JP7423889B2 - 電池用非水電解液及びリチウムイオン二次電池 - Google Patents
電池用非水電解液及びリチウムイオン二次電池 Download PDFInfo
- Publication number
- JP7423889B2 JP7423889B2 JP2019225902A JP2019225902A JP7423889B2 JP 7423889 B2 JP7423889 B2 JP 7423889B2 JP 2019225902 A JP2019225902 A JP 2019225902A JP 2019225902 A JP2019225902 A JP 2019225902A JP 7423889 B2 JP7423889 B2 JP 7423889B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- active material
- positive electrode
- electrolyte
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Description
リチウムイオン二次電池は、例えば、リチウムを吸蔵放出可能な材料を含有する正極及び負極、並びに、リチウム塩と非水溶媒とを含有する電池用非水電解液を含む。
正極に用いられる正極活物質としては、例えば、LiCoO2、LiMnO2、LiNiO2、LiFePO4のようなリチウム金属酸化物が用いられる。
また、電池用非水電解液としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどのカーボネート類の混合溶媒(非水溶媒)に、LiPF6、LiBF4、LiN(SO2CF3)2、LiN(SO2CF2CF3)2のようなLi電解質を混合した溶液が用いられている。
一方、負極に用いられる負極用活物質としては、金属リチウム、リチウムを吸蔵及び放出可能な金属化合物(金属単体、酸化物、リチウムとの合金など)や炭素材料が知られており、特にリチウムを吸蔵、放出が可能なコークス、人造黒鉛、天然黒鉛を採用したリチウムイオン二次電池が実用化されている。
電池の充放電特性及び寿命特性を向上させることができる電池用非水電解液として、特定構造のスルトン化合物を含有する電池用非水電解液が知られている(例えば、下記特許文献1参照)。
また、電池の容量維持性能を改善しながら、かつ、電池の充電保存時における開放電圧の低下を抑制できる電池用非水電解液として、特定構造の環状硫酸エステル化合物を含有する電池用非水電解液が知られている(例えば、下記特許文献2参照)。
従って、本開示の課題は、保存後の電池抵抗を低減できる電池用非水電解液、並びに、この電池用非水電解液を用いたリチウムイオン二次電池を提供することである。
ヘキサフルオロリン酸リチウムを含む電解質と、リチウムビス(フルオロスルホニル)イミドである添加剤Aと、ビニレンカーボネートである添加剤Bと、下記式(C1)で表される化合物、及び下記式(C2)で表される化合物からなる群から選択される少なくとも1種である添加剤Cと、を含有する電池用非水電解液。
〔式(C1)中、Rc11~Rc14は、それぞれ独立に、水素原子、炭素数1~6の炭化水素基、式(a)で表される基、又は式(b)で表される基を表す。式(a)及び式(b)において、*は、結合位置を表す。式(C2)中、Rc21~Rc24は、それぞれ独立に、水素原子、フッ素原子、炭素数1~3の炭化水素基、又は炭素数1~3のフッ化炭化水素基を表す。〕
<2>
前記添加剤Aの含有量が、非水電解液の全量に対し、0.1質量%以上2.0質量%以下である<1>に記載の電池用非水電解液。
<3>
前記添加剤Bの含有量が、非水電解液の全量に対し、0.1質量%以上2.0質量%以下である<1>又は<2>に記載の電池用非水電解液。
<4>
前記添加剤Cの含有量が、非水電解液の全量に対し、0.1質量%以上2.0質量%以下である<1>~<3>のいずれか1つに記載の電池用非水電解液。
<5>
前記電解質の濃度は、非水電解液の全量に対し、0.1mol/L以上3mol/L以下である<1>~<4>のいずれか1つに記載の電池用非水電解液。
<6>
正極活物質を含有する正極活物質層を含む正極と、負極活物質を含有する負極活物質層を含む負極と、<1>~<5>のいずれか1つに記載の電池用非水電解液と、
を備えるリチウムイオン二次電池。
<7>
前記正極活物質はリチウムニッケルマンガンコバルト複合酸化物を含む<6>に記載のリチウムイオン二次電池。
<8>
前記負極活物質は炭素材料を含む<6>又は<7>に記載のリチウムイオン二次電池。
<9>
<6>~<8>のいずれか一項に記載のリチウムイオン二次電池を充放電させて得られたリチウムイオン二次電池。
本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
本開示の電池用非水電解液(以下、単に「非水電解液」ともいう)は、リチウムビス(フルオロスルホニル)イミドである添加剤Aと、ビニレンカーボネートである添加剤Bと、下記式(C1)で表される化合物、及び下記式(C2)で表される化合物からなる群から選択される少なくとも1種である添加剤Cと、を含有する。
本開示の非水電解液によれば、電池における保存後の電池抵抗を低減できる。
かかる効果が奏される理由は明らかではないが、以下のように推測される。
本開示の非水電解液は、添加剤A~添加剤Cを含んでおり、これら添加剤の組み合わせにより、保存後の電池特性が改善できると考えられる。
添加剤Aは、リチウムビス(フルオロスルホニル)イミド(以下、「LiFSI」ともいう。)である。
添加剤Bは、ビニレンカーボネート(以下、「VC」ともいう。)である。
添加剤Cは、下記式(C1)で表される化合物、及び下記式(C2)で表される化合物からなる群から選択される少なくとも1種である。
式(C1)中、Rc11~Rc14で表される炭素数1~6の炭化水素基の炭素数としては、1又は2が好ましく、1が特に好ましい。
これらのうち、化合物(C1-1)~化合物(C1-3)が特に好ましい。
Rc21~Rc24で表される炭素数1~3の炭化水素基としては、アルキル基又はアリール基が好ましく、アルキル基が更に好ましい。
Rc21~Rc24で表される炭素数1~3の炭化水素基の炭素数としては、1又は2が好ましく、1がより好ましい。
Rc21~Rc24で表される炭素数1~6のフッ化炭化水素基としては、フッ化アルキル基又はフッ化アリール基が好ましく、フッ化アルキル基が更に好ましい。
Rc21~Rc24で表される炭素数1~3のフッ化炭化水素基の炭素数としては、1又は2が好ましく、1がより好ましい。
これらのうち、化合物(C2-1)が特に好ましい。
本開示の非水電解液は、式(D1)で表される化合物からなる群から選択される少なくとも1種である添加剤Dを含有してもよい。
Rd11~Rd14で表される炭素数1~6の炭化水素基としては、アルキル基又はアリール基が好ましく、アルキル基が更に好ましい。
Rd11~Rd14で表される炭素数1~6のフッ化炭化水素基としては、フッ化アルキル基又はフッ化アリール基が好ましく、フッ化アルキル基が更に好ましい。
これらのうち、化合物(D1-1)又は化合物(D1-2)が特に好ましい。
本開示の非水電解液は、下記式(E1)で表される化合物からなる群から選択される少なくとも1種である添加剤Eを含有してもよい。
但し、Re11~Re14で表される炭素数1~6の炭化水素基は、アルケニル基であることも好ましい。
Re11~Re14で表される炭素数1~6の炭化水素基の炭素数としては、1~3が好ましく、1又は2がより好ましく、1が特に好ましい。
但し、Re11~Re14で表される炭素数1~6のフッ化炭化水素基は、フッ化アルケニル基であることも好ましい。
Re11~Re14で表される炭素数1~6のフッ化炭化水素基の炭素数としては、1~3が好ましく、1又は2がより好ましく、1が特に好ましい。
これらのうち、化合物(E1-1)又は化合物(E1-2)が特に好ましい。
本開示の非水電解液は、下記式(F1)で表される化合物からなる群から選択される少なくとも1種である添加剤Fを含有してもよい。
本開示の非水電解液は、下記式(G1)で表される化合物からなる群から選択される少なくとも1種である添加剤Gを含有してもよい。
Rg11~Rg16で表される炭素数1~3の炭化水素基の炭素数としては、1又は2が好ましく、1がより好ましい。
Rg11~Rg16で表される炭素数1~3のフッ化炭化水素基の炭素数としては、1又は2が好ましく、1がより好ましい。
これらのうち、化合物(G1-1)が特に好ましい。
本開示の非水電解液は、下記式(H1)で表される化合物からなる群から選択される少なくとも1種である添加剤Hを含有してもよい。
Rh12におけるこれらのアルキル基、ハロゲン化アルキル基、アリール基又はハロゲン化アリール基は、Rh11と同様に、その構造中に置換基、ヘテロ原子を含んでいてもよく、また、nが2~8のときにはn個のR12は、それぞれ結合して環を形成してもよい。R92としては、電子吸引性の基が好ましく、特にフッ素原子が好ましい。
nとしては、0~4の整数が好ましい。
本開示の非水電解液は、ヘキサフルオロリン酸リチウム(「LiPF6」ともいう。)を含む電解質を含有する。
電解質中に占めるLiPF6の比率は、好ましくは10質量%~100質量%、より好ましくは50質量%~100質量%、さらに好ましくは70質量%~100質量%である。
また、本開示の非水電解液におけるLiPF6の濃度は、0.1mol/L~3mol/Lが好ましく、0.5mol/L~2mol/Lがより好ましい。
LiPF6以外の化合物としては;
(C2H5)4NPF6、(C2H5)4NBF4、(C2H5)4NClO4、(C2H5)4NAsF6、(C2H5)4N2SiF6、(C2H5)4NOSO2CkF(2k+1)(k=1~8の整数)、(C2H5)4NPFn[CkF(2k+1)](6-n)(n=1~5の整数、k=1~8の整数)などのテトラアルキルアンモニウム塩;
LiBF4、LiClO4、LiAsF6、Li2SiF6、LiOSO2CkF(2k+1)(k=1~8の整数)、LiPFn[CkF(2k+1)](6-n)(n=1~5の整数、k=1~8の整数)、LiC(SO2R7)(SO2R8)(SO2R9)、LiN(SO2OR10)(SO2OR11)、LiN(SO2R12)(SO2R13)(ここでR7~R13は互いに同一でも異なっていてもよく、フッ素原子又は炭素数1~8のパーフルオロアルキル基である)等のリチウム塩(即ち、LiPF6以外のリチウム塩);
等が挙げられる。
本開示の非水電解液は、非水溶媒を含有し得る。
非水溶媒は、1種のみであってもよいし、2種以上であってもよい。
非水溶媒としては、種々公知のものを適宜選択することができる。
非水溶媒としては、例えば、特開2017-45723号公報の段落0069~0087に記載の非水溶媒を用いることができる。
この場合、非水溶媒に含まれる環状カーボネート化合物及び鎖状カーボネート化合物は、それぞれ、1種のみであってもよいし2種以上であってもよい。
これらのうち、誘電率が高い、エチレンカーボネート及びプロピレンカーボネートが好適である。黒鉛を含む負極活物質を使用した電池の場合は、非水溶媒は、エチレンカーボネートを含むことがより好ましい。
この場合、非水溶媒に含まれるその他の化合物は、1種のみであってもよいし、2種以上であってもよい。
その他の化合物としては、環状カルボン酸エステル化合物(例えばγブチロラクトン)、環状スルホン化合物、環状エーテル化合物、鎖状カルボン酸エステル化合物、鎖状エーテル化合物、鎖状リン酸エステル化合物、アミド化合物、鎖状カーバメート化合物、環状アミド化合物、環状ウレア化合物、ホウ素化合物、ポリエチレングリコール誘導体、等が挙げられる。
これらの化合物については、特開2017-45723号公報の段落0069~0087の記載を適宜参照できる。
非水溶媒中に占める、環状カーボネート化合物及び鎖状カーボネート化合物の割合は、100質量%であってもよい。
非水電解液中に占める非水溶媒の割合の上限は、他の成分(電解質、添加剤等)の含有量にもよるが、上限は、例えば99質量%であり、好ましくは97質量%であり、更に好ましくは90質量%である。
本開示のリチウムイオン二次電池は、
正極活物質を含有する正極活物質層を含む正極と、
負極活物質を含有する負極活物質層を含む負極と、
前述した本開示の電池用非水電解液と、
を備える。
本開示のリチウムイオン二次電池は、保存後の電池特性の低下が低減される。
かかる効果は、非水電解液中に含まれる添加剤A~添加剤Cの組み合わせによってもたらされる効果である。
正極は、正極活物質を含有する正極活物質層を含む。正極活物質として、リチウムニッケルマンガンコバルト複合酸化物を含むことが好ましい。リチウムニッケルマンガンコバルト複合酸化物としては、下記式(P1)で表される化合物が好ましい。
〔式(P1)中、x、y及びzは、それぞれ独立に、0超1.00未満であり、かつ、x、y及びzの合計は、0.99~1.00である。〕
式(P1)中、yは、好ましくは0.10~0.90であり、より好ましくは0.10~0.50であり、更に好ましくは0.20~0.40である。
式(P1)中、zは、好ましくは0.10~0.90であり、より好ましくは0.10~0.50であり、更に好ましくは0.10~0.30である。
リチウムニッケルマンガンコバルト複合酸化物以外の成分としては;
MoS2、TiS2、MnO2、V2O5などの遷移金属酸化物又は遷移金属硫化物;
LiCoO2、LiMnO2、LiMn2O4、LiNiO2、LiNiXCo(1-X)O2〔0<X<1〕、LiFePO4、LiMnPO4などの、リチウムと遷移金属とからなる複合酸化物(但し、リチウムニッケルマンガンコバルト複合酸化物を除く);
ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール、ポリアニリン複合体などの導電性高分子材料;
等が挙げられる。
正極活物質中に占めるリチウムニッケルマンガンコバルト複合酸化物の割合は、100質量%であってもよいし、100質量%未満であってもよい。
正極活物質層は、正極活物質以外の成分を含んでいてもよい。
正極活物質以外の成分としては、導電性助剤、バインダー、等が挙げられる。
導電性助剤としては、カーボンブラック(例えばアセチレンブラック)、アモルファスウィスカー、グラファイトなどの炭素材料が挙げられる。
バインダーとしては、ポリフッ化ビニリデン等が挙げられる。
正極合剤スラリーは、正極活物質以外の成分(例えば、導電性助剤、バインダー等)を含んでいてもよい。
正極合剤スラリーにおける溶媒としては、例えば、N-メチルピロリドン等の有機溶剤が挙げられる。
正極活物質層の全固形分に占める正極活物質の割合は、100質量%であってもよい。
ここで、正極活物質層の全固形分とは、正極活物質層に溶媒が残存している場合には、正極活物質層から溶媒を除いた全量を意味し、正極活物質層に溶媒が残存していない場合には、正極活物質層の全量を意味する。
正極活物質層の全固形分に占めるリチウムニッケルマンガンコバルト複合酸化物の割合は、100質量%であってもよいし、100質量%未満であってもよい。
正極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
正極集電体の具体例としては、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、チタン、タンタルなどの金属材料;カーボンクロス、カーボンペーパーなどの炭素材料;等が挙げられる。
負極は、負極活物質を含有する負極活物質層を含む。
負極活物質としては、例えば、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を用いることができる。
リチウム(又はリチウムイオン)との合金化が可能な金属もしくは合金としては、シリコン、シリコン合金、スズ、スズ合金などを挙げることができる。
リチウムイオンのドープ・脱ドープが可能な酸化物としては、チタン酸リチウム、酸化シリコン(好ましくはSiOx(Xは、0.5以上1.6未満を表す)、より好ましくはSiO)などを挙げることができる。
これらの中でも、リチウムイオンをドープ・脱ドープすることが可能な炭素材料が好ましい。
このような炭素材料としては、カーボンブラック、活性炭、黒鉛材料(人造黒鉛、天然黒鉛)、非晶質炭素材料、等が挙げられる。上記炭素材料の形態は、繊維状、球状、ポテト状、フレーク状のいずれの形態であってもよい。
上記黒鉛材料としては、天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが用いられる。また、黒鉛材料としては、ホウ素を含有するものなども用いることができる。また、黒鉛材料としては、金、白金、銀、銅、スズなどの金属で被覆したもの、非晶質炭素で被覆したもの、非晶質炭素と黒鉛を混合したものも使用することができる。
上記炭素材料としては、特にX線解析で測定した(002)面の面間隔d(002)が0.340nm以下の炭素材料が好ましい。また、炭素材料としては、真密度が1.70g/cm3以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料も好ましい。以上のような炭素材料を使用すると、電池のエネルギー密度をより高くすることができる。
負極活物質中に占める炭素材料(好ましくは黒鉛材料)の割合は、100質量%であってもよいし、100質量%未満であってもよい。
負極活物質層は、負極活物質以外の成分を含んでいてもよい。
負極活物質以外の成分としては、バインダーが挙げられる。
バインダーとしては、カルボキシメチルセルロース、SBRラテックス等が挙げられる。
負極合剤スラリーは、負極活物質以外の成分(例えばバインダー)を含んでいてもよい。
負極合剤スラリーにおける溶媒としては、例えば、水が挙げられる。
負極活物質層の全固形分に占める負極活物質の割合は、100質量%であってもよい。
ここで、負極活物質層の全固形分とは、負極活物質層に溶媒が残存している場合には、負極活物質層から溶媒を除いた全量を意味し、負極活物質層に溶媒が残存していない場合には、負極活物質層の全量を意味する。
負極活物質層の全固形分に占める炭素材料(好ましくは黒鉛材料)の割合は、100質量%であってもよい。
負極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
負極集電体の具体例としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工しやすさの点から特に銅が好ましい。
本開示のリチウムイオン二次電池は、負極と正極との間にセパレータを備えることが好ましい。
セパレータは、正極と負極とを電気的に絶縁し且つリチウムイオンを透過する膜であって、多孔性膜や高分子電解質が例示される。
多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が例示される。
特に、多孔性ポリオレフィンが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、又は多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムを例示することができる。多孔性ポリオレフィンフィルム上には、熱安定性に優れる他の樹脂がコーティングされてもよい。
高分子電解質としては、リチウム塩を溶解した高分子や、電解液で膨潤させた高分子等が挙げられる。
本開示の非水電解液は、高分子を膨潤させて高分子電解質を得る目的で使用してもよい。
本開示のリチウムイオン二次電池は、種々公知の形状をとることができ、円筒型、コイン型、角型、ラミネート型、フィルム型その他任意の形状に形成することができる。しかし、電池の基本構造は、形状によらず同じであり、目的に応じて設計変更を施すことができる。
図1は、本開示のリチウムイオン二次電池の一例であるラミネート型電池の一例を示す概略斜視図であり、図2は、図1に示すラミネート型電池に収容される積層型電極体の厚さ方向の概略断面図である。
図1に示すラミネート型電池は、内部に非水電解液(図1中では不図示)及び積層型電極体(図1中では不図示)が収納され、且つ、周縁部が封止されることにより内部が密閉されたラミネート外装体1を備える。ラミネート外装体1としては、例えばアルミニウム製のラミネート外装体が用いられる。
ラミネート外装体1に収容される積層型電極体は、図2に示されるように、正極板5と負極板6とがセパレータ7を介して交互に積層されてなる積層体と、この積層体の周囲を囲むセパレータ8と、を備える。正極板5、負極板6、セパレータ7、及びセパレータ8には、本開示の非水電解液が含浸されている。正極板5は、正極集電体及び正極活物質層とを含む。負極板5は、負極集電体及び負極活物質層とを含む。
上記積層型電極体における複数の正極板5は、いずれも正極タブを介して正極端子2と電気的に接続されており(不図示)、この正極端子2の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において正極端子2が突出する部分は、絶縁シール4によってシールされている。
同様に、上記積層型電極体における複数の負極板6は、いずれも負極タブを介して負極端子3と電気的に接続されており(不図示)、この負極端子3の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において負極端子3が突出する部分は、絶縁シール4によってシールされている。
なお、上記一例に係るラミネート型電池では、正極板5の数が5枚、負極板6の数が6枚となっており、正極板5と負極板6とがセパレータ7を介し、両側の最外層がいずれも負極板6となる配置で積層されている。しかし、ラミネート型電池における、正極板の数、負極板の数、及び配置については、この一例には限定されず、種々の変更がなされてもよいことは言うまでもない。
図3は、本開示のリチウムイオン二次電池の別の一例であるコイン型電池の一例を示す概略斜視図である。
図3に示すコイン型電池では、円盤状負極12、非水電解液を注入したセパレータ15、円盤状正極11、必要に応じて、ステンレス、又はアルミニウムなどのスペーサー板17、18が、この順序に積層された状態で、正極缶13(以下、「電池缶」ともいう)と封口板14(以下、「電池缶蓋」ともいう)との間に収納される。正極缶13と封口板14とはガスケット16を介してかしめ密封する。
この一例では、セパレータ15に注入される非水電解液として、本開示の非水電解液を用いる。円盤状正極11は、正極集電体及び正極活物質層を含む。円盤状負極12は、負極集電体及び負極活物質層を含む。
即ち、本開示のリチウムイオン二次電池は、まず、正極と、負極と、本開示の非水電解液と、を備える充放電前のリチウムイオン二次電池を作製し、次いで、この充放電前のリチウムイオン二次電池を1回以上充放電させることによって作製されたリチウムイオン二次電池(充放電されたリチウムイオン二次電池)であってもよい。
以下の実施例において、「添加量」は、最終的に得られる非水電解液中における含有量(即ち、最終的に得られる非水電解液全量に対する量)を意味する。
また、「wt%」は、質量%を意味する。
以下の手順にて、リチウムイオン二次電池であるコイン型電池(試験用電池)を作製した。
<負極の作製>
アモルファスコート天然黒鉛(97質量部)、カルボキシメチルセルロース(1質量部)及びSBRラテックス(2質量部)を水溶媒で混練してペースト状の負極合剤スラリーを調製した。
次に、この負極合剤スラリーを厚さ10μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層からなるシート状の負極を得た。このときの負極活物質層の塗布密度は12mg/cm2であり、充填密度は1.5g/mLであった。
LiNi0.5Mn0.3Co0.2O2(90質量部)、アセチレンブラック(5質量部)及びポリフッ化ビニリデン(5質量部)を、N-メチルピロリジノンを溶媒として混練してペースト状の正極合剤スラリーを調製した。
次に、この正極合剤スラリーを厚さ20μmの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮して正極集電体と正極活物質層とからなるシート状の正極を得た。このときの正極活物質層の塗布密度は22mg/cm2であり、充填密度は2.5g/mlであった。
非水溶媒として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とをそれぞれ30:35:35(質量比)の割合で混合し、混合溶媒を得た。
得られた混合溶媒中に、電解質としてのLiPF6を、最終的に調製される非水電解液中における電解質濃度が1モル/リットルとなるように溶解させた。
得られた溶液に対して、添加剤として、LiFSI、VC、及び式(C1-1)で表される化合物(以下、「化合物(C1-1)」ともいう)をそれぞれ、最終的に調製される非水電解液全質量に対する含有量が、0.5質量%、0.3質量%、及び0.5質量%となるように添加し、非水電解液を得た。
上述の負極を直径14mmで、上述の正極を直径13mmで、それぞれ円盤状に打ち抜き、コイン状の負極及びコイン状の正極をそれぞれ得た。また、厚さ20μmの微多孔性ポリエチレンフィルムを直径17mmの円盤状に打ち抜き、セパレータを得た。
得られたコイン状の負極、セパレータ、及びコイン状の正極を、この順序でステンレス製の電池缶(2032サイズ)内に積層し、次いで、この電池缶内に、上述の非水電解液20μLを注入し、セパレータと正極と負極とに含漬させた。
次に、正極上にアルミニウム製の板(厚さ1.2mm、直径16mm)及びバネを乗せ、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめることにより電池を密封した。
以上により、直径20mm、高さ3.2mmの図3で示す構成を有するコイン型電池(即ち、コイン型のリチウムイオン二次電池)を得た。
得られたコイン型電池について、以下の評価を実施した。
評価結果を表1に示す。
表1では、各例で得られたコイン型電池の、初期抵抗(すなわち、保存前の抵抗)、保存後の抵抗、及び、保存時の抵抗上昇率を示す。
「コンディショニング」とは、コイン型電池を、恒温槽内で25℃にて、2.75Vと4.25Vとの間で充放電を三回繰り返すことを意味し、
「保存」とは、コイン型電池を、恒温槽内で、60℃で10日間保存する操作を意味する。
以下、直流抵抗は25℃の温度条件にて測定した。
コンディショニング後のコイン型電池のSOC(State of Charge)を50%に調整し、次いで、以下の方法により、コイン型電池の初期(即ち、保存前)のDCIR(Direct current internal resistance;直流抵抗)を測定した。
上述のSOC50%に調整されたコイン型電池を用い、放電レート0.2C~5CでCC放電をそれぞれ10秒間行った。
ここで、CC10s放電とは、定電流(Constant Current)にて10秒間放電することを意味する。
上記「放電レート0.2C~5CでCC放電」における、各電流値(即ち、放電レート0.2C~5Cに相当する電流値)と、各電流値に対応する各電圧低下量(=放電開始前の電圧-放電開始後10秒目の電圧)と、に基づき直流抵抗(Ω)を求めた。得られた直流抵抗(Ω)を、初期抵抗(即ち、保存前の抵抗)(Ω)とした。結果を表1に示す。
コンディショニング後であってSOCを50%に調整する前のコイン型電池に対し、恒温槽内で充電レート0.2Cで4.25VまでCC-CV充電し、次いで上記条件の「保存」を施す操作を追加したこと以外は前述の初期抵抗の測定と同様にして、保存後の抵抗(Ω)を測定した。結果を表1に示す。
ここで、CC-CV充電とは、定電流定電圧(Constant Current - Constant Voltage)を意味する。
下記式により、保存時の抵抗上昇率を算出した。
保存時の抵抗上昇率
=((保存後の抵抗(Ω)/初期抵抗(Ω))×100)
ここで、上昇率とは、値が100を超える場合は、保存後の電池の直流抵抗が初期抵抗に比べて上昇したことを意味し、100未満の場合は、保存後の電池の直流抵抗が初期抵抗に比べて減少したことを意味する。
非水電解液中に含まれる各添加剤の種類及び添加量の組み合わせを、表1に示すように変更したこと以外は実施例1と同様の操作を行った。
結果を表1に示す。
なお、表1中、「-」は、該当する添加剤を含有しないことを意味する。
Claims (10)
- ヘキサフルオロリン酸リチウムを含む電解質と、
リチウムビス(フルオロスルホニル)イミドである添加剤Aと、
ビニレンカーボネートである添加剤Bと、
下記式(C1)で表される化合物及び下記式(C2)で表される化合物からなる群から選択される少なくとも1種である添加剤Cと、
を含有し、
前記添加剤Aの含有量が、非水電解液の全量に対し、1.0質量%超である、電池用非水電解液。
〔式(C1)中、Rc11~Rc14は、それぞれ独立に、水素原子、炭素数1~6の炭化水素基、式(a)で表される基、又は式(b)で表される基を表す。式(a)及び式(b)において、*は、結合位置を表す。
式(C2)中、Rc21~Rc24は、それぞれ独立に、水素原子、フッ素原子、炭素数1~3の炭化水素基、又は炭素数1~3のフッ化炭化水素基を表す。〕 - 前記添加剤Aの含有量が、非水電解液の全量に対し、1.0質量%超2.0質量%以下である請求項1に記載の電池用非水電解液。
- 前記添加剤Aの含有量が、非水電解液の全量に対し、1.5質量%以上である、請求項1又は請求項2に記載の電池用非水電解液。
- 前記添加剤Bの含有量が、非水電解液の全量に対し、0.1質量%以上2.0質量%以下である請求項1~請求項3のいずれか1項に記載の電池用非水電解液。
- 前記添加剤Cの含有量が、非水電解液の全量に対し、0.1質量%以上2.0質量%以下である請求項1~請求項4のいずれか1項に記載の電池用非水電解液。
- 前記電解質の濃度は、非水電解液の全量に対し、0.1mol/L以上3mol/L以下である請求項1~請求項5のいずれか1項に記載の電池用非水電解液。
- 正極活物質を含有する正極活物質層を含む正極と、
負極活物質を含有する負極活物質層を含む負極と、
請求項1~請求項6のいずれか1項に記載の電池用非水電解液と、
を備えるリチウムイオン二次電池。 - 前記正極活物質はリチウムニッケルマンガンコバルト複合酸化物を含む請求項7に記載のリチウムイオン二次電池。
- 前記負極活物質は炭素材料を含む請求項7又は請求項8に記載のリチウムイオン二次電池。
- 請求項7~請求項9のいずれか一項に記載のリチウムイオン二次電池を充放電させて得られたリチウムイオン二次電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019225902A JP7423889B2 (ja) | 2019-12-13 | 2019-12-13 | 電池用非水電解液及びリチウムイオン二次電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019225902A JP7423889B2 (ja) | 2019-12-13 | 2019-12-13 | 電池用非水電解液及びリチウムイオン二次電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021096914A JP2021096914A (ja) | 2021-06-24 |
JP7423889B2 true JP7423889B2 (ja) | 2024-01-30 |
Family
ID=76432106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019225902A Active JP7423889B2 (ja) | 2019-12-13 | 2019-12-13 | 電池用非水電解液及びリチウムイオン二次電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7423889B2 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013128676A1 (ja) | 2012-02-29 | 2013-09-06 | 新神戸電機株式会社 | リチウムイオン電池 |
JP2015522210A (ja) | 2013-02-20 | 2015-08-03 | エルジー・ケム・リミテッド | 非水性電解液及びこれを含むリチウム二次電池 |
WO2017047554A1 (ja) | 2015-09-15 | 2017-03-23 | 宇部興産株式会社 | 蓄電デバイス用非水電解液及びそれを用いた蓄電デバイス |
-
2019
- 2019-12-13 JP JP2019225902A patent/JP7423889B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013128676A1 (ja) | 2012-02-29 | 2013-09-06 | 新神戸電機株式会社 | リチウムイオン電池 |
JP2015522210A (ja) | 2013-02-20 | 2015-08-03 | エルジー・ケム・リミテッド | 非水性電解液及びこれを含むリチウム二次電池 |
WO2017047554A1 (ja) | 2015-09-15 | 2017-03-23 | 宇部興産株式会社 | 蓄電デバイス用非水電解液及びそれを用いた蓄電デバイス |
Also Published As
Publication number | Publication date |
---|---|
JP2021096914A (ja) | 2021-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7115724B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7103713B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7345502B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
US12095037B2 (en) | Non-aqueous electrolyte solution for battery and lithium secondary battery | |
JP7264899B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP2022126851A (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7351442B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7168158B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP6879799B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP6957179B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7263679B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7395816B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7423889B2 (ja) | 電池用非水電解液及びリチウムイオン二次電池 | |
JP6980502B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7314458B2 (ja) | 電池用非水電解液及びリチウムイオン二次電池 | |
JP7347768B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP2021022525A (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7200465B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7206556B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7070979B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7070978B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP2023132195A (ja) | 電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法 | |
JP2022121281A (ja) | 非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法 | |
JP2019179613A (ja) | 電池用非水電解液及びリチウム二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220902 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230613 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230808 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7423889 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |