔV2, the greater the degree of dirt on the banknote 90.

たとえば、差分ΔV2が閾値TH21未満の場合には、紙幣90の汚れ度合いがレベルE4であると判定される。また、差分ΔV2が閾値TH21以上且つ閾値TH22未満(ただし、TH22>TH21)の場合には、紙幣90の汚れ度合いがレベルE3であると判定される。また、差分ΔV2が閾値TH22以上且つ閾値TH23未満(ただし、TH23>TH22)の場合には、紙幣90の汚れ度合いがレベルE2であると判定される。さらに、差分ΔV2が閾値TH23以上の場合には、紙幣90の汚れ度合いがレベルE1と判定される。なお、レベルE4が最も低い汚れ度合いを表し、レベルE1が最も高い汚れ度合いを表す。 For example, when the difference ΔV2 is less than the threshold value TH21, it is determined that the degree of dirt on the banknote 90 is level E4. Further, when the difference ΔV2 is greater than or equal to the threshold value TH21 and less than the threshold value TH22 (TH22>TH21), it is determined that the degree of dirt on the banknote 90 is level E3. Further, when the difference ΔV2 is greater than or equal to the threshold value TH22 and less than the threshold value TH23 (TH23>TH22), it is determined that the degree of dirt on the banknote 90 is level E2. Furthermore, when the difference ΔV2 is equal to or greater than the threshold value TH23, the degree of dirt on the banknote 90 is determined to be level E1. Note that level E4 represents the lowest degree of contamination, and level E1 represents the highest degree of contamination.

このような判定手法においても、各汚れ判定装置の個体差の影響、光源の劣化の影響、および温度消光現象の影響を抑制することが可能である。 Even in such a determination method, it is possible to suppress the influence of individual differences between each dirt determination device, the influence of deterioration of the light source, and the influence of temperature quenching phenomenon.

たとえば、互いに異なる汚れ度合いを有する2種類の紙幣90(90D、90F)を想定する。一方は、汚れている紙幣90Dであり、他方は、紙幣90Dよりも汚れていない紙幣90Fである。また、紙幣90Dに関する受光強度V1,V2は、標準装置による検出結果であり、紙幣90Fに関する受光強度V1,V2は、標準装置とは異なる検出レベルを有する装置(標準装置よりも全般的に高めに受光強度を検出する装置)による検出結果である。紙幣90Dに関する受光強度V1,V2は、温度消光現象の影響等を有しない状態での検出結果であり、紙幣90Fに関する受光強度V1,V2は、温度消光現象の影響等を有する状態での検出結果であるとも表現される。 For example, assume two types of banknotes 90 (90D, 90F) having different degrees of dirt. One is a dirty banknote 90D, and the other is a banknote 90F that is less dirty than the banknote 90D. Furthermore, the received light intensities V1 and V2 for the banknote 90D are the detection results by the standard device, and the received light intensities V1 and V2 for the banknote 90F are detected by a device (generally higher than the standard device) that has a different detection level than the standard device. This is the detection result by a device that detects the intensity of received light. The received light intensities V1 and V2 for the banknote 90D are detection results in a state without the influence of temperature quenching phenomenon, etc., and the reception light intensities V1 and V2 for the banknote 90F are the detection results in a state with the influence of temperature quenching phenomenon etc. It is also expressed as

このような状況において、紙幣90Dに関して取得された受光強度V1と紙幣90Fに関して取得された受光強度V1とが同じ値になる場合がある。ただし、この場合、紙幣90Dに関して取得された差分ΔV2の方が、紙幣90Fに関して取得された差分ΔV2よりも大きくなる。また、当該差分ΔV2は実際の汚れ度合いを反映して大きくなる。詳細には、実際の汚れ度合いが大きいほど差分ΔV2も大きくなる。したがって、単純に受光強度V1のみに基づいて汚れに関する判定を行う場合よりも、実際の汚れ度合いをより正確に判定することが可能である。 In such a situation, the received light intensity V1 acquired for the banknote 90D and the received light intensity V1 acquired for the banknote 90F may have the same value. However, in this case, the difference ΔV2 acquired for the banknote 90D is larger than the difference ΔV2 acquired for the banknote 90F. Further, the difference ΔV2 increases to reflect the actual degree of contamination. Specifically, the greater the actual degree of contamination, the greater the difference ΔV2. Therefore, it is possible to determine the actual degree of contamination more accurately than in the case where a determination regarding contamination is simply made based only on the received light intensity V1.

図13は、これらの2つの紙幣90F,90Dに関する検出結果を簡略化して示す概念図である。図13の左側には紙幣90Fに関する受光強度が示されており、図13の右側には紙幣90Dに関する受光強度が示されている。 FIG. 13 is a conceptual diagram showing simplified detection results regarding these two banknotes 90F and 90D. The left side of FIG. 13 shows the received light intensity for the banknote 90F, and the right side of FIG. 13 shows the received light intensity for the banknote 90D.

図13に示されるように、紙幣90D,90Fの双方に関して値「27」の受光強度V1が検出される場合であっても、2つの紙幣90D,90Fに関する受光強度V2の値は、互いに相違する。たとえば、紙幣90Dに関する受光強度V2は値「9」であり、紙幣90Fに関する受光強度V2は値「13」である。そして、紙幣90Dに関する差分ΔV2は「18」であり、紙幣90Fに関する差分ΔV2は「14」である。このように、差分ΔV2は実際の汚れ度合いを反映して大きくなる。この場合、閾値TH23を適宜の値(たとえば「16」)に設定することによって、紙幣90Dの汚れ度合いをレベルE1として正確に判定することが可能である。このように、受光強度V2をも用いて正規化された指標値である差分ΔV2を用いることによって、装置の個体差の影響等が軽減される。 As shown in FIG. 13, even if the received light intensity V1 of value "27" is detected for both banknotes 90D and 90F, the values of the received light intensity V2 for the two banknotes 90D and 90F are different from each other. . For example, the received light intensity V2 for the banknote 90D has a value of "9", and the received light intensity V2 for the banknote 90F has a value of "13". The difference ΔV2 regarding the banknote 90D is "18", and the difference ΔV2 regarding the banknote 90F is "14". In this way, the difference ΔV2 increases to reflect the actual degree of contamination. In this case, by setting the threshold value TH23 to an appropriate value (for example, "16"), it is possible to accurately determine the degree of dirt on the banknote 90D as the level E1. In this way, by using the difference ΔV2, which is an index value normalized also using the received light intensity V2, the influence of individual differences among devices, etc. is reduced.

なお、ここでは、差分ΔV2に基づいて紙幣90の汚れ度合いが判定されているが、これに限定されず、差分ΔV2に基づいて紙幣90の汚れの有無が判定されてもよい。換言すれば、受光強度V1と受光強度V2との差異D2が所定程度よりも大きい場合、紙幣90が汚れていると判定されてもよい。詳細には、差分ΔV2と所定の閾値(たとえば、TH23あるいはTH22)との大小関係に基づいて、汚れの有無が判定されてもよい。具体的には、当該差分ΔV2が所定の基準値よりも大きい場合には紙幣90は「汚れている」(所定程度以上に汚れている)と判定され、当該差分ΔV2が当該所定の基準値よりも小さい場合には紙幣90は「汚れていない」と判定されてもよい。当該所定の基準値としては、たとえば、閾値TH23(あるいは閾値TH22)が用いられればよい。 Note that here, the degree of dirt on the banknote 90 is determined based on the difference ΔV2, but the present invention is not limited to this, and the presence or absence of dirt on the banknote 90 may be determined based on the difference ΔV2. In other words, if the difference D2 between the received light intensity V1 and the received light intensity V2 is larger than a predetermined value, it may be determined that the banknote 90 is dirty. Specifically, the presence or absence of dirt may be determined based on the magnitude relationship between the difference ΔV2 and a predetermined threshold value (for example, TH23 or TH22). Specifically, if the difference ΔV2 is larger than a predetermined reference value, the banknote 90 is determined to be "dirty" (soiled to a predetermined degree or more), and if the difference ΔV2 is larger than the predetermined reference value. If the difference is also small, the banknote 90 may be determined to be "not dirty". For example, the threshold value TH23 (or threshold value TH22) may be used as the predetermined reference value.

以上のように、受光強度V1,V2(詳細にはその差分ΔV2)を用いることによれば、受光強度V1のみで判定する場合よりも、温度消光現象の影響、光源の劣化の影響、および/または装置の個体差の影響等が軽減される。したがって、汚れに関する判定処理を更に正確に実行することが可能である。 As described above, by using the received light intensities V1 and V2 (specifically, the difference ΔV2), the influence of temperature quenching phenomenon, the influence of light source deterioration, and/or Alternatively, the influence of individual differences among devices is reduced. Therefore, it is possible to perform the determination process regarding dirt more accurately.

<3.第3実施形態>
第3実施形態は、第2実施形態の変形例である。以下では、第2実施形態との相違点を中心に説明する。
<3. Third embodiment>
The third embodiment is a modification of the second embodiment. Below, differences from the second embodiment will be mainly explained.

上記第2実施形態では、「紙幣90内」の蛍光インク非塗布領域C2(肖像衣服領域92)における受光強度V2にも基づいて、紙幣90の汚れに関する判定処理が行われている。しかしながら、これに限定されず、「紙幣90外」の蛍光インク非塗布領域C2における受光強度V2にも基づいて、紙幣90の汚れに関する判定処理が行われてもよい。第3実施形態では、このような態様について説明する。以下では、「紙幣90外」の蛍光インク非塗布領域C2として、汚れ判定装置20のラインセンサユニット50内の板状の部材(板状部材とも称する)59に設けられた領域C23(図14参照)を例示する。 In the second embodiment, the determination process regarding dirt on the banknote 90 is also performed based on the received light intensity V2 in the fluorescent ink non-applied area C2 (portrait clothing area 92) "inside the banknote 90". However, the present invention is not limited to this, and the determination process regarding dirt on the banknote 90 may also be performed based on the received light intensity V2 in the fluorescent ink non-applied area C2 "outside the banknote 90". In the third embodiment, such an aspect will be described. In the following, an area C23 (see FIG. 14) provided on a plate-shaped member (also referred to as a plate-shaped member) 59 in the line sensor unit 50 of the stain determination device 20 will be referred to as a fluorescent ink non-applied area C2 "outside the banknote 90". ) is exemplified.

図14および図15は、第3実施形態に係るラインセンサユニット50を示す図である。 14 and 15 are diagrams showing a line sensor unit 50 according to the third embodiment.

図14等に示されるように、上部ユニット50a用の部材59と下部ユニット50b用の部材59とが設けられている。上部ユニット50a用の部材59は、間隙39を挟んで上部ユニット50aの集光レンズ53に対向する位置、詳細には下部ユニット50bの上面に設けられている。また、下部ユニット50b用の部材59は、間隙39を挟んで下部ユニット50bの集光レンズ53に対向する位置、詳細には上部ユニット50aの下面に設けられている。 As shown in FIG. 14 and the like, a member 59 for the upper unit 50a and a member 59 for the lower unit 50b are provided. The member 59 for the upper unit 50a is provided at a position facing the condensing lens 53 of the upper unit 50a across the gap 39, specifically, on the upper surface of the lower unit 50b. Further, the member 59 for the lower unit 50b is provided at a position facing the condensing lens 53 of the lower unit 50b across the gap 39, specifically, on the lower surface of the upper unit 50a.

図15に示すように、受光部55は、紙幣90の搬送方向に垂直な方向において、紙幣90の長さ(幅)よりも大きな長さを有する状態で配置されている。部材59は、受光部55の伸延方向における一端付近にて、紙幣90の通過部分よりも外側において集光レンズ53および受光部55に対向する位置に設けられる。領域C23は、このような部材59の表面(ひょうめん)に設けられる(図14も参照)。なお、図14は、紙幣90の搬送方向に垂直な方向における部材59の存在位置でラインセンサユニット50を切断した縦断面図である。 As shown in FIG. 15, the light receiving section 55 is arranged so as to have a length larger than the length (width) of the banknote 90 in a direction perpendicular to the conveyance direction of the banknote 90. The member 59 is provided near one end of the light receiving section 55 in the extending direction, at a position facing the condensing lens 53 and the light receiving section 55 outside of the portion through which the banknote 90 passes. The region C23 is provided on the surface of such a member 59 (see also FIG. 14). Note that FIG. 14 is a longitudinal cross-sectional view of the line sensor unit 50 cut at the position where the member 59 is present in the direction perpendicular to the conveyance direction of the banknotes 90.

発光部52も、受光部55と同様に、紙幣90の搬送方向に垂直な方向において、紙幣90の長さ(幅)よりも大きな長さを有する。発光部52からの光(特に励起光(UV光))は、紙幣90に対してのみならず領域C23に対しても照射される。そして、発光部52からの励起光の照射に応じて領域C23で発生した蛍光の受光強度V2が、受光部55によって検出される。 Similarly to the light receiving section 55, the light emitting section 52 also has a length larger than the length (width) of the banknote 90 in the direction perpendicular to the conveyance direction of the banknote 90. Light (particularly excitation light (UV light)) from the light emitting unit 52 is irradiated not only to the banknote 90 but also to the area C23. Then, the light receiving unit 55 detects the received intensity V2 of the fluorescence generated in the region C23 in response to the irradiation of the excitation light from the light emitting unit 52.

領域C23は、蛍光インクが元来は塗布されておらず元来は蛍光反応を有しない領域である。領域C23は、たとえば、非蛍光のインクが塗布された領域、あるいは非蛍光の樹脂等の表面領域などとして形成され、「非蛍光領域」とも称される。なお、領域C23の色は、黒色であることが好ましいが、これに限定されず、白色でもよくその他の色でもよい。 The area C23 is an area where fluorescent ink is not originally applied and does not originally have a fluorescent reaction. The area C23 is formed, for example, as an area coated with non-fluorescent ink or a surface area of non-fluorescent resin, and is also referred to as a "non-fluorescent area." Note that the color of the region C23 is preferably black, but is not limited to this, and may be white or another color.

領域C23はラインセンサユニット50内部に設けられており、領域C23に対しては人間の手垢等が付着しにくい。領域C23は、紙幣90内の蛍光インク非塗布領域C2よりも汚れ発生の可能性が低い領域である。したがって、領域C23は、その蛍光反応の経時変化の程度(蛍光の受光強度の経時変化(増大)の程度)が紙幣90内の蛍光インク非塗布領域C1(透かし領域91等)よりも小さな領域である。 The region C23 is provided inside the line sensor unit 50, and human hand grime and the like are unlikely to adhere to the region C23. The area C23 is an area where the possibility of staining is lower than the fluorescent ink non-applied area C2 in the banknote 90. Therefore, the area C23 is an area in which the degree of change over time in the fluorescence reaction (the degree of change (increase) in the received fluorescence intensity over time) is smaller than the non-applied fluorescent ink area C1 (watermark area 91, etc.) in the banknote 90. be.

この第3実施形態でも、第2実施形態と同様の判定処理等が行われる。ただし、発光部52からの励起光の照射に応じて領域C23で発生した蛍光の受光強度V2を用いる点で第2実施形態と相違する。このような態様によっても、第2実施形態と同様の効果を得ることが可能である。 In this third embodiment as well, the same determination processing and the like as in the second embodiment are performed. However, this embodiment differs from the second embodiment in that the received intensity V2 of fluorescence generated in the region C23 in response to the irradiation of excitation light from the light emitting section 52 is used. With this aspect as well, it is possible to obtain the same effects as in the second embodiment.

また、第3実施形態においては、汚れ判定装置20内の部材59に設けられた領域C23からの蛍光の受光強度V2に基づいて、紙葉類(紙幣90)の汚れに関する判定処理が行われている。したがって、紙葉類の汚れに関する更に高精度の判定を実現することが可能である。 Further, in the third embodiment, a determination process regarding stains on paper sheets (banknotes 90) is performed based on the received intensity V2 of fluorescence from a region C23 provided in the member 59 in the stain determination device 20. There is. Therefore, it is possible to realize even more accurate determination regarding dirt on paper sheets.

より詳細には、上述のように、紙幣90の外部且つ汚れ判定装置20の内部の領域C23は、紙幣90内の蛍光インク非塗布領域C2よりも汚れ発生の可能性が低い領域である。特に、領域C23は、紙幣90内の領域とは異なり、人の手などによって触れられる機会を殆ど有しない領域である。それ故、領域C23の蛍光反応は殆ど増大せず一定である。したがって、領域C23からの蛍光の受光強度V2は、受光強度の正規化における基準として非常に良好に機能する。換言すれば、領域C23は、蛍光の受光強度に関する基準領域(詳細には、非蛍光の基準領域)として非常に良好に機能する。このような領域C23からの蛍光の受光強度V2をも用いて紙葉類の汚れに関する判定処理が行われるので、紙葉類の汚れに関する更に高精度の判定を実現することが可能である。 More specifically, as described above, the area C23 outside the banknote 90 and inside the stain determination device 20 is an area where the possibility of staining is lower than the fluorescent ink non-applied area C2 inside the banknote 90. In particular, the area C23 is an area that has almost no chance of being touched by human hands, unlike the area within the banknote 90. Therefore, the fluorescence reaction in region C23 hardly increases and remains constant. Therefore, the received light intensity V2 of the fluorescence from the region C23 functions very well as a reference for normalizing the received light intensity. In other words, the region C23 functions very well as a reference region (specifically, a non-fluorescent reference region) regarding the received fluorescence intensity. Since the intensity V2 of the received fluorescence from the area C23 is also used to determine the stains on the paper sheets, it is possible to achieve a more accurate determination regarding the stains on the sheets.

また、温度消光減少の影響を抑制するためには、部材59の温度と紙幣90の温度とが同程度になるように管理されることが好ましい。たとえば、処理対象の紙幣90と紙葉類処理装置10との双方を処理前において同じ室内にて一定時間に亘って放置することなどによって、部材59と紙幣90とが同程度の温度を有する状況が形成されればよい。 Further, in order to suppress the influence of temperature quenching reduction, it is preferable that the temperature of the member 59 and the temperature of the banknote 90 be controlled to be approximately the same. For example, by leaving both banknotes 90 to be processed and the paper sheet processing apparatus 10 in the same room for a certain period of time before processing, a situation where the member 59 and the banknote 90 have approximately the same temperature is created. should be formed.

なお、上記実施形態では、領域C23が受光部55に対向する位置に設けられているが、これに限定されない。たとえば、領域C23は、受光センサの読取範囲(当該領域C23からの蛍光を受光部55が受光可能な範囲)内の他の位置に設けられてもよい。より詳細には、領域C23は、上述の位置(図14および図15等)よりも搬送方向における下流側あるいは上流側に若干ずれた位置等に設けられてもよい。 Note that in the above embodiment, the region C23 is provided at a position facing the light receiving section 55, but the present invention is not limited thereto. For example, the region C23 may be provided at another position within the reading range of the light receiving sensor (the range in which the light receiving section 55 can receive fluorescence from the region C23). More specifically, the region C23 may be provided at a position slightly shifted downstream or upstream in the conveyance direction from the above-mentioned position (FIG. 14, FIG. 15, etc.).

<4.第4実施形態>
第4実施形態および第5実施形態は、第2実施形態および第3実施形態の変形例である。以下では、第2実施形態等との相違点を中心に説明する。
<4. Fourth embodiment>
The fourth embodiment and the fifth embodiment are modifications of the second embodiment and the third embodiment. In the following, differences from the second embodiment and the like will be mainly described.

上記第2実施形態および第3実施形態においては、蛍光インク非塗布領域C1からの蛍光の受光強度V1と、蛍光インク非塗布領域C2からの蛍光の受光強度V2とに基づいて、汚れに関する判定が行われている。 In the second and third embodiments described above, the determination regarding dirt is made based on the received fluorescence intensity V1 from the fluorescent ink non-applied area C1 and the received fluorescent light intensity V2 from the fluorescent ink non-applied area C2. It is being done.

一方、第4実施形態および第5実施形態においては、蛍光インク非塗布領域C1からの蛍光の受光強度V1と、「蛍光反応基準領域C3」(次述)からの蛍光の受光強度V3とに基づいて、汚れに関する判定が行われる態様について説明する。 On the other hand, in the fourth embodiment and the fifth embodiment, based on the received fluorescence intensity V1 from the fluorescent ink non-applied area C1 and the received fluorescence intensity V3 from the "fluorescence reaction reference area C3" (described below). Now, the manner in which the determination regarding dirt is made will be explained.

ここで、「蛍光反応基準領域C3」は、元来は一定程度の蛍光反応を示す基準領域である。第4実施形態では、紙幣90内の蛍光反応基準領域C3(領域C1とは異なる領域)を例示し、第5実施形態では、紙幣90外の蛍光反応基準領域C3を例示する。 Here, the "fluorescence reaction reference area C3" is originally a reference area that exhibits a certain degree of fluorescence reaction. In the fourth embodiment, a fluorescence reaction reference region C3 (a region different from the region C1) inside the banknote 90 is illustrated, and in the fifth embodiment, a fluorescence reaction reference region C3 outside the banknote 90 is illustrated.

第4実施形態においては、蛍光反応基準領域C3として印影領域93を例示する。 In the fourth embodiment, a seal imprint area 93 is illustrated as the fluorescence reaction reference area C3.

上述のように、印影領域93は、元来は蛍光インク(たとえば赤色の蛍光インク)が塗布されていた領域であり、元来は一定程度の蛍光反応を示す基準領域である。たとえば、図7の紙幣90A内の印影領域93においては所定程度よりも大きな蛍光反応が検出される。図7では、紙幣90A内の印影領域93からの蛍光の受光強度V3は、紙幣90A内の透かし領域91からの蛍光の受光強度V1よりも(所定程度以上に)大きいこと、などが示されている。特に、印影領域93からの蛍光の赤色波長域成分は他の領域(透かし領域91等)からの蛍光の赤色波長域成分(および緑色波長域成分等)よりも非常に大きいこと、などが示されている。 As described above, the imprint area 93 is an area where fluorescent ink (for example, red fluorescent ink) was originally applied, and is originally a reference area that exhibits a certain level of fluorescent reaction. For example, a fluorescence reaction larger than a predetermined level is detected in the seal imprint area 93 in the banknote 90A in FIG. 7 . In FIG. 7, it is shown that the received fluorescence intensity V3 from the stamp area 93 in the banknote 90A is higher (by a predetermined degree or more) than the received fluorescence intensity V1 from the watermark area 91 in the banknote 90A. There is. In particular, it has been shown that the red wavelength range component of the fluorescence from the seal imprint area 93 is much larger than the red wavelength range component (and green wavelength range component, etc.) of the fluorescence from other areas (watermark area 91 etc.). ing.

また、印影領域93においては、元来塗布されていた蛍光インクが、紙幣90の市場流通期間の経過等に伴って徐々に損耗していく。その結果、印影領域93からの蛍光の受光強度V3(特に赤色波長域成分)は、市場での紙幣90の流通期間の経過等に伴って徐々に低下していく(図7~図10参照)。 Further, in the stamp area 93, the fluorescent ink that was originally applied gradually wears out as the banknote 90 is distributed on the market. As a result, the intensity V3 of the fluorescence received from the stamp area 93 (particularly the red wavelength component) gradually decreases as the circulation period of the banknote 90 in the market passes (see FIGS. 7 to 10). .

一方、上述のように、透かし領域91などの蛍光インク非塗布領域C1においては、紙幣90の市場流通期間の経過等に伴い、人間の手垢等の付着によって汚れの度合いが徐々に大きくなる傾向が存在する。 On the other hand, as described above, in the fluorescent ink non-applied area C1 such as the watermark area 91, the degree of contamination tends to gradually increase due to the adhesion of human hand marks etc. as the market circulation period of the banknote 90 progresses. exist.

すなわち、紙幣90の市場流通期間の経過等に伴って、蛍光インク非塗布領域C1からの蛍光の受光強度V1は徐々に増大し、逆に、蛍光反応基準領域C3からの蛍光の受光強度V3は徐々に減少する。詳細には、受光強度V3よりも小さかった受光強度V1が徐々に増大し、受光強度V1よりも大きかった受光強度V3が徐々に減少する。この結果、紙幣90の市場流通期間の経過等に伴って、受光強度V1との受光強度V3との差異D3は徐々に小さくなる(図16参照)。図16は、紙幣90の市場流通期間の経過等に伴って、差異D3が減少していく様子を示す概念図である。図16の左側には紙幣90Aに関する受光強度が示されており、図16の右側には紙幣90Dに関する受光強度が示されている。 That is, as the market circulation period of the banknote 90 passes, the received fluorescence intensity V1 from the fluorescent ink non-applied area C1 gradually increases, and conversely, the received fluorescence intensity V3 from the fluorescence reaction reference area C3 increases. gradually decreases. Specifically, the received light intensity V1, which was smaller than the received light intensity V3, gradually increases, and the received light intensity V3, which was larger than the received light intensity V1, gradually decreases. As a result, the difference D3 between the received light intensity V1 and the received light intensity V3 gradually decreases as the market circulation period of the banknote 90 passes (see FIG. 16). FIG. 16 is a conceptual diagram showing how the difference D3 decreases as the market circulation period of the banknote 90 passes. The left side of FIG. 16 shows the received light intensity for the banknote 90A, and the right side of FIG. 16 shows the received light intensity for the banknote 90D.

なお、蛍光反応基準領域C3(印影領域93)からの蛍光の受光強度V3はほとんど変化(低減)しないこともある。ただし、この場合でも、蛍光インク非塗布領域C1からの蛍光の受光強度V1の増大に伴って、受光強度V1との受光強度V3との差異D3は徐々に小さくなる。 Note that the received intensity V3 of the fluorescence from the fluorescence reaction reference area C3 (imprint area 93) may hardly change (reduce). However, even in this case, the difference D3 between the received light intensity V1 and the received light intensity V3 gradually decreases as the received light intensity V1 of the fluorescent light from the non-applied fluorescent ink area C1 increases.

上述のような性質を利用し、第4実施形態に係る汚れ判定装置20は、受光強度V1との受光強度V3との差異D3に基づいて、紙幣90の汚れに関して判定する。具体的には、汚れ判定装置20は、差異D3に基づいて紙幣90の汚れ度合いを判定する。詳細には、差異D3が小さいほど紙幣90の汚れ度合いが大きいと判定される。より詳細には、差異D3(詳細には、値βあるいは値ΔV3)と1又は複数の閾値との大小関係に基づき、紙幣90の汚れ度合いが複数の段階(たとえば、レベルE1~E4)に分けて判定される。 Utilizing the above properties, the stain determination device 20 according to the fourth embodiment determines whether the banknote 90 is soiled based on the difference D3 between the received light intensity V1 and the received light intensity V3. Specifically, the stain determination device 20 determines the degree of stain on the banknote 90 based on the difference D3. Specifically, it is determined that the smaller the difference D3 is, the greater the degree of dirt on the banknote 90 is. More specifically, the degree of dirt on the banknote 90 is divided into a plurality of levels (for example, levels E1 to E4) based on the magnitude relationship between the difference D3 (more specifically, the value β or the value ΔV3) and one or more threshold values. will be determined.

ただし、これに限定されず、紙幣90の汚れの有無(紙幣90が汚れているか否か)が、差異D3に基づいて判定されてもよい。詳細には、受光強度V1と受光強度V3との差異D3が所定程度よりも小さい場合、紙幣90が汚れている、と判定されてもよい。 However, the present invention is not limited to this, and the presence or absence of dirt on the banknote 90 (whether or not the banknote 90 is dirty) may be determined based on the difference D3. Specifically, if the difference D3 between the received light intensity V1 and the received light intensity V3 is smaller than a predetermined value, it may be determined that the banknote 90 is dirty.

ここにおいて、受光強度V1と受光強度V3との差異D3は、たとえば、受光強度V1と受光強度V3との差分ΔV3であってもよく、受光強度V1と受光強度V3との比βなどであってもよい。詳細には、差分ΔV3は、受光強度V3から受光強度V1を差し引いた差分値(ΔV3=V3-V1)であり、比βは、受光強度V1に対する受光強度V3の比の値(β=V3/V1)である。このように、たとえば、値βあるいは値ΔV3が、汚れ度合いを表す指標値として用いられればよい。 Here, the difference D3 between the received light intensity V1 and the received light intensity V3 may be, for example, the difference ΔV3 between the received light intensity V1 and the received light intensity V3, or the ratio β between the received light intensity V1 and the received light intensity V3, etc. Good too. Specifically, the difference ΔV3 is the difference value obtained by subtracting the received light intensity V1 from the received light intensity V3 (ΔV3=V3-V1), and the ratio β is the value of the ratio of the received light intensity V3 to the received light intensity V1 (β=V3/ V1). In this way, for example, the value β or the value ΔV3 may be used as an index value representing the degree of contamination.

以上のような態様によれば、第1実施形態~第3実施形態と同様に、蛍光インク非塗布領域C1からの蛍光の受光強度V1に基づいて、紙幣90(紙葉類)の汚れに関する判定処理が行われている。したがって、紙幣90の汚れに関する高精度の判定を実現することが可能である。 According to the aspect described above, similarly to the first to third embodiments, the determination regarding dirt on the banknote 90 (paper sheet) is made based on the received intensity V1 of the fluorescence from the fluorescent ink non-applied area C1. Processing is taking place. Therefore, it is possible to realize highly accurate determination regarding dirt on banknotes 90.

また、特に、受光強度V1のみならず、同じ紙幣90内の別の領域(蛍光反応基準領域C3)からの蛍光の受光強度V3にも基づき、紙幣90(紙葉類)の汚れに関する判定処理が行われている。詳細には、受光強度V1と受光強度V3との差異D3に基づいて、紙幣90(紙葉類)の汚れに関する判定処理が行われる。受光強度V1,V3の差異D3は、(受光強度V1と)基準としての受光強度V3(基準受光強度)との比較結果であり、受光強度V1自体に比べて正規化されている。換言すれば、受光強度V1は、受光強度V3を用いて正規化されている。また、蛍光反応基準領域C3は、蛍光インク非塗布領域C1からの蛍光の受光強度V1を正規化するための基準領域である。 In particular, the determination process regarding dirt on the banknote 90 (paper sheet) is performed based not only on the received light intensity V1 but also on the received light intensity V3 of fluorescence from another area (fluorescence reaction reference area C3) within the same banknote 90. It is being done. Specifically, a determination process regarding dirt on the banknote 90 (paper sheet) is performed based on the difference D3 between the received light intensity V1 and the received light intensity V3. The difference D3 between the received light intensities V1 and V3 is a comparison result between the received light intensity V1 and the reference received light intensity V3 (reference received light intensity), and is normalized compared to the received light intensity V1 itself. In other words, the received light intensity V1 is normalized using the received light intensity V3. Further, the fluorescence reaction reference area C3 is a reference area for normalizing the received intensity V1 of the fluorescence from the fluorescent ink non-applied area C1.

なお、受光強度V3が経時的にほぼ変化しない場合には、受光強度V3および蛍光反応基準領域C3は正規化のための基準として特に有効に機能する。また、受光強度V3が経時的に減少していく場合であっても、受光強度V3は、受光強度V1の検出領域(蛍光インク非塗布領域C1)と同じ紙幣90内の蛍光反応基準領域C3からの蛍光の受光強度である。したがって、受光強度V3および蛍光反応基準領域C3は正規化のための基準として有効に機能する。 Note that when the received light intensity V3 does not substantially change over time, the received light intensity V3 and the fluorescence reaction reference region C3 function particularly effectively as standards for normalization. Further, even if the received light intensity V3 decreases over time, the received light intensity V3 is determined from the fluorescence reaction reference area C3 in the banknote 90 that is the same as the detection area (fluorescent ink non-applied area C1) of the received light intensity V1. is the received intensity of fluorescence. Therefore, the received light intensity V3 and the fluorescence reaction reference area C3 effectively function as standards for normalization.

このような判定処理によれば、受光強度V1のみを用いて判定する場合よりも、紙幣90の汚れに関して更に高精度の判定を実現することが可能である。より詳細には、たとえば、汚れ判定装置の個体差の影響を抑制することが可能であり、光源の劣化の影響を抑制することが可能である。また、蛍光の温度消光現象の影響を抑制することも可能である。 According to such a determination process, it is possible to realize a more accurate determination regarding dirt on the banknote 90 than in the case of determination using only the received light intensity V1. More specifically, for example, it is possible to suppress the influence of individual differences in dirt determination devices, and it is possible to suppress the influence of deterioration of the light source. It is also possible to suppress the influence of temperature quenching of fluorescence.

さらに、この実施形態においては、紙幣90全体の汚れ度合いの増大に伴って、受光強度V3が徐々に減少し且つ受光強度V1が徐々に増大する。詳細には、受光強度V1よりも大きかった受光強度V3が徐々に減少し、受光強度V3よりも小さかった受光強度V1が徐々に増大する。このように受光強度V1と受光強度V3とが逆向きに変化する。この場合、受光強度V1と受光強度V3との差異D3は、一般的に差異D2よりも大きく変化する。したがって、第2実施形態に比べて、紙幣90の汚れの変化を感度良く把握することが可能である。 Furthermore, in this embodiment, as the degree of dirt on the entire banknote 90 increases, the received light intensity V3 gradually decreases and the received light intensity V1 gradually increases. Specifically, the received light intensity V3, which was higher than the received light intensity V1, gradually decreases, and the received light intensity V1, which was lower than the received light intensity V3, gradually increases. In this way, the received light intensity V1 and the received light intensity V3 change in opposite directions. In this case, the difference D3 between the received light intensity V1 and the received light intensity V3 generally changes more than the difference D2. Therefore, compared to the second embodiment, it is possible to grasp changes in dirt on the banknotes 90 with higher sensitivity.

なお、受光強度V3は、たとえば、印影領域93の全領域(2次元的(面的)な拡がりを有する全領域)に亘る複数の位置における受光強度の平均値(あるいは最大値)として算出されればよい。ただし、これに限定されず、たとえば、印影領域93の一部の領域(2次元状領域あるいは1次元状領域)内の複数の位置での受光強度の平均値(あるいは最大値)として受光強度V3が算出されてもよい。 Note that the received light intensity V3 is calculated, for example, as the average value (or maximum value) of the received light intensity at a plurality of positions over the entire area of the seal imprint area 93 (the entire area having a two-dimensional (area) spread). Bye. However, the invention is not limited to this, and for example, the received light intensity V3 is the average value (or maximum value) of the received light intensities at a plurality of positions in a part of the seal imprint area 93 (two-dimensional area or one-dimensional area). may be calculated.

また、紙幣90内の各位置での蛍光の受光強度としては、たとえば、蛍光の複数の波長域別成分のうちの一の波長域成分(たとえば、緑色の波長域成分、あるいは赤色の波長域成分)のみに関する受光強度が用いられる。 In addition, the received intensity of fluorescence at each position within the banknote 90 may be, for example, one of the wavelength range components of the fluorescence (for example, the green wavelength range component or the red wavelength range component). ) is used.

より詳細には、蛍光インク非塗布領域C1に関しては緑色波長域の蛍光の受光強度(図7等の曲線Lg参照)が受光強度V1として算出され、蛍光反応基準領域C3に関しては赤色波長域の蛍光の受光強度(図7等の曲線Lr参照)が受光強度V2として算出される。換言すれば、励起光の照射に応じた蛍光インク非塗布領域C1からの蛍光のうち緑色の特定波長域の蛍光の受光強度V1と、励起光の照射に応じた蛍光反応基準領域C3からの蛍光のうち赤色の特定波長域の蛍光の受光強度V3とが用いられる。このように各領域C1,C3に関して、それぞれ適した互いに異なる特定波長域の蛍光の受光強度が求められることが好ましい。これによれば、蛍光インク非塗布領域C1と蛍光反応基準領域C3とで互いに異なる波長域の蛍光の受光強度が検出されるので、領域ごとの特徴的な波長域の蛍光を考慮し、紙葉類の汚れに関する更に高精度の判定を実現することが可能である。 More specifically, for the non-applied area C1 of fluorescent ink, the received intensity of fluorescence in the green wavelength range (see curve Lg in FIG. 7, etc.) is calculated as the received intensity V1, and for the fluorescence reaction reference area C3, the intensity of fluorescence in the red wavelength range is calculated as the received intensity V1. The received light intensity (see curve Lr in FIG. 7, etc.) is calculated as the received light intensity V2. In other words, the received intensity V1 of the fluorescence in a specific wavelength range of green among the fluorescence from the fluorescent ink non-applied area C1 in response to the irradiation with the excitation light, and the fluorescence from the fluorescence reaction reference region C3 in response to the irradiation with the excitation light. Of these, the received intensity V3 of fluorescence in a specific red wavelength range is used. In this way, it is preferable to find suitable fluorescence reception intensities in different specific wavelength ranges for each of the regions C1 and C3. According to this, since the received intensity of fluorescence in different wavelength ranges is detected in the fluorescent ink non-applied area C1 and the fluorescence reaction reference area C3, paper sheets are It is possible to realize even more accurate determination regarding types of dirt.

ただし、これに限定されず、各領域C1,C3に関して、蛍光の同じ特定波長域(たとえば、いずれも赤色の特定波長域(あるいは、いずれも緑色の特定波長域))の受光強度がそれぞれ受光強度V1,V3として用いられてもよい。この場合、蛍光反応基準領域C3にて経時的に減少していく特定波長域成分が用いられればよい。たとえば、赤色の蛍光インクが元来塗布されていた蛍光反応基準領域C3(印影領域93)においては、上述のように、赤色波長域成分が経時的に減少していく。この場合には、領域C3からの蛍光のうち赤色波長域の蛍光の受光強度V3と、領域C1からの蛍光のうち赤色波長域の蛍光の受光強度V1とが用いられればよい。同様に、蛍光反応基準領域C3にて緑色の蛍光インクが元来塗布されていた場合には、領域C3からの蛍光のうち緑色波長域の蛍光の受光強度V3と領域C1からの蛍光のうち緑色波長域の蛍光の受光強度V1とが用いられればよい。 However, this is not limited to this, and for each region C1 and C3, the received light intensity of the same specific wavelength range of fluorescence (for example, both red specific wavelength ranges (or both green specific wavelength ranges)) is the received light intensity. It may be used as V1 and V3. In this case, a specific wavelength range component that decreases over time in the fluorescence reaction reference region C3 may be used. For example, in the fluorescence reaction reference region C3 (imprint region 93) to which red fluorescent ink was originally applied, the red wavelength range component decreases over time as described above. In this case, the received light intensity V3 of the fluorescence in the red wavelength range among the fluorescence from the region C3 and the received light intensity V1 of the fluorescence in the red wavelength range among the fluorescence from the region C1 may be used. Similarly, if green fluorescent ink was originally applied in the fluorescence reaction reference region C3, the received intensity V3 of the fluorescence in the green wavelength range among the fluorescence from the region C3 and the green fluorescence among the fluorescence from the region C1. The received fluorescence intensity V1 in the wavelength range may be used.

あるいは、紙幣90内の各位置での蛍光の受光強度として、当該蛍光の複数の波長域別成分に関する受光強度の平均値(換言すれば、グレースケール画像の各画素値)が用いられてもよい。 Alternatively, the average value of the received light intensity regarding a plurality of wavelength range components of the fluorescence (in other words, each pixel value of the grayscale image) may be used as the received fluorescence intensity at each position within the banknote 90. .

また、上記実施形態においては、紙幣90内において、蛍光インクが元来塗布されている領域として、印影領域93のみが存在しているが、これに限定されない。たとえば、上述のように、蛍光インクが元来塗布されている領域として、印影領域93以外の他の領域が存在してもよい。その場合、当該他の領域が蛍光反応基準領域C3として利用されてもよく、あるいは印影領域93が蛍光反応基準領域C3として利用されてもよい。 Further, in the embodiment described above, only the seal imprint area 93 exists as an area originally coated with fluorescent ink in the banknote 90, but the present invention is not limited to this. For example, as described above, an area other than the stamp area 93 may exist as an area originally coated with fluorescent ink. In that case, the other area may be used as the fluorescence reaction reference area C3, or the stamp area 93 may be used as the fluorescence reaction reference area C3.

<5.第5実施形態>
第5実施形態は、第4実施形態の変形例である。以下では、第4実施形態との相違点を中心に説明する。
<5. Fifth embodiment>
The fifth embodiment is a modification of the fourth embodiment. Below, differences from the fourth embodiment will be mainly explained.

上記第4実施形態では、「紙幣90内」の蛍光反応基準領域C3(具体的には、印影領域93)における受光強度V3にも基づいて、紙幣90の汚れに関する判定処理が行われている。しかしながら、これに限定されず、「紙幣90外」の蛍光反応基準領域C3における受光強度V3にも基づいて、紙幣90の汚れに関する判定処理が行われてもよい。第5実施形態では、このような態様について説明する。以下では、「紙幣90外」の蛍光反応基準領域C3として、ラインセンサユニット50の蛍光板59B内の蛍光領域C35(図17および図18参照)を例示する。 In the fourth embodiment, the determination process regarding dirt on the banknote 90 is also performed based on the received light intensity V3 in the fluorescence reaction reference area C3 (specifically, the seal imprint area 93) "inside the banknote 90". However, the present invention is not limited to this, and the determination process regarding dirt on the banknote 90 may also be performed based on the received light intensity V3 in the fluorescence reaction reference region C3 "outside the banknote 90". In the fifth embodiment, such an aspect will be described. In the following, a fluorescent region C35 (see FIGS. 17 and 18) in the fluorescent screen 59B of the line sensor unit 50 will be exemplified as the fluorescent reaction reference region C3 "outside the banknote 90."

蛍光板59Bは、蛍光物質が塗布等された板状の部材であり、元来は一定程度の蛍光反応を示す部材である。蛍光領域C35は、蛍光板59B内の全部または一部の表面(ひょうめん)に設けられた領域であり、元来、一定程度の蛍光反応を示す基準領域である。すなわち、蛍光領域C35は、蛍光反応基準領域C3の一つである。 The fluorescent plate 59B is a plate-shaped member coated with a fluorescent substance, and is originally a member that exhibits a certain degree of fluorescent reaction. The fluorescent region C35 is a region provided on all or a part of the surface of the fluorescent screen 59B, and is originally a reference region that exhibits a certain degree of fluorescent reaction. That is, the fluorescent region C35 is one of the fluorescent reaction reference regions C3.

たとえば、蛍光領域C35は、励起光の照射に応じて特定波長域の蛍光(たとえば、赤色の蛍光、緑色の蛍光、あるいは青色の蛍光等)を発する領域である。なお、蛍光領域C35は、損耗を避けることが可能な場所に設けられることが好ましい。ここでは、蛍光領域C35は、蛍光板59Bの表面(ひょうめん)に設けられているが、これに限定されず、蛍光領域C35は、蛍光板59B以外の部材の表面(ひょうめん)において蛍光インクが塗布された領域等であってもよい。 For example, the fluorescent region C35 is a region that emits fluorescence in a specific wavelength range (for example, red fluorescence, green fluorescence, blue fluorescence, etc.) in response to irradiation with excitation light. Note that it is preferable that the fluorescent region C35 be provided at a location where wear and tear can be avoided. Here, the fluorescent region C35 is provided on the surface of the fluorescent plate 59B, but the present invention is not limited to this, and the fluorescent region C35 is provided with fluorescent ink on the surface of a member other than the fluorescent plate 59B. It may also be an area where the

蛍光領域C35は、第3実施形態に係る領域C23と同様の位置に設けられればよい。ただし、図18においては、蛍光領域C35は、受光部55の伸延方向において領域C23(図15参照)とは反対側の端部付近に設けられている。これに限定されず、蛍光領域C35は、受光部55の伸延方向において領域C23と同じ側の端部付近に設けられてもよい。 The fluorescent region C35 may be provided at the same position as the region C23 according to the third embodiment. However, in FIG. 18, the fluorescent region C35 is provided near the end on the opposite side from the region C23 (see FIG. 15) in the extending direction of the light receiving section 55. The fluorescent region C35 is not limited to this, and the fluorescent region C35 may be provided near the end on the same side as the region C23 in the extending direction of the light receiving section 55.

図17および図18に示されるように、発光部52からの光は、紙幣90に対してのみならず蛍光領域C35に対しても照射され得る。図18に示されるように、受光部55は、紙幣90の搬送方向に垂直な方向において、紙幣90の長さ(幅)よりも大きな長さを有する状態で配置されている。領域C35は、受光部55の伸延方向における一端付近にて、当該受光部55に対向するように配置されており、紙幣90の通過部分よりも外側に設けられている。 As shown in FIGS. 17 and 18, the light from the light emitting section 52 can be irradiated not only to the bill 90 but also to the fluorescent region C35. As shown in FIG. 18, the light receiving section 55 is arranged so as to have a length larger than the length (width) of the banknote 90 in a direction perpendicular to the conveyance direction of the banknote 90. The region C35 is arranged near one end of the light receiving section 55 in the extending direction so as to face the light receiving section 55, and is provided outside the portion through which the banknote 90 passes.

このような領域C35に対しても、紙幣90と同様に励起光(UV光)が照射され、領域C35で発生した蛍光の受光強度V3が受光部55によって検出される。 The region C35 is also irradiated with excitation light (UV light) in the same manner as the banknote 90, and the light receiving unit 55 detects the received intensity V3 of the fluorescence generated in the region C35.

第5実施形態では、発光部52からの励起光の照射に応じて領域C35で発生した蛍光の受光強度V3を用いて、第4実施形態と同様の判定処理等が行われる。これによっても、第4実施形態と同様の効果を得ることが可能である。 In the fifth embodiment, the same determination process as in the fourth embodiment is performed using the received intensity V3 of fluorescence generated in the region C35 in response to the irradiation of excitation light from the light emitting unit 52. This also makes it possible to obtain the same effects as in the fourth embodiment.

特に、第5実施形態においては、汚れ判定装置内の部材59に設けられた蛍光領域C35からの蛍光の受光強度に基づいて、紙幣90(紙葉類)の汚れに関する判定処理が行われている。したがって、紙葉類の汚れに関する更に高精度の判定を実現することが可能である。より詳細には、蛍光領域C35は、汚れ判定装置20内部に存在する領域であり、紙幣90内の蛍光反応基準領域C3よりも損耗の発生可能性が低い領域である。それ故、蛍光領域C35からの蛍光の受光強度V3は、受光強度の正規化における基準として非常に良好に機能する。換言すれば、蛍光領域C35は、蛍光の受光強度に関する基準領域(詳細には、一定程度の蛍光反応を示す基準領域)として非常に良好に機能する。このような蛍光領域C35からの蛍光の受光強度V3をも用いて紙葉類の汚れに関する判定処理が行われるので、紙葉類の汚れに関する更に高精度の判定を実現することが可能である。 In particular, in the fifth embodiment, determination processing regarding dirt on banknotes 90 (paper sheets) is performed based on the intensity of received fluorescence from fluorescent region C35 provided in member 59 in the dirt determination device. . Therefore, it is possible to realize even more accurate determination regarding dirt on paper sheets. More specifically, the fluorescent area C35 is an area that exists inside the stain determination device 20, and is an area where the possibility of occurrence of wear and tear is lower than that of the fluorescent reaction reference area C3 inside the banknote 90. Therefore, the received light intensity V3 of the fluorescence from the fluorescent region C35 functions very well as a reference for normalizing the received light intensity. In other words, the fluorescent region C35 functions very well as a reference region regarding the intensity of received fluorescence (specifically, a reference region that exhibits a certain degree of fluorescence reaction). Since the determination process regarding the dirt on the paper sheet is performed using also the intensity V3 of the received fluorescence from the fluorescent region C35, it is possible to realize a more accurate determination regarding the dirt on the paper sheet.

また、紙幣90の外部の蛍光領域C35からの蛍光の受光強度V3を利用することによれば、紙幣90内(励起光照射面内)に蛍光インクが塗布されていない場合でも、紙幣90の汚れに関する判定を高精度に実現することが可能である。 Furthermore, by using the received fluorescence intensity V3 from the fluorescent region C35 outside the banknote 90, even when the inside of the banknote 90 (inside the excitation light irradiation surface) is not coated with fluorescent ink, the banknote 90 becomes dirty. It is possible to realize highly accurate judgment regarding the above.

なお、上記実施形態では、蛍光領域C35が受光部55に対向する位置に設けられているが、これに限定されない。たとえば、蛍光領域C35は、受光センサの読取範囲(当該蛍光領域C35からの蛍光を受光部55が受光可能な範囲)内の他の位置に設けられてもよい。より詳細には、蛍光領域C35は、上述の位置(図17および図18等)よりも搬送方向における下流側あるいは上流側に若干ずれた位置等に設けられてもよい。 Note that in the above embodiment, the fluorescent region C35 is provided at a position facing the light receiving section 55, but the fluorescent region C35 is not limited thereto. For example, the fluorescent region C35 may be provided at another position within the reading range of the light receiving sensor (the range in which the light receiving section 55 can receive fluorescence from the fluorescent region C35). More specifically, the fluorescent region C35 may be provided at a position slightly shifted downstream or upstream in the transport direction from the above-mentioned position (FIG. 17, FIG. 18, etc.).

<6.第6実施形態>
上記第1実施形態においては、蛍光インク非塗布領域C1(透かし領域91等)の受光強度V1に関する1つの指標値に基づいて、紙幣90の汚れに関する判定処理が行われているが、これに限定されない。受光強度V1に関する波長域別の2つの指標値(波長域別の受光強度)に基づいて、紙幣90の汚れに関する判定処理が行われてもよい。例えば、蛍光インク非塗布領域C1に関する或る波長域の蛍光の受光強度V11と、同じ領域C1に関する別の波長域の蛍光の受光強度V12との差異D6に基づいて、紙幣90の汚れに関する判定処理が行われてもよい。第6実施形態では、このような態様について説明する。
<6. Sixth embodiment>
In the first embodiment, the determination process regarding dirt on the banknote 90 is performed based on one index value regarding the received light intensity V1 of the fluorescent ink non-applied area C1 (watermark area 91, etc.), but this is not limited to this. Not done. A determination process regarding dirt on the banknote 90 may be performed based on two index values for each wavelength range (received light intensity for each wavelength range) regarding the received light intensity V1. For example, the determination process regarding dirt on the banknote 90 is performed based on the difference D6 between the received intensity V11 of fluorescence in a certain wavelength range regarding the non-applied fluorescent ink area C1 and the received intensity V12 of fluorescence in another wavelength range regarding the same area C1. may be performed. In the sixth embodiment, such an aspect will be described.

図7~図10に示されるように、紙幣90の市場流通期間の増大(ひいては汚れの増大)に伴って、蛍光インク非塗布領域C1(たとえば透かし領域91)に関して受光強度V11と受光強度V12との差異D6が徐々に大きくなる。 As shown in FIGS. 7 to 10, as the period of market circulation of banknotes 90 increases (as a result, the amount of dirt increases), the received light intensity V11 and the received light intensity V12 change with respect to the fluorescent ink non-applied area C1 (for example, the watermark area 91). The difference D6 gradually increases.

図7の紙幣90Aでは、透かし領域91における緑色波長域の蛍光の受光強度V11(曲線Lg参照)と当該透かし領域91における赤色波長域の蛍光の受光強度V12(曲線Lr参照)との差異D6は小さい(図19も参照)。図19は、汚れの増大に応じて差異D6が増大する様子を簡略化して示す概念図である。なお、図19では、透かし領域91からの蛍光のうち2つの波長域の蛍光の受光強度V11,V12が、図示の都合上、左右方向において異なる位置に示されている。当該2つの受光強度V11,V12は、実際には、透かし領域91内の同じ位置からの蛍光の受光強度であることが好ましい。ただし、これに限定されず、当該2つの受光強度V11,V12は、透かし領域91内の互いに異なる位置からの蛍光の受光強度であってもよい。 In the banknote 90A in FIG. 7, the difference D6 between the received intensity V11 of fluorescence in the green wavelength range in the watermark area 91 (see curve Lg) and the received intensity V12 of fluorescence in the red wavelength range in the watermark area 91 (see curve Lr) is small (see also Figure 19). FIG. 19 is a conceptual diagram schematically showing how the difference D6 increases as dirt increases. In FIG. 19, the received light intensities V11 and V12 of the fluorescence in two wavelength ranges among the fluorescence from the watermark area 91 are shown at different positions in the left-right direction for convenience of illustration. It is preferable that the two received light intensities V11 and V12 are actually received light intensities of fluorescence from the same position within the watermark area 91. However, the present invention is not limited thereto, and the two received light intensities V11 and V12 may be the received light intensities of fluorescence from different positions within the watermark area 91.

その後、市場流通期間の増大等に応じて当該差異D6は徐々に増大する。その結果、たとえば、図10の紙幣90Dでは、透かし領域91における、受光強度V11(曲線Lg参照)と受光強度V12(曲線Lr参照)との当該差異D6が、図7の紙幣90Aに比べて増大している(図19も参照)。すなわち、蛍光の受光強度の増大の程度は、波長域成分ごとに互いに相違する。詳細には、透かし領域91における緑色波長域の蛍光の受光強度V11の増大の程度は、当該透かし領域91における赤色波長域の蛍光の受光強度V12の増大の程度よりも大きい。 Thereafter, the difference D6 gradually increases as the market distribution period increases. As a result, for example, in the banknote 90D in FIG. 10, the difference D6 between the received light intensity V11 (see curve Lg) and the received light intensity V12 (see curve Lr) in the watermark area 91 is increased compared to the banknote 90A in FIG. (See also Figure 19). That is, the degree of increase in the received fluorescence intensity differs for each wavelength range component. Specifically, the degree of increase in the received intensity V11 of fluorescence in the green wavelength range in the watermark region 91 is greater than the degree of increase in the received intensity V12 of fluorescence in the red wavelength region in the watermark region 91.

このような性質を利用し、第6実施形態に係る汚れ判定装置20は、受光強度V11との受光強度V12との差異D6が大きいほど紙幣90の汚れ度合いが大きい、と判定する。ただし、これに限定されず、受光強度V11と受光強度V12との差異D6が所定程度よりも大きい場合、紙幣90が汚れている、と判定されてもよい。 Utilizing such properties, the stain determination device 20 according to the sixth embodiment determines that the degree of stain on the banknote 90 is greater as the difference D6 between the received light intensity V11 and the received light intensity V12 is larger. However, the present invention is not limited to this, and if the difference D6 between the received light intensity V11 and the received light intensity V12 is larger than a predetermined value, it may be determined that the banknote 90 is dirty.

ここにおいて、受光強度V11と受光強度V12との差異D6は、たとえば、受光強度V11と受光強度V12との比γである。当該比γは、たとえば、受光強度V12に対する受光強度V11の比の値(γ=V11/V12)である。そして、比γが大きいほど紙幣90の汚れ度合いが大きいと判定される。より詳細には、比γと1又は複数の閾値との大小関係に基づいて、紙幣90の汚れ度合いが複数の段階に分類される。あるいは、比γと所定の基準値との大小関係に基づいて、紙幣90の汚れの有無(紙幣90が汚れているか否か)が判定されてもよい。 Here, the difference D6 between the received light intensity V11 and the received light intensity V12 is, for example, the ratio γ between the received light intensity V11 and the received light intensity V12. The ratio γ is, for example, a value of the ratio of the received light intensity V11 to the received light intensity V12 (γ=V11/V12). Then, it is determined that the greater the ratio γ, the greater the degree of dirt on the banknote 90. More specifically, the degree of dirt on the banknote 90 is classified into a plurality of stages based on the magnitude relationship between the ratio γ and one or more threshold values. Alternatively, the presence or absence of dirt on the banknote 90 (whether or not the banknote 90 is dirty) may be determined based on the magnitude relationship between the ratio γ and a predetermined reference value.

また、受光強度V11と受光強度V12との差異D6は、たとえば、受光強度V11と受光強度V12との差分ΔV6であってもよい。差分ΔV6は、たとえば、受光強度V11から受光強度V12を差し引いた差分値(ΔV6=V11-V12)である。そして、差分ΔV6が大きいほど紙幣90の汚れ度合いが大きいと判定される。詳細には、差分ΔV6と1又は複数の閾値との大小関係に基づいて、紙幣90の汚れ度合いが複数の段階に分類される。あるいは、差分ΔV6と所定の基準値との大小関係に基づいて、紙幣90の汚れの有無が判定されてもよい。 Further, the difference D6 between the received light intensity V11 and the received light intensity V12 may be, for example, the difference ΔV6 between the received light intensity V11 and the received light intensity V12. The difference ΔV6 is, for example, a difference value obtained by subtracting the received light intensity V12 from the received light intensity V11 (ΔV6=V11−V12). Then, it is determined that the greater the difference ΔV6, the greater the degree of dirt on the banknote 90. Specifically, the degree of dirt on the banknote 90 is classified into a plurality of stages based on the magnitude relationship between the difference ΔV6 and one or more threshold values. Alternatively, the presence or absence of dirt on the banknote 90 may be determined based on the magnitude relationship between the difference ΔV6 and a predetermined reference value.

なお、受光強度V11,V12は、たとえば、透かし領域91の全領域(2次元的(面的)な拡がりを有する全領域)に亘る複数の位置における受光強度の平均値(あるいは最大値)として算出されればよい。ただし、これに限定されず、たとえば、透かし領域91の一部の領域(2次元状領域あるいは1次元状領域)内の複数の位置での受光強度の平均値(あるいは最大値)として受光強度V1,V12が算出されてもよい。 Note that the received light intensities V11 and V12 are calculated, for example, as the average value (or maximum value) of the received light intensities at a plurality of positions over the entire area of the watermark area 91 (the entire area having two-dimensional (area) expansion). It is fine if it is done. However, the invention is not limited to this, and for example, the received light intensity V1 is calculated as the average value (or maximum value) of the received light intensities at a plurality of positions in a part of the watermark area 91 (two-dimensional area or one-dimensional area). , V12 may be calculated.

以上のように第6実施形態においては、他の実施形態と同様に、蛍光インク非塗布領域C1からの蛍光の受光強度V1に基づいて、紙幣90(紙葉類)の汚れに関する判定処理が行われている。したがって、上述の比較例に係る技術に比べて、紙幣90の汚れに関する高精度の判定を実現することが可能である。 As described above, in the sixth embodiment, similarly to the other embodiments, the determination process regarding stains on the banknote 90 (paper sheet) is performed based on the received intensity V1 of fluorescence from the fluorescent ink non-applied area C1. It is being said. Therefore, compared to the technology according to the above-mentioned comparative example, it is possible to realize a highly accurate determination regarding dirt on the banknote 90.

特に上記第6実施形態の判定処理においては、透かし領域91からの蛍光のうち一の特定波長域の光の受光強度V11と、透かし領域91からの蛍光のうち別の波長域の光の受光強度V12とが用いられている。詳細には、受光強度V11と受光強度V12との差異D6が用いられている。換言すれば、受光強度V11が(同じ紙幣90且つ同じ領域91からの)受光強度V12を用いて正規化されている。これによれば、単一の受光強度V11のみを用いて判定する場合よりも、紙幣90の汚れに関して更に高精度の判定を実現することが可能である。具体的には、受光強度V11のみで判定する場合よりも、装置の個体差に起因する影響が軽減され得る。また、光源の劣化および/または温度消光現象の影響も同様に軽減され得る。 In particular, in the determination process of the sixth embodiment, the received light intensity V11 of light in one specific wavelength range among the fluorescence from the watermark area 91 and the light reception intensity of light in another wavelength range among the fluorescence from the watermark area 91 are determined. V12 is used. Specifically, the difference D6 between the received light intensity V11 and the received light intensity V12 is used. In other words, the received light intensity V11 is normalized using the received light intensity V12 (from the same bill 90 and the same area 91). According to this, it is possible to realize a more accurate determination regarding dirt on the banknote 90 than when determining using only a single received light intensity V11. Specifically, the influence caused by individual differences between devices can be reduced compared to the case where the determination is made only based on the received light intensity V11. Additionally, the effects of light source degradation and/or temperature quenching phenomena may be similarly reduced.

<7.第7実施形態>
第7実施形態は、第6実施形態等の変形例である。次述するように、第6実施形態の思想と第2実施形態(あるいは第3実施形態)の思想とを組み合わせてもよい。
<7. Seventh embodiment>
The seventh embodiment is a modification of the sixth embodiment and the like. As described below, the idea of the sixth embodiment and the idea of the second embodiment (or third embodiment) may be combined.

第7実施形態の判定処理においては、一の蛍光インク非塗布領域C1(透かし領域91等)に関する受光強度V11,V12のみならず、別の蛍光インク非塗布領域C1(肖像衣服領域92等)に関する受光強度V21,V22(後述)もが考慮される。すなわち、第7実施形態では、第2および第3実施形態等と同様に、蛍光インク非塗布領域C1以外の蛍光インク非塗布領域C2(肖像衣服領域92等)に関する受光強度もが考慮される。以下、このような態様について説明する。 In the determination process of the seventh embodiment, not only the received light intensities V11 and V12 regarding one fluorescent ink non-applied area C1 (watermark area 91 etc.) but also regarding another fluorescent ink unapplied area C1 (portrait clothing area 92 etc.) The received light intensities V21 and V22 (described later) are also taken into consideration. That is, in the seventh embodiment, similarly to the second and third embodiments, the received light intensity regarding the fluorescent ink non-applied area C2 (portrait clothing area 92, etc.) other than the fluorescent ink non-applied area C1 is also taken into consideration. Such an aspect will be explained below.

図7~図10に示されるように、紙幣90の市場流通期間の増大(ひいては汚れの増大)に伴って、蛍光インク非塗布領域C1(たとえば透かし領域91)に関して受光強度V11と受光強度V12との差異D71が徐々に大きくなる(図20も参照)。なお、図20は、汚れの増大に応じて差異D71,D72(後述)等が変化する様子を簡略化して示す概念図である。 As shown in FIGS. 7 to 10, as the period of market circulation of banknotes 90 increases (as a result, the amount of dirt increases), the received light intensity V11 and the received light intensity V12 change with respect to the fluorescent ink non-applied area C1 (for example, the watermark area 91). The difference D71 gradually increases (see also FIG. 20). Note that FIG. 20 is a conceptual diagram schematically showing how the differences D71, D72 (described later), etc. change as the dirt increases.

まず、図7の紙幣90A(図20の左側も参照)では、透かし領域91における緑色波長域の蛍光の受光強度V11(曲線Lg参照)と当該透かし領域91における赤色波長域の蛍光の受光強度V12(曲線Lr参照)との差異D71は小さい。その後、市場流通期間の増大等に応じて当該差異は徐々に増大する。その結果、たとえば、図10の紙幣90Dでは、受光強度V11(曲線Lg参照)と受光強度V12(曲線Lr参照)との差異D71が、図7の紙幣90Aに比べて増大している(図20の右側も参照)。 First, in the banknote 90A in FIG. 7 (see also the left side of FIG. 20), the received intensity V11 of fluorescence in the green wavelength range in the watermark area 91 (see curve Lg) and the received intensity V12 of fluorescence in the red wavelength range in the watermark area 91 (See curve Lr) D71 is small. Thereafter, the difference gradually increases as the market distribution period increases. As a result, for example, in the banknote 90D in FIG. 10, the difference D71 between the received light intensity V11 (see curve Lg) and the received light intensity V12 (see curve Lr) is increased compared to the banknote 90A in FIG. (see also to the right).

また、同様に、紙幣90の市場流通期間の増大(ひいては汚れの増大)に伴って、別の蛍光インク非塗布領域C2(たとえば肖像衣服領域92)に関しても受光強度V21と受光強度V22との差異D72が徐々に増大する(図20も参照)。受光強度V21は、肖像衣服領域92における緑色波長域の蛍光の受光強度(曲線Lg参照)であり、受光強度V22は、肖像衣服領域92における赤色波長域の蛍光の受光強度(曲線Lr参照)である。 Similarly, with an increase in the market circulation period of the banknotes 90 (as well as an increase in dirt), the difference between the received light intensity V21 and the received light intensity V22 also increases with respect to another fluorescent ink non-applied area C2 (for example, the portrait clothing area 92). D72 gradually increases (see also Figure 20). The received light intensity V21 is the received intensity of fluorescence in the green wavelength range in the portrait clothing region 92 (see curve Lg), and the received light intensity V22 is the received light intensity of fluorescence in the red wavelength range in the portrait clothing region 92 (see curve Lr). be.

このように、紙幣90の汚れの増大に応じて、差異D71は増大し且つ差異D72も増大する。換言すれば、各領域C1,C2からの蛍光の受光強度(たとえば複数の波長域に関する受光強度の平均値)が大きくなるほど、各領域C1,C2において緑色波長域の受光強度と赤色波長域の受光強度との差異が大きくなる。 In this way, as the dirt on the banknotes 90 increases, the difference D71 increases and the difference D72 also increases. In other words, the larger the received intensity of fluorescence from each region C1, C2 (for example, the average value of received light intensities for a plurality of wavelength ranges), the greater the received light intensity in the green wavelength range and the received light in the red wavelength range in each region C1, C2. The difference in strength becomes larger.

ただし、緑色波長域の受光強度と赤色波長域の受光強度との差異の増大の程度は、透かし領域91と肖像衣服領域92とで互いに異なっている。具体的には、透かし領域91からの蛍光の2つの波長域成分の差異D71の増大の程度は、肖像衣服領域92からの蛍光の当該2つの波長域成分の差異D72の増大の程度よりも大きくなる。すなわち、透かし領域91に関する差異D71は、肖像衣服領域92に関する差異D72よりも大きく増大する。換言すれば、紙幣90の汚れの増大に応じて、差異D71と差異D72との差異D7が増大する。 However, the degree of increase in the difference between the received light intensity in the green wavelength range and the received light intensity in the red wavelength range is different between the watermark area 91 and the portrait clothing area 92. Specifically, the degree of increase in the difference D71 between the two wavelength range components of the fluorescence from the watermark region 91 is greater than the degree of increase in the difference D72 between the two wavelength range components of the fluorescence from the portrait clothing region 92. Become. That is, the difference D71 regarding the watermark area 91 increases more than the difference D72 regarding the portrait clothing area 92. In other words, as the dirt on the banknote 90 increases, the difference D7 between the difference D71 and the difference D72 increases.

このような性質を利用し、第7実施形態に係る汚れ判定装置20は、差異D71と差異D72との差異D7が大きいほど紙幣90の汚れ度合いが大きい、と判定する。ただし、これに限定されず、差異D7が所定程度よりも大きい場合、紙幣90が汚れている、と判定されてもよい。 Utilizing such properties, the stain determination device 20 according to the seventh embodiment determines that the greater the difference D7 between the difference D71 and the difference D72, the greater the degree of stain on the banknote 90. However, the present invention is not limited to this, and if the difference D7 is larger than a predetermined value, it may be determined that the banknote 90 is dirty.

ここにおいて、たとえば、差異D71は受光強度V11と受光強度V12との比γ71であり且つ差異D72は受光強度V21と受光強度V22との比γ72である。より詳細には、比γ71は、受光強度V12に対する受光強度V11の比の値(γ71=V11/V12)であり、且つ比γ72は、受光強度V22に対する受光強度V21の比の値(γ72=V21/V22)である。また、差異D7は、比γ71と比γ72との比γ7であり、より詳細には、比γ72に対する比γ71の比の値(γ7=γ71/γ72)である。 Here, for example, the difference D71 is the ratio γ71 between the received light intensity V11 and the received light intensity V12, and the difference D72 is the ratio γ72 between the received light intensity V21 and the received light intensity V22. More specifically, the ratio γ71 is the value of the ratio of the received light intensity V11 to the received light intensity V12 (γ71=V11/V12), and the ratio γ72 is the value of the ratio of the received light intensity V21 to the received light intensity V22 (γ72=V21 /V22). Further, the difference D7 is the ratio γ7 between the ratio γ71 and the ratio γ72, and more specifically, the value of the ratio of the ratio γ71 to the ratio γ72 (γ7=γ71/γ72).

あるいは、差異D71は受光強度V11と受光強度V12との差分ΔV71であり且つ差異D72は受光強度V21と受光強度V22との差分ΔV72であってもよい。より詳細には、差分ΔV71は、受光強度V11から受光強度V12を差し引いた差分(ΔV71=V11-V12)であり、且つ差分ΔV72は、受光強度V21から受光強度V22を差し引いた差分(ΔV72=V21-V22)であってもよい。また、差異D7は、差分ΔV71と差分ΔV72との差分ΔV7であってもよい。より詳細には、差分ΔV7は、差分ΔV71から差分ΔV72を差し引いた値(ΔV7=ΔV71-ΔV72)であってもよい。 Alternatively, the difference D71 may be the difference ΔV71 between the received light intensity V11 and the received light intensity V12, and the difference D72 may be the difference ΔV72 between the received light intensity V21 and the received light intensity V22. More specifically, the difference ΔV71 is the difference obtained by subtracting the received light intensity V12 from the received light intensity V11 (ΔV71=V11-V12), and the difference ΔV72 is the difference obtained by subtracting the received light intensity V22 from the received light intensity V21 (ΔV72=V21 -V22). Further, the difference D7 may be the difference ΔV7 between the difference ΔV71 and the difference ΔV72. More specifically, the difference ΔV7 may be a value obtained by subtracting the difference ΔV72 from the difference ΔV71 (ΔV7=ΔV71−ΔV72).

なお、受光強度V11,V12は、第6実施形態と同様に算出されればよい。また、受光強度V21,V22も同様である。たとえば、受光強度V21,V22は、肖像衣服領域92の全領域(2次元的(面的)な拡がりを有する全領域)に亘る複数の位置における受光強度の平均値(あるいは最大値)として算出されればよい。ただし、これに限定されず、肖像衣服領域92の一部の領域(2次元状領域あるいは1次元状領域)内の複数の位置での受光強度の平均値(あるいは最大値)として受光強度V21,V22が算出されてもよい。 Note that the received light intensities V11 and V12 may be calculated in the same manner as in the sixth embodiment. The same applies to the received light intensities V21 and V22. For example, the received light intensities V21 and V22 are calculated as the average value (or maximum value) of the received light intensities at a plurality of positions over the entire portrait clothing area 92 (the entire area having two-dimensional (area) expansion). That's fine. However, the invention is not limited to this, and the received light intensity V21, V22 may be calculated.

以上のように第7実施形態においては、他の実施形態と同様に、蛍光インク非塗布領域C1からの蛍光の受光強度V1に基づいて、紙幣90(紙葉類)の汚れに関する判定処理が行われている。したがって、上述の比較例に係る技術に比べて、紙幣90の汚れに関する高精度の判定を実現することが可能である。 As described above, in the seventh embodiment, similarly to the other embodiments, the determination process regarding dirt on the banknote 90 (paper sheet) is performed based on the received intensity V1 of fluorescence from the fluorescent ink non-applied area C1. It is being said. Therefore, compared to the technology according to the above-mentioned comparative example, it is possible to realize a highly accurate determination regarding dirt on the banknote 90.

特に、第7実施形態の判定処理においては、透かし領域91からの蛍光のうち2種類の特定波長域の光の受光強度V11,V12と、肖像衣服領域92からの蛍光のうち2種類の特定波長域の光の受光強度V21,V22とが用いられている。詳細には、差異D71と差異D72との差異D7が用いられている。差異D71は、受光強度V11を受光強度V12によって正規化した差異であり、差異D72は、受光強度V21を、受光強度V22を用いて正規化した差異である。そして、差異D7は、差異D71を差異D72によって正規化した差異である。 In particular, in the determination process of the seventh embodiment, the received light intensities V11 and V12 of two types of light in specific wavelength ranges among the fluorescence from the watermark area 91 and two types of specific wavelengths of the fluorescence from the portrait clothing area 92 are determined. The received light intensities V21 and V22 of the light in the range are used. Specifically, the difference D7 between the difference D71 and the difference D72 is used. The difference D71 is a difference obtained by normalizing the received light intensity V11 using the received light intensity V12, and the difference D72 is the difference obtained by normalizing the received light intensity V21 using the received light intensity V22. The difference D7 is the difference obtained by normalizing the difference D71 by the difference D72.

このような判定処理によれば、透かし領域91からの単一の受光強度V1(たとえばV11)のみで判定する場合よりも、紙幣90の汚れに関して更に高精度の判定を実現することが可能である。また、領域91,92からの各単一の受光強度V1,V2のみ(たとえばV11,V21のみ)で判定する場合よりも、紙幣90の汚れに関して更に高精度の判定を実現することが可能である。具体的には、装置の個体差に起因する影響、光源の劣化の影響、および/または温度消光現象の影響が軽減され得る。 According to such a determination process, it is possible to realize a more accurate determination regarding stains on the banknote 90 than when determining only based on a single received light intensity V1 (for example, V11) from the watermark area 91. . Further, it is possible to realize a more accurate determination regarding dirt on the banknote 90 than when determining only based on the single received light intensities V1 and V2 from the regions 91 and 92 (for example, only V11 and V21). . Specifically, the effects caused by individual differences in devices, the effects of light source deterioration, and/or the effects of temperature quenching phenomena can be reduced.

なお、上記実施形態では、第2実施形態と同様に肖像衣服領域92からの蛍光の受光強度V2が利用されているが、これに代えて、第3実施形態と同様に、領域C23からの蛍光の受光強度V2が利用されてもよい。 In the above embodiment, the intensity V2 of the fluorescence received from the portrait clothing area 92 is used as in the second embodiment, but instead of this, the intensity V2 of the fluorescence received from the area C23 is used as in the third embodiment. The received light intensity V2 may be used.

<8.第8実施形態>
第8実施形態は、第6実施形態等の変形例である。次述するように、第6実施形態の思想と第4実施形態(あるいは第5実施形態)の思想とを組み合わせてもよい。
<8. Eighth embodiment>
The eighth embodiment is a modification of the sixth embodiment and the like. As described below, the idea of the sixth embodiment and the idea of the fourth embodiment (or the fifth embodiment) may be combined.

第8実施形態においては、蛍光インク非塗布領域C1(透かし領域91)に関する受光強度V11,V12のみならず、蛍光反応基準領域C3(印影領域93)に関する受光強度V31,V32(後述)にも基づいて紙幣90の汚れに関する判定が行われる。すなわち、第8実施形態では、第4および第5実施形態等と同様に、蛍光反応基準領域C3(印影領域93等)に関する受光強度もが考慮される。以下、このような態様について説明する。 In the eighth embodiment, it is based not only on the received light intensities V11 and V12 regarding the fluorescent ink non-applied area C1 (watermark area 91) but also on the received light intensities V31 and V32 (described later) regarding the fluorescent reaction reference area C3 (imprint area 93). A determination regarding dirt on the banknote 90 is made. That is, in the eighth embodiment, similarly to the fourth and fifth embodiments, the received light intensity regarding the fluorescence reaction reference region C3 (seal impression region 93, etc.) is also taken into consideration. Such an aspect will be explained below.

図7~図10および図21を参照する。紙幣90の市場流通期間の増大(ひいては汚れの増大)に伴って、蛍光インク非塗布領域C1(透かし領域91)に関しては、差異D81が徐々に大きくなる。たとえば、差異D81は、透かし領域91における、受光強度V11(曲線Lg参照)と受光強度V12(曲線Lr参照)との差異である。換言すれば、差異D81は、透かし領域91における緑色波長域の蛍光の受光強度V11と当該透かし領域91における赤色波長域の蛍光の受光強度V12との差異である。なお、図21は、汚れの増大に応じて差異D81,D83(後述)等が変化する様子を簡略化して示す概念図である。 Please refer to FIGS. 7 to 10 and 21. As the period of market circulation of banknotes 90 increases (as a result, the amount of dirt increases), the difference D81 gradually increases with respect to the fluorescent ink non-applied area C1 (watermark area 91). For example, the difference D81 is the difference between the received light intensity V11 (see curve Lg) and the received light intensity V12 (see curve Lr) in the watermark area 91. In other words, the difference D81 is the difference between the received intensity V11 of fluorescence in the green wavelength range in the watermark area 91 and the received intensity V12 of fluorescence in the red wavelength range in the watermark area 91. Note that FIG. 21 is a conceptual diagram schematically showing how the differences D81, D83 (described later), etc. change as the dirt increases.

一方、蛍光反応基準領域C3(印影領域93)に関しては、紙幣90の市場流通期間の増大(ひいては汚れの増大)に伴って、差異D83が徐々に小さくなる(図21も参照)。たとえば、差異D83は、印影領域93における、受光強度V31(曲線Lg参照)と受光強度V32(曲線Lr参照)との差異である。換言すれば、差異D83は、印影領域93における緑色波長域の蛍光の受光強度V31と当該印影領域93における赤色波長域の蛍光の受光強度V32との差異である。 On the other hand, regarding the fluorescence reaction reference area C3 (seal imprint area 93), the difference D83 gradually decreases as the period of market circulation of the banknote 90 increases (as a result, the amount of dirt increases) (see also FIG. 21). For example, the difference D83 is the difference between the received light intensity V31 (see curve Lg) and the received light intensity V32 (see curve Lr) in the seal imprint area 93. In other words, the difference D83 is the difference between the received intensity V31 of the fluorescent light in the green wavelength range in the stamp area 93 and the received intensity V32 of the fluorescent light in the red wavelength range in the stamp area 93.

詳細には、図7の紙幣90Aでは、差異D83は差異D81よりも非常に大きい。その後、市場流通期間の増大等に応じて、差異D83は徐々に減少するとともに差異D81は徐々に増大する。その結果、図21にも示されるように、紙幣90D(図10)における差異D83は、紙幣90Dにおける差異D81に近づく。 Specifically, in the banknote 90A of FIG. 7, the difference D83 is much larger than the difference D81. Thereafter, as the market distribution period increases, the difference D83 gradually decreases and the difference D81 gradually increases. As a result, as also shown in FIG. 21, the difference D83 in the banknote 90D (FIG. 10) approaches the difference D81 in the banknote 90D.

このように、紙幣90の汚れの増大に応じて、差異D81よりも大きかった差異D83が徐々に減少し、差異D83よりも小さかった差異D81が徐々に増大する。換言すれば、差異D81と差異D83との差異D8は減少する。 In this way, as the dirt on the banknote 90 increases, the difference D83, which was larger than the difference D81, gradually decreases, and the difference D81, which was smaller than the difference D83, gradually increases. In other words, the difference D8 between the difference D81 and the difference D83 decreases.

このような性質を利用し、第8実施形態に係る汚れ判定装置20は、差異D81と差異D83との差異D8が小さいほど紙幣90の汚れ度合いが大きい、と判定する。ただし、これに限定されず、差異D8が所定程度よりも小さい場合、紙幣90が汚れている、と判定されてもよい。 Utilizing such properties, the dirt determination device 20 according to the eighth embodiment determines that the smaller the difference D8 between the difference D81 and the difference D83, the greater the degree of dirt on the banknote 90. However, the present invention is not limited to this, and if the difference D8 is smaller than a predetermined value, it may be determined that the banknote 90 is dirty.

ここにおいて、たとえば、差異D81は受光強度V11と受光強度V12との比γ81であり且つ差異D83は受光強度V31と受光強度V32との比γ83である。より詳細には、比γ81は、受光強度V12に対する受光強度V11の比の値(γ81=V11/V12)であり、且つ比γ83は、受光強度V32に対する受光強度V31の比の値(γ83=V31/V32)である。また、差異D8は、比γ81と比γ83の比γ8であり、より詳細には、比γ81に対する比γ83の比の値(γ8=γ83/γ81)である。 Here, for example, the difference D81 is the ratio γ81 between the received light intensity V11 and the received light intensity V12, and the difference D83 is the ratio γ83 between the received light intensity V31 and the received light intensity V32. More specifically, the ratio γ81 is the value of the ratio of the received light intensity V11 to the received light intensity V12 (γ81=V11/V12), and the ratio γ83 is the value of the ratio of the received light intensity V31 to the received light intensity V32 (γ83=V31 /V32). Further, the difference D8 is the ratio γ8 between the ratio γ81 and the ratio γ83, and more specifically, the value of the ratio of the ratio γ83 to the ratio γ81 (γ8=γ83/γ81).

あるいは、差異D81は受光強度V11と受光強度V12との差分ΔV81であり且つ差異D83は受光強度V31と受光強度V32との差分ΔV83であってもよい。より詳細には、差分ΔV81は、受光強度V11から受光強度V12を差し引いた値(ΔV81=V11-V12)であり、且つ差分ΔV83は、受光強度V31から受光強度V32を差し引いた値(ΔV83=V31-V32)であってもよい。また、差異D8は、差分ΔV81と差分ΔV83との差分であってもよい。より詳細には、差異D8は、差分ΔV83から差分ΔV81を差し引いた差分ΔV8(ΔV8=ΔV83-ΔV81)であってもよい。 Alternatively, the difference D81 may be the difference ΔV81 between the received light intensity V11 and the received light intensity V12, and the difference D83 may be the difference ΔV83 between the received light intensity V31 and the received light intensity V32. More specifically, the difference ΔV81 is the value obtained by subtracting the received light intensity V12 from the received light intensity V11 (ΔV81=V11-V12), and the difference ΔV83 is the value obtained by subtracting the received light intensity V32 from the received light intensity V31 (ΔV83=V31 -V32). Further, the difference D8 may be the difference between the difference ΔV81 and the difference ΔV83. More specifically, the difference D8 may be the difference ΔV8 (ΔV8=ΔV83−ΔV81) obtained by subtracting the difference ΔV81 from the difference ΔV83.

なお、受光強度V11,V12は、第6実施形態と同様に算出されればよい。また、受光強度V31,V32も同様である。たとえば、受光強度V31,V32は、印影領域93の全領域(2次元的(面的)な拡がりを有する全領域)に亘る複数の位置における受光強度の平均値(あるいは最大値)として算出されればよい。ただし、これに限定されず、たとえば、印影領域93の一部の領域(2次元状領域あるいは1次元状領域)内の複数の位置での受光強度の平均値(あるいは最大値)として受光強度V31,V32が算出されてもよい。 Note that the received light intensities V11 and V12 may be calculated in the same manner as in the sixth embodiment. The same applies to the received light intensities V31 and V32. For example, the received light intensities V31 and V32 are calculated as the average value (or maximum value) of the received light intensities at a plurality of positions over the entire area of the seal imprint area 93 (the entire area having two-dimensional (area) expansion). Bye. However, the present invention is not limited to this, and for example, the received light intensity V3 , V32 may be calculated.

以上のように第8実施形態においては、他の実施形態と同様に、蛍光インク非塗布領域C1からの蛍光の受光強度V1に基づいて、紙幣90(紙葉類)の汚れに関する判定処理が行われている。したがって、上述の比較例に係る技術に比べて、紙幣90の汚れに関する高精度の判定を実現することが可能である。 As described above, in the eighth embodiment, similarly to the other embodiments, the determination process regarding dirt on the banknote 90 (paper sheet) is performed based on the received intensity V1 of fluorescence from the fluorescent ink non-applied area C1. It is being said. Therefore, compared to the technology according to the above-mentioned comparative example, it is possible to realize a highly accurate determination regarding dirt on the banknote 90.

特に、第8実施形態の判定処理においては、透かし領域91からの蛍光のうち2種類の特定波長域の光の受光強度V11,V12と、印影領域93からの蛍光のうち2種類の特定波長域の光の受光強度V31,V32とが用いられている。詳細には、差異D81と差異D83との差異D8が用いられている。差異D81は、受光強度V11を受光強度V12によって正規化した差異であり、差異D83は、受光強度V31を受光強度V32を用いて正規化した差異である。そして、差異D8は、差異D81を差異D83によって更に正規化した差異である。 In particular, in the determination process of the eighth embodiment, the received light intensities V11 and V12 of two types of light in specific wavelength ranges among the fluorescence from the watermark area 91, and the received light intensities V11 and V12 of light in two types of specific wavelength ranges of the fluorescence from the seal imprint area 93 are determined. The received light intensities V31 and V32 of the light are used. Specifically, the difference D8 between the difference D81 and the difference D83 is used. The difference D81 is a difference obtained by normalizing the received light intensity V11 by the received light intensity V12, and the difference D83 is the difference obtained by normalizing the received light intensity V31 by using the received light intensity V32. The difference D8 is a difference obtained by further normalizing the difference D81 by the difference D83.

このような判定処理によれば、透かし領域91からの単一の受光強度V1(たとえばV11)のみで判定する場合よりも、紙幣90の汚れに関して更に高精度の判定を実現することが可能である。また、領域91,93からの各単一の受光強度V1,V3のみ(たとえば、V11,V31のみ)で判定する場合よりも、紙幣90の汚れに関して更に高精度の判定を実現することが可能である。具体的には、装置の個体差に起因する影響、光源の劣化の影響、および/または温度消光現象の影響が軽減され得る。 According to such a determination process, it is possible to realize a more accurate determination regarding stains on the banknote 90 than when determining only based on a single received light intensity V1 (for example, V11) from the watermark area 91. . Further, it is possible to realize a more accurate determination regarding dirt on the banknote 90 than when determining only based on the single received light intensities V1 and V3 from the regions 91 and 93 (for example, only V11 and V31). be. Specifically, the effects caused by individual differences in devices, the effects of light source deterioration, and/or the effects of temperature quenching phenomena can be reduced.

また、紙幣90の市場流通期間の増大(紙幣90全体の汚れ度合いの増大等)に伴って、差異D83が徐々に減少し且つ差異D81が徐々に増大する。詳細には、差異D81よりも大きかった差異D83が徐々に減少し、差異D83よりも小さかった差異D81が徐々に増大する。このように差異D81と差異D83とが逆向きに変化する。この場合、差異D81と差異D83との差異D8は、一般的に差異D7よりも大きく変化する。したがって、第7実施形態に比べて、紙幣90の汚れの変化を感度良く把握することが可能である。 Further, as the period of market circulation of the banknotes 90 increases (eg, the degree of staining of the banknotes 90 as a whole increases), the difference D83 gradually decreases and the difference D81 gradually increases. Specifically, the difference D83, which was larger than the difference D81, gradually decreases, and the difference D81, which was smaller than the difference D83, gradually increases. In this way, the difference D81 and the difference D83 change in opposite directions. In this case, the difference D8 between the difference D81 and the difference D83 generally changes more than the difference D7. Therefore, compared to the seventh embodiment, it is possible to grasp changes in dirt on the banknotes 90 with higher sensitivity.

なお、上記実施形態では、第4実施形態と同様に印影領域93からの蛍光の受光強度V3が利用されている。しかしながら、これに代えて、第5実施形態と同様に、蛍光領域C35からの蛍光の受光強度V3が利用されてもよい。 Note that in the above embodiment, the intensity V3 of the received fluorescence from the seal imprint area 93 is used as in the fourth embodiment. However, instead of this, similarly to the fifth embodiment, the received intensity V3 of the fluorescence from the fluorescent region C35 may be used.

<9.その他>
以上、この発明の実施の形態について説明したが、この発明は上記説明した内容のものに限定されるものではない。
<9. Others>
Although the embodiments of the present invention have been described above, the present invention is not limited to the contents described above.

たとえば、上記各実施形態に係る思想を適宜組み合わせてもよい。たとえば、第2実施形態と第4実施形態とを組み合わせて、差異D2と差異D3との双方が考慮されてもよい。より具体的には、差異D2が所定の基準よりも大きく且つ差異D3が所定の基準よりも小さいときに、「汚れている」と判定されてもよい。なお、同様に、第3実施形態と第5実施形態とを組み合わせてもよく、第7実施形態と第8実施形態とを組み合わせてもよい。複数の種類の差異に基づく判定処理によれば、判定精度をさらに向上させることが可能である。 For example, the ideas of the above embodiments may be combined as appropriate. For example, the second embodiment and the fourth embodiment may be combined, and both the difference D2 and the difference D3 may be taken into consideration. More specifically, it may be determined that the object is "dirty" when the difference D2 is larger than a predetermined standard and the difference D3 is smaller than a predetermined standard. Note that, similarly, the third embodiment and the fifth embodiment may be combined, and the seventh embodiment and the eighth embodiment may be combined. According to the determination process based on a plurality of types of differences, it is possible to further improve the determination accuracy.

また、上記各実施形態においては、「差分」と「比」との一方に基づいて汚れが判定されているが、これに限定されず、「差分」と「比」との双方に基づいて汚れが判定されてもよい。より詳細には、差分に関する条件と比に関する条件との双方が成立したときに、「汚れている」と判定されてもよい。あるいは、差分に関する条件と比に関する条件との少なくとも一方が成立したときに、「汚れている」と判定されてもよい。 Further, in each of the above embodiments, dirt is determined based on either the "difference" or the "ratio", but the present invention is not limited to this, and the dirt is determined based on both the "difference" and the "ratio". may be determined. More specifically, when both the condition regarding the difference and the condition regarding the ratio are satisfied, it may be determined that the object is "dirty." Alternatively, it may be determined that the object is "dirty" when at least one of the condition regarding the difference and the condition regarding the ratio is satisfied.

また、上記各実施形態において、紙幣90の汚れ度合いが判定されるとともに紙幣90が汚れているか否かもが判定されるようにしてもよい。たとえば、紙幣90の汚れ度合いがレベルE1であると判定されるときには紙幣90が「汚れている」と更に判定され、紙幣90の汚れ度合いがレベルE2~E4であると判定されるときには紙幣90が「汚れていない」と更に判定されてもよい。 Further, in each of the embodiments described above, the degree of dirt on the banknote 90 may be determined, and whether or not the banknote 90 is dirty may also be determined. For example, when it is determined that the degree of dirt on the banknote 90 is level E1, it is further determined that the banknote 90 is "dirty", and when it is determined that the degree of dirt on the banknote 90 is at levels E2 to E4, the banknote 90 is It may be further determined that it is "not dirty".

また、上記各実施形態等においては、白色光源あるいはUV光源からの光が照射され、異なる特定波長域の光を選択的に透過させるバンドパスフィルタを用いて、各受光素子で各特定波長域の光が受光されているが、これに限定されない。 Furthermore, in each of the above embodiments, light from a white light source or a UV light source is irradiated, and a bandpass filter that selectively transmits light in different specific wavelength ranges is used to transmit light in each specific wavelength range to each light receiving element. Although light is being received, the present invention is not limited thereto.

たとえば、白色光源に代えて波長域別の複数の光源(複数の色別光源)を設けるとともに当該複数の光源を交番点灯させることによっても、可視光画像データ(複数の波長域ごとの画像データ(カラー画像データ等))を取得することができる。 For example, instead of a white light source, by providing multiple light sources for different wavelength ranges (multiple color light sources) and turning on the multiple light sources alternately, it is possible to generate visible light image data (image data for each wavelength range). Color image data, etc.)) can be obtained.

具体的には、当該複数の光源を時分割で順次に発光させ、各受光素子が、互いに異なる複数の光源からの光を時分割で順次に受光するようにしてもよい。詳細には、青色光源、緑色光源、赤色光源、赤外光光源の4つの光源が時分割で(微小時間間隔で)順次に発光する。なお、青色光源は、概ね400nm~500nmの波長域の光を発する光源であり、緑色光源は、概ね500nm~600nmの波長域の光を発する光源であり、赤色光源は、概ね600nm~700nmの波長域の光を発する光源である。また、赤外光光源は、概ね700nm~1000nmの波長域の光を発する光源である。より詳細には、当該4つの光源が各走査ラインに関する1周期の走査時間を4分割した周期(1/4周期)で順次に発光する。そして、バンドパスフィルタを有しない各受光素子が、互いに異なる複数の光源からの光(紙葉類からの反射光)を時分割で順次に受光する。各受光素子は、各色の波長域の光を1/4周期ごとに受光し、走査ライン内の各画素について各色の画素値(受光強度)を検出する。そして、このような動作が複数の走査ラインについて繰り返されることによって、紙幣90に関する可視光画像データが取得される。 Specifically, the plurality of light sources may be caused to sequentially emit light in a time-sharing manner, and each light receiving element may sequentially receive light from the plurality of different light sources in a time-sharing manner. Specifically, four light sources, a blue light source, a green light source, a red light source, and an infrared light source, sequentially emit light in a time-sharing manner (at minute time intervals). Note that the blue light source is a light source that emits light in a wavelength range of approximately 400 nm to 500 nm, the green light source is a light source that emits light in a wavelength range of approximately 500 nm to 600 nm, and the red light source is a light source that emits light in a wavelength range of approximately 600 nm to 700 nm. It is a light source that emits light in the area. Further, the infrared light source is a light source that emits light in a wavelength range of approximately 700 nm to 1000 nm. More specifically, the four light sources sequentially emit light at a period (1/4 period) obtained by dividing one period of scanning time for each scanning line into four. Each light-receiving element without a band-pass filter sequentially receives light (reflected light from paper sheets) from a plurality of different light sources in a time-sharing manner. Each light receiving element receives light in the wavelength range of each color every 1/4 period, and detects the pixel value (received light intensity) of each color for each pixel in the scanning line. Visible light image data regarding the banknote 90 is acquired by repeating this operation for a plurality of scanning lines.

あるいは、励起光光源として波長域別の複数の光源(たとえば、互いに異なる波長域のUV光を発する複数のUV光源)が設けられてもよい。そして、当該複数の光源を時分割で順次に発光させ、各受光素子が、互いに異なる複数の光源からの光を時分割で順次に受光するようにしてもよい。このような複数の光源(励起光光源)の交番点灯動作によっても蛍光画像データ(複数の波長域ごとの画像データ(青色蛍光画像データ、緑色蛍光画像データおよび赤色蛍光画像データ等))を取得することが可能である。 Alternatively, a plurality of light sources for each wavelength range (for example, a plurality of UV light sources that emit UV light in mutually different wavelength ranges) may be provided as the excitation light source. Then, the plurality of light sources may be made to emit light sequentially in a time-division manner, and each light receiving element may sequentially receive light from a plurality of different light sources in a time-division manner. Fluorescence image data (image data for each wavelength range (blue fluorescence image data, green fluorescence image data, red fluorescence image data, etc.)) can also be obtained by such alternating lighting operations of multiple light sources (excitation light sources). Is possible.

より詳細には、互いに異なる波長域を有する複数のUV光源(たとえば、2つ)からの励起光が時分割で順次に紙幣90に照射される。具体的には、当該2つの光源が各走査ラインに関する1周期の走査時間を2分割した周期(1/2周期)で順次に発光する。そして、バンドパスフィルタを有しない各受光素子が、互いに異なる複数のUV光源からの励起光の照射に応じて紙幣90から発生する蛍光を、時分割で順次に受光する。各受光素子は、各波長域の蛍光を1/2周期ごとに受光し、走査ライン内の各画素について2種類の波長域に関する受光強度(波長域ごとの画素値)を検出する。そして、このような動作が複数の走査ラインについて繰り返されることによって、紙幣90の蛍光画像データ(2種類の波長域(たとえば緑色波長域および赤色波長域)に関する蛍光画像データ)が取得される。 More specifically, the banknote 90 is sequentially irradiated with excitation light from a plurality of UV light sources (for example, two) having different wavelength ranges in a time-sharing manner. Specifically, the two light sources sequentially emit light at a period (1/2 period) obtained by dividing one period of scanning time for each scanning line into two. Each light-receiving element without a band-pass filter sequentially receives fluorescence generated from the banknote 90 in response to irradiation with excitation light from a plurality of different UV light sources in a time-sharing manner. Each light receiving element receives fluorescence in each wavelength range every 1/2 period, and detects the received light intensity (pixel value for each wavelength range) regarding two types of wavelength ranges for each pixel in the scanning line. Then, by repeating such an operation for a plurality of scanning lines, fluorescence image data (fluorescence image data regarding two types of wavelength ranges (for example, a green wavelength range and a red wavelength range)) of the banknote 90 is acquired.

また、上記各実施形態等においては、紙葉類を搬送しつつ当該紙葉類に関する2次元画像データが取得されているが、これに限定されない。たとえば、紙葉類を固定台(たとえば机)上の所定の位置に固定して、当該紙葉類に関する2次元画像データが取得されてもよい。より詳細には、静止している紙葉類に対して可視光源からの光が照射され、当該紙葉類からの反射光がカメラ(多数の受光素子が2次元状に配置された受光部を有する撮影部)によって撮影されて可視光画像データ(2次元画像データ)が取得されてもよい。同様に、固定された紙葉類に対して励起光が照射され、当該紙葉類から発生した蛍光が当該カメラによって撮影されて蛍光画像データ(2次元画像データ)が取得されてもよい。 Further, in each of the embodiments described above, two-dimensional image data regarding the paper sheet is acquired while the paper sheet is being conveyed, but the present invention is not limited to this. For example, two-dimensional image data regarding the paper sheet may be acquired by fixing the paper sheet at a predetermined position on a fixed base (for example, a desk). More specifically, a stationary paper sheet is irradiated with light from a visible light source, and the reflected light from the paper sheet is transmitted to a camera (a light-receiving section in which a large number of light-receiving elements are arranged in a two-dimensional manner). Visible light image data (two-dimensional image data) may be acquired by photographing with a photographing unit (having a photographing unit). Similarly, excitation light may be irradiated onto a fixed paper sheet, and fluorescence generated from the paper sheet may be photographed by the camera to obtain fluorescence image data (two-dimensional image data).

10 紙葉類処理装置
20 紙葉類識別装置(汚れ判定装置)
50 ラインセンサユニット
51 筐体
52 発光部
53 集光レンズ
54R,54G,54B,54I バンドパスフィルタ
55 受光部
56R,56G,56B,56I 受光素子
57 基板
58 透光部
59 板状部材
59B 蛍光板
90 紙幣
91 透かし領域
92 肖像衣服領域
93 印影領域
C1,C2 蛍光インク非塗布領域
C3 蛍光反応基準領域
C23 非蛍光領域
C35 蛍光領域
10 Paper sheet processing device 20 Paper sheet identification device (stain determination device)
50 Line sensor unit 51 Housing 52 Light emitting part 53 Condensing lens 54R, 54G, 54B, 54I Band pass filter 55 Light receiving part 56R, 56G, 56B, 56I Light receiving element 57 Substrate 58 Transparent part 59 Plate member 59B Fluorescent plate 90 Banknote 91 Watermark area 92 Portrait clothing area 93 Seal imprint area C1, C2 Fluorescent ink non-applied area C3 Fluorescent reaction reference area C23 Non-fluorescent area C35 Fluorescent area

Claims (28)

励起光を紙葉類に照射して前記紙葉類に蛍光を発生させる発光部と、
前記紙葉類にて発生した蛍光を受光する受光部と、
前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域を、蛍光インクが元来塗布されている領域と区別して特定するとともに、前記第1領域から発生し前記受光部によって受光される蛍光の受光強度である第1受光強度に基づき、前記紙葉類の汚れに関して判定する制御部と、
を備えることを特徴とする汚れ判定装置。
a light emitting unit that irradiates excitation light onto paper sheets to generate fluorescence in the paper sheets;
a light receiving unit that receives fluorescence generated from the paper sheet;
A first area in the paper sheet to which fluorescent ink is not originally applied is identified as distinct from an area to which fluorescent ink is originally applied, and the fluorescent ink is generated from the first area. a control unit that determines whether the paper sheet is soiled based on a first received light intensity that is a received light intensity of fluorescence received by the light receiving unit;
A dirt determination device comprising:
前記制御部は、前記紙葉類の汚れ度合いを判定することにより、前記紙葉類の汚れに関して判定することを特徴とする、請求項1に記載の汚れ判定装置。 The stain determination device according to claim 1, wherein the control unit determines the stain on the paper sheet by determining the degree of stain on the paper sheet. 前記制御部は、前記紙葉類が汚れているか否かを判定することにより、前記紙葉類の汚れに関して判定することを特徴とする、請求項1または請求項2に記載の汚れ判定装置。 3. The soil determination device according to claim 1, wherein the control unit determines whether the paper sheet is soiled by determining whether or not the paper sheet is soiled. 前記制御部は、前記第1受光強度が大きいほど前記紙葉類の汚れ度合いが大きいと判定することを特徴とする、請求項1から請求項3のいずれかに記載の汚れ判定装置。 The stain determination device according to any one of claims 1 to 3, wherein the control unit determines that the greater the first received light intensity, the greater the degree of stain on the paper sheet. 前記制御部は、前記第1受光強度が所定の基準値よりも大きい場合、前記紙葉類が汚れていると判定することを特徴とする、請求項1から請求項4のいずれかに記載の汚れ判定装置。 5. The control unit determines that the paper sheet is dirty when the first received light intensity is greater than a predetermined reference value. Dirt determination device. 前記制御部は、前記第1領域よりも汚れが検出されにくいと推定される第2領域であって蛍光インクが元来は塗布されていない第2領域から発生し前記受光部によって受光される蛍光の受光強度である第2受光強度と、前記第1受光強度とに基づき、前記紙葉類の汚れに関して判定することを特徴とする、請求項1から請求項3のいずれかに記載の汚れ判定装置。 The control unit is configured to detect fluorescence that is generated from a second area where it is estimated that dirt is less likely to be detected than the first area and is not originally coated with fluorescent ink and is received by the light receiving unit. The stain determination according to any one of claims 1 to 3, characterized in that dirt on the paper sheet is determined based on a second received light intensity that is a received light intensity and the first received light intensity. Device. 前記制御部は、元来は一定程度の蛍光反応を示す基準領域である第2領域から発生し前記受光部によって受光される蛍光の受光強度である第2受光強度と、前記第1受光強度とに基づき、前記紙葉類の汚れに関して判定することを特徴とする、請求項1から請求項3のいずれかに記載の汚れ判定装置。 The control section is configured to control a second received light intensity that is a received light intensity of fluorescence generated from a second region, which is a reference region that originally exhibits a certain level of fluorescence reaction, and is received by the light receiving section, and the first received light intensity. The stain determination device according to any one of claims 1 to 3, characterized in that the stain determination device makes a determination regarding stains on the paper sheet based on the following. 前記第2領域は、前記紙葉類内の、前記第1領域とは異なる領域であることを特徴とする、請求項6または請求項7に記載の汚れ判定装置。 8. The stain determination device according to claim 6, wherein the second area is a different area from the first area within the paper sheet. 励起光を紙葉類に照射して前記紙葉類に蛍光を発生させる発光部と、
前記紙葉類にて発生した蛍光を受光する受光部と、
前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生し前記受光部によって受光される蛍光の受光強度である第1受光強度に基づき、前記紙葉類の汚れに関して判定する制御部と、
を備え、
前記制御部は、前記第1領域よりも汚れが検出されにくいと推定される第2領域であって蛍光インクが元来は塗布されていない第2領域から発生し前記受光部によって受光される蛍光の受光強度である第2受光強度と、前記第1受光強度とに基づき、前記紙葉類の汚れに関して判定し、
前記第2領域は、前記汚れ判定装置内の所定部材に設けられた所定領域であることを特徴とする汚れ判定装置。
a light emitting unit that irradiates excitation light onto paper sheets to generate fluorescence in the paper sheets;
a light receiving unit that receives fluorescence generated from the paper sheet;
Based on the first received light intensity, which is the received light intensity of fluorescence generated from a first region within the paper sheet and to which fluorescent ink is not originally applied, and received by the light receiving section, the paper a control unit that makes a determination regarding soiling of leaves;
Equipped with
The control unit is configured to detect fluorescence that is generated from a second area where it is estimated that dirt is less likely to be detected than the first area and is not originally coated with fluorescent ink and is received by the light receiving unit. Determining dirt on the paper sheet based on the second received light intensity, which is the received light intensity, and the first received light intensity,
A dirt determining device, wherein the second region is a predetermined region provided on a predetermined member within the dirt determining device.
励起光を紙葉類に照射して前記紙葉類に蛍光を発生させる発光部と、
前記紙葉類にて発生した蛍光を受光する受光部と、
前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生し前記受光部によって受光される蛍光の受光強度である第1受光強度に基づき、前記紙葉類の汚れに関して判定する制御部と、
を備え、
前記制御部は、元来は一定程度の蛍光反応を示す基準領域である第2領域から発生し前記受光部によって受光される蛍光の受光強度である第2受光強度と、前記第1受光強度とに基づき、前記紙葉類の汚れに関して判定し、
前記第2領域は、前記汚れ判定装置内の所定部材に設けられた所定領域であることを特徴とする汚れ判定装置。
a light emitting unit that irradiates excitation light onto paper sheets to generate fluorescence in the paper sheets;
a light receiving unit that receives fluorescence generated from the paper sheet;
Based on the first received light intensity, which is the received light intensity of fluorescence generated from a first region within the paper sheet and to which fluorescent ink is not originally applied, and received by the light receiving section, the paper a control unit that makes a determination regarding soiling of leaves;
Equipped with
The control section is configured to control a second received light intensity that is a received light intensity of fluorescence generated from a second region, which is a reference region that originally exhibits a certain level of fluorescence reaction, and is received by the light receiving section, and the first received light intensity. Based on the above, determine the dirt on the paper sheet,
A dirt determining device, wherein the second region is a predetermined region provided on a predetermined member within the dirt determining device.
励起光を紙葉類に照射して前記紙葉類に蛍光を発生させる発光部と、
前記紙葉類にて発生した蛍光を受光する受光部と、
前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生し前記受光部によって受光される蛍光の受光強度である第1受光強度に基づき、前記紙葉類の汚れに関して判定する制御部と、
を備え、
前記制御部は、前記第1領域よりも汚れが検出されにくいと推定される第2領域であって蛍光インクが元来は塗布されていない第2領域から発生し前記受光部によって受光される蛍光の受光強度である第2受光強度と、前記第1受光強度との差異に基づき、前記紙葉類の汚れに関して判定することを特徴とする汚れ判定装置。
a light emitting unit that irradiates excitation light onto paper sheets to generate fluorescence in the paper sheets;
a light receiving unit that receives fluorescence generated from the paper sheet;
Based on the first received light intensity, which is the received light intensity of fluorescence generated from a first region within the paper sheet and to which fluorescent ink is not originally applied, and received by the light receiving section, the paper a control unit that makes a determination regarding soiling of leaves;
Equipped with
The control unit is configured to detect fluorescence that is generated from a second area where it is estimated that dirt is less likely to be detected than the first area and is not originally coated with fluorescent ink and is received by the light receiving unit. A soil determination device, characterized in that soiling of the paper sheet is determined based on a difference between a second light reception intensity that is a light reception intensity of the first light reception intensity and the first light reception intensity.
前記制御部は、前記第1受光強度と前記第2受光強度との差異が大きいほど前記紙葉類の汚れ度合いが大きいと判定することを特徴とする、請求項11に記載の汚れ判定装置。 The stain determination device according to claim 11, wherein the control unit determines that the greater the difference between the first received light intensity and the second received light intensity, the greater the degree of stain on the paper sheet. 前記制御部は、前記第1受光強度と前記第2受光強度との差異が所定程度よりも大きい場合、前記紙葉類が汚れていると判定することを特徴とする、請求項11に記載の汚れ判定装置。 12. The control unit determines that the paper sheet is dirty when the difference between the first received light intensity and the second received light intensity is larger than a predetermined degree. Dirt determination device. 励起光を紙葉類に照射して前記紙葉類に蛍光を発生させる発光部と、
前記紙葉類にて発生した蛍光を受光する受光部と、
前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生し前記受光部によって受光される蛍光の受光強度である第1受光強度に基づき、前記紙葉類の汚れに関して判定する制御部と、
を備え、
前記制御部は、元来は一定程度の蛍光反応を示す基準領域である第2領域から発生し前記受光部によって受光される蛍光の受光強度である第2受光強度と、前記第1受光強度との差異に基づき、前記紙葉類の汚れに関して判定することを特徴とする汚れ判定装置。
a light emitting unit that irradiates excitation light onto paper sheets to generate fluorescence in the paper sheets;
a light receiving unit that receives fluorescence generated from the paper sheet;
Based on the first received light intensity, which is the received light intensity of fluorescence generated from a first region within the paper sheet and to which fluorescent ink is not originally applied, and received by the light receiving section, the paper a control unit that makes a determination regarding soiling of leaves;
Equipped with
The control section is configured to control a second received light intensity that is a received light intensity of fluorescence generated from a second region, which is a reference region that originally exhibits a certain level of fluorescence reaction, and is received by the light receiving section, and the first received light intensity. A stain determination device that determines whether the paper sheet is soiled based on the difference in the amount of dirt.
前記制御部は、前記第1受光強度と前記第2受光強度との差異が小さいほど前記紙葉類の汚れ度合いが大きいと判定することを特徴とする、請求項14に記載の汚れ判定装置。 The stain determination device according to claim 14, wherein the control unit determines that the smaller the difference between the first received light intensity and the second received light intensity, the greater the degree of stain on the paper sheet. 前記制御部は、前記第1受光強度と前記第2受光強度との差異が所定程度よりも小さい場合、前記紙葉類が汚れていると判定することを特徴とする、請求項14に記載の汚れ判定装置。 15. The control unit determines that the paper sheet is dirty if the difference between the first received light intensity and the second received light intensity is smaller than a predetermined value. Dirt determination device. 前記差異とは、前記第1受光強度と前記第2受光強度との差分、または、前記第1受光強度と前記第2受光強度との比であることを特徴とする、請求項11から請求項16のいずれかに記載の汚れ判定装置。 Claims 11 to 12 are characterized in that the difference is a difference between the first received light intensity and the second received light intensity, or a ratio between the first received light intensity and the second received light intensity. 16. The dirt determination device according to any one of 16. 励起光を紙葉類に照射して前記紙葉類に蛍光を発生させる発光部と、
前記紙葉類にて発生した蛍光を受光する受光部と、
前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生し前記受光部によって受光される蛍光の受光強度である第1受光強度に基づき、前記紙葉類の汚れに関して判定する制御部と、
を備え、
前記制御部は、前記第1領域からの蛍光のうち第1波長域の光の受光強度である第1強度と、前記第1領域からの蛍光のうち前記第1波長域とは異なる第2波長域の光の受光強度である第2強度との差異に基づき、前記紙葉類の汚れに関して判定することを特徴とする汚れ判定装置。
a light emitting unit that irradiates excitation light onto paper sheets to generate fluorescence in the paper sheets;
a light receiving unit that receives fluorescence generated from the paper sheet;
Based on the first received light intensity, which is the received light intensity of fluorescence generated from a first region within the paper sheet and to which fluorescent ink is not originally applied, and received by the light receiving section, the paper a control unit that makes a determination regarding soiling of leaves;
Equipped with
The control unit is configured to control a first intensity that is a received intensity of light in a first wavelength range among the fluorescence from the first region, and a second wavelength different from the first wavelength range among the fluorescence from the first region. A dirt determination device, characterized in that dirt on the paper sheet is determined based on a difference from a second intensity that is a received light intensity of the area.
励起光を紙葉類に照射して前記紙葉類に蛍光を発生させる発光部と、
前記紙葉類にて発生した蛍光を受光する受光部と、
前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生し前記受光部によって受光される蛍光の受光強度である第1受光強度に基づき、前記紙葉類の汚れに関して判定する制御部と、
を備え、
前記制御部は、前記第1領域よりも汚れが検出されにくいと推定される第2領域であって蛍光インクが元来は塗布されていない第2領域から発生し前記受光部によって受光される蛍光の受光強度である第2受光強度と、前記第1受光強度とに基づき、前記紙葉類の汚れに関して判定し、
前記制御部は、
前記第1領域からの蛍光のうち第1波長域の光の受光強度である第1強度と、前記第1領域からの蛍光のうち前記第1波長域とは異なる第2波長域の光の受光強度である第2強度との差異である第1差異と、
前記第2領域からの蛍光のうち前記第1波長域の光の受光強度である第3強度と、前記第2領域からの蛍光のうち前記第2波長域の光の受光強度である第4強度との差異である第2差異と
に基づき、前記紙葉類の汚れに関して判定することを特徴とする汚れ判定装置。
a light emitting unit that irradiates excitation light onto paper sheets to generate fluorescence in the paper sheets;
a light receiving unit that receives fluorescence generated from the paper sheet;
Based on the first received light intensity, which is the received light intensity of fluorescence generated from a first region within the paper sheet and to which fluorescent ink is not originally applied, and received by the light receiving section, the paper a control unit that makes a determination regarding soiling of leaves;
Equipped with
The control unit is configured to detect fluorescence that is generated from a second area where it is estimated that dirt is less likely to be detected than the first area and is not originally coated with fluorescent ink and is received by the light receiving unit. Determining dirt on the paper sheet based on the second received light intensity, which is the received light intensity, and the first received light intensity,
The control unit includes:
A first intensity that is the received intensity of light in a first wavelength range among the fluorescence from the first region, and reception of light in a second wavelength range different from the first wavelength range among the fluorescence from the first region. a first difference that is a difference from a second strength that is the strength;
A third intensity is the received intensity of light in the first wavelength range among the fluorescence from the second region, and a fourth intensity is the received intensity of the light in the second wavelength range among the fluorescence from the second region. A soil determination device, characterized in that it determines whether the paper sheet is soiled based on a second difference, which is a difference between the two and the second difference.
励起光を紙葉類に照射して前記紙葉類に蛍光を発生させる発光部と、
前記紙葉類にて発生した蛍光を受光する受光部と、
前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生し前記受光部によって受光される蛍光の受光強度である第1受光強度に基づき、前記紙葉類の汚れに関して判定する制御部と、
を備え、
前記制御部は、元来は一定程度の蛍光反応を示す基準領域である第2領域から発生し前記受光部によって受光される蛍光の受光強度である第2受光強度と、前記第1受光強度とに基づき、前記紙葉類の汚れに関して判定し、
前記制御部は、
前記第1領域からの蛍光のうち第1波長域の光の受光強度である第1強度と、前記第1領域からの蛍光のうち前記第1波長域とは異なる第2波長域の光の受光強度である第2強度との差異である第1差異と、
前記第2領域からの蛍光のうち前記第1波長域の光の受光強度である第3強度と、前記第2領域からの蛍光のうち前記第2波長域の光の受光強度である第4強度との差異である第2差異と
に基づき、前記紙葉類の汚れに関して判定することを特徴とする汚れ判定装置。
a light emitting unit that irradiates excitation light onto paper sheets to generate fluorescence in the paper sheets;
a light receiving unit that receives fluorescence generated from the paper sheet;
Based on the first received light intensity, which is the received light intensity of fluorescence generated from a first region within the paper sheet and to which fluorescent ink is not originally applied, and received by the light receiving section, the paper a control unit that makes a determination regarding soiling of leaves;
Equipped with
The control section is configured to control a second received light intensity that is a received light intensity of fluorescence generated from a second region, which is a reference region that originally exhibits a certain level of fluorescence reaction, and is received by the light receiving section, and the first received light intensity. Based on the above, determine the dirt on the paper sheet,
The control unit includes:
A first intensity that is the received intensity of light in a first wavelength range among the fluorescence from the first region, and reception of light in a second wavelength range different from the first wavelength range among the fluorescence from the first region. a first difference that is a difference from a second strength that is the strength;
A third intensity is the received intensity of light in the first wavelength range among the fluorescence from the second region, and a fourth intensity is the received intensity of the light in the second wavelength range among the fluorescence from the second region. A soil determination device, characterized in that it determines whether the paper sheet is soiled based on a second difference, which is a difference between the two and the second difference.
請求項1から請求項20のいずれかに記載の汚れ判定装置、
を備えることを特徴とする紙葉類処理装置。
A dirt determination device according to any one of claims 1 to 20,
A paper sheet processing device comprising:
a)コンピュータが、紙葉類内において、蛍光インクが元来は塗布されていない第1領域を、蛍光インクが元来は塗布されている領域と区別して特定するステップと、
b)前記コンピュータが、前記紙葉類への励起光の照射に応じて前記第1領域から発生した蛍光の受光強度である第1受光強度を取得するステップと、
c)前記コンピュータが、前記第1受光強度に基づき、前記紙葉類の汚れに関して判定するステップと、
を備えることを特徴とする汚れ判定方法。
a) a step in which the computer identifies, in the paper sheet, a first area to which fluorescent ink is not originally applied, distinguishing it from an area to which fluorescent ink is originally applied;
b) a step in which the computer obtains a first received light intensity that is a received light intensity of fluorescence generated from the first region in response to irradiation of the excitation light to the paper sheet;
c) a step in which the computer determines whether the paper sheet is soiled based on the first received light intensity;
A dirt determination method comprising:
a)紙葉類への励起光の照射に応じて前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生した蛍光の受光強度である第1受光強度と、前記第1領域よりも汚れが検出されにくいと推定される第2領域であって蛍光インクが元来は塗布されていない第2領域から発生した蛍光の受光強度である第2受光強度とをコンピュータが取得するステップと、
b)前記コンピュータが、前記第1受光強度と前記第2受光強度との差異に基づき、前記紙葉類の汚れに関して判定するステップと、
を備えることを特徴とする汚れ判定方法。
a) A first value that is the received intensity of fluorescence generated from a first area within the paper sheet to which fluorescent ink is not originally applied in response to irradiation of the excitation light onto the paper sheet. the received light intensity; and the second received light intensity, which is the received light intensity of fluorescence generated from a second area where it is estimated that dirt is less likely to be detected than the first area and where no fluorescent ink is originally applied. a step in which the computer obtains the intensity;
b) a step in which the computer determines whether the paper sheet is soiled based on the difference between the first received light intensity and the second received light intensity;
A dirt determination method comprising:
a)紙葉類への励起光の照射に応じて前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生した蛍光の受光強度である第1受光強度と、元来は一定程度の蛍光反応を示す基準領域である第2領域から発生した蛍光の受光強度である第2受光強度とをコンピュータが取得するステップと、
b)前記コンピュータが、前記第1受光強度と前記第2受光強度との差異に基づき、前記紙葉類の汚れに関して判定するステップと、
を備えることを特徴とする汚れ判定方法。
a) A first value that is the received intensity of fluorescence generated from a first area within the paper sheet to which fluorescent ink is not originally applied in response to irradiation of the excitation light onto the paper sheet. a step in which the computer acquires the received light intensity and the second received light intensity that is the received light intensity of the fluorescence generated from the second region, which is originally a reference region that exhibits a certain degree of fluorescence reaction;
b) a step in which the computer determines whether the paper sheet is soiled based on the difference between the first received light intensity and the second received light intensity;
A dirt determination method comprising:
a)紙葉類への励起光の照射に応じて前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生した蛍光の受光強度である第1受光強度をコンピュータが取得するステップと、
b)前記コンピュータが、前記第1受光強度に基づき、前記紙葉類の汚れに関して判定するステップと、
を備え、
ステップb)は、
b-1)前記コンピュータが、前記第1領域からの蛍光のうち第1波長域の光の受光強度である第1強度と、前記第1領域からの蛍光のうち前記第1波長域とは異なる第2波長域の光の受光強度である第2強度との差異に基づき、前記紙葉類の汚れに関して判定するステップ、
を備えることを特徴とする汚れ判定方法。
a) A first value that is the received intensity of fluorescence generated from a first area within the paper sheet to which fluorescent ink is not originally applied in response to irradiation of the excitation light onto the paper sheet. a step in which the computer acquires the received light intensity;
b) a step in which the computer determines whether the paper sheet is soiled based on the first received light intensity;
Equipped with
Step b) is:
b-1) The computer determines that a first intensity that is a received intensity of light in a first wavelength range among the fluorescence from the first region is different from the first wavelength range among the fluorescence from the first region. determining whether the paper sheet is soiled based on a difference from a second intensity that is a received intensity of light in a second wavelength range;
A dirt determination method comprising:
a)紙葉類への励起光の照射に応じて前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生した蛍光の受光強度である第1受光強度と、前記第1領域よりも汚れが検出されにくいと推定される第2領域であって蛍光インクが元来は塗布されていない第2領域から発生した蛍光の受光強度である第2受光強度とをコンピュータが取得するステップと、
b)前記コンピュータが、前記第1受光強度と前記第2受光強度とに基づき、前記紙葉類の汚れに関して判定するステップと、
を備え、
前記ステップb)は、
b-1)前記第1領域からの蛍光のうち第1波長域の光の受光強度である第1強度と、前記第1領域からの蛍光のうち前記第1波長域とは異なる第2波長域の光の受光強度である第2強度との差異である第1差異と、
前記第2領域からの蛍光のうち前記第1波長域の光の受光強度である第3強度と、前記第2領域からの蛍光のうち前記第2波長域の光の受光強度である第4強度との差異である第2差異と
に基づき、前記コンピュータが前記紙葉類の汚れに関して判定するステップ、
を備えることを特徴とする汚れ判定方法。
a) A first value that is the received intensity of fluorescence generated from a first area within the paper sheet to which fluorescent ink is not originally applied in response to irradiation of the excitation light onto the paper sheet. the received light intensity; and the second received light intensity, which is the received light intensity of fluorescence generated from a second area where it is estimated that dirt is less likely to be detected than the first area and where no fluorescent ink is originally applied. a step in which the computer obtains the intensity;
b) a step in which the computer determines whether the paper sheet is soiled based on the first received light intensity and the second received light intensity;
Equipped with
Said step b) includes:
b-1) A first intensity that is the received intensity of light in a first wavelength range among the fluorescence from the first region, and a second wavelength range different from the first wavelength range among the fluorescence from the first region. a first difference that is a difference from a second intensity that is the received light intensity of the light;
A third intensity is the received intensity of light in the first wavelength range among the fluorescence from the second region, and a fourth intensity is the received intensity of the light in the second wavelength range among the fluorescence from the second region. a step in which the computer determines whether the paper sheet is soiled based on a second difference, which is a difference between the paper sheet and the paper sheet;
A dirt determination method comprising:
a)紙葉類への励起光の照射に応じて前記紙葉類内の第1領域であって蛍光インクが元来は塗布されていない第1領域から発生した蛍光の受光強度である第1受光強度と、元来は一定程度の蛍光反応を示す基準領域である第2領域から発生した蛍光の受光強度である第2受光強度とをコンピュータが取得するステップと、
b)前記コンピュータが、前記第1受光強度と前記第2受光強度とに基づき、前記紙葉類の汚れに関して判定するステップと、
を備え、
前記ステップb)は、
b-1)前記第1領域からの蛍光のうち第1波長域の光の受光強度である第1強度と、前記第1領域からの蛍光のうち前記第1波長域とは異なる第2波長域の光の受光強度である第2強度との差異である第1差異と、
前記第2領域からの蛍光のうち前記第1波長域の光の受光強度である第3強度と、前記第2領域からの蛍光のうち前記第2波長域の光の受光強度である第4強度との差異である第2差異と
に基づき、前記コンピュータが前記紙葉類の汚れに関して判定するステップ、
を備えることを特徴とする汚れ判定方法。
a) A first value that is the received intensity of fluorescence generated from a first area within the paper sheet to which fluorescent ink is not originally applied in response to irradiation of the excitation light onto the paper sheet. a step in which the computer acquires the received light intensity and the second received light intensity that is the received light intensity of the fluorescence generated from the second region, which is originally a reference region that exhibits a certain degree of fluorescence reaction;
b) a step in which the computer determines whether the paper sheet is soiled based on the first received light intensity and the second received light intensity;
Equipped with
Said step b) includes:
b-1) A first intensity that is the received intensity of light in a first wavelength range among the fluorescence from the first region, and a second wavelength range different from the first wavelength range among the fluorescence from the first region. a first difference that is a difference from a second intensity that is the received light intensity of the light;
A third intensity is the received intensity of light in the first wavelength range among the fluorescence from the second region, and a fourth intensity is the received intensity of the light in the second wavelength range among the fluorescence from the second region. a step in which the computer determines whether the paper sheet is soiled based on a second difference, which is a difference between the paper sheet and the paper sheet;
A dirt determination method comprising:
請求項22から請求項27のいずれかに記載の汚れ判定方法を前記コンピュータに実行させるためのプログラム。 A program for causing the computer to execute the stain determination method according to any one of claims 22 to 27.
JP2020065615A 2020-04-01 2020-04-01 Dirt detection device, paper sheet processing device, dirt detection method and program Active JP7442374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020065615A JP7442374B2 (en) 2020-04-01 2020-04-01 Dirt detection device, paper sheet processing device, dirt detection method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020065615A JP7442374B2 (en) 2020-04-01 2020-04-01 Dirt detection device, paper sheet processing device, dirt detection method and program

Publications (2)

Publication Number Publication Date
JP2021163297A JP2021163297A (en) 2021-10-11
JP7442374B2 true JP7442374B2 (en) 2024-03-04

Family

ID=78003499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020065615A Active JP7442374B2 (en) 2020-04-01 2020-04-01 Dirt detection device, paper sheet processing device, dirt detection method and program

Country Status (1)

Country Link
JP (1) JP7442374B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024335A (en) 2003-06-30 2005-01-27 Nidec Copal Corp Inspection device
JP2010277252A (en) 2009-05-27 2010-12-09 Toshiba Corp Paper sheet handling apparatus
JP2019066976A (en) 2017-09-29 2019-04-25 富士通フロンテック株式会社 Automatic transaction device and jam avoidance method in automatic transaction device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024335A (en) 2003-06-30 2005-01-27 Nidec Copal Corp Inspection device
JP2010277252A (en) 2009-05-27 2010-12-09 Toshiba Corp Paper sheet handling apparatus
JP2019066976A (en) 2017-09-29 2019-04-25 富士通フロンテック株式会社 Automatic transaction device and jam avoidance method in automatic transaction device

Also Published As

Publication number Publication date
JP2021163297A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
JP5314419B2 (en) Bill authenticity judging method and bill authenticity judging device
RU2597505C2 (en) Device and method for processing banknotes
JP4949408B2 (en) Paper sheet identification method and apparatus
US20100322503A1 (en) Paper sheet identifying device and paper sheet identifying method
EP3598401B1 (en) Paper sheet detection device, paper sheet processing apparatus, and paper sheet detection method
WO2011036748A1 (en) Paper sheet identification device and paper sheet identification method
US20110019872A1 (en) Paper identifying apparatus and paper identifying method
JP2001052232A (en) Paper sheet authenticity identification device
KR101992387B1 (en) Integrated sensor module fo Bill counter
JP7442374B2 (en) Dirt detection device, paper sheet processing device, dirt detection method and program
JP2004246714A (en) Pearl ink detection device and pearl ink detection method
JP2008175587A (en) Method and device for measuring surface characteristic of object using stress-luminescent material, apparatus for identifying authenticity and kind of security article, apparatus for measuring surface characteristic of human body, and stress-luminescent sensor
US8522949B2 (en) Paper sheet processing apparatus
JP3736028B2 (en) Bill discrimination device
EP3680867A1 (en) Image acquisition device, sheet handling device, banknote handling device, and image acquisition method
JP6009992B2 (en) Paper sheet identification device and optical sensor device
WO2022102583A1 (en) Optical sensor, paper sheet identification device, paper sheet processing device, and light detection method
WO2021193465A1 (en) Optical sensor and paper sheet identifying device
WO2017145779A1 (en) Valuable document identification apparatus, valuable document processor, image sensor unit, and method for detecting optical variable element area
JP4650366B2 (en) Bill recognition device
EP4495880A1 (en) Paper sheet identifying device, paper sheet processing device, and paper sheet identification method
JP7508400B2 (en) DOUBLE FEED DETECTION DEVICE AND METHOD
JP7337572B2 (en) Serial number reading device, paper sheet processing device, and serial number reading method
JP2007213210A (en) Paper sheet discrimination device
JP2007087333A (en) Pearl ink detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240220

R150 Certificate of patent or registration of utility model

Ref document number: 7442374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150