[go: up one dir, main page]

JP7411693B2 - Photothermosetting resin composition, liquid crystal sealant containing the same, liquid crystal display panel, and manufacturing method thereof - Google Patents

Photothermosetting resin composition, liquid crystal sealant containing the same, liquid crystal display panel, and manufacturing method thereof Download PDF

Info

Publication number
JP7411693B2
JP7411693B2 JP2021575714A JP2021575714A JP7411693B2 JP 7411693 B2 JP7411693 B2 JP 7411693B2 JP 2021575714 A JP2021575714 A JP 2021575714A JP 2021575714 A JP2021575714 A JP 2021575714A JP 7411693 B2 JP7411693 B2 JP 7411693B2
Authority
JP
Japan
Prior art keywords
liquid crystal
resin composition
seal pattern
mass
photothermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021575714A
Other languages
Japanese (ja)
Other versions
JPWO2021157377A1 (en
Inventor
大輔 河野
靖之 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Publication of JPWO2021157377A1 publication Critical patent/JPWO2021157377A1/ja
Application granted granted Critical
Publication of JP7411693B2 publication Critical patent/JP7411693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/24Derivatives of hydrazine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、光熱硬化性樹脂組成物およびこれを含む液晶シール剤、ならびに液晶表示パネルおよびその製造方法に関する。 The present invention relates to a photothermosetting resin composition, a liquid crystal sealant containing the same, a liquid crystal display panel, and a method for manufacturing the same.

携帯電話やパーソナルコンピュータをはじめとする各種電子機器の画像表示パネルとして、液晶や有機EL等の表示パネルが広く使用されている。例えば、液晶表示パネルは、表面に電極が設けられた2枚の透明基板と、それらの間に挟持された枠状のシール部材と、該シール部材で囲まれた領域内に封入された液晶材料とを有する。 2. Description of the Related Art Display panels such as liquid crystal and organic EL are widely used as image display panels for various electronic devices such as mobile phones and personal computers. For example, a liquid crystal display panel consists of two transparent substrates with electrodes on their surfaces, a frame-shaped sealing member sandwiched between them, and a liquid crystal material sealed in an area surrounded by the sealing member. and has.

ここで、上記シール部材には、基板との高い密着性が要求される。当該シール部材が基板から剥離してしまうと、液晶漏れ等が生じ、画像の表示不良が生じる。そこで従来、シール部材を形成するための液晶シール剤中に親水性基を有する化合物(例えばシランカップリング剤等)を含め、シール部材中の親水性基と基板表面に存在する親水性基とを化学的に結合させることで、これらの密着性を高めていた。 Here, the sealing member is required to have high adhesion to the substrate. If the sealing member peels off from the substrate, liquid crystal leakage or the like will occur, resulting in poor image display. Therefore, conventionally, a compound having a hydrophilic group (for example, a silane coupling agent, etc.) was included in the liquid crystal sealant for forming the sealing member, and the hydrophilic group in the sealing member and the hydrophilic group present on the substrate surface were combined. Their adhesion was enhanced by chemically bonding them.

また、特許文献1には、シール部材を形成するための液晶シール剤に、コアシェル型の粒子を含めることが提案されている。具体的には、コアシェル構造微粒子(アイカ工業社製 F-351)、即ち、コアがポリブチルアクリレートであり、シェルがポリメチルメタクリレートである粒子が記載されている。 Furthermore, Patent Document 1 proposes including core-shell type particles in a liquid crystal sealant for forming a sealing member. Specifically, core-shell structure fine particles (manufactured by Aica Kogyo Co., Ltd. F-351), ie, particles in which the core is polybutyl acrylate and the shell is polymethyl methacrylate, are described.

特開2005-15757号公報Japanese Patent Application Publication No. 2005-15757

ここで、液晶表示パネルでは、一対の基板の表面にそれぞれ配向膜を配置し、液晶を所望の方向に配向させることが一般的である。そして、従来の液晶表示パネルでは、基板上に配置された配向膜の外側に、液晶シール剤を塗布し、シール部材を形成することが一般的であった。そのため、基板とシール部材との密着性を高めればよく、上述のようにシランカップリング剤の添加等によってシール部材の基板に対する密着性を高めることが可能であった。 Here, in a liquid crystal display panel, it is common to arrange alignment films on the surfaces of a pair of substrates to align liquid crystal in a desired direction. In conventional liquid crystal display panels, a sealing member is generally formed by applying a liquid crystal sealant to the outside of an alignment film disposed on a substrate. Therefore, it is only necessary to increase the adhesion between the substrate and the sealing member, and as described above, it has been possible to increase the adhesion of the sealing member to the substrate by adding a silane coupling agent or the like.

しかしながら近年、液晶表示パネルの狭額縁化が求められている。そのため、配向膜が配置されている領域にも液晶シール剤を塗布し、シール部材を形成すること等が求められている。ただし、近年の配向膜は疎水性が高く、親水性基の数が少ない。つまり、液晶シール剤中の親水性基と共有結合可能な基の量が少ない。したがって、従来の液晶シール剤では、これを塗布して得られるシール部材と、配向膜が配置された基板との接着強度を十分に高めることが難しかった。例えば、液晶表示パネルに外部から荷重がかかると、シール部材と基板との界面で、これらが剥離してしまう等の課題があった。また、特許文献1に記載されているような粒子を含む液晶シール剤によっても、基板とシール部材との密着性を高めることは困難であった。 However, in recent years, there has been a demand for narrower frames for liquid crystal display panels. Therefore, it is required to form a sealing member by applying a liquid crystal sealant also to the region where the alignment film is arranged. However, recent alignment films are highly hydrophobic and have a small number of hydrophilic groups. In other words, the amount of groups capable of covalent bonding with hydrophilic groups in the liquid crystal sealant is small. Therefore, with conventional liquid crystal sealants, it has been difficult to sufficiently increase the adhesive strength between the sealing member obtained by applying the liquid crystal sealant and the substrate on which the alignment film is disposed. For example, when a load is applied to the liquid crystal display panel from the outside, there is a problem that the sealing member and the substrate peel off at the interface. Furthermore, it has been difficult to improve the adhesion between the substrate and the sealing member even with a liquid crystal sealant containing particles as described in Patent Document 1.

本発明は、上記課題に鑑みてなされたものである。例えば液晶シール剤として用いた際に、各種基板との密着性が高いシール部材を形成可能な光熱硬化性樹脂組成物等の提供を目的とする。 The present invention has been made in view of the above problems. The object of the present invention is to provide a photothermosetting resin composition that can form a sealing member with high adhesion to various substrates when used as a liquid crystal sealant, for example.

本発明は、以下の光熱硬化性樹脂組成物およびこれを含む液晶シール剤を提供する。
[1]分子内にエチレン性不飽和二重結合を有する硬化性化合物(A)、光重合開始剤(B)、潜在性熱硬化剤(C)、および有機微粒子(D)を含有する光熱硬化性樹脂組成物であり、前記有機微粒子(D)は外殻部と核部とを有し、前記核部が、共役ジエンに由来する構造単位を含む共役ジエン系ゴムおよびシリコーンゴムのうち、少なくとも一方を含む、光熱硬化性樹脂組成物。
The present invention provides the following photothermosetting resin composition and a liquid crystal sealant containing the same.
[1] Photothermal curing containing a curable compound (A) having an ethylenically unsaturated double bond in the molecule, a photopolymerization initiator (B), a latent thermosetting agent (C), and organic fine particles (D) The organic fine particles (D) have an outer shell portion and a core portion, and the core portion is at least one of a conjugated diene rubber and a silicone rubber containing a structural unit derived from a conjugated diene. A photothermosetting resin composition comprising one.

[2]前記有機微粒子(D)が、前記外殻部および前記核部から構成され、前記核部が、共役ジエンおよび芳香族ビニル化合物に由来する構造単位を含む共役ジエン系ゴムを含み、前記外殻部が、メチルメタクリレート構造、スチレン構造、アクリロニトリル構造、およびグリシジル構造からなる群より選ばれる1以上の構造を有する重合体を含む、[1]に記載の光熱硬化性樹脂組成物。 [2] The organic fine particles (D) are composed of the outer shell part and the core part, and the core part contains a conjugated diene rubber containing a structural unit derived from a conjugated diene and an aromatic vinyl compound, The photothermosetting resin composition according to [1], wherein the outer shell portion contains a polymer having one or more structures selected from the group consisting of a methyl methacrylate structure, a styrene structure, an acrylonitrile structure, and a glycidyl structure.

[3]無機充填剤(E)をさらに含有する、[1]または[2]に記載の光熱硬化性樹脂組成物。
[4]前記有機微粒子(D)の含有量が5~17質量%である、[1]~[3]のいずれかに記載の光熱硬化性樹脂組成物。
[5]前記潜在性熱硬化剤(C)が、有機酸ジヒドラジド系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤からなる群より選ばれる1以上の硬化剤である、[1]~[4]のいずれかに記載の光熱硬化性樹脂組成物。
[6]前記[1]~[5]のいずれかに記載の光熱硬化性樹脂組成物を含む、液晶シール剤。
[3] The photothermosetting resin composition according to [1] or [2], further containing an inorganic filler (E).
[4] The photothermosetting resin composition according to any one of [1] to [3], wherein the content of the organic fine particles (D) is 5 to 17% by mass.
[5] The latent thermosetting agent (C) is one or more selected from the group consisting of an organic acid dihydrazide-based thermally latent curing agent, an amine adduct-based thermally latent curing agent, and a polyamine-based thermally latent curing agent. The photothermosetting resin composition according to any one of [1] to [4], which is a curing agent.
[6] A liquid crystal sealant comprising the photothermosetting resin composition according to any one of [1] to [5] above.

本発明は、以下の液晶表示パネルの製造方法や、当該製造方法から得られる液晶表示パネルを提供する。
[7]配向膜をそれぞれ有する一対の基板の、一方の基板の前記配向膜上に、上記[6]に記載の液晶シール剤を塗布し、シールパターンを形成する工程と、前記シールパターンが未硬化の状態において、前記一方の基板上かつ前記シールパターンの領域内、または他方の基板に液晶を滴下する工程と、前記一方の基板および前記他方の基板を、前記シールパターンを介して重ね合わせる工程と、前記シールパターンを硬化させる工程と、を含む、液晶表示パネルの製造方法。
The present invention provides the following method for manufacturing a liquid crystal display panel and a liquid crystal display panel obtained from the manufacturing method.
[7] A step of applying the liquid crystal sealant described in [6] above on the alignment film of one of a pair of substrates each having an alignment film to form a seal pattern, and a step of forming a seal pattern on the alignment film of one substrate, and forming a seal pattern on the alignment film of one of the substrates, each having an alignment film. A step of dropping liquid crystal on the one substrate and within the area of the seal pattern or onto the other substrate in a cured state, and a step of overlapping the one substrate and the other substrate via the seal pattern. and curing the seal pattern.

[8]前記シールパターンを硬化させる工程において、前記シールパターンに光を照射して前記シールパターンを硬化させる、[7]に記載の液晶表示パネルの製造方法。
[9]前記シールパターンに照射する光が、可視光領域の光を含む、[8]に記載の液晶表示パネルの製造方法。
[10]前記シールパターンを硬化させる工程において、光が照射された後の前記シールパターンをさらに加熱する、[8]または[9]に記載の液晶表示パネルの製造方法。
[11]配向膜をそれぞれ有する一対の基板と、前記一対の基板の前記配向膜の間に配置された枠状のシール部材と、前記一対の基板の間の前記シール部材で囲まれた空間に充填された液晶層と、を含み、前記シール部材が、[6]に記載の液晶シール剤の硬化物である、液晶表示パネル。
[8] The method for manufacturing a liquid crystal display panel according to [7], wherein in the step of curing the seal pattern, the seal pattern is cured by irradiating the seal pattern with light.
[9] The method for manufacturing a liquid crystal display panel according to [8], wherein the light irradiated onto the seal pattern includes light in the visible light region.
[10] The method for manufacturing a liquid crystal display panel according to [8] or [9], wherein in the step of curing the seal pattern, the seal pattern after being irradiated with light is further heated.
[11] A pair of substrates each having an alignment film, a frame-shaped sealing member disposed between the alignment films of the pair of substrates, and a space surrounded by the sealing member between the pair of substrates. a filled liquid crystal layer, wherein the sealing member is a cured product of the liquid crystal sealant according to [6].

本発明の光熱硬化性樹脂組成物によれば、液晶シール剤として用いた際、一対の基板間を強固に接着可能なシール部材が得られる。 According to the photothermosetting resin composition of the present invention, when used as a liquid crystal sealant, a sealing member capable of firmly adhering a pair of substrates can be obtained.

1.光熱硬化性樹脂組成物
本発明の光熱硬化性樹脂組成物は、分子内にエチレン性不飽和二重結合を有する硬化性化合物(A)、光重合開始剤(B)、潜在性熱硬化剤(C)、および特定の有機微粒子(D)を含有する。
1. Photothermosetting resin composition The photothermosetting resin composition of the present invention comprises a curable compound (A) having an ethylenically unsaturated double bond in the molecule, a photopolymerization initiator (B), a latent thermosetting agent ( C) and specific organic fine particles (D).

前述のように、従来の光熱硬化性樹脂組成物(液晶シール剤)では、その硬化物(シール部材)と基板との密着性を化学的な結合によって高めることが一般的であった。しかしながら、当該方法では、基板上に配向膜が配置されている場合等に十分に対応できず、基板の種類によっては、基板との密着性が十分に得られなかった。 As mentioned above, in conventional photothermosetting resin compositions (liquid crystal sealants), the adhesion between the cured product (sealing member) and the substrate is generally enhanced by chemical bonding. However, this method cannot sufficiently cope with cases where an alignment film is disposed on a substrate, and depending on the type of substrate, sufficient adhesion with the substrate cannot be obtained.

これに対し、本発明の光熱硬化性樹脂組成物は、外殻部と核部とを有する有機微粒子(D)を含み、当該有機微粒子(D)の核部は、共役ジエンに由来する構造単位を含む共役ジエン系ゴム、またはシリコーンゴムのいずれか一方を含む。光熱硬化性樹脂組成物が、このような有機微粒子(D)を含むと、光熱硬化性樹脂組成物を塗布し、硬化させる際に生じる残留応力が、有機微粒子(D)の核部によって緩和される。したがって、基板と硬化物との間に応力がかかり難い。つまり、基板上に配向膜等が配置されていたとしても、基板と光熱硬化性樹脂組成物(シール部材)との間での剥離が生じ難い。さらに、当該光熱硬化性樹脂組成物の硬化物(シール部材)を含む液晶表示パネル等に荷重がかかった場合であっても、その荷重を上記有機微粒子(D)が分散させることができる。したがって、シール部材と基板との界面に応力が働きにくく、これらの剥離が抑制される。 On the other hand, the photothermosetting resin composition of the present invention includes organic fine particles (D) having an outer shell part and a core part, and the core part of the organic fine particles (D) is a structural unit derived from a conjugated diene. Contains either conjugated diene rubber or silicone rubber. When the photothermosetting resin composition contains such organic fine particles (D), the residual stress generated when the photothermosetting resin composition is applied and cured is relaxed by the core of the organic fine particles (D). Ru. Therefore, stress is less likely to be applied between the substrate and the cured product. That is, even if an alignment film or the like is disposed on the substrate, peeling between the substrate and the photothermosetting resin composition (sealing member) is unlikely to occur. Furthermore, even if a load is applied to a liquid crystal display panel or the like containing a cured product (sealing member) of the photothermosetting resin composition, the organic fine particles (D) can disperse the load. Therefore, stress is less likely to act on the interface between the sealing member and the substrate, and peeling thereof is suppressed.

以下、本発明の光熱硬化性樹脂組成物中の各成分について、詳しく説明する。 Hereinafter, each component in the photothermosetting resin composition of the present invention will be explained in detail.

1-1.硬化性化合物(A)
硬化性化合物(A)は、分子内にエチレン性不飽和二重結合を有する化合物であればよい。硬化性化合物(A)は、モノマー、オリゴマーまたはポリマーのいずれであってもよい。当該硬化性化合物(A)の例には、分子内に(メタ)アクリロイル基を有する化合物が含まれる。当該(メタ)アクリロイル基を有する化合物1分子あたりの(メタ)アクリロイル基の数は、1つであってもよく、2以上であってもよい。本明細書において、(メタ)アクリロイル基との記載は、アクリロイル基またはメタクリロイル基、もしくはこれら両方を意味する。また、(メタ)アクリレートとの記載は、アクリレートまたはメタクリレート、もしくはこれら両方を意味する。さらに(メタ)アクリルとの記載は、アクリルまたはメタクリル、もしくはこれら両方を意味する。
1-1. Curable compound (A)
The curable compound (A) may be any compound having an ethylenically unsaturated double bond in its molecule. The curable compound (A) may be a monomer, oligomer or polymer. Examples of the curable compound (A) include compounds having a (meth)acryloyl group in the molecule. The number of (meth)acryloyl groups per molecule of the compound having the (meth)acryloyl group may be one or two or more. In this specification, the description of a (meth)acryloyl group means an acryloyl group, a methacryloyl group, or both. Moreover, the description "(meth)acrylate" means acrylate, methacrylate, or both. Further, the term (meth)acrylic means acrylic, methacrylic, or both.

1分子内に(メタ)アクリロイル基を1つ含む硬化性化合物(A)の例には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸2-ヒドロキシエチルエステル等の(メタ)アクリル酸アルキルエステルが含まれる。 Examples of the curable compound (A) containing one (meth)acryloyl group in one molecule include methyl (meth)acrylate, ethyl (meth)acrylate, and 2-hydroxyethyl (meth)acrylate. Contains (meth)acrylic acid alkyl ester.

1分子内に2以上の(メタ)アクリロイル基を有する硬化性化合物(A)の例には、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール等由来のジ(メタ)アクリレート;トリス(2-ヒドロキシエチル)イソシアヌレート由来のジ(メタ)アクリレート;ネオペンチルグリコール1モルに4モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオール由来のジ(メタ)アクリレート;ビスフェノールA1モルに2モルのエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオール由来のジ(メタ)アクリレート;トリメチロールプロパン1モルに3モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たトリオール由来のジもしくはトリ(メタ)アクリレート;ビスフェノールA1モルに4モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオール由来のジ(メタ)アクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、またはそのオリゴマー;ペンタエリスリトールトリ(メタ)アクリレートまたはそのオリゴマー;ジペンタエリスリトールのポリ(メタ)アクリレート;トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(メタクリロキシエチル)イソシアヌレート;アルキル変性ジペンタエリスリトールのポリ(メタ)アクリレート;カプロラクトン変性ジペンタエリスリトールのポリ(メタ)アクリレート;ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート;カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート;エチレンオキサイド変性リン酸(メタ)アクリレート;エチレンオキサイド変性アルキル化リン酸(メタ)アクリレート;ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトールのオリゴ(メタ)アクリレート等が含まれる。 Examples of the curable compound (A) having two or more (meth)acryloyl groups in one molecule include di(meth)acrylate derived from polyethylene glycol, propylene glycol, polypropylene glycol, etc.; tris(2-hydroxyethyl)isocyanate; di(meth)acrylate derived from nurate; di(meth)acrylate derived from diol obtained by adding 4 moles or more of ethylene oxide or propylene oxide to 1 mole of neopentyl glycol; 2 moles of ethylene oxide or propylene to 1 mole of bisphenol A Di(meth)acrylate derived from diol obtained by adding oxide; Di- or tri(meth)acrylate derived from triol obtained by adding 3 moles or more of ethylene oxide or propylene oxide to 1 mole of trimethylolpropane; Bisphenol A1 di(meth)acrylate derived from diol obtained by adding 4 moles or more of ethylene oxide or propylene oxide to mole; tris(2-hydroxyethyl)isocyanurate tri(meth)acrylate; trimethylolpropane tri(meth)acrylate; or its oligomer; pentaerythritol tri(meth)acrylate or its oligomer; dipentaerythritol poly(meth)acrylate; tris(acryloxyethyl)isocyanurate; caprolactone-modified tris(acryloxyethyl)isocyanurate; caprolactone-modified tris(meth)acrylate poly(meth)acrylate of alkyl-modified dipentaerythritol; poly(meth)acrylate of caprolactone-modified dipentaerythritol; neopentyl hydroxypivalate glycol di(meth)acrylate; caprolactone-modified neopentyl glycol hydroxypivalate Di(meth)acrylates; ethylene oxide-modified phosphoric acid (meth)acrylates; ethylene oxide-modified alkylated phosphoric acid (meth)acrylates; oligo(meth)acrylates of neopentyl glycol, trimethylolpropane, pentaerythritol, and the like.

硬化性化合物(A)は、分子内にエポキシ基をさらに有してもよい。1分子あたりのエポキシ基の数は1つであってもよく、2以上であってもよい。硬化性化合物(A)が分子内に(メタ)アクリロイル基だけでなくエポキシ基をさらに有すると、光熱硬化性樹脂組成物を熱によっても硬化可能となる。つまり、光硬化と熱硬化とを併用することが可能となる。光熱硬化性樹脂組成物が、光硬化性および熱硬化性を有すると、短時間で効率よく光熱硬化性樹脂組成物を硬化させることが可能となる。 The curable compound (A) may further have an epoxy group in the molecule. The number of epoxy groups per molecule may be one, or two or more. When the curable compound (A) has not only a (meth)acryloyl group but also an epoxy group in the molecule, the photothermosetting resin composition can be cured by heat as well. In other words, it becomes possible to use both photocuring and thermosetting. When the photothermosetting resin composition has photocurability and thermosetting property, it becomes possible to cure the photothermosetting resin composition efficiently in a short time.

分子内に(メタ)アクリロイル基とエポキシ基とを有する化合物の例には、エポキシ化合物と(メタ)アクリル酸とを塩基性触媒の存在下で反応させて得られる(メタ)アクリル酸グリシジルエステルが含まれる。 Examples of compounds having a (meth)acryloyl group and an epoxy group in the molecule include (meth)acrylic acid glycidyl ester obtained by reacting an epoxy compound and (meth)acrylic acid in the presence of a basic catalyst. included.

(メタ)アクリル酸と反応させるエポキシ化合物は、分子内に2以上のエポキシ基を有する多官能のエポキシ化合物であればよく、架橋密度が高まりすぎて光熱硬化性樹脂組成物の硬化物の接着性が低下するのを抑制する観点では、2官能のエポキシ化合物が好ましい。2官能のエポキシ化合物の例には、ビスフェノール型エポキシ化合物(ビスフェノールA型、ビスフェノールF型、2,2’-ジアリルビスフェノールA型、ビスフェノールAD型、及び水添ビスフェノール型等)、ビフェニル型エポキシ化合物、およびナフタレン型エポキシ化合物が含まれる。中でも、光熱硬化性樹脂組成物の塗布性が良好になりやすいとの観点から、ビスフェノールA型及びビスフェノールF型のビスフェノール型エポキシ化合物が好ましい。ビスフェノール型エポキシ化合物由来の硬化性化合物(A)は、ビフェニルエーテル型エポキシ化合物由来の硬化性化合物(A)と比べて塗布性に優れる等の利点がある。 The epoxy compound to be reacted with (meth)acrylic acid may be a polyfunctional epoxy compound having two or more epoxy groups in the molecule, and the crosslinking density may be too high, resulting in poor adhesion of the cured product of the photothermosetting resin composition. From the viewpoint of suppressing a decrease in , bifunctional epoxy compounds are preferred. Examples of bifunctional epoxy compounds include bisphenol type epoxy compounds (bisphenol A type, bisphenol F type, 2,2'-diallylbisphenol A type, bisphenol AD type, hydrogenated bisphenol type, etc.), biphenyl type epoxy compounds, and naphthalene type epoxy compounds. Among these, bisphenol type epoxy compounds such as bisphenol A type and bisphenol F type are preferred from the viewpoint that the coating properties of the photothermosetting resin composition tend to be good. The curable compound (A) derived from a bisphenol type epoxy compound has advantages such as superior coating properties compared to the curable compound (A) derived from a biphenyl ether type epoxy compound.

なお、硬化性化合物(A)は、上記化合物を一種のみ含んでいてもよいが、二種以上を含んでいてもよい。特に、硬化性化合物(A)が、分子内に(メタ)アクリロイル基を有し、エポキシ基を有しない化合物(A1)と、分子内に(メタ)アクリロイル基とエポキシ基とを有する化合物(A2)とを含むことが好ましい。例えば光熱硬化性樹脂組成物に後述のその他の硬化性化合物(例えば、エポキシ化合物)をさらに含む場合、化合物(A1)とエポキシ化合物とでは、相溶性が低いことがある。これに対し、エポキシ基を有する化合物(A2)を組み合わせると、光熱硬化性樹脂組成物中の各成分の相溶性が高まる。また一般的に、光熱硬化性樹脂組成物を液晶シール剤に用いたとき、疎水性の化合物(例えばエポキシ化合物等)のほうが親水性の化合物より液晶に溶出しやすいが、化合物(A1)および化合物(A2)を組み合わせることで、エポキシ化合物の液晶への溶出が抑制されやすくなる。化合物(A2)と化合物(A1)との含有質量比は、A2/A1=1/0.4~1/0.6が好ましい。 Note that the curable compound (A) may contain only one type of the above compound, or may contain two or more types. In particular, the curable compound (A) is a compound (A1) having a (meth)acryloyl group in the molecule and no epoxy group, and a compound (A2) having a (meth)acryloyl group and an epoxy group in the molecule. ). For example, when the photothermosetting resin composition further contains another curable compound (for example, an epoxy compound) described below, the compatibility between the compound (A1) and the epoxy compound may be low. On the other hand, when the compound (A2) having an epoxy group is combined, the compatibility of each component in the photothermosetting resin composition increases. Generally, when a photothermosetting resin composition is used as a liquid crystal sealant, hydrophobic compounds (such as epoxy compounds) are more easily eluted into the liquid crystal than hydrophilic compounds, but compound (A1) and compound By combining (A2), elution of the epoxy compound into the liquid crystal can be easily suppressed. The mass ratio of compound (A2) to compound (A1) is preferably A2/A1=1/0.4 to 1/0.6.

なお、分子内に(メタ)アクリロイル基とエポキシ基とを有する化合物(A2)の含有量は、特に制限されないが、例えば硬化性化合物(A)の総量に対して30質量%以上が好ましい。 Note that the content of the compound (A2) having a (meth)acryloyl group and an epoxy group in the molecule is not particularly limited, but is preferably 30% by mass or more, for example, based on the total amount of the curable compound (A).

また、上述のいずれの硬化性化合物(A)においても、重量平均分子量は、310~1000程度が好ましい。硬化性化合物(A)の重量平均分子量は、例えばゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定できる。 Further, the weight average molecular weight of any of the above-mentioned curable compounds (A) is preferably about 310 to 1000. The weight average molecular weight of the curable compound (A) can be measured in polystyrene terms, for example, by gel permeation chromatography (GPC).

硬化性化合物(A)の含有量は、光熱硬化性樹脂組成物の総量に対して40~80質量%が好ましく、50~75質量%がより好ましい。硬化性化合物(A)の量が当該範囲であると、得られる硬化物(例えばシール部材)の強度が高まり、さらには基板と硬化物(シール部材)との密着性を高めることができる。 The content of the curable compound (A) is preferably 40 to 80% by mass, more preferably 50 to 75% by mass, based on the total amount of the photothermosetting resin composition. When the amount of the curable compound (A) is within this range, the strength of the resulting cured product (for example, a seal member) increases, and furthermore, the adhesiveness between the substrate and the cured product (seal member) can be improved.

1-2.光重合開始剤(B)
光重合開始剤は、光の照射によって、上記硬化性化合物(A)をラジカル重合等させることが可能な化合物であれば特に制限されない。例えば、自己開裂型の光重合開始剤であってもよく、水素引き無機型の光重合開始剤であってもよい。
1-2. Photopolymerization initiator (B)
The photopolymerization initiator is not particularly limited as long as it is a compound that can radically polymerize the curable compound (A) by irradiation with light. For example, it may be a self-cleavage type photopolymerization initiator or a hydrogenated inorganic type photopolymerization initiator.

自己開裂型の自己開裂型の光重合開始剤の例には、アルキルフェノン系化合物(例えば2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(BASF社製 IRGACURE 651)等のベンジルジメチルケタール;2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン(BASF社製 IRGACURE 907)等のα-アミノアルキルフェノン;1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製 IRGACURE 184)等のα-ヒドロキシアルキルフェノン等)、アシルホスフィンオキサイド系化合物(例えば2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド等)、チタノセン系化合物(例えばビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム等)、アセトフェノン系化合物(例えばジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等)、フェニルグリオキシレート系化合物(例えばメチルフェニルグリオキシエステル等)、ベンゾインエーテル系化合物(例えばベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等)、およびオキシムエステル系化合物(例えば1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](BASF社製 IRGACURE OXE01)、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(0-アセチルオキシム)(BASF社製 IRGACURE OXE02)等)が含まれる。 Examples of self-cleavable photopolymerization initiators include alkylphenone compounds (for example, benzyl dimethyl such as 2,2-dimethoxy-1,2-diphenylethan-1-one (IRGACURE 651 manufactured by BASF)). Ketal; α-aminoalkylphenone such as 2-methyl-2-morpholino(4-thiomethylphenyl)propan-1-one (BASF IRGACURE 907); 1-hydroxy-cyclohexyl-phenyl-ketone (BASF IRGACURE) 184), acylphosphine oxide type compounds (e.g. 2,4,6-trimethylbenzoindiphenylphosphine oxide etc.), titanocene type compounds (e.g. bis(η5-2,4-cyclopentadiene-1) -yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl)titanium, etc.), acetophenone compounds (e.g. diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenyl) Propan-1-one, benzyl dimethyl ketal, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, 4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl) ) Ketone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino(4-thiomethylphenyl)propan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone ), phenylglyoxylate compounds (e.g., methylphenylglyoxyester, etc.), benzoin ether compounds (e.g., benzoin, benzoin methyl ether, benzoin isopropyl ether, etc.), and oxime ester compounds (e.g., 1,2-octanedione). -1-[4-(phenylthio)-2-(O-benzoyloxime)] (manufactured by BASF IRGACURE OXE01), ethanone-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazole-3 -yl]-1-(0-acetyloxime) (IRGACURE OXE02 manufactured by BASF), etc.).

水素引き抜き型の光重合開始剤の例には、ベンゾフェノン系化合物(例えばベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン等)、チオキサントン系化合物(例えばチオキサントン、2-クロロチオキサントン(東京化成工業社製)、1-クロロ-4-プロポキシチオキサントン、1-クロロ-4-エトキシチオキサントン(Lambson Limited社製 Speedcure CPTX)、2-イソプロピルキサントン(Lambson Limited社製 Speedcure ITX)、4-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン(Lambson Limited社製 Speedcure DETX)、2,4-ジクロロチオキサントン等)、アントラキノン系化合物(例えば2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン、2-ヒドロキシアントラキノン(東京化成工業社製 2-Hydroxyanthraquinone)、2,6-ジヒドロキシアントラキノン(東京化成工業社製 Anthraflavic Acid)、2-ヒドロキシメチルアントラキノン(純正化学社製 2-(Hydroxymethyl)anthraquinone)等)およびベンジル系化合物が含まれる。光熱硬化性樹脂組成物は、光重合開始剤(B)を一種のみ含んでいてもよく、二種以上含んでいてもよい。 Examples of hydrogen abstraction type photopolymerization initiators include benzophenone compounds (e.g., benzophenone, methyl-4-phenylbenzophenone o-benzoylbenzoate, 4,4'-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'- Methyl-diphenyl sulfide, acrylated benzophenone, 3,3',4,4'-tetra(t-butylperoxycarbonyl)benzophenone, 3,3'-dimethyl-4-methoxybenzophenone, etc.), thioxanthone compounds (e.g. thioxanthone, 2-chlorothioxanthone (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 1-chloro-4-propoxythioxanthone, 1-chloro-4-ethoxythioxanthone (Speedcure CPTX, manufactured by Lambson Limited), 2-isopropylxanthone (Speedcure ITX, manufactured by Lambson Limited) , 4-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone (Speedcure DETX manufactured by Lambson Limited), 2,4-dichlorothioxanthone, etc.), anthraquinone compounds (such as 2-methylanthraquinone, 2-ethyl Anthraquinone, 2-t-butylanthraquinone, 1-chloroanthraquinone, 2-hydroxyanthraquinone (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 2,6-dihydroxyanthraquinone (manufactured by Tokyo Kasei Kogyo Co., Ltd. Anthraflavic Acid), 2-hydroxymethylanthraquinone (2-(Hydroxymethyl)anthraquinone, manufactured by Junsei Kagaku Co., Ltd.) and benzyl compounds. The photothermosetting resin composition may contain only one type of photopolymerization initiator (B), or may contain two or more types of photopolymerization initiator (B).

光重合開始剤(B)の吸収波長は特に限定されず、例えば波長360nm以上の光を吸収する光重合開始剤(B)が好ましい。中でも、可視光領域の光を吸収することがより好ましく、波長360~780nmの光を吸収する光重合開始剤(B)がさらに好ましく、波長360~430nmの光を吸収する光重合開始剤(B)が特に好ましい。 The absorption wavelength of the photopolymerization initiator (B) is not particularly limited, and for example, a photopolymerization initiator (B) that absorbs light with a wavelength of 360 nm or more is preferable. Among these, a photopolymerization initiator (B) that absorbs light in the visible light region is more preferable, a photopolymerization initiator (B) that absorbs light in a wavelength range of 360 to 780 nm is even more preferable, and a photopolymerization initiator (B) that absorbs light in a wavelength range of 360 to 430 nm is more preferable. ) is particularly preferred.

波長360nm以上の光を吸収する光重合開始剤(B)の例には、アルキルフェノン系化合物、アシルホスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、チオキサントン系化合物、アントラキノン系化合物が含まれ、好ましくはオキシムエステル系化合物である。 Examples of the photopolymerization initiator (B) that absorbs light with a wavelength of 360 nm or more include alkylphenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, thioxanthone compounds, and anthraquinone compounds. , preferably oxime ester compounds.

なお、光重合開始剤(B)の構造は、高速液体クロマトグラフィー(HPLC)および液体クロマトグラフィー質量分析(LC/MS)と、NMR測定またはIR測定とを組み合わせることで特定できる。 Note that the structure of the photopolymerization initiator (B) can be specified by combining high performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC/MS) with NMR measurement or IR measurement.

光重合開始剤(B)の分子量は、例えば200以上5000以下が好ましい。分子量が200以上であると、光熱硬化性樹脂組成物を液晶シール剤としたときに、光重合開始剤(B)が液晶に溶出し難い。一方、分子量が5000以下であると、硬化性化合物(A)との相溶性が高まり、光熱硬化性樹脂組成物の硬化性が良好になりやすい。光重合開始剤(B)の分子量は、230以上3000以下がより好ましく、230以上1500以下がさらに好ましい。 The molecular weight of the photopolymerization initiator (B) is preferably 200 or more and 5000 or less, for example. When the molecular weight is 200 or more, when the photothermosetting resin composition is used as a liquid crystal sealant, the photopolymerization initiator (B) is difficult to dissolve into the liquid crystal. On the other hand, when the molecular weight is 5000 or less, the compatibility with the curable compound (A) increases, and the curability of the photothermosetting resin composition tends to improve. The molecular weight of the photopolymerization initiator (B) is more preferably 230 or more and 3000 or less, and even more preferably 230 or more and 1500 or less.

光重合開始剤(B)の分子量は、高速液体クロマトグラフィー(HPLC:High Performance Liquid Chromatography)で分析したときに検出されるメインピークの、分子構造の「相対分子質量」として求めることができる。 The molecular weight of the photopolymerization initiator (B) can be determined as the "relative molecular mass" of the molecular structure of the main peak detected when analyzed by high performance liquid chromatography (HPLC).

具体的には、光重合開始剤(B)をTHF(テトラヒドロフラン)に溶解させた試料液を調製し、高速液体クロマトグラフィー(HPLC)測定を行う。そして、検出されたピークの面積百分率(各ピークの面積の、全ピークの面積の合計に対する比率)を求め、メインピークの有無を確認する。メインピークとは、各化合物に特徴的な検出波長(例えばチオキサントン系化合物であれば400nm)で検出された全ピークのうち、最も強度が大きいピーク(ピークの高さが最も高いピーク)をいう。検出されたメインピークのピーク頂点に対応する相対分子質量は、液体クロマトグラフィー質量分析(LC/MS:Liquid Chromatography Mass Spectrometry)により測定できる。 Specifically, a sample solution in which the photopolymerization initiator (B) is dissolved in THF (tetrahydrofuran) is prepared and subjected to high performance liquid chromatography (HPLC) measurement. Then, the area percentage of the detected peak (the ratio of the area of each peak to the total area of all peaks) is determined, and the presence or absence of the main peak is confirmed. The main peak refers to the peak with the highest intensity (the peak with the highest peak height) among all peaks detected at a detection wavelength characteristic of each compound (for example, 400 nm for a thioxanthone compound). The relative molecular mass corresponding to the peak apex of the detected main peak can be measured by liquid chromatography mass spectrometry (LC/MS).

光重合開始剤(B)の量は、上述の硬化性化合物(A)に対して0.01~10質量%が好ましい。光重合開始剤(B)の量が、硬化性化合物(A)に対して0.01質量%以上であると、光熱硬化性樹脂組成物の硬化性が良好になりやすい。光重合開始剤(B)の含有量が10質量%以下であると、光熱硬化性樹脂組成物を液晶シール剤に用いたとき、光重合開始剤(B)が液晶に溶出し難くなる。光重合開始剤(B)の含有量は、硬化性化合物(A)に対して0.1~5質量%がより好ましく、0.1~3質量%がさらに好ましく、0.1~2.5質量%が特に好ましい。 The amount of the photopolymerization initiator (B) is preferably 0.01 to 10% by mass based on the above-mentioned curable compound (A). When the amount of the photopolymerization initiator (B) is 0.01% by mass or more based on the curable compound (A), the curability of the photothermosetting resin composition tends to be good. When the content of the photopolymerization initiator (B) is 10% by mass or less, when the photothermosetting resin composition is used as a liquid crystal sealant, the photopolymerization initiator (B) becomes difficult to elute into the liquid crystal. The content of the photopolymerization initiator (B) is more preferably 0.1 to 5% by mass, even more preferably 0.1 to 3% by mass, and 0.1 to 2.5% by mass based on the curable compound (A). % by weight is particularly preferred.

1-3.潜在性熱硬化剤(C)
潜在性熱硬化剤(C)は、通常の保存条件下(室温、可視光線下等)では熱硬化性化合物(A)や後述のその他の硬化性化合物を硬化させないが、熱を与えられると、これらの化合物を硬化させる化合物である。光熱硬化性樹脂組成物が潜在性熱硬化剤(C)を含むと、光熱硬化性樹脂組成物が熱硬化可能になる。潜在性熱硬化剤(C)は、エポキシ化合物の硬化が可能な硬化剤(以下、「エポキシ硬化剤」とも称する)が好ましい。
1-3. Latent thermosetting agent (C)
The latent thermosetting agent (C) does not cure the thermosetting compound (A) or other curable compounds described below under normal storage conditions (room temperature, under visible light, etc.), but when heated, It is a compound that hardens these compounds. When the photothermosetting resin composition contains the latent thermosetting agent (C), the photothermosetting resin composition becomes thermocurable. The latent thermosetting agent (C) is preferably a curing agent capable of curing an epoxy compound (hereinafter also referred to as "epoxy curing agent").

エポキシ硬化剤は、光熱硬化性樹脂組成物の粘度安定性を高め、かつ硬化物の耐湿性を損なわない観点から、融点が50℃以上250℃以下であることが好ましく、融点は100℃以上200℃以下がより好ましく、150℃以上200℃以下がさらに好ましい。 The epoxy curing agent preferably has a melting point of 50°C or more and 250°C or less, from the viewpoint of increasing the viscosity stability of the photothermosetting resin composition and not impairing the moisture resistance of the cured product. The temperature is more preferably 150°C or higher and 200°C or lower.

エポキシ硬化剤の例には、有機酸ジヒドラジド系熱潜在性硬化剤、イミダゾール系熱潜在性硬化剤、ジシアンジアミド系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤が含まれる。 Examples of epoxy hardeners include organic acid dihydrazide-based heat latent hardeners, imidazole-based heat latent hardeners, dicyandiamide-based heat latent hardeners, amine adduct-based heat latent hardeners, and polyamine-based heat latent hardeners. Contains agents.

有機酸ジヒドラジド系熱潜在性硬化剤の例には、アジピン酸ジヒドラジド(融点181℃)、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン(融点120℃)、7,11-オクタデカジエン-1,18-ジカルボヒドラジド(融点160℃)、ドデカン二酸ジヒドラジド(融点190℃)、およびセバシン酸ジヒドラジド(融点189℃)等が含まれる。 Examples of organic acid dihydrazide-based heat latent curing agents include adipic acid dihydrazide (melting point 181°C), 1,3-bis(hydrazinocarboethyl)-5-isopropylhydantoin (melting point 120°C), 7,11-octa These include decadiene-1,18-dicarbohydrazide (melting point 160°C), dodecanedioic acid dihydrazide (melting point 190°C), and sebacic acid dihydrazide (melting point 189°C).

イミダゾール系熱潜在性硬化剤の例には、2,4-ジアミノ-6-[2’-エチルイミダゾリル-(1’)]-エチルトリアジン(融点215~225℃)、および2-フェニルイミダゾール(融点137~147℃)等が含まれる。 Examples of imidazole-based heat latent curing agents include 2,4-diamino-6-[2'-ethylimidazolyl-(1')]-ethyltriazine (melting point 215-225°C), and 2-phenylimidazole (melting point 137-147°C), etc.

ジシアンジアミド系熱潜在性硬化剤の例には、ジシアンジアミド(融点209℃)等が含まれる。 Examples of the dicyandiamide-based thermally latent curing agent include dicyandiamide (melting point: 209°C).

アミンアダクト系熱潜在性硬化剤は、触媒活性を有するアミン系化合物と任意の化合物とを反応させて得られる付加化合物からなる熱潜在性硬化剤である。アミンアダクト系熱潜在性硬化剤の例には、味の素ファインテクノ社製 アミキュアPN-40(融点110℃)、味の素ファインテクノ社製 アミキュアPN-23(融点100℃)、味の素ファインテクノ社製 アミキュアPN-31(融点115℃)、味の素ファインテクノ社製 アミキュアPN-H(融点115℃)、味の素ファインテクノ社製 アミキュアMY-24(融点120℃)、および味の素ファインテクノ社製 アミキュアMY-H(融点131℃)等が含まれる。 The amine adduct-based thermal latent curing agent is a thermal latent curing agent consisting of an addition compound obtained by reacting an amine-based compound having catalytic activity with an arbitrary compound. Examples of amine adduct-based thermal latent curing agents include Amicure PN-40 (melting point 110°C) manufactured by Ajinomoto Fine-Techno, Amicure PN-23 (melting point 100°C) manufactured by Ajinomoto Fine-Techno, and Amicure PN manufactured by Ajinomoto Fine-Techno. -31 (melting point 115°C), Amicure PN-H (melting point 115°C) manufactured by Ajinomoto Fine-Techno, Amicure MY-24 (melting point 120°C) manufactured by Ajinomoto Fine-Techno, and Amicure MY-H (melting point 120°C) manufactured by Ajinomoto Fine-Techno. 131℃), etc.

ポリアミン系熱潜在性硬化剤は、アミンとエポキシとを反応させて得られるポリマー構造を有する熱潜在性硬化剤であり、その例には、ADEKA社製 アデカハードナーEH4339S(軟化点120~130℃)、およびADEKA社製 アデカハードナーEH4357S(軟化点73~83℃)等が含まれる。 The polyamine-based thermal latent curing agent is a thermal latent curing agent having a polymer structure obtained by reacting an amine with an epoxy. Examples include ADEKA Hardener EH4339S (softening point 120 to 130°C) manufactured by ADEKA. and ADEKA Hardener EH4357S (softening point 73-83°C).

上記の中でも、入手しやすさ、他の成分との相溶性等の観点で、有機酸ジヒドラジド系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、またはポリアミン系熱潜在性硬化剤が好ましい。潜在性熱硬化剤(C)は、エポキシ硬化剤を一種のみ含んでいてもよく、二種以上含んでいてもよい。 Among the above, organic acid dihydrazide-based thermal latent curing agents, amine adduct-based thermal latent curing agents, and polyamine-based thermal latent curing agents are preferred from the viewpoint of availability, compatibility with other components, etc. . The latent thermosetting agent (C) may contain only one kind of epoxy curing agent, or may contain two or more kinds.

潜在性熱硬化剤(C)の含有量は、光熱硬化性樹脂組成物の総量に対して3~30質量%が好ましく、3~20質量%がより好ましく、5~20質量%がさらに好ましい。本発明の光熱硬化性樹脂組成物は、一液硬化性樹脂組成物としてもよい。一液硬化性樹脂組成物は、使用に際して主剤と硬化剤を混合する必要がないことから、作業性が優れる。 The content of the latent thermosetting agent (C) is preferably 3 to 30% by mass, more preferably 3 to 20% by mass, and even more preferably 5 to 20% by mass, based on the total amount of the photothermosetting resin composition. The photothermosetting resin composition of the present invention may be a one-component curable resin composition. One-component curable resin compositions have excellent workability because there is no need to mix the base resin and the curing agent during use.

潜在性熱硬化剤(C)の含有量は、上述の硬化性化合物(A)に対して3.8~75質量%が好ましく、3.8~50質量%がより好ましく、5~40質量%がさらに好ましい。潜在性熱硬化剤(C)の硬化性化合物(A)に対する含有量が3.8質量%以上であると、加熱時の硬化性化合物(A)の硬化性を高めやすい。一方、75質量%以下であると、光熱硬化性樹脂組成物を液晶シール剤に用いたとき、潜在性熱硬化剤(C)によって液晶が汚染され難い。 The content of the latent thermosetting agent (C) is preferably 3.8 to 75% by mass, more preferably 3.8 to 50% by mass, and 5 to 40% by mass based on the above-mentioned curable compound (A). is even more preferable. When the content of the latent thermosetting agent (C) with respect to the curable compound (A) is 3.8% by mass or more, the curability of the curable compound (A) during heating is likely to be increased. On the other hand, when the amount is 75% by mass or less, when the photothermosetting resin composition is used as a liquid crystal sealant, the liquid crystal is unlikely to be contaminated by the latent thermosetting agent (C).

1-4.有機微粒子(D)
有機微粒子(D)は、外殻部と核部とを有し、かつ核部に、共役ジエン系ゴムまたはシリコーンゴムを含む粒子であればよい。ここで、核部とは、有機微粒子(D)の中心近傍に位置し、当該有機微粒子(D)に所望の弾性を付与する領域である。一方、外殻部とは、核部より有機微粒子(D)の最表面側に配置される層状の領域であり、有機微粒子(D)と光熱硬化性樹脂組成物中の他の成分との相溶性を高めるための層である。外殻部は、核部を完全に覆っていてもよく、核部の一部のみを覆っていてもよいが、外殻部が核部を完全に覆っているほうが、有機微粒子(D)と他の成分との親和性を高めることができ、有機微粒子(D)の分散性が高まる。
1-4. Organic fine particles (D)
The organic fine particles (D) may be particles having an outer shell portion and a core portion and containing conjugated diene rubber or silicone rubber in the core portion. Here, the core is a region located near the center of the organic fine particles (D) and imparts desired elasticity to the organic fine particles (D). On the other hand, the outer shell is a layered region disposed on the outermost surface side of the organic fine particles (D) from the core, and is a layered region that forms a phase between the organic fine particles (D) and other components in the photothermosetting resin composition. This layer is for increasing solubility. The outer shell portion may completely cover the core portion, or may cover only a portion of the core portion, but it is better for the outer shell portion to completely cover the core portion, since the organic fine particles (D) The affinity with other components can be improved, and the dispersibility of the organic fine particles (D) can be improved.

有機微粒子(D)において、外殻部と核部との間に、他の層を含んでいてもよいが、有機微粒子(D)を調製しやすい等の観点で、外殻部と核部とから構成されることが好ましい。有機微粒子(D)が、外殻部と核部とを有するか否かは、光熱硬化性樹脂組成物を光および熱によって硬化させた後、例えば断面を透過型電子顕微鏡(TEM)等により特定できる。 The organic fine particles (D) may include another layer between the outer shell and the core, but from the viewpoint of ease of preparing the organic fine particles (D), the outer shell and the core may be separated. Preferably, it consists of: Whether or not the organic fine particles (D) have an outer shell portion and a core portion can be determined by curing the photothermosetting resin composition with light and heat, and then identifying the cross section using a transmission electron microscope (TEM) or the like. can.

核部は、共役ジエン系ゴムまたはシリコーンゴムの少なくとも一方を含んでいればよいが、両方を含んでいてもよい。また、本発明の目的および硬化を損なわない範囲で、核部は、これらのゴム以外の成分を含んでいてもよい。 The core portion may contain at least one of conjugated diene rubber or silicone rubber, but may contain both. Further, the core portion may contain components other than these rubbers as long as the purpose of the present invention and curing are not impaired.

共役ジエン系ゴムは、共役ジエンに由来する構造単位を含んでいればよく、共役ジエン由来の構造単位のみを有していてもよく、共役ジエンおよび共役ジエンと共重合可能なビニルモノマーの共重合体等であってもよい。 The conjugated diene rubber only needs to contain a structural unit derived from a conjugated diene, and may have only a structural unit derived from a conjugated diene. It may be a combination or the like.

共役ジエンの例には、イソプレン、1,3-ブタジエン、2-クロロ-1,3-ブタジエン、2-メチル-1,3-ブタジエン、クロロプレン等が含まれる。共役ジエン系ゴムは、共役ジエン由来の構造単位を一種のみ含んでいてもよく、二種以上含んでいてもよい。また、共役ジエン系ゴム中の共役ジエン由来の構造単位量は、全構造単位の総量に対して50~100質量%が好ましい。 Examples of conjugated dienes include isoprene, 1,3-butadiene, 2-chloro-1,3-butadiene, 2-methyl-1,3-butadiene, chloroprene, and the like. The conjugated diene rubber may contain only one type of structural unit derived from a conjugated diene, or may contain two or more types. Further, the amount of structural units derived from conjugated diene in the conjugated diene rubber is preferably 50 to 100% by mass based on the total amount of all structural units.

一方、共役ジエンと共重合可能なビニルモノマーの例には、スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレン等の芳香族ビニル系モノマー;アクリル酸、メタクリル酸等のビニルカルボン酸系モノマー;アクリロニトリル、メタクリロニトリル等のビニルシアン系モノマー;塩化ビニル、臭化ビニル等のハロゲン化ビニル系モノマー;酢酸ビニル;エチレン、プロピレン、ブチレン、イソブチレン等のアルケンモノマー;ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジビニルベンゼン等の多官能性モノマーが含まれる。共役ジエン系ゴムには、これらのビニルモノマー由来の構造単位が一種のみ含んでいてもよく、二種以上含んでいてもよい。共役ジエン系ゴム中のビニルモノマー由来の構造単位量は、全構造単位の総量に対して0~50質量%が好ましい。 On the other hand, examples of vinyl monomers copolymerizable with conjugated dienes include aromatic vinyl monomers such as styrene, α-methylstyrene, monochlorostyrene, and dichlorostyrene; vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid; and acrylonitrile. , vinyl cyanide monomers such as methacrylonitrile; halogenated vinyl monomers such as vinyl chloride and vinyl bromide; vinyl acetate; alkene monomers such as ethylene, propylene, butylene, and isobutylene; diallyl phthalate, triallyl cyanurate, triallyl Includes polyfunctional monomers such as isocyanurate and divinylbenzene. The conjugated diene rubber may contain only one type of structural unit derived from these vinyl monomers, or may contain two or more types. The amount of structural units derived from the vinyl monomer in the conjugated diene rubber is preferably 0 to 50% by mass based on the total amount of all structural units.

共役ジエン系ゴムの具体例には、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)等のジエン系ゴムが含まれる。 Specific examples of conjugated diene rubber include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), and ethylene propylene diene rubber (EPDM). , chloroprene rubber (CR), and acrylonitrile butadiene rubber (NBR).

一方、シリコーンゴムの例には、シロキサン系モノマーを重合して得られるゴム、またはシロキサン系モノマーおよびシロキサン系モノマーと共重合可能なビニルモノマーとの共重合体等が含まれる。 On the other hand, examples of silicone rubber include rubbers obtained by polymerizing siloxane monomers, or copolymers of siloxane monomers and vinyl monomers copolymerizable with the siloxane monomers.

シロキサン系モノマーの例には、ジメチルシロキサン、ジエチルシロキサン、メチルフェニルシロキサン、ジフェニルシロキサン、ジメチルシロキサン-ジフェニルシロキサン等の、2つのアルキルおよび/またはアリール基を有するシロキサンモノマー;アルキルまたはアリールを1つ有するシロキサンモノマー等が含まれる。一方、シロキサン系モノマーと共重合可能なビニルモノマーは、上述の共役ジエンと共重合可能なビニルモノマーと同様である。 Examples of siloxane-based monomers include siloxane monomers with two alkyl and/or aryl groups, such as dimethylsiloxane, diethylsiloxane, methylphenylsiloxane, diphenylsiloxane, dimethylsiloxane-diphenylsiloxane; siloxanes with one alkyl or aryl group; Contains monomers, etc. On the other hand, the vinyl monomer copolymerizable with the siloxane monomer is the same as the vinyl monomer copolymerizable with the above-mentioned conjugated diene.

有機微粒子(D)の核部は、上記の中でも共役ジエン系ゴムを含むことが好ましく、さらに共役ジエンおよび芳香族ビニル化合物(上述の芳香族ビニルモノマー)に由来する構造単位を含むことが好ましく、特にスチレンブタジエンゴム(SBR)が好ましい。 The core of the organic fine particles (D) preferably contains a conjugated diene rubber among the above, and further preferably contains a structural unit derived from a conjugated diene and an aromatic vinyl compound (the above-mentioned aromatic vinyl monomer). Styrene butadiene rubber (SBR) is particularly preferred.

当該有機微粒子(D)全体に占める核部の量は、60~90質量%が好ましく、80~90質量%がより好ましい。有機微粒子(D)における核部の比率が上記範囲であると、光熱硬化性樹脂組成物の硬化物において十分な弾性が得られる。例えば、硬化性樹脂組成物から得られるシール部材と液晶表示パネルの基板との接着強度等が十分に高まる。なお、当該有機微粒子(D)における核部の含有量は、赤外分光分析のスペクトルの吸光度比などから測定できる。 The amount of the core portion in the whole organic fine particles (D) is preferably 60 to 90% by mass, more preferably 80 to 90% by mass. When the ratio of the core portion in the organic fine particles (D) is within the above range, sufficient elasticity can be obtained in the cured product of the photothermosetting resin composition. For example, the adhesive strength between the sealing member obtained from the curable resin composition and the substrate of the liquid crystal display panel is sufficiently increased. The content of the core in the organic fine particles (D) can be measured from the absorbance ratio of the spectrum of infrared spectroscopy.

さらに、上記核部の形状は特に制限されないが、粒径を揃える等の観点で、球状が好ましい。 Further, the shape of the core is not particularly limited, but is preferably spherical from the viewpoint of making the particle size uniform.

一方、有機微粒子(D)の外殻部は、上述の核部と親和性を有し、かつ光熱硬化性樹脂組成物中での有機微粒子(D)の分散性を高めることが可能な層であれば特に制限されない。外殻部は、(メタ)アクリレートモノマーやビニルモノマーの重合体とすることができる。このような外殻部は、例えば、上述の核部を形成した後、核部の周囲に(メタ)アクリレートモノマーやビニルモノマーを重合させること等によって形成できる。 On the other hand, the outer shell portion of the organic fine particles (D) is a layer that has an affinity with the above-mentioned core portion and is capable of increasing the dispersibility of the organic fine particles (D) in the photothermosetting resin composition. If so, there are no particular restrictions. The outer shell portion can be made of a polymer of (meth)acrylate monomer or vinyl monomer. Such an outer shell can be formed, for example, by forming the above-mentioned core and then polymerizing (meth)acrylate monomer or vinyl monomer around the core.

(メタ)アクリレートモノマーの例には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート等のアルキル(メタ)アクリレート;フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート等の芳香環含有(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;グリシジル(メタ)アクリレート、グリシジルアルキル(メタ)アクリレート等のグリシジル(メタ)アクリレート類;アルコキシアルキル(メタ)アクリレート類;アリル(メタ)アクリレート、アリルアルキル(メタ)アクリレート等のアリルアルキル(メタ)アクリレート;モノエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等の多官能性(メタ)アクリレート;等が含まれる。 Examples of (meth)acrylate monomers include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, dodecyl (meth)acrylate, stearyl ( Alkyl (meth)acrylates such as meth)acrylate and behenyl (meth)acrylate; Aromatic ring-containing (meth)acrylates such as phenoxyethyl (meth)acrylate and benzyl (meth)acrylate; 2-hydroxyethyl (meth)acrylate, 4- Hydroxyalkyl (meth)acrylates such as hydroxybutyl (meth)acrylate; Glycidyl (meth)acrylates such as glycidyl (meth)acrylate and glycidyl alkyl (meth)acrylate; Alkoxyalkyl (meth)acrylates; Allyl (meth)acrylate , allyl alkyl (meth)acrylate such as allyl alkyl (meth)acrylate; polyfunctional (meth)acrylate such as monoethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, etc. Acrylate; etc. are included.

一方、ビニルモノマーの例には、上述の共役ジエンと共重合可能なビニルモノマーと同様のモノマーが含まれる。 On the other hand, examples of vinyl monomers include monomers similar to the vinyl monomers copolymerizable with the above-mentioned conjugated diene.

中でも、外殻部は、メチルメタクリレート構造、スチレン構造、アクリロニトリル構造、およびグリシジル構造からなる群より選ばれる1以上の構造を有する重合体を含むことが好ましい。外殻部が、このような構造を有する重合体を含むと、上述の硬化性化合物(A)等と有機微粒子(D)との相溶性が良好になる。 Among these, it is preferable that the outer shell portion contains a polymer having one or more structures selected from the group consisting of a methyl methacrylate structure, a styrene structure, an acrylonitrile structure, and a glycidyl structure. When the outer shell portion contains a polymer having such a structure, the compatibility between the above-mentioned curable compound (A) and the like and the organic fine particles (D) will be improved.

当該有機微粒子(D)全体に占める外殻部の量は、10~40質量%が好ましく、10~20質量%がより好ましい。有機微粒子(D)における外殻部の比率が上記範囲であると、有機微粒子(D)の分散性が良好になる。当該有機微粒子(D)における外殻部の含有量は、赤外分光分析のスペクトルの吸光度比などから測定できる。 The amount of the outer shell portion in the whole organic fine particles (D) is preferably 10 to 40% by mass, more preferably 10 to 20% by mass. When the ratio of the outer shell portion in the organic fine particles (D) is within the above range, the dispersibility of the organic fine particles (D) will be good. The content of the outer shell in the organic fine particles (D) can be measured from the absorbance ratio of the spectrum of infrared spectroscopy.

さらに、当該有機微粒子(D)の形状は、特に制限されないが、略球状であることが好ましい。有機微粒子(D)が略球状である場合の平均粒子径は、0.1~0.8μmが好ましく、0.1~0.6μmがより好ましい。平均粒子径が当該範囲であると、光熱硬化性樹脂組成物を用いて細いシール部材を形成したりすることが可能となる。上記平均粒子径は、顕微鏡法、具体的には電子顕微鏡の画像解析により測定することができる。より具体的には、液晶シール剤について画像解析し、粒子径が1μm以下の有機フィラーを50個選別して、粒子径を測定した場合の平均値を平均粒子径とする。 Further, the shape of the organic fine particles (D) is not particularly limited, but is preferably substantially spherical. When the organic fine particles (D) are approximately spherical, the average particle diameter is preferably 0.1 to 0.8 μm, more preferably 0.1 to 0.6 μm. When the average particle diameter is within this range, it becomes possible to form a thin sealing member using the photothermosetting resin composition. The average particle diameter can be measured by microscopy, specifically by image analysis using an electron microscope. More specifically, the liquid crystal sealant is image-analyzed, 50 organic fillers having a particle diameter of 1 μm or less are selected, and the average value of the measured particle diameters is defined as the average particle diameter.

有機微粒子(D)の含有量は、光熱硬化性樹脂組成物の総量に対して5~17質量%が好ましく、7~16質量%がより好ましく、9~15質量%がさらに好ましい。有機微粒子の量が5質量%以上であると、光熱硬化性樹脂組成物を液晶シール剤に用いた場合に、その硬化物(シール部材)と基板との接着強度が高くなる。一方、有機微粒子(D)の含有量が17質量%以下であると、他の成分(例えば硬化性化合物(A))の量が十分になり、硬化物(シール部材)の強度が高まる。 The content of the organic fine particles (D) is preferably 5 to 17% by mass, more preferably 7 to 16% by mass, and even more preferably 9 to 15% by mass, based on the total amount of the photothermosetting resin composition. When the amount of organic fine particles is 5% by mass or more, when the photothermosetting resin composition is used as a liquid crystal sealant, the adhesive strength between the cured product (sealing member) and the substrate becomes high. On the other hand, when the content of organic fine particles (D) is 17% by mass or less, the amount of other components (for example, curable compound (A)) becomes sufficient, and the strength of the cured product (sealing member) increases.

1-5.無機充填剤(E)
本発明の光熱硬化性樹脂組成物は、必要に応じて無機充填剤(E)をさらに含んでいてもよい。光熱硬化性樹脂組成物が無機充填剤(E)を含むと、光熱硬化性樹脂組成物の粘度や硬化物の強度、および線膨張性等が良好になりやすい。
1-5. Inorganic filler (E)
The photothermosetting resin composition of the present invention may further contain an inorganic filler (E) if necessary. When the photothermosetting resin composition contains the inorganic filler (E), the viscosity of the photothermosetting resin composition, the strength of the cured product, the linear expansion property, etc. are likely to be improved.

無機充填剤(E)の例には、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸マグネシウム、珪酸アルミニウム、珪酸ジルコニウム、酸化鉄、酸化チタン、窒化チタン、酸化アルミニウム(アルミナ)、酸化亜鉛、二酸化ケイ素、チタン酸カリウム、カオリン、タルク、ガラスビーズ、セリサイト活性白土、ベントナイト、窒化アルミニウム、窒化ケイ素等が含まれる。中でも、二酸化ケイ素及びタルクが好ましい。 Examples of the inorganic filler (E) include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, titanium nitride, aluminum oxide (alumina), zinc oxide, silicon dioxide, Includes potassium titanate, kaolin, talc, glass beads, sericite activated clay, bentonite, aluminum nitride, silicon nitride, etc. Among them, silicon dioxide and talc are preferred.

無機充填剤(E)の形状は、球状、板状、針状等、定形状であってもよく、非定形状であってもよい。無機充填剤(E)が球状である場合、無機充填剤(E)の平均一次粒子径は、1.5μm以下が好ましく、かつ比表面積が0.5~20m/gがより好ましい。無機充填剤(E)の平均一次粒子径は、JIS Z8825-1に記載のレーザー回折法により測定することができる。充填剤の比表面積は、JIS Z8830に記載のBET法により測定することができる。The shape of the inorganic filler (E) may be a regular shape, such as a spherical shape, a plate shape, or a needle shape, or may be an amorphous shape. When the inorganic filler (E) is spherical, the average primary particle diameter of the inorganic filler (E) is preferably 1.5 μm or less, and the specific surface area is more preferably 0.5 to 20 m 2 /g. The average primary particle diameter of the inorganic filler (E) can be measured by the laser diffraction method described in JIS Z8825-1. The specific surface area of the filler can be measured by the BET method described in JIS Z8830.

無機充填剤(E)の含有量は、光熱硬化性樹脂組成物の総量に対して1~45質量%が好ましい。無機充填剤(E)の含有量が1質量%以上であると、光熱硬化性樹脂組成物の硬化物の耐湿性が高まりやすく、45質量%以下であると、光熱硬化性樹脂組成物の塗工安定性が損なわれにくい。無機充填剤(E)の含有量は、光熱硬化性樹脂組成物に対して3~30質量%がより好ましい。 The content of the inorganic filler (E) is preferably 1 to 45% by mass based on the total amount of the photothermosetting resin composition. When the content of the inorganic filler (E) is 1% by mass or more, the moisture resistance of the cured product of the photothermocurable resin composition tends to increase, and when the content is 45% by mass or less, the coating of the photothermocurable resin composition tends to increase. Engineering stability is less likely to be impaired. The content of the inorganic filler (E) is more preferably 3 to 30% by mass based on the photothermosetting resin composition.

1-6.その他の硬化性化合物
光熱硬化性樹脂組成物は、熱硬化性化合物をさらに含んでいてもよい。ただし、当該熱硬化性化合物は、上述の硬化性化合物(A)とは異なる化合物である。
1-6. Other curable compounds The photothermosetting resin composition may further contain a thermosetting compound. However, the thermosetting compound is a compound different from the above-mentioned curable compound (A).

熱硬化性化合物の例には、分子内にエポキシ基を有するエポキシ化合物が含まれる。エポキシ化合物は、モノマー、オリゴマーまたはポリマーのいずれであってもよい。光熱硬化性樹脂組成物がエポキシ化合物を含むと、得られる液晶パネルの表示特性が良好になり、さらには硬化物(シール部材)の耐湿性が高まる。 Examples of thermosetting compounds include epoxy compounds having an epoxy group in the molecule. Epoxy compounds may be monomers, oligomers or polymers. When the photothermosetting resin composition contains an epoxy compound, the display characteristics of the resulting liquid crystal panel will be improved, and the moisture resistance of the cured product (sealing member) will be improved.

エポキシ化合物は特に芳香環を有することが好ましい。また、エポキシ化合物の重量平均分子量は500~10000が好ましく、1000~5000がより好ましい。エポキシ化合物の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定される。 It is particularly preferable that the epoxy compound has an aromatic ring. Further, the weight average molecular weight of the epoxy compound is preferably 500 to 10,000, more preferably 1,000 to 5,000. The weight average molecular weight of the epoxy compound is measured in terms of polystyrene by gel permeation chromatography (GPC).

芳香族エポキシ化合物の例には、ビスフェノールA、ビスフェノールS、ビスフェノールF、ビスフェノールAD等で代表される芳香族ジオール類や、これらの芳香族ジオールをエチレングリコール、プロピレングリコール、アルキレングリコール等で変性したジオール類と、エピクロルヒドリンとの反応で得られた芳香族多価グリシジルエーテル化合物;フェノールまたはクレゾールとホルムアルデヒドとから誘導されたノボラック樹脂、ポリアルケニルフェノールやそのコポリマー等で代表されるポリフェノール類と、エピクロルヒドリンとの反応で得られたノボラック型多価グリシジルエーテル化合物;キシリレンフェノール樹脂のグリシジルエーテル化合物類等が含まれる。中でも、クレゾールノボラック型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、トリフェノールメタン型エポキシ化合物、トリフェノールエタン型エポキシ化合物、トリスフェノール型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ジフェニルエーテル型エポキシ化合物またはビフェニル型エポキシ化合物が好ましい。光熱硬化性樹脂組成物は、エポキシ化合物を一種のみ含んでいてもよく、二種以上含んでいてもよい。 Examples of aromatic epoxy compounds include aromatic diols represented by bisphenol A, bisphenol S, bisphenol F, bisphenol AD, etc., and diols obtained by modifying these aromatic diols with ethylene glycol, propylene glycol, alkylene glycol, etc. Aromatic polyglycidyl ether compounds obtained by the reaction of phenol or cresol with formaldehyde, polyphenols represented by polyalkenylphenols and their copolymers, etc., and epichlorohydrin. Novolac-type polyglycidyl ether compounds obtained by the reaction; glycidyl ether compounds of xylylene phenol resin, etc. are included. Among them, cresol novolac type epoxy compounds, phenol novolac type epoxy compounds, bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, triphenolmethane type epoxy compounds, triphenolethane type epoxy compounds, trisphenol type epoxy compounds, dicyclopentadiene type. Epoxy compounds, diphenyl ether type epoxy compounds or biphenyl type epoxy compounds are preferred. The photothermosetting resin composition may contain only one kind of epoxy compound, or may contain two or more kinds of epoxy compounds.

エポキシ化合物は、液状であってもよく、固形であってもよい。硬化物の耐湿性を高めやすい観点では、固形のエポキシ化合物が好ましい。固形のエポキシ化合物の軟化点は、40℃以上150℃以下が好ましい。軟化点は、JIS K7234に規定する環球法によって測定することができる。 The epoxy compound may be liquid or solid. From the viewpoint of easily increasing the moisture resistance of the cured product, solid epoxy compounds are preferred. The softening point of the solid epoxy compound is preferably 40°C or higher and 150°C or lower. The softening point can be measured by the ring and ball method specified in JIS K7234.

熱硬化性化合物の含有量は、光熱硬化性樹脂組成物に対して3~20質量%が好ましい。熱硬化性化合物の量が3質量%以上であると、光熱硬化性樹脂組成物の硬化物(シール部材)の耐湿性を良好に高めやすい。熱硬化性化合物の含有量が20質量%以下であると、光熱硬化性樹脂組成物に、過剰な粘度上昇が生じ難い。熱硬化性化合物の量は、光熱硬化性樹脂組成物に対して3~15質量%がより好ましく、4~15質量%がさらに好ましい。 The content of the thermosetting compound is preferably 3 to 20% by mass based on the photothermosetting resin composition. When the amount of the thermosetting compound is 3% by mass or more, the moisture resistance of the cured product (sealing member) of the photothermosetting resin composition can be easily improved. When the content of the thermosetting compound is 20% by mass or less, excessive viscosity increase is unlikely to occur in the photothermosetting resin composition. The amount of the thermosetting compound is more preferably 3 to 15% by mass, and even more preferably 4 to 15% by mass, based on the photothermosetting resin composition.

熱硬化性化合物の含有量は、硬化性化合物(A)に対して3.8~50質量%が好ましく、5~30質量%がより好ましい。熱硬化性化合物の硬化性化合物(A)に対する含有量が3.8質量%以上であると、硬化物の耐湿性やガラス基板への接着強度がさらに高まる。一方、50質量%以下であると、製造時に硬化性化合物(A)との相溶性が良好になりやすい。 The content of the thermosetting compound is preferably 3.8 to 50% by mass, more preferably 5 to 30% by mass based on the curable compound (A). When the content of the thermosetting compound relative to the curable compound (A) is 3.8% by mass or more, the moisture resistance of the cured product and the adhesive strength to the glass substrate further increase. On the other hand, when the content is 50% by mass or less, the compatibility with the curable compound (A) tends to be good during production.

1-7.その他の化合物
本発明の光熱硬化性樹脂組成物は、必要に応じて熱ラジカル重合開始剤、シランカップリング剤等のカップリング剤、イオントラップ剤、イオン交換剤、レベリング剤、顔料、染料、増感剤、可塑剤及び消泡剤等の添加剤をさらに含んでいてもよい。
1-7. Other Compounds The photothermosetting resin composition of the present invention may optionally contain a thermal radical polymerization initiator, a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchange agent, a leveling agent, a pigment, a dye, and an additive. It may further contain additives such as sensitizers, plasticizers, and antifoaming agents.

シランカップリング剤の例には、ビニルトリメトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン等が含まれる。シランカップリング剤の含有量は、硬化性化合物(A)に対して0.01~5質量%が好ましい。シランカップリング剤の含有量が0.01質量%以上であると、光熱硬化性樹脂組成物の硬化物が十分な接着性を有しやすい。 Examples of the silane coupling agent include vinyltrimethoxysilane, γ-(meth)acryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and the like. The content of the silane coupling agent is preferably 0.01 to 5% by mass based on the curable compound (A). When the content of the silane coupling agent is 0.01% by mass or more, the cured product of the photothermosetting resin composition tends to have sufficient adhesiveness.

本発明の光熱硬化性樹脂組成物は、液晶表示パネルのギャップを調整するためのスペーサー等をさらに含んでいてもよい。 The photothermosetting resin composition of the present invention may further contain a spacer or the like for adjusting the gap of the liquid crystal display panel.

その他の成分の合計量は、光熱硬化性樹脂組成物の総量に対して1~50質量%が好ましい。その他の成分の合計量が50質量%以下であると、光熱硬化性樹脂組成物の粘度が過度に上昇し難く、光熱硬化性樹脂組成物の塗工安定性が損なわれにくい。 The total amount of other components is preferably 1 to 50% by mass based on the total amount of the photothermosetting resin composition. When the total amount of other components is 50% by mass or less, the viscosity of the photothermosetting resin composition is less likely to increase excessively, and the coating stability of the photothermosetting resin composition is less likely to be impaired.

1-8.光熱硬化性樹脂組成物の物性
本発明の光熱硬化性樹脂組成物の、E型粘度計の25℃、2.5rpmにおける粘度は、200~450Pa・sが好ましく、300~400Pa・sがより好ましい。粘度が上記範囲にあると、光熱硬化性樹脂組成物のディスペンサーによる塗布性が良好となる。
1-8. Physical Properties of Photothermosetting Resin Composition The viscosity of the photothermosetting resin composition of the present invention at 25° C. and 2.5 rpm using an E-type viscometer is preferably 200 to 450 Pa·s, more preferably 300 to 400 Pa·s. . When the viscosity is within the above range, the photothermosetting resin composition will have good applicability with a dispenser.

本発明の光熱硬化性樹脂組成物は、例えばシール剤として用いることができる。光熱硬化性樹脂組成物は特に、液晶表示素子、有機EL素子、LED素子等の表示素子の封止に用いられる表示素子シール剤に好適である。また、本発明の光熱硬化性樹脂組成物は、液晶を汚染し難いため、液晶滴下工法用の液晶シール剤に非常に好適である。 The photothermosetting resin composition of the present invention can be used, for example, as a sealant. The photothermosetting resin composition is particularly suitable as a display element sealant used for sealing display elements such as liquid crystal display elements, organic EL elements, and LED elements. Furthermore, the photothermosetting resin composition of the present invention is highly suitable for use as a liquid crystal sealant for liquid crystal dropping methods because it hardly contaminates liquid crystals.

2.液晶表示パネルおよびその製造方法
本発明の液晶表示パネルは、それぞれ配向膜を有する一対の基板(表示基板および対向基板)と、当該一対の基板の配向膜どうしの間に配置された枠状のシール部材と、一対の基板の間の前記シール部材で囲まれた空間に充填された液晶層と、を含む。当該シール部材が、上述の光熱硬化性樹脂組成物(液晶シール剤)の硬化物である。
2. Liquid Crystal Display Panel and Manufacturing Method Thereof The liquid crystal display panel of the present invention includes a pair of substrates (a display substrate and a counter substrate) each having an alignment film, and a frame-shaped seal disposed between the alignment films of the pair of substrates. and a liquid crystal layer filled in a space surrounded by the sealing member between the pair of substrates. The sealing member is a cured product of the above-mentioned photothermosetting resin composition (liquid crystal sealant).

表示基板および対向基板は、いずれも透明基板である。透明基板の材質は、ガラス等の無機材料であってもよく、ポリカーボネート、ポリエチレンテレフタレート、ポリエーテルサルフォンおよびPMMA等のプラスチックであってもよい。 Both the display substrate and the counter substrate are transparent substrates. The material of the transparent substrate may be an inorganic material such as glass, or a plastic such as polycarbonate, polyethylene terephthalate, polyether sulfone, and PMMA.

表示基板または対向基板の表面には、マトリックス状のTFT、カラーフィルタ、ブラックマトリクス等が配置されていてもよい。表示基板または対向基板の表面には、さらに配向膜が配置されている。配向膜には、公知の有機配向剤や無機配向剤が含まれる。 A matrix of TFTs, color filters, black matrices, etc. may be arranged on the surface of the display substrate or the counter substrate. An alignment film is further arranged on the surface of the display substrate or the counter substrate. The alignment film contains a known organic alignment agent or inorganic alignment agent.

上述のように、一般的な液晶シール剤から得られるシール部材は、これらの配向膜との密着性が低いことがある。これに対し、上述の光熱硬化性樹脂組成物(液晶シール剤)は、硬化時にシール部材に生じる残留応力を緩和したり、液晶表示パネルに外部からかかる応力を吸収したりできる。したがって、シール部材を、配向膜が形成されている領域に配置しても、これらの界面で剥離が生じ難い。よって、本発明の液晶表示パネルでは、狭額縁化を実現可能である。 As described above, sealing members obtained from common liquid crystal sealants may have low adhesion to these alignment films. On the other hand, the above-mentioned photothermosetting resin composition (liquid crystal sealant) can alleviate the residual stress generated in the sealing member during curing, and can absorb the stress applied to the liquid crystal display panel from the outside. Therefore, even if the sealing member is placed in the area where the alignment film is formed, peeling is unlikely to occur at these interfaces. Therefore, in the liquid crystal display panel of the present invention, it is possible to realize a narrow frame.

液晶表示パネルは、本発明の液晶シール剤を用いて製造される。液晶表示パネルの製造方法には、一般に、液晶滴下工法と、液晶注入工法とがあるが、本発明の液晶表示パネルは、液晶滴下工法で製造されることが好ましい。 A liquid crystal display panel is manufactured using the liquid crystal sealant of the present invention. Methods for manufacturing liquid crystal display panels generally include a liquid crystal dropping method and a liquid crystal injection method, and the liquid crystal display panel of the present invention is preferably manufactured by the liquid crystal dropping method.

液晶滴下工法による液晶表示パネルの製造方法は、
1)それぞれ配向膜を有する一対の基板の、一方の基板の配向膜上に、上述の液晶シール剤を塗布し、シールパターンを形成する工程と、
2)シールパターンが未硬化の状態において、一方の基板上、かつシールパターンで囲まれた領域内、または他方の基板上に、液晶を滴下する工程と、
3)一方の基板および他方の基板を、シールパターンを介して重ね合わせる工程と、
4)シールパターンを硬化させる工程とを含む。
The manufacturing method of liquid crystal display panels using the liquid crystal dripping method is as follows:
1) A step of applying the above-mentioned liquid crystal sealant onto the alignment film of one of a pair of substrates each having an alignment film to form a seal pattern;
2) Dropping liquid crystal onto one substrate and within the area surrounded by the seal pattern, or onto the other substrate while the seal pattern is uncured;
3) a step of overlapping one substrate and the other substrate via a seal pattern;
4) curing the seal pattern.

2)の工程において、シールパターンが未硬化の状態とは、液晶シール剤の硬化反応がゲル化点までは進行していない状態を意味する。このため、2)の工程では、液晶シール剤の液晶への溶解を抑制するために、シールパターンを光照射または加熱して半硬化させてもよい。一方の基板及び他方の基板は、それぞれ表示基板または対向基板である。 In the step 2), the uncured state of the seal pattern means a state where the curing reaction of the liquid crystal sealant has not progressed to the gelation point. Therefore, in step 2), in order to suppress dissolution of the liquid crystal sealant into the liquid crystal, the seal pattern may be semi-cured by light irradiation or heating. One substrate and the other substrate are each a display substrate or a counter substrate.

4)の工程では、光照射による硬化のみを行ってもよいが、光照射による硬化を行った後、加熱による硬化を行ってもよい。光照射による硬化を行うことで、液晶シール剤を短時間で硬化させることができるので、液晶への溶解を抑制できる。光照射による硬化と加熱による硬化とを組み合わせることで、光照射による硬化のみの場合と比べて光による液晶層へのダメージを少なくすることができる。 In step 4), only curing by light irradiation may be performed, but curing by heating may be performed after curing by light irradiation. By curing by light irradiation, the liquid crystal sealing agent can be cured in a short time, so dissolution into the liquid crystal can be suppressed. By combining curing by light irradiation and curing by heating, damage to the liquid crystal layer caused by light can be reduced compared to the case of curing only by light irradiation.

照射する光は、上述の液晶シール剤(光熱硬化性樹脂組成物)中の光重合開始剤(B)の種類に応じて適宜選択されるが、可視光領域の光が好ましく、例えば波長370~450nmの光であることが好ましい。上記波長の光は、液晶材料や駆動電極に与えるダメージが比較的少ないからである。光の照射は、紫外線や可視光を発する公知の光源を使用できる。可視光を照射する場合、高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、キセノンランプ、蛍光灯等を使用できる。 The light to be irradiated is appropriately selected depending on the type of photopolymerization initiator (B) in the above-mentioned liquid crystal sealant (photothermosetting resin composition), but light in the visible light region is preferable, for example, light in the visible light range, for example, in the wavelength range of 370 to 370. Preferably, the light is 450 nm. This is because light of the above wavelength causes relatively little damage to the liquid crystal material and drive electrodes. For light irradiation, a known light source that emits ultraviolet rays or visible light can be used. When irradiating visible light, a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, a xenon lamp, a fluorescent lamp, etc. can be used.

光照射エネルギーは、硬化性化合物(A)が硬化可能なエネルギーであればよい。光硬化時間は、液晶シール剤の組成にもよるが、例えば10分程度である。 The light irradiation energy may be any energy that can cure the curable compound (A). The photocuring time is, for example, about 10 minutes, although it depends on the composition of the liquid crystal sealant.

熱硬化温度は、液晶シール剤の組成にもよるが、例えば120℃であり、熱硬化時間は2時間程度である。 The thermosetting temperature is, for example, 120° C., although it depends on the composition of the liquid crystal sealant, and the thermosetting time is about 2 hours.

本発明を実施例に基づき詳細に説明するが、本発明はこれらの実施例に限定されない。 The present invention will be explained in detail based on Examples, but the present invention is not limited to these Examples.

1.硬化性化合物(A)の準備
<合成例1:硬化性化合物(A-1)>
160gの液状ビスフェノールF型エポキシ樹脂(エポトートYDF-8170C、東都化成社製、エポキシ当量160g/eq)、0.1gの重合禁止剤(p-メトキシフェノール)、0.2gの触媒(トリエタノールアミン)、および43.0gのメタクリル酸をフラスコ内に仕込んだ。そして、乾燥空気を送り込み、90℃で還流攪拌しながら5時間反応させた。得られた化合物を、超純水にて20回洗浄し、メタクリル酸部分変性ビスフェノールF型エポキシ樹脂(硬化性化合物(A-1))を得た。
1. Preparation of curable compound (A) <Synthesis example 1: Curable compound (A-1)>
160 g of liquid bisphenol F type epoxy resin (Epotote YDF-8170C, manufactured by Toto Kasei Co., Ltd., epoxy equivalent: 160 g/eq), 0.1 g of polymerization inhibitor (p-methoxyphenol), 0.2 g of catalyst (triethanolamine) , and 43.0 g of methacrylic acid were charged into the flask. Then, dry air was fed into the mixture, and the mixture was allowed to react at 90° C. for 5 hours while being refluxed and stirred. The obtained compound was washed 20 times with ultrapure water to obtain a methacrylic acid partially modified bisphenol F type epoxy resin (curable compound (A-1)).

<合成例2:硬化性化合物(A-2)>
116gの2-ヒドロキシエチルアクリレート、0.1gの重合禁止剤(p-メトキシフェノール)、および100gの無水コハク酸をフラスコ内に仕込んだ。そして、乾燥空気を送り込んで90℃で還流攪拌しながら5時間反応させた。続いて、ビスフェノールAジグリシジルエーテル170gを加え、同様に90℃で還流攪拌しながら5時間反応させた。得られた化合物を、超純水にて20回洗浄し、硬化性化合物(A-2)を得た。
<Synthesis Example 2: Curable compound (A-2)>
116 g of 2-hydroxyethyl acrylate, 0.1 g of a polymerization inhibitor (p-methoxyphenol), and 100 g of succinic anhydride were charged into a flask. Then, dry air was introduced and the reaction was carried out for 5 hours while stirring and refluxing at 90°C. Subsequently, 170 g of bisphenol A diglycidyl ether was added, and the mixture was similarly reacted at 90° C. for 5 hours while stirring under reflux. The obtained compound was washed 20 times with ultrapure water to obtain a curable compound (A-2).

<合成例3:硬化性化合物(A-3)>
160gの液状ビスフェノールF型エポキシ樹脂(エポトートYDF-8170C、東都化成社製、エポキシ当量160g/eq)、0.1gの重合禁止剤(p-メトキシフェノール)、0.2gの触媒(トリエタノールアミン)、および81.7gのメタクリル酸をフラスコ内に仕込み、乾燥空気を送り込んで90℃で還流攪拌しながら5時間反応させた。得られた化合物を、超純水にて20回洗浄し、メタクリル酸95%部分変性ビスフェノールF型エポキシ樹脂(硬化性化合物(A-3))を得た。
<Synthesis Example 3: Curable compound (A-3)>
160 g of liquid bisphenol F type epoxy resin (Epotote YDF-8170C, manufactured by Toto Kasei Co., Ltd., epoxy equivalent 160 g/eq), 0.1 g of polymerization inhibitor (p-methoxyphenol), 0.2 g of catalyst (triethanolamine) , and 81.7 g of methacrylic acid were placed in a flask, and the mixture was reacted at 90° C. for 5 hours while blowing dry air and stirring under reflux. The obtained compound was washed 20 times with ultrapure water to obtain a partially modified bisphenol F type epoxy resin containing 95% methacrylic acid (curable compound (A-3)).

<硬化性化合物(A-4)の準備>
硬化性化合物(A-4)として、アクリル樹脂(ポリエチレングリコールジアクリレート、ライトアクリレート14EG-A、共栄社化学製)を用いた。
<Preparation of curable compound (A-4)>
As the curable compound (A-4), an acrylic resin (polyethylene glycol diacrylate, Light Acrylate 14EG-A, manufactured by Kyoeisha Chemical) was used.

2.有機微粒子(D)の準備
<合成例4:有機微粒子(D-1)>
・核部を含むエマルションD’の調製
窒素置換した撹拌機付きオートクレーブ中に、脱イオン水500質量部、ラウリル硫酸ソーダ3質量部、過硫酸カリウム0.6質量部、ブタジエン187.5質量部、およびスチレン62.5質量部を仕込み、70℃で10時間反応させた。得られたエマルションを常温まで冷却した後、イオン交換水を添加し、固形分30質量%に調整した。
2. Preparation of organic fine particles (D) <Synthesis example 4: Organic fine particles (D-1)>
- Preparation of emulsion D' containing the core In a nitrogen-substituted autoclave equipped with a stirrer, 500 parts by mass of deionized water, 3 parts by mass of sodium lauryl sulfate, 0.6 parts by mass of potassium persulfate, 187.5 parts by mass of butadiene, and 62.5 parts by mass of styrene were charged and reacted at 70°C for 10 hours. After the obtained emulsion was cooled to room temperature, ion-exchanged water was added to adjust the solid content to 30% by mass.

・外殻部の形成
撹拌機、還流コンデンサー、滴下装置、及び温度計を備えた反応容器に、上述の核部を含むエマルションD’500質量部、イオン交換水169質量部、ラウリル硫酸ナトリウム0.4質量部を仕込み、攪拌下、窒素置換しながら70℃まで昇温させた。内温を70℃に保ち、重合開始剤として過硫酸カリウムを0.5質量部添加した。さらに、予めスチレン23質量部、メチルメタクリレート質量19部、アクリロニトリル質量12部、グリシジルメタクリレート15質量部を混合したモノマー混合液を、反応溶液内に連続的に3時間かけて滴下した。滴下終了後、3時間の熟成を行った。熟成終了後、得られた水性エマルジョンを常温まで冷却したのち、スプレードライヤーを用い、平均粒子径0.2μmである有機微粒子(D-1)を得た。
- Formation of the outer shell In a reaction vessel equipped with a stirrer, a reflux condenser, a dropping device, and a thermometer, 500 parts by mass of emulsion D' containing the above-mentioned core, 169 parts by mass of ion-exchanged water, and 0.5 parts by mass of sodium lauryl sulfate were added. 4 parts by mass were charged, and the temperature was raised to 70° C. while stirring and purging with nitrogen. The internal temperature was maintained at 70°C, and 0.5 parts by mass of potassium persulfate was added as a polymerization initiator. Furthermore, a monomer mixture solution in which 23 parts by mass of styrene, 19 parts by mass of methyl methacrylate, 12 parts by mass of acrylonitrile, and 15 parts by mass of glycidyl methacrylate were mixed in advance was continuously dropped into the reaction solution over a period of 3 hours. After completion of the dropping, aging was carried out for 3 hours. After aging, the obtained aqueous emulsion was cooled to room temperature, and then a spray dryer was used to obtain organic fine particles (D-1) having an average particle size of 0.2 μm.

<合成例5:有機微粒子(D-2)の合成>
撹拌機、還流コンデンサー、滴下装置、及び温度計を備えた反応容器に、合成例4で得られた核部を含むエマルションD’500質量部、イオン交換水169質量部、ラウリル硫酸ナトリウム0.4質量部を仕込み、攪拌下、窒素置換しながら70℃まで昇温させた。内温を70℃に保ち、重合開始剤として過硫酸カリウム0.5質量部添加した。さらに、予めスチレン23質量部、メチルメタクリレート23.3質量部、アクリロニトリル12質量部、n-ブチルメタクリレート10.8質量部を混合したモノマー混合液を、反応溶液内に連続的に3時間かけて滴下した。滴下終了後、3時間の熟成を行った。熟成終了後、得られた水性エマルジョンを常温まで冷却したのち、スプレードライヤーを用い、平均粒子径0.2μmである有機微粒子(D-2)を得た。
<Synthesis Example 5: Synthesis of organic fine particles (D-2)>
In a reaction vessel equipped with a stirrer, a reflux condenser, a dropping device, and a thermometer, 500 parts by mass of the emulsion D' containing the core obtained in Synthesis Example 4, 169 parts by mass of ion-exchanged water, and 0.4 parts by mass of sodium lauryl sulfate were added. Parts by mass were charged, and the temperature was raised to 70° C. while stirring and purging with nitrogen. The internal temperature was maintained at 70° C., and 0.5 parts by mass of potassium persulfate was added as a polymerization initiator. Furthermore, a monomer mixture containing 23 parts by mass of styrene, 23.3 parts by mass of methyl methacrylate, 12 parts by mass of acrylonitrile, and 10.8 parts by mass of n-butyl methacrylate was continuously added dropwise into the reaction solution over a period of 3 hours. did. After completion of the dropping, aging was carried out for 3 hours. After aging, the obtained aqueous emulsion was cooled to room temperature, and then a spray dryer was used to obtain organic fine particles (D-2) having an average particle size of 0.2 μm.

3.他の材料の準備
その他の材料として、以下の材料を用いた。
・エポキシ化合物:エピコート1004、JER社製、軟化点97℃
・光重合開始剤(B):IRGACURE OXE01、BASF社製
・潜在性熱硬化剤(C):アジピン酸ジヒドラジド(ADH、日本化成社製、融点177~184℃)
・無機充填剤(E):シリカ粒子(S-100、日本触媒化学社製)
・その他粒子:
微粒子ポリマー(F351、アイカ工業社製、(コアが、n-ブチルアクリレートの重合体であり、シェルがポリメチルメタクリレートであるコアシェル粒子))
ポリメチルシルセスキオキサン粒子(MSP-N080、日興リカ社製)
ポリメチルシルセスキオキサン粒子(MSP-N050、日興リカ社製)
ポリメチルシルセスキオキサン粒子(X-52-854、信越化学社製)
メラミン/ホルムアルデヒド縮合物(エポスターS、日本触媒社製)
単層ポリメチルメタクリレート(アートパールJ-3PY、根上工業社製)
・シランカップリング剤:KBM-403
3. Preparation of other materials The following materials were used as other materials.
・Epoxy compound: Epicote 1004, manufactured by JER, softening point 97°C
・Photopolymerization initiator (B): IRGACURE OXE01, manufactured by BASF ・Latent thermosetting agent (C): Adipic acid dihydrazide (ADH, manufactured by Nippon Kasei Co., Ltd., melting point 177-184°C)
・Inorganic filler (E): Silica particles (S-100, manufactured by Nippon Shokubai Kagaku Co., Ltd.)
・Other particles:
Fine particle polymer (F351, manufactured by Aica Kogyo Co., Ltd. (core-shell particles in which the core is a polymer of n-butyl acrylate and the shell is polymethyl methacrylate))
Polymethylsilsesquioxane particles (MSP-N080, manufactured by Nikko Rica)
Polymethylsilsesquioxane particles (MSP-N050, manufactured by Nikko Rica)
Polymethylsilsesquioxane particles (X-52-854, manufactured by Shin-Etsu Chemical)
Melamine/formaldehyde condensate (Epostor S, manufactured by Nippon Shokubai Co., Ltd.)
Single layer polymethyl methacrylate (Art Pearl J-3PY, manufactured by Negami Kogyo Co., Ltd.)
・Silane coupling agent: KBM-403

4.光熱硬化性樹脂組成物の調製
<実施例1>
エポキシ化合物40質量部、合成例1で得られた硬化性化合物(A-1)230質量部、合成例2で得られた硬化性化合物(A-2)50質量部、合成例3で得られた硬化性化合物(A-3)250質量部、硬化性化合物(A-4)150質量部、潜在性熱硬化剤(C)50質量部、無機充填剤(E)60質量部、合成例4で得られた硬化性樹脂(D-1)150質量部、シランカップリング剤(KBM-403、信越化学工業社製)10質量部、光重合開始剤(B)10質量部を、三本ロールを用いて均一な液となるように十分に混合して、光熱硬化性樹脂組成物を得た。
4. Preparation of photothermosetting resin composition <Example 1>
40 parts by mass of epoxy compound, 230 parts by mass of curable compound (A-1) obtained in Synthesis Example 1, 50 parts by mass of curable compound (A-2) obtained in Synthesis Example 2, 50 parts by mass of curable compound (A-2) obtained in Synthesis Example 3. 250 parts by mass of curable compound (A-3), 150 parts by mass of curable compound (A-4), 50 parts by mass of latent thermosetting agent (C), 60 parts by mass of inorganic filler (E), Synthesis Example 4 150 parts by mass of the curable resin (D-1) obtained in step 1, 10 parts by mass of a silane coupling agent (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.), and 10 parts by mass of photopolymerization initiator (B) were mixed into a triple roll. A photothermosetting resin composition was obtained by sufficiently mixing the mixture to form a uniform liquid.

<実施例2~6、および比較例1~6>
表1に示す組成に変更した以外は、実施例1と同様に光熱硬化性樹脂組成物を作製した。
<Examples 2 to 6 and Comparative Examples 1 to 6>
A photothermosetting resin composition was prepared in the same manner as in Example 1, except that the composition was changed to the one shown in Table 1.

5.評価
実施例1~6および比較例1~6で得られた光熱硬化性樹脂組成物について、接着強度を以下の方法で評価した。
5. Evaluation The adhesive strength of the photothermosetting resin compositions obtained in Examples 1 to 6 and Comparative Examples 1 to 6 was evaluated by the following method.

<接着強度テスト>
得られた光熱硬化性樹脂組成物を、ディスペンサー(ショットマスター、武蔵エンジニアリング社製)を用いて、透明電極と全面に配向膜が予め形成された40mm×45mmガラス基板(RT-DM88-PIN、EHC社製)の配向膜上に、38mm×38mmの四角形のライン状のシールパターン(断面積2500μm)を形成した。次いで、シールパターンを形成したガラス基板に対して垂直になるように、対になるガラス基板を減圧下で貼り合せた後、大気開放して貼り合わせた。そして、貼り合わせた2枚のガラス基板を1分間遮光ボックス内で保持した後、3000mJ/cmの可視光を含む光(波長370~450nmの光)を照射し、さらに120℃で1時間加熱して、試験片を得た。
<Adhesive strength test>
The obtained photothermosetting resin composition was applied to a 40 mm x 45 mm glass substrate (RT-DM88-PIN, EHC) on which a transparent electrode and an alignment film were previously formed on the entire surface using a dispenser (Shotmaster, manufactured by Musashi Engineering Co., Ltd.). A rectangular line-shaped seal pattern (cross-sectional area: 2500 μm 2 ) of 38 mm×38 mm was formed on the alignment film (manufactured by Co., Ltd.). Next, a pair of glass substrates were bonded together under reduced pressure so as to be perpendicular to the glass substrate on which the seal pattern was formed, and then they were bonded together while being exposed to the atmosphere. After holding the two bonded glass substrates in a light-shielding box for 1 minute, they were irradiated with light containing 3000 mJ/cm 2 of visible light (light with a wavelength of 370 to 450 nm), and then heated at 120°C for 1 hour. A test piece was obtained.

得られた試験片のシールパターンの隅(ラインの外側)から4.5mmの部分を、押込み試験機(Model210、インテスコ社製)を用い5mm/分の速度で垂直に押込み、光熱硬化性樹脂組成物の硬化物が剥がれた時の応力を測定した。接着強度はその応力を硬化物の線幅で割ることにより求めた。結果を表1に示す。 A portion 4.5 mm from the corner (outside the line) of the seal pattern of the obtained test piece was indented vertically at a speed of 5 mm/min using an indentation tester (Model 210, manufactured by Intesco) to determine the photothermosetting resin composition. The stress when the cured product peeled off was measured. The adhesive strength was determined by dividing the stress by the line width of the cured product. The results are shown in Table 1.

Figure 0007411693000001
Figure 0007411693000001

表1の実施例1~6に示されるように、外殻部と核部とを有し、かつ核部が共役ジエンに由来する構造単位を有するゴムおよびシリコーンゴムからなる群より選ばれる1以上のゴムを含む光熱硬化性樹脂組成物では、接着強度テストの結果がいずれも良好であった。光熱硬化性樹脂組成物が硬化する際に生じる残留応力が、有機微粒子(D)によって緩和されるとともに、外部からの応力を受けた際、有機微粒子(D)が応力を分散したと考えられる。そのため、実施例1~6では、硬化物と基板との界面での剥離が生じ難かったと推察される。 As shown in Examples 1 to 6 in Table 1, one or more selected from the group consisting of rubber and silicone rubber, which have an outer shell and a core, and the core has a structural unit derived from a conjugated diene. All of the photothermosetting resin compositions containing this rubber gave good results in adhesive strength tests. It is thought that the residual stress generated when the photothermosetting resin composition is cured is relaxed by the organic fine particles (D), and that the organic fine particles (D) disperse the stress when external stress is applied. Therefore, it is presumed that in Examples 1 to 6, peeling at the interface between the cured product and the substrate was less likely to occur.

これに対し、コアシェル構造を有する微粒子であっても、核部に上記ゴムを含まない場合には、十分に残留応力や外部からの応力が分散されず、接着強度テストの結果が低かった(比較例1)。さらに、核部および外殻部を有さないポリメチルシルセスキオキサン粒子や、メラミン/ホルムアルデヒド縮合物や、ポリメチルメタクリレート等からなる粒子では、接着強度の向上効果が得られなかった(比較例2~6)。 On the other hand, even if the particles have a core-shell structure, if the core does not contain the above-mentioned rubber, the residual stress and external stress will not be sufficiently dispersed, and the results of the adhesive strength test will be low (comparison). Example 1). Furthermore, the effect of improving adhesive strength was not obtained with polymethylsilsesquioxane particles having no core and outer shell, particles made of melamine/formaldehyde condensate, polymethyl methacrylate, etc. (Comparative Example 2-6).

本出願は、2020年2月6日出願の特願2020-018755号に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2020-018755 filed on February 6, 2020. All contents described in the specification of the application are incorporated herein by reference.

本発明の光熱硬化性樹脂組成物によれば、各種基板との接着性が高い硬化物が得られる。したがって、当該光熱硬化性樹脂組成物は、各種液晶表示装置のシール剤等として非常に有用である。 According to the photothermosetting resin composition of the present invention, a cured product with high adhesiveness to various substrates can be obtained. Therefore, the photothermosetting resin composition is very useful as a sealant for various liquid crystal display devices.

Claims (11)

分子内にエチレン性不飽和二重結合およびエポキシ基を有する硬化性化合物(A)、光重合開始剤(B)、潜在性熱硬化剤(C)、および有機微粒子(D)を含有する光熱硬化性樹脂組成物であり、
前記有機微粒子(D)は外殻部と核部とを有し、
前記核部が、共役ジエンに由来する構造単位を含む共役ジエン系ゴムおよびシリコーンゴムのうち、少なくとも一方を含
前記外殻部が、メチルメタクリレート構造、スチレン構造、アクリロニトリル構造、およびグリシジル構造を有する重合体を含む、
光熱硬化性樹脂組成物。
Photothermal curing containing a curable compound (A) having an ethylenically unsaturated double bond and an epoxy group in the molecule, a photopolymerization initiator (B), a latent thermosetting agent (C), and organic fine particles (D) is a resin composition,
The organic fine particles (D) have an outer shell part and a core part,
The core portion includes at least one of a conjugated diene rubber containing a structural unit derived from a conjugated diene and a silicone rubber,
The outer shell portion includes a polymer having a methyl methacrylate structure, a styrene structure, an acrylonitrile structure, and a glycidyl structure.
Photothermosetting resin composition.
記核部が、共役ジエンおよび芳香族ビニル化合物に由来する構造単位を含む共役ジエン系ゴムを含む、
請求項1に記載の光熱硬化性樹脂組成物。
The core portion includes a conjugated diene rubber containing a structural unit derived from a conjugated diene and an aromatic vinyl compound.
The photothermosetting resin composition according to claim 1.
無機充填剤(E)をさらに含有する、
請求項1または2に記載の光熱硬化性樹脂組成物。
further containing an inorganic filler (E),
The photothermosetting resin composition according to claim 1 or 2.
前記有機微粒子(D)の含有量が5~17質量%である、
請求項1~3のいずれか一項に記載の光熱硬化性樹脂組成物。
The content of the organic fine particles (D) is 5 to 17% by mass,
The photothermosetting resin composition according to any one of claims 1 to 3.
前記潜在性熱硬化剤(C)が、有機酸ジヒドラジド系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤からなる群より選ばれる1以上の硬化剤である、
請求項1~4のいずれか一項に記載の光熱硬化性樹脂組成物。
The latent thermosetting agent (C) is one or more curing agents selected from the group consisting of an organic acid dihydrazide-based thermal latent curing agent, an amine adduct-based thermal latent curing agent, and a polyamine-based thermal latent curing agent. be,
The photothermosetting resin composition according to any one of claims 1 to 4.
請求項1~5のいずれか一項に記載の光熱硬化性樹脂組成物を含む、
液晶シール剤。
Comprising the photothermosetting resin composition according to any one of claims 1 to 5,
LCD sealant.
配向膜をそれぞれ有する一対の基板の、一方の基板の前記配向膜上に、請求項6に記載の液晶シール剤を塗布し、シールパターンを形成する工程と、
前記シールパターンが未硬化の状態において、前記一方の基板上かつ前記シールパターンの領域内、または他方の基板に液晶を滴下する工程と、
前記一方の基板および前記他方の基板を、前記シールパターンを介して重ね合わせる工程と、
前記シールパターンを硬化させる工程と、
を含む、
液晶表示パネルの製造方法。
A step of applying the liquid crystal sealant according to claim 6 on the alignment film of one of a pair of substrates each having an alignment film to form a seal pattern;
Dropping liquid crystal onto the one substrate and within the area of the seal pattern, or onto the other substrate while the seal pattern is uncured;
overlapping the one substrate and the other substrate via the seal pattern;
curing the seal pattern;
including,
A method for manufacturing a liquid crystal display panel.
前記シールパターンを硬化させる工程において、前記シールパターンに光を照射して前記シールパターンを硬化させる、
請求項7に記載の液晶表示パネルの製造方法。
In the step of curing the seal pattern, curing the seal pattern by irradiating the seal pattern with light,
The method for manufacturing a liquid crystal display panel according to claim 7.
前記シールパターンに照射する光が、可視光領域の光を含む、
請求項8に記載の液晶表示パネルの製造方法。
The light irradiated to the seal pattern includes light in the visible light region.
The method for manufacturing a liquid crystal display panel according to claim 8.
前記シールパターンを硬化させる工程において、光が照射された後の前記シールパターンをさらに加熱する、
請求項8または9に記載の液晶表示パネルの製造方法。
In the step of curing the seal pattern, further heating the seal pattern after being irradiated with light;
The method for manufacturing a liquid crystal display panel according to claim 8 or 9.
配向膜をそれぞれ有する一対の基板と、
前記一対の基板の前記配向膜の間に配置された枠状のシール部材と、
前記一対の基板の間の前記シール部材で囲まれた空間に充填された液晶層と、を含み、
前記シール部材が、請求項6に記載の液晶シール剤の硬化物である、
液晶表示パネル。
a pair of substrates each having an alignment film;
a frame-shaped sealing member disposed between the alignment films of the pair of substrates;
a liquid crystal layer filled in a space surrounded by the sealing member between the pair of substrates,
The sealing member is a cured product of the liquid crystal sealant according to claim 6,
LCD display panel.
JP2021575714A 2020-02-06 2021-01-22 Photothermosetting resin composition, liquid crystal sealant containing the same, liquid crystal display panel, and manufacturing method thereof Active JP7411693B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020018755 2020-02-06
JP2020018755 2020-02-06
PCT/JP2021/002135 WO2021157377A1 (en) 2020-02-06 2021-01-22 Light- and heat-curable resin composition, liquid crystal sealing agent containing same, liquid crystal display panel, and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JPWO2021157377A1 JPWO2021157377A1 (en) 2021-08-12
JP7411693B2 true JP7411693B2 (en) 2024-01-11

Family

ID=77199271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021575714A Active JP7411693B2 (en) 2020-02-06 2021-01-22 Photothermosetting resin composition, liquid crystal sealant containing the same, liquid crystal display panel, and manufacturing method thereof

Country Status (5)

Country Link
JP (1) JP7411693B2 (en)
KR (1) KR20220123426A (en)
CN (1) CN115004093A (en)
TW (1) TWI867151B (en)
WO (1) WO2021157377A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347203A (en) 1999-04-01 2000-12-15 Mitsui Chemicals Inc Liquid crystal sealing material composition
JP2001100224A (en) 1999-09-28 2001-04-13 Mitsui Chemicals Inc Sealing material composition for liquid crystal display cell
JP2005015757A (en) 2003-06-04 2005-01-20 Sekisui Chem Co Ltd Light curable resin composition, sealing agent for liquid crystal display element, encapsulating agent for liquid crystal display element, vertical conduction material for liquid crystal display element, and liquid crystal display device
JP2009013282A (en) 2007-07-04 2009-01-22 Nippon Kayaku Co Ltd Liquid crystal sealing agent and liquid crystal display cell using the same
JP2010277072A (en) 2009-04-28 2010-12-09 Nippon Kayaku Co Ltd Liquid crystal sealing agent and liquid crystal display cell obtained using the same
JP2012133384A (en) 2004-03-22 2012-07-12 Nippon Kayaku Co Ltd Liquid crystal sealing material and method for producing the same
WO2019198631A1 (en) 2018-04-11 2019-10-17 積水化学工業株式会社 Photopolymerization initiator, sealant for display elements, vertical conduction material, display element, and compound

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3366203B2 (en) * 1995-12-27 2003-01-14 三井化学株式会社 Liquid crystal sealing resin composition
KR100414698B1 (en) * 1999-04-01 2004-01-13 미쯔이카가쿠 가부시기가이샤 Sealing material composition for liquid crystal
CN100449379C (en) * 2002-09-19 2009-01-07 三井化学株式会社 Sealing composition for liquid crystal displays and process for production of liquid crystal display panels
CN1798786B (en) * 2003-06-04 2013-05-15 积水化学工业株式会社 Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
CN101044184B (en) * 2004-10-20 2010-12-08 日本化药株式会社 Radiation curable resin, liquid crystal sealing material, and liquid crystal display cell using same
TW201420736A (en) * 2012-07-17 2014-06-01 Nippon Kayaku Kk Liquid-crystal sealant and LCD cell using same
JP2015200729A (en) * 2014-04-07 2015-11-12 日本化薬株式会社 Radiation curable resin composition, cured product, and application thereof
JP2017149794A (en) * 2016-02-22 2017-08-31 三井化学株式会社 Photocurable resin composition, display element sealant, liquid crystal sealant and liquid crystal display panel
JP2017219604A (en) * 2016-06-06 2017-12-14 日本化薬株式会社 Liquid crystal sealant and liquid crystal display cell using the same
KR20190077220A (en) * 2017-12-25 2019-07-03 닛뽄 가야쿠 가부시키가이샤 Sealant for display, and liquid crystal display using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347203A (en) 1999-04-01 2000-12-15 Mitsui Chemicals Inc Liquid crystal sealing material composition
JP2001100224A (en) 1999-09-28 2001-04-13 Mitsui Chemicals Inc Sealing material composition for liquid crystal display cell
JP2005015757A (en) 2003-06-04 2005-01-20 Sekisui Chem Co Ltd Light curable resin composition, sealing agent for liquid crystal display element, encapsulating agent for liquid crystal display element, vertical conduction material for liquid crystal display element, and liquid crystal display device
JP2012133384A (en) 2004-03-22 2012-07-12 Nippon Kayaku Co Ltd Liquid crystal sealing material and method for producing the same
JP2009013282A (en) 2007-07-04 2009-01-22 Nippon Kayaku Co Ltd Liquid crystal sealing agent and liquid crystal display cell using the same
JP2010277072A (en) 2009-04-28 2010-12-09 Nippon Kayaku Co Ltd Liquid crystal sealing agent and liquid crystal display cell obtained using the same
WO2019198631A1 (en) 2018-04-11 2019-10-17 積水化学工業株式会社 Photopolymerization initiator, sealant for display elements, vertical conduction material, display element, and compound

Also Published As

Publication number Publication date
JPWO2021157377A1 (en) 2021-08-12
TW202132394A (en) 2021-09-01
KR20220123426A (en) 2022-09-06
WO2021157377A1 (en) 2021-08-12
CN115004093A (en) 2022-09-02
TWI867151B (en) 2024-12-21

Similar Documents

Publication Publication Date Title
JP6566994B2 (en) Liquid crystal sealant and cured product thereof, and liquid crystal display panel and method for producing the same
WO2017104391A1 (en) Photocurable resin composition, display element sealing agent, liquid crystal sealing agent, and liquid crystal display panel and method for producing same
JP6793471B2 (en) Sealing material for liquid crystal dropping method, liquid crystal display panel and manufacturing method of liquid crystal display panel
JP7411693B2 (en) Photothermosetting resin composition, liquid crystal sealant containing the same, liquid crystal display panel, and manufacturing method thereof
JP6793470B2 (en) Sealing material for liquid crystal dripping method, liquid crystal display panel and manufacturing method of liquid crystal display panel
KR102757585B1 (en) Sealing agent for display element, upper and lower conductive material, and display element
JP6805372B2 (en) Sealing agent for liquid crystal display element, cured product, vertical conductive material, and liquid crystal display element
JP7557607B2 (en) Photocurable resin composition, liquid crystal sealant, liquid crystal display panel using the same, and method for producing the same
WO2020230678A1 (en) Liquid crystal sealant, liquid crystal display panel using same, and production method therefor
WO2024142729A1 (en) Resin composition, liquid crystal sealing agent, and liquid crystal display panel, and production methods thereof
JP7490747B2 (en) Sealant for liquid crystal dropping method and method for manufacturing liquid crystal display panel
JP7536999B2 (en) Liquid crystal sealant, method for producing liquid crystal display panel, and liquid crystal display panel
WO2024204230A1 (en) Resin composition, liquid crystal sealing agent, and liquid crystal display panel using same
JP6835980B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7413511B2 (en) Sealant for liquid crystal dripping method, manufacturing method of liquid crystal display panel, and liquid crystal display panel
WO2024204234A1 (en) Resin composition, liquid crystal sealant, and liquid crystal display panel using same
TW202506743A (en) Resin composition, liquid crystal sealant, and liquid crystal display panel using the same
TW202344908A (en) Liquid crystal sealing agent, method for producing liquid crystal display panel, and liquid crystal display panel
WO2024185743A1 (en) Liquid crystal sealing agent, liquid crystal display panel using same, and method for manufacturing liquid crystal display panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231225

R150 Certificate of patent or registration of utility model

Ref document number: 7411693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150