JP7409790B2 - Oxide semiconductor film and semiconductor device - Google Patents
Oxide semiconductor film and semiconductor device Download PDFInfo
- Publication number
- JP7409790B2 JP7409790B2 JP2019114320A JP2019114320A JP7409790B2 JP 7409790 B2 JP7409790 B2 JP 7409790B2 JP 2019114320 A JP2019114320 A JP 2019114320A JP 2019114320 A JP2019114320 A JP 2019114320A JP 7409790 B2 JP7409790 B2 JP 7409790B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- oxide semiconductor
- semiconductor film
- electrical resistivity
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 113
- 239000002019 doping agent Substances 0.000 claims description 33
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 30
- 229910052733 gallium Inorganic materials 0.000 claims description 29
- 239000011135 tin Substances 0.000 claims description 29
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 229910052718 tin Inorganic materials 0.000 claims description 18
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 17
- 239000010431 corundum Substances 0.000 claims description 5
- 229910052593 corundum Inorganic materials 0.000 claims description 5
- 239000010408 film Substances 0.000 description 208
- 239000007864 aqueous solution Substances 0.000 description 61
- 239000003595 mist Substances 0.000 description 56
- 238000010438 heat treatment Methods 0.000 description 52
- 239000012159 carrier gas Substances 0.000 description 47
- 238000000034 method Methods 0.000 description 44
- 239000000243 solution Substances 0.000 description 41
- 239000000758 substrate Substances 0.000 description 34
- 239000002994 raw material Substances 0.000 description 33
- 238000004519 manufacturing process Methods 0.000 description 24
- 230000015572 biosynthetic process Effects 0.000 description 22
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 16
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000010790 dilution Methods 0.000 description 8
- 239000012895 dilution Substances 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 5
- 229910001195 gallium oxide Inorganic materials 0.000 description 5
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 5
- 229910052741 iridium Inorganic materials 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- -1 nitrogen and argon Chemical compound 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910052703 rhodium Inorganic materials 0.000 description 4
- 239000010948 rhodium Substances 0.000 description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 4
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 4
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- SRVXDMYFQIODQI-UHFFFAOYSA-K gallium(iii) bromide Chemical compound Br[Ga](Br)Br SRVXDMYFQIODQI-UHFFFAOYSA-K 0.000 description 3
- 229940071870 hydroiodic acid Drugs 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- DWRNSCDYNYYYHT-UHFFFAOYSA-K gallium(iii) iodide Chemical compound I[Ga](I)I DWRNSCDYNYYYHT-UHFFFAOYSA-K 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- DKSMCEUSSQTGBK-UHFFFAOYSA-N bromous acid Chemical compound OBr=O DKSMCEUSSQTGBK-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 229940077239 chlorous acid Drugs 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002772 conduction electron Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- QFWPJPIVLCBXFJ-UHFFFAOYSA-N glymidine Chemical compound N1=CC(OCCOC)=CN=C1NS(=O)(=O)C1=CC=CC=C1 QFWPJPIVLCBXFJ-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910000043 hydrogen iodide Inorganic materials 0.000 description 1
- CUILPNURFADTPE-UHFFFAOYSA-N hypobromous acid Chemical compound BrO CUILPNURFADTPE-UHFFFAOYSA-N 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- SRPSOCQMBCNWFR-UHFFFAOYSA-N iodous acid Chemical compound OI=O SRPSOCQMBCNWFR-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910001509 metal bromide Inorganic materials 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 229910001511 metal iodide Inorganic materials 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- LTSUHJWLSNQKIP-UHFFFAOYSA-J tin(iv) bromide Chemical compound Br[Sn](Br)(Br)Br LTSUHJWLSNQKIP-UHFFFAOYSA-J 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Landscapes
- Chemical Vapour Deposition (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本発明は、ガリウムを主成分とする酸化物半導体膜、酸化物半導体膜の電気抵抗率調整方法及び酸化物半導体膜の製造方法に関する。 The present invention relates to an oxide semiconductor film containing gallium as a main component, a method for adjusting electrical resistivity of an oxide semiconductor film, and a method for manufacturing an oxide semiconductor film.
従来、パルスレーザー堆積法(Pulsed laser deposition:PLD)、分子線エピタキシー法(Molecular beam epitaxy:MBE)、スパッタリング法等の非平衡状態を実現できる高真空成膜装置が開発されており、これまでの融液法等では作製不可能であった酸化物半導体の作製が可能となってきた。また、霧化されたミスト状の原料を用いて、基板上に結晶成長させるミスト化学気相成長法(Mist Chemical Vapor Deposition:Mist CVD。以下、「ミストCVD法」ともいう。)が開発され、コランダム構造を有する酸化ガリウム(α-Ga2O3)の作製が可能となってきた。α-Ga2O3は、バンドギャップの大きな半導体として、高耐圧、低損失及び高耐熱を実現できる次世代のスイッチング素子への応用が期待されている。 Conventionally, high-vacuum film-forming equipment that can realize non-equilibrium conditions has been developed, such as pulsed laser deposition (PLD), molecular beam epitaxy (MBE), and sputtering. It has become possible to manufacture oxide semiconductors, which were impossible to manufacture using methods such as the melt method. In addition, a mist chemical vapor deposition method (hereinafter also referred to as "mist CVD method") has been developed, in which crystals are grown on a substrate using an atomized mist-like raw material. It has become possible to produce gallium oxide (α-Ga 2 O 3 ) having a corundum structure. As a semiconductor with a large band gap, α-Ga 2 O 3 is expected to be applied to next-generation switching elements that can realize high breakdown voltage, low loss, and high heat resistance.
ミストCVD法に関して、特許文献1には、管状炉型のミストCVD装置が記載されている。特許文献2には、ファインチャネル型のミストCVD装置が記載されている。特許文献3には、リニアソース型のミストCVD装置が記載されている。特許文献4には、管状炉のミストCVD装置が記載されており、特許文献1に記載のミストCVD装置とは、ミスト発生器内にキャリアガスを導入する点で異なっている。特許文献5には、ミスト発生器の上方に基板を設置し、さらにサセプタがホットプレート上に備え付けられた回転ステージであるミストCVD装置が記載されている。 Regarding the mist CVD method, Patent Document 1 describes a tube furnace type mist CVD apparatus. Patent Document 2 describes a fine channel type mist CVD apparatus. Patent Document 3 describes a linear source type mist CVD apparatus. Patent Document 4 describes a tube furnace mist CVD apparatus, which differs from the mist CVD apparatus described in Patent Document 1 in that a carrier gas is introduced into a mist generator. Patent Document 5 describes a mist CVD apparatus that is a rotating stage in which a substrate is installed above a mist generator and a susceptor is installed on a hot plate.
特許文献6には、ミストCVD法により作製される酸化ガリウムが300nm程度の厚さで形成された場合、加熱工程を行った場合に導電性薄膜の高抵抗化の問題が生じること、結晶性酸化物薄膜を厚さ1μm以上にまで形成すると、加熱工程を行った場合の、導電性薄膜の高抵抗化を抑制することができることが記載されている。 Patent Document 6 discloses that when gallium oxide produced by the mist CVD method is formed to a thickness of about 300 nm, the problem of high resistance of the conductive thin film occurs when a heating process is performed, and that crystalline oxide It is stated that if the thin film is formed to a thickness of 1 μm or more, it is possible to suppress the increase in resistance of the conductive thin film when a heating step is performed.
α-Ga2O3のような酸化物半導体膜を半導体装置として利用するためには、電気抵抗の制御が重要である。しかしながら、ミストCVD法で厚膜を得ようとすると、スループットとの兼ね合いから細かい制御が難しく、得られる膜の電気抵抗率に少なからずバラつきが生じていた。この結果、得られる半導体装置の特性にバラつきが生じる一因となっていた。 In order to utilize an oxide semiconductor film such as α-Ga 2 O 3 as a semiconductor device, control of electrical resistance is important. However, when trying to obtain a thick film using the mist CVD method, fine control is difficult due to a balance with throughput, and the electrical resistivity of the obtained film has considerable variation. As a result, this has been a cause of variations in the characteristics of the resulting semiconductor devices.
また、特許文献6の実施例に開示されている方法は原料溶液中へのスズの混合量が多いため、スズが結晶格子間に取り込まれるなどして、得られた膜の結晶性が悪くなってしまうという問題もあった。 In addition, in the method disclosed in the example of Patent Document 6, since a large amount of tin is mixed into the raw material solution, tin is incorporated into the crystal lattice, resulting in poor crystallinity of the obtained film. There was also the problem that the
本発明は、上記問題を解決するためになされたものであり、成膜後にも電気抵抗率を調整可能な酸化物半導体膜及び該酸化物半導体膜の製造方法を提供することを目的とする。また、成膜後に電気抵抗率を所望の値に調整可能な酸化物半導体膜の電気抵抗率調整方法を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide an oxide semiconductor film whose electrical resistivity can be adjusted even after film formation, and a method for manufacturing the oxide semiconductor film. Another object of the present invention is to provide a method for adjusting the electrical resistivity of an oxide semiconductor film, which can adjust the electrical resistivity to a desired value after film formation.
本発明は、上記目的を達成するためになされたものであり、ガリウムを主成分とする酸化物半導体膜であって、ドーパント元素と、金属として少なくともガリウムを含み、膜厚が1μm以上であり、熱処理されることで電気抵抗率が上昇するものである酸化物半導体膜を提供する。 The present invention has been made to achieve the above object, and provides an oxide semiconductor film containing gallium as a main component, containing at least gallium as a dopant element and a metal, and having a film thickness of 1 μm or more, An oxide semiconductor film whose electrical resistivity increases by heat treatment is provided.
このような酸化物半導体膜によれば、簡便に、また、確実に電気抵抗率の調整が可能なものとなる。 According to such an oxide semiconductor film, electrical resistivity can be easily and reliably adjusted.
このとき、前記熱処理の温度は350℃以上とすることができる。 At this time, the temperature of the heat treatment can be 350° C. or higher.
これにより、得られた膜の電気抵抗率を、より確実に上昇させることができるものとなる。 Thereby, the electrical resistivity of the obtained film can be increased more reliably.
このとき、前記ドーパント元素として、スズ(Sn)を含むものとすることができる。 At this time, the dopant element may include tin (Sn).
これにより、得られた膜の電気抵抗率を、より確実に上昇させることができるものとなる。 Thereby, the electrical resistivity of the obtained film can be increased more reliably.
このとき、前記酸化物半導体膜の面積が100mm2以上のものであることができる。 At this time, the area of the oxide semiconductor film can be 100 mm 2 or more.
これにより、簡便、確実に電気抵抗の調整が可能な大面積の酸化物半導体膜となる。 This results in a large-area oxide semiconductor film whose electrical resistance can be easily and reliably adjusted.
このとき、上記酸化物半導体膜を含む半導体装置を提供することができる。 At this time, a semiconductor device including the above oxide semiconductor film can be provided.
本発明は、さらに、ガリウムを主成分とする酸化物半導体膜の電気抵抗率調整方法であって、1μm以上の膜厚を有し、ドーパント元素と、金属として少なくともガリウムを含む前記酸化物半導体膜に対し熱処理を行うことで、電気抵抗率を上昇させて所望の値とする酸化物半導体膜の電気抵抗率調整方法を提供する。 The present invention further provides a method for adjusting the electrical resistivity of an oxide semiconductor film containing gallium as a main component, the oxide semiconductor film having a thickness of 1 μm or more and containing at least gallium as a dopant element and a metal. Provided is a method for adjusting the electrical resistivity of an oxide semiconductor film in which the electrical resistivity is increased to a desired value by performing heat treatment on the oxide semiconductor film.
このような酸化物半導体膜の電気抵抗率調整方法によれば、成膜後であっても電気抵抗率の調整が可能であるため、所望の電気抵抗率よりも低く製造された場合でも、熱処理により抵抗を上昇させ所望の範囲内に調整することが可能となり、歩留まりを向上することができる。また、その後のプロセスで受ける熱履歴による電気抵抗率の変動を抑制することもできる。 According to such a method for adjusting the electrical resistivity of an oxide semiconductor film, the electrical resistivity can be adjusted even after film formation, so even if the film is manufactured with a lower electrical resistivity than the desired one, heat treatment can be performed. This makes it possible to increase the resistance and adjust it within a desired range, thereby improving yield. Further, it is also possible to suppress fluctuations in electrical resistivity due to thermal history during subsequent processes.
このとき、前記熱処理の温度を350℃以上とすることができる。 At this time, the temperature of the heat treatment can be 350° C. or higher.
このような温度範囲で熱処理を行えば、比較的短時間でより確実に酸化物半導体膜の電気抵抗率を上昇させることができる。 If heat treatment is performed in such a temperature range, the electrical resistivity of the oxide semiconductor film can be increased more reliably in a relatively short time.
このとき、前記ドーパント元素として、スズ(Sn)を含むものとすることができる。 At this time, the dopant element may include tin (Sn).
これにより、酸化物半導体膜の電気抵抗率をより確実に上昇させることができる。 Thereby, the electrical resistivity of the oxide semiconductor film can be increased more reliably.
このとき、前記酸化物半導体膜の面積が100mm2以上のものを用いることができる。 At this time, the oxide semiconductor film can have an area of 100 mm 2 or more.
これにより、大面積の酸化物半導体膜の電気抵抗率を、簡便、確実に調整することができる。 Thereby, the electrical resistivity of a large-area oxide semiconductor film can be easily and reliably adjusted.
本発明は、また、ガリウムを主成分とする酸化物半導体膜の製造方法であって、少なくともドーパント元素を含有する第一の水溶液と、金属として少なくともガリウムを含有する第二の水溶液をそれぞれ作製し、作製した前記第一の水溶液と、作製した前記第二の水溶液を混合して第三の水溶液を作製し、前記第三の水溶液を霧化又は液滴化して生成されるミストを、キャリアガスを用いて基板まで搬送し、前記基板上で前記ミストを熱反応させて前記酸化物半導体膜を成膜する酸化物半導体膜の製造方法を提供する。 The present invention also provides a method for producing an oxide semiconductor film containing gallium as a main component, which comprises producing a first aqueous solution containing at least a dopant element and a second aqueous solution containing at least gallium as a metal. , a third aqueous solution is prepared by mixing the prepared first aqueous solution and the prepared second aqueous solution, and the mist generated by atomizing or dropletizing the third aqueous solution is mixed with a carrier gas. Provided is a method for manufacturing an oxide semiconductor film, in which the mist is transported to a substrate using an oxide semiconductor film, and the oxide semiconductor film is formed by thermally reacting the mist on the substrate.
このような酸化物半導体膜の製造方法によれば、溶液中のドーパント量の細かい制御が可能となり、得られる酸化物半導体膜の特性の再現性が高くなる。また、膜質の良好な酸化物半導体膜を得ることができる。さらに、膜厚1μm以上の酸化物半導体膜を成膜したときに、熱処理されることで電気抵抗率が上昇する酸化物半導体膜を得ることができる。 According to such a method for manufacturing an oxide semiconductor film, it is possible to finely control the amount of dopant in the solution, and the reproducibility of the characteristics of the obtained oxide semiconductor film is increased. Further, an oxide semiconductor film with good film quality can be obtained. Furthermore, when an oxide semiconductor film having a thickness of 1 μm or more is formed, an oxide semiconductor film whose electrical resistivity increases can be obtained by heat treatment.
このとき、熱反応により1μm以上の膜厚を有する酸化物半導体膜を成膜することができる。 At this time, an oxide semiconductor film having a thickness of 1 μm or more can be formed by thermal reaction.
これにより、熱処理したときに電気抵抗率を上昇させることが可能な、膜質の良好な酸化物半導体膜を得ることができる。 Thereby, an oxide semiconductor film with good film quality that can increase the electrical resistivity when subjected to heat treatment can be obtained.
このとき、ドーパント元素として、スズ(Sn)を用いることができる。 At this time, tin (Sn) can be used as a dopant element.
これにより、熱処理したときにより確実に電気抵抗率を上昇させることができる酸化物半導体膜を得ることができる。 Thereby, an oxide semiconductor film whose electrical resistivity can be more reliably increased when heat-treated can be obtained.
このとき、基板として成膜面の面積が100mm2以上のものを用いることができる。 At this time, a substrate having a film-forming surface area of 100 mm 2 or more can be used as the substrate.
これにより、簡便、確実に電気抵抗率の調整が可能であり、膜質の良い大面積の酸化物半導体膜を得ることができる。 Thereby, the electrical resistivity can be easily and reliably adjusted, and a large-area oxide semiconductor film with good film quality can be obtained.
以上のように、本発明の酸化物半導体膜によれば、成膜後に簡便かつ確実に電気抵抗率の調整が可能なものとなり、電気抵抗率のバラツキを小さくすることが可能となる。また、本発明の酸化物半導体膜の電気抵抗率調整方法によれば、成膜後であっても電気抵抗率の調整が可能であるため、所望の電気抵抗率よりも低く製造された場合でも、熱処理により抵抗を上昇させ所望の範囲内に調整することが可能となり、バラツキの低減、歩留まりの向上や、その後のプロセスで受ける熱履歴による電気抵抗率の変動を抑制することが可能となる。さらに、本発明の酸化物半導体膜の製造方法によれば、熱処理されることで電気抵抗率が上昇する膜厚1μm以上の酸化物半導体膜を製造することができるとともに、得られる膜の特性の再現性を高くでき、さらに、膜質の良好な酸化物半導体膜を得ることが可能となる。 As described above, according to the oxide semiconductor film of the present invention, the electrical resistivity can be easily and reliably adjusted after film formation, and variations in the electrical resistivity can be reduced. Furthermore, according to the method for adjusting the electrical resistivity of an oxide semiconductor film of the present invention, the electrical resistivity can be adjusted even after film formation, so even if the film is manufactured with a lower electrical resistivity than the desired one. By heat treatment, it becomes possible to increase the resistance and adjust it within a desired range, thereby reducing variations, improving yield, and suppressing fluctuations in electrical resistivity due to thermal history in subsequent processes. Further, according to the method for manufacturing an oxide semiconductor film of the present invention, it is possible to manufacture an oxide semiconductor film with a thickness of 1 μm or more whose electrical resistivity increases by heat treatment, and the characteristics of the obtained film can be improved. It is possible to improve reproducibility and obtain an oxide semiconductor film with good film quality.
以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be explained in detail, but the present invention is not limited thereto.
上述のように、酸化物半導体膜の電気抵抗率のバラつきを低減するために、成膜後にも電気抵抗率を調整可能な酸化物半導体膜、該酸化物半導体膜の製造方法及び酸化物半導体膜の電気抵抗率調整方法が求められていた。 As described above, in order to reduce variations in electrical resistivity of an oxide semiconductor film, an oxide semiconductor film whose electrical resistivity can be adjusted even after film formation, a method for manufacturing the oxide semiconductor film, and an oxide semiconductor film are provided. There was a need for a method for adjusting electrical resistivity.
本発明者は、上記課題について鋭意検討を重ねた結果、ガリウムを主成分とする酸化物半導体膜であって、ドーパント元素と、金属として少なくともガリウムを含み、膜厚が1μm以上であり、熱処理されることで電気抵抗率が上昇するものである酸化物半導体膜により、簡便かつ確実に電気抵抗率の調整が可能なものとなることを見出し、本発明を完成した。 As a result of intensive studies on the above-mentioned problems, the present inventors have found that an oxide semiconductor film containing gallium as a main component, containing at least gallium as a dopant element and a metal, having a thickness of 1 μm or more, and being heat treated. The inventors have discovered that the electrical resistivity can be easily and reliably adjusted by using an oxide semiconductor film, which increases the electrical resistivity by increasing the electrical resistivity, and has completed the present invention.
本発明者は、また、ガリウムを主成分とする酸化物半導体膜の電気抵抗率調整方法であって、1μm以上の膜厚を有し、ドーパント元素と、金属として少なくともガリウムを含む前記酸化物半導体膜に対し熱処理を行うことで、電気抵抗率を上昇させて所望の値とする酸化物半導体膜の電気抵抗率調整方法により、成膜後であっても電気抵抗率の調整が可能であるため、所望の電気抵抗率よりも低く製造された場合でも、熱処理により抵抗を上昇させ、所望の範囲内に調整することが可能となり、歩留まりを向上することや、その後のプロセスで受ける熱履歴による電気抵抗率の変動を抑制することが可能となることを見出し、本発明を完成した。 The present inventor also provides a method for adjusting the electrical resistivity of an oxide semiconductor film containing gallium as a main component, the oxide semiconductor having a film thickness of 1 μm or more and containing at least gallium as a dopant element and a metal. Electrical resistivity can be adjusted even after film formation by using an electrical resistivity adjustment method for oxide semiconductor films that increases the electrical resistivity to a desired value by heat-treating the film. Even if the electrical resistivity is lower than the desired one, it is possible to increase the resistance through heat treatment and adjust it within the desired range, improving yield and reducing electrical resistance due to the thermal history received in subsequent processes. The present invention was completed based on the discovery that it is possible to suppress fluctuations in resistivity.
本発明者は、さらに、ガリウムを主成分とする酸化物半導体膜の製造方法であって、少なくともドーパント元素を含有する第一の水溶液と、金属として少なくともガリウムを含有する第二の水溶液をそれぞれ作製し、作製した前記第一の水溶液と、作製した前記第二の水溶液を混合して第三の水溶液を作製し、前記第三の水溶液を霧化又は液滴化して生成されるミストを、キャリアガスを用いて基板まで搬送し、前記基板上で前記ミストを熱反応させて1μm以上の膜厚を有する前記酸化物半導体膜を成膜する酸化物半導体膜の製造方法により、熱処理されることで電気抵抗率が上昇する膜厚1μm以上の酸化物半導体膜を製造することができるとともに、得られる膜の特性の再現性を高くでき、さらに、膜質の良好な酸化物半導体膜を得ることが可能となることを見出し、本発明を完成した。 The present inventor further provides a method for manufacturing an oxide semiconductor film containing gallium as a main component, in which a first aqueous solution containing at least a dopant element and a second aqueous solution containing at least gallium as a metal are prepared. The prepared first aqueous solution and the prepared second aqueous solution are mixed to prepare a third aqueous solution, and the mist generated by atomizing or dropletizing the third aqueous solution is transferred to a carrier. The oxide semiconductor film is transported to a substrate using gas, and subjected to heat treatment by a method for producing an oxide semiconductor film in which the mist is thermally reacted on the substrate to form the oxide semiconductor film having a thickness of 1 μm or more. It is possible to manufacture an oxide semiconductor film with a thickness of 1 μm or more that increases the electrical resistivity, it is possible to improve the reproducibility of the properties of the obtained film, and it is also possible to obtain an oxide semiconductor film with good film quality. The present invention was completed based on the discovery that the following is true.
以下、図面を参照して説明する。 This will be explained below with reference to the drawings.
(酸化物半導体膜)
本発明に係る酸化物半導体膜は、ガリウムを主成分とする酸化物半導体膜であって、当該膜の膜厚は1μm以上であり、熱処理されることで電気抵抗率が上昇するものである。一般に酸化物半導体膜は金属と酸素から構成されるが、本発明に係る酸化物半導体膜においては、金属としてガリウムを主成分としていればよい。なお、本発明において「ガリウムを主成分とする」とは、金属成分のうち50~100%がガリウムであることを意味する。ガリウム以外の金属成分としては、例えば、鉄、インジウム、アルミニウム、バナジウム、チタン、クロム、ロジウム、イリジウム、ニッケル及びコバルトから選ばれる1種又は2種以上の金属を含んでもよい。
(Oxide semiconductor film)
The oxide semiconductor film according to the present invention is an oxide semiconductor film containing gallium as a main component, has a thickness of 1 μm or more, and has an electrical resistivity that is increased by heat treatment. Generally, an oxide semiconductor film is composed of metal and oxygen, but in the oxide semiconductor film according to the present invention, gallium may be the main component of the metal. In the present invention, "containing gallium as a main component" means that 50 to 100% of the metal component is gallium. The metal component other than gallium may include, for example, one or more metals selected from iron, indium, aluminum, vanadium, titanium, chromium, rhodium, iridium, nickel, and cobalt.
酸化物半導体膜中には、電気抵抗率調整のためのドーパント元素が含まれている。例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウム又はニオブ等のn型ドーパント、又は、銅、銀、スズ、イリジウム、ロジウム等のp型ドーパントなどが挙げられる。前記ドーパントは特に限定されないが、特にスズ(Sn)を用いると、より確実に得られた膜の電気抵抗率を上昇させることができるものとなる点で好ましい。ドーパントの濃度は、例えば、約1×1016/cm3~1×1022/cm3であってもよく、約1×1017/cm3以下の低濃度としても、約1×1020/cm3以上の高濃度としてもよい。 The oxide semiconductor film contains a dopant element for adjusting electrical resistivity. Examples include n-type dopants such as tin, germanium, silicon, titanium, zirconium, vanadium, or niobium, and p-type dopants such as copper, silver, tin, iridium, and rhodium. The dopant is not particularly limited, but it is particularly preferable to use tin (Sn) because it can more reliably increase the electrical resistivity of the obtained film. The concentration of the dopant may be, for example, about 1×10 16 /cm 3 to 1×10 22 /cm 3 , even as low as about 1×10 17 /cm 3 or less. The concentration may be as high as cm 3 or higher.
酸化物半導体膜は、単結晶でも多結晶でもよい。その結晶構造は特に限定されず、βガリア構造であってもよいし、コランダム構造であってもよいし、複数の結晶構造が混在していてもかまわない。また、アモルファスでもかまわない。 The oxide semiconductor film may be single crystal or polycrystalline. The crystal structure is not particularly limited, and may be a β-gallium structure, a corundum structure, or a mixture of a plurality of crystal structures. Further, it may be amorphous.
本発明に係る酸化物半導体膜においては、酸化物半導体膜の膜厚は1μm以上であるが、上限値は特に限定されない。例えば、100μm以下であってよく、好ましくは50μm以下であり、より好ましくは20μm以下とすることができる。また、酸化物半導体膜は基板を有しない自立膜であってもよく、基板との積層体でも構わない。積層体の場合、基板と酸化物半導体膜の間に別の層が介在しても構わない。別の層とは、基板ならびに最表層の酸化物半導体膜と組成が異なる層であり、例えば、酸化物半導体膜、絶縁膜、金属膜等、いずれでも構わない。 In the oxide semiconductor film according to the present invention, the thickness of the oxide semiconductor film is 1 μm or more, but the upper limit is not particularly limited. For example, it may be 100 μm or less, preferably 50 μm or less, and more preferably 20 μm or less. Furthermore, the oxide semiconductor film may be a free-standing film without a substrate, or may be a laminate with a substrate. In the case of a stacked body, another layer may be interposed between the substrate and the oxide semiconductor film. Another layer is a layer having a composition different from that of the substrate and the outermost oxide semiconductor film, and may be, for example, an oxide semiconductor film, an insulating film, a metal film, or the like.
(熱処理)
本発明に係る酸化物半導体膜は、熱処理されることで電気抵抗率が上昇するものである。このとき、熱処理の条件は特に限定されない。熱処理の温度は、350℃以上とすることが好ましい。このような温度範囲であれば、数分~数十分程度の短時間で電気抵抗率を上昇させることができる。熱処理温度の上限は特に限定されないが、後工程の半導体装置製造工程における最高温度以下とすることが好ましい。例えば、1100℃以下とすることができるが、温度が高くなるほど熱処理に要する合計時間が長くなるため、1000℃以下とすることが好ましく、700℃以下とすることがより好ましい。
(Heat treatment)
The oxide semiconductor film according to the present invention has an increased electrical resistivity when subjected to heat treatment. At this time, the conditions of the heat treatment are not particularly limited. The temperature of the heat treatment is preferably 350°C or higher. In such a temperature range, the electrical resistivity can be increased in a short time of several minutes to several tens of minutes. The upper limit of the heat treatment temperature is not particularly limited, but it is preferably lower than the maximum temperature in the subsequent semiconductor device manufacturing process. For example, the temperature can be 1100°C or less, but the higher the temperature, the longer the total time required for heat treatment, so it is preferably 1000°C or less, and more preferably 700°C or less.
熱処理の雰囲気も特に限定されず、どのような雰囲気でも酸化物半導体膜の電気抵抗率を上昇させることができる。例えば、空気(大気)雰囲気での熱処理とすれば、ホットプレートなどを用いて極めて容易に熱処理が行える点で、好ましい。また、雰囲気を不活性ガスとすれば、膜質の変化の恐れがない点で好ましい。 The atmosphere for the heat treatment is not particularly limited either, and the electrical resistivity of the oxide semiconductor film can be increased in any atmosphere. For example, heat treatment in an air (atmosphere) atmosphere is preferable because the heat treatment can be performed extremely easily using a hot plate or the like. Further, it is preferable to use an inert gas atmosphere because there is no fear of change in film quality.
熱処理時間も特に限定されないが、1分以上の熱処理時間とすることが好ましく、5分以上であれば確実に電気抵抗率を上昇させることができるため、より好ましい。上限は特に限定されない。例えば、60分以下とすることができる。 The heat treatment time is also not particularly limited, but the heat treatment time is preferably 1 minute or more, and more preferably 5 minutes or more because the electrical resistivity can be reliably increased. The upper limit is not particularly limited. For example, it can be 60 minutes or less.
電気抵抗率を上昇させるための熱処理は、ホットプレート、オーブンのような簡易的な加熱装置を用いることができるが、半導体基板の熱処理を行う熱処理装置(例えば、RTA装置等)を使用できることは言うまでもない。 For heat treatment to increase the electrical resistivity, a simple heating device such as a hot plate or an oven can be used, but it goes without saying that a heat treatment device that heat-treats a semiconductor substrate (for example, an RTA device, etc.) can also be used. stomach.
熱処理により電気抵抗率が上昇する現象は、定性的には以下のように理解される。電気伝導に寄与する電子は、スズ(Sn)などのドーパント原子がガリウム原子の格子位置を置換することで発生する。この状態は、ドーパント原子と酸素原子との結合が化学量論比に従っておらず、比較的不安定な状態と考えられる。これを熱処理すると、ドーパント原子と酸素原子が化学量論比に従って結合するようになり、結果として伝導電子は酸素原子近傍に束縛されることになり、電気抵抗率が上昇すると考えられる。 The phenomenon in which electrical resistivity increases due to heat treatment can be qualitatively understood as follows. Electrons contributing to electrical conduction are generated when dopant atoms such as tin (Sn) replace lattice positions of gallium atoms. This state is considered to be a relatively unstable state in which the bond between the dopant atom and the oxygen atom does not follow the stoichiometric ratio. When this is heat-treated, the dopant atoms and oxygen atoms bond in accordance with the stoichiometric ratio, and as a result, conduction electrons are bound near the oxygen atoms, which is thought to increase the electrical resistivity.
なお、酸化物半導体膜の電気抵抗率は、シート抵抗と膜厚の積で得られる。シート抵抗は、四探針抵抗率測定器などで測定することができる。また、膜厚はエリプソメータや干渉式の膜厚計による光学的な測定の他、触針式段差計や膜断面を電子顕微鏡等で観察し直接測定することも可能である。 Note that the electrical resistivity of the oxide semiconductor film is obtained as the product of sheet resistance and film thickness. Sheet resistance can be measured with a four-probe resistivity meter or the like. Further, the film thickness can be measured not only optically using an ellipsometer or an interference-type film thickness meter, but also directly by observing a stylus-type step meter or a cross section of the film using an electron microscope or the like.
(成膜装置)
次に、本発明に係る酸化物半導体膜の製造について述べる。まず、本発明に係る酸化物半導体膜を製造可能な成膜装置について説明する。図1に、本発明に係る酸化物半導体膜の製造方法に使用可能な成膜装置101の一例を示す。成膜装置101は、原料溶液をミスト化してミストを発生させるミスト化部120と、ミストを搬送するキャリアガスを供給するキャリアガス供給部130と、ミストを熱処理して基板110上に成膜を行う成膜部140と、ミスト化部120と成膜部140とを接続し、キャリアガスによってミストが搬送される搬送部109とを有する。また、成膜装置101は、成膜装置101の全体又は一部を制御する制御部(図示なし)を備えることによって、その動作が制御されてもよい。
(Film forming equipment)
Next, manufacturing of the oxide semiconductor film according to the present invention will be described. First, a film forming apparatus capable of manufacturing an oxide semiconductor film according to the present invention will be described. FIG. 1 shows an example of a
なお、ここで、本発明でいうミストとは、気体中に分散した液体の微粒子の総称を指し、霧、液滴等と呼ばれるものを含む。 Note that the term "mist" as used in the present invention refers to a general term for fine particles of liquid dispersed in gas, and includes what are called mist, droplets, and the like.
(原料溶液)
原料溶液104aは、金属源として少なくともガリウムと、電気抵抗率調整のためのドーパント元素を含む、ミスト化が可能な材料である。原料溶液104aの詳細については、後述の原料溶液の作製方法において説明する。
(Raw material solution)
The
(ミスト化部)
ミスト化部120では、原料溶液104aを調整し、原料溶液104aをミスト化してミストを発生させる。ミスト化手段は、原料溶液104aをミスト化できさえすれば特に限定されず、公知のミスト化手段であってよいが、超音波振動によるミスト化手段を用いることが好ましい。より安定してミスト化することができるためである。
(Misting department)
In the misting
このようなミスト化部120の一例を図2に示す。例えば、原料溶液104aが収容されるミスト発生源104と、超音波振動を伝達可能な媒体、例えば水105aが入れられる容器105と、容器105の底面に取り付けられた超音波振動子106を含んでもよい。詳細には、原料溶液104aが収容されている容器からなるミスト発生源104が、水105aが収容されている容器105に、支持体(図示せず)を用いて収納されている。容器105の底部には、超音波振動子106が備え付けられており、超音波振動子106と発振器116とが接続されている。そして、発振器116を作動させると、超音波振動子106が振動し、水105aを介して、ミスト発生源104内に超音波が伝播し、原料溶液104aがミスト化するように構成されている。
An example of such a
(搬送部)
搬送部109は、ミスト化部120と成膜部140とを接続する。搬送部109を介して、ミスト化部120のミスト発生源104から成膜部140の成膜室107へと、キャリアガスによってミストが搬送される。搬送部109は、例えば、供給管109aとすることができる。供給管109aとしては、例えば石英管や樹脂製のチューブなどを使用することができる。
(Transportation section)
The
(成膜部)
成膜部140では、ミストを加熱し熱反応を生じさせて、基板110の表面の一部又は全部に成膜を行う。成膜部140は、例えば、成膜室107を備え、成膜室107内には基板110が設置されており、該基板110を加熱するためのホットプレート108を備えることができる。ホットプレート108は、図1に示されるように成膜室107の外部に設けられていてもよいし、成膜室107の内部に設けられていてもよい。また、成膜室107には、基板110へのミストの供給に影響を及ぼさない位置に、排ガスの排気口112が設けられてもよい。
(Film forming section)
In the
また、基板110を成膜室107の上面に設置するなどして、フェイスダウンとしてもよいし、基板110を成膜室107の底面に設置して、フェイスアップとしてもよい。
Further, the
(基板)
基板110は、成膜可能であり膜を支持できるものであれば特に限定されない。前記基板110の材料も、特に限定されず、公知の基板を用いることができ、有機化合物であってもよいし、無機化合物であってもよい。例えば、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、フッ素樹脂、鉄やアルミニウム、ステンレス鋼、金等の金属、シリコン、サファイア、石英、ガラス、酸化ガリウム等が挙げられるが、これに限られるものではない。基板110の厚さは特に限定されないが、好ましくは、10~2000μmであり、より好ましくは50~800μmである。また基板110の面積は100mm2以上が好ましく、より好ましくは口径が2インチ(50mm)以上である。
(substrate)
The
(キャリアガス供給部)
キャリアガス供給部130は、キャリアガスを供給するキャリアガス源102aを有し、キャリアガス源102aから送り出されるキャリアガス(以下、「主キャリアガス」という)の流量を調節するための流量調節弁103aを備えていてもよい。また、必要に応じて希釈用キャリアガスを供給する希釈用キャリアガス源102bや、希釈用キャリアガス源102bから送り出される希釈用キャリアガスの流量を調節するための流量調節弁103bを備えることもできる。
(Carrier gas supply section)
The carrier
キャリアガスの種類は、特に限定されず、成膜物に応じて適宜選択可能である。例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、又は水素ガスやフォーミングガス等の還元ガスなどが挙げられる。また、キャリアガスの種類は1種類でも、2種類以上であってもよい。例えば、第1のキャリアガスと同じガスをそれ以外のガスで希釈した(例えば10倍に希釈した)希釈ガスなどを、第2のキャリアガスとしてさらに用いてもよく、空気を用いることもできる。 The type of carrier gas is not particularly limited, and can be appropriately selected depending on the film to be formed. Examples include oxygen, ozone, inert gases such as nitrogen and argon, and reducing gases such as hydrogen gas and forming gas. Furthermore, the number of types of carrier gas may be one or two or more types. For example, a diluted gas obtained by diluting the same gas as the first carrier gas with another gas (for example, 10 times diluted) may be further used as the second carrier gas, or air may also be used.
なお、本明細書においては、キャリアガスの流量Qは、キャリアガスの総流量を指す。上記の例では、キャリアガス源102aから送り出される主キャリアガスの流量と、希釈用キャリアガス源102bから送り出される希釈用キャリアガスの流量の総量を、キャリアガスの流量Qとする。
Note that in this specification, the carrier gas flow rate Q refers to the total flow rate of the carrier gas. In the above example, the flow rate Q of the carrier gas is the total amount of the flow rate of the main carrier gas sent out from the
キャリアガスの流量Qは成膜室や基板の大きさによって適宜決められるが、通例1~20L/minであり、好ましくは2~10L/minである。 The flow rate Q of the carrier gas is appropriately determined depending on the size of the film forming chamber and the substrate, but is usually 1 to 20 L/min, preferably 2 to 10 L/min.
次に、本発明に係る酸化物半導体膜の製造方法を説明する。 Next, a method for manufacturing an oxide semiconductor film according to the present invention will be described.
(原料溶液の作製方法)
本発明に係る酸化物半導体膜の製造方法では、少なくともドーパント元素を含有する第一の水溶液と、少なくともガリウムを含有する第二の水溶液とを、それぞれ別々に作製しておき、作製した前記第一の水溶と、作製した前記第二の水溶液とを混合して第三の水溶液を作製することに特徴を有する。
(Method for preparing raw material solution)
In the method for manufacturing an oxide semiconductor film according to the present invention, a first aqueous solution containing at least a dopant element and a second aqueous solution containing at least gallium are separately produced, and the first aqueous solution produced The method is characterized in that a third aqueous solution is prepared by mixing the aqueous solution of 1 and the prepared second aqueous solution.
第一の水溶液には、少なくともドーパント元素を含有する。例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウム又はニオブ等のn型ドーパント、又は、銅、銀、スズ、イリジウム、ロジウム等のp型ドーパントなどが挙げられる。前記ドーパントは特に限定されないが、スズ(Sn)であることが好ましい。また、前記ドーパント元素はイオン化していることが好ましい。従って、第一の水溶液に酸を混合してドーパント元素の溶解を促進させてもよい。前記酸としては、例えば、臭化水素酸、塩酸、ヨウ化水素酸などのハロゲン化水素、次亜塩素酸、亜塩素酸、次亜臭素酸、亜臭素酸、次亜ヨウ素酸、ヨウ素酸等のハロゲンオキソ酸、蟻酸等のカルボン酸、硝酸、等が挙げられる。なお、溶解の促進には、加熱したり超音波を与えるのも有効である。溶質濃度は0.01~10%が好ましい。溶質が二価のスズ(Sn(II))の場合は、過酸化水素を混合することで酸化反応を行い、四価のスズ(Sn(IV))に変化させることができる。さらに、過酸化水素の量を調整することで、Sn(II)とSn(IV)の量を制御することができる。 The first aqueous solution contains at least a dopant element. Examples include n-type dopants such as tin, germanium, silicon, titanium, zirconium, vanadium, or niobium, and p-type dopants such as copper, silver, tin, iridium, and rhodium. The dopant is not particularly limited, but is preferably tin (Sn). Further, it is preferable that the dopant element is ionized. Therefore, an acid may be mixed into the first aqueous solution to promote dissolution of the dopant element. Examples of the acid include hydrogen halides such as hydrobromic acid, hydrochloric acid, and hydroiodic acid, hypochlorous acid, chlorous acid, hypobromous acid, bromous acid, hypoiodic acid, and iodic acid. Examples include halogen oxoacids, carboxylic acids such as formic acid, nitric acid, and the like. Note that heating or applying ultrasonic waves is also effective for promoting dissolution. The solute concentration is preferably 0.01 to 10%. When the solute is divalent tin (Sn(II)), an oxidation reaction can be performed by mixing hydrogen peroxide, and it can be changed into tetravalent tin (Sn(IV)). Furthermore, by adjusting the amount of hydrogen peroxide, the amounts of Sn(II) and Sn(IV) can be controlled.
第二の水溶液には、少なくともガリウムを含んでいれば特に限定されない。すなわち、ガリウムの他、例えば、鉄、インジウム、アルミニウム、バナジウム、チタン、クロム、ロジウム、イリジウム、ニッケル及びコバルトから選ばれる1種又は2種以上の金属を含んでもよい。金属を錯体又は塩の形態で、水に溶解又は分散させたものを好適に用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。塩の形態としては、例えば、塩化金属塩、臭化金属塩、ヨウ化金属塩などが挙げられる。また、上記金属を、臭化水素酸、塩酸、ヨウ化水素酸等に溶解したものも塩の水溶液として用いることができる。溶質濃度は0.01~1mol/Lとすることが好ましい。 The second aqueous solution is not particularly limited as long as it contains at least gallium. That is, in addition to gallium, it may contain one or more metals selected from, for example, iron, indium, aluminum, vanadium, titanium, chromium, rhodium, iridium, nickel, and cobalt. Metals dissolved or dispersed in water in the form of complexes or salts can be suitably used. Examples of the form of the complex include an acetylacetonate complex, a carbonyl complex, an ammine complex, and a hydride complex. Examples of the salt form include metal chlorides, metal bromides, metal iodides, and the like. Further, the above metals dissolved in hydrobromic acid, hydrochloric acid, hydroiodic acid, etc. can also be used as an aqueous salt solution. The solute concentration is preferably 0.01 to 1 mol/L.
そして、ドーパント元素が所望の濃度となるように、第二の水溶液に、別に作製しておいた第一の水溶液を混合し、第三の水溶液を得る。このようにして得られた第三の水溶液が原料溶液104aである。ガリウムの量に比べドーパントの使用量は極僅かであるため、このようにして原料溶液の作製を行うと、精密な濃度調整が容易で確実となる。すなわち、熱処理により電気抵抗率が上昇する酸化物半導体膜を製造でき、さらに、得られる膜の電気抵抗率の精度や、得られる膜の特性の再現性、膜質が向上する。また、溶液に過酸化水素などの酸化剤を混合すると、ヨウ化水素、臭化水素等の還元性の物質は酸化されてしまい、溶質が分散しなくなるといった問題が生じるが、本発明に係る酸化物半導体膜の製造方法では、前記のように、第一の水溶液の段階で過酸化水素を混合し反応させておくことができ、こういった問題は発生しない。このため、原料溶液の安定性が向上し、成膜時の原料供給トラブルの抑制、得られる膜の品質の安定化等、生産性、歩留まりを向上することもできる。
Then, a separately prepared first aqueous solution is mixed with the second aqueous solution so that the dopant element has a desired concentration to obtain a third aqueous solution. The third aqueous solution obtained in this way is the
(成膜方法)
まず、上記のようにして作製した原料溶液104aを、ミスト化部120のミスト発生源104内に収容し、基板110をホットプレート108上に直接又は成膜室107の壁を介して設置し、ホットプレート108を作動させる。
(Film forming method)
First, the
次に、流量調節弁103a、103bを開いてキャリアガス源102a、102bからキャリアガスを成膜室107内に供給し、成膜室107の雰囲気をキャリアガスで十分に置換するとともに、主キャリアガスの流量と希釈用キャリアガスの流量をそれぞれ調節し、キャリアガス流量Qを制御する。
Next, the flow
ミストを発生させる工程では、超音波振動子106を振動させ、その振動を、水105aを通じて原料溶液104aに伝播させることによって、原料溶液104aをミスト化させてミストを生成する。次に、ミストをキャリアガスにより搬送する工程では、ミストがキャリアガスによってミスト化部120から搬送部109を経て成膜部140へ搬送され、成膜室107内に導入される。成膜を行う工程で、成膜室107内に導入されたミストは、成膜室107内でホットプレート108の熱により熱処理され熱反応して、基板110上に成膜される。
In the process of generating mist, the
熱反応により、厚さ1μm以上の酸化物半導体膜を成膜することができる。このようにすると、熱処理したときに電気抵抗率を上昇させることが可能な、膜質の良好な酸化物半導体膜を得ることができる。熱反応では、加熱によりミストが反応すればよく、反応条件等も特に限定されない。原料や成膜物に応じて適宜設定することができる。例えば、加熱温度は100~600℃の範囲であり、好ましくは200℃~600℃の範囲であり、より好ましくは300℃~550℃の範囲とすることができる。 An oxide semiconductor film with a thickness of 1 μm or more can be formed by thermal reaction. In this way, it is possible to obtain an oxide semiconductor film with good film quality and whose electrical resistivity can be increased when heat-treated. In the thermal reaction, the mist may react by heating, and the reaction conditions are not particularly limited. It can be set appropriately depending on the raw material and the film to be formed. For example, the heating temperature can be in the range of 100 to 600°C, preferably in the range of 200 to 600°C, and more preferably in the range of 300 to 550°C.
熱反応は、真空下、非酸素雰囲気下、還元ガス雰囲気下、空気雰囲気下及び酸素雰囲気下のいずれの雰囲気下で行われてもよく、成膜物に応じて適宜設定すればよい。また、反応圧力は、大気圧下、加圧下又は減圧下のいずれの条件下で行われてもよいが、大気圧下の成膜であれば、装置構成が簡略化できるので好ましい。 The thermal reaction may be performed in any of the following atmospheres: vacuum, non-oxygen atmosphere, reducing gas atmosphere, air atmosphere, and oxygen atmosphere, and may be appropriately set depending on the film to be formed. The reaction pressure may be atmospheric pressure, increased pressure, or reduced pressure; however, film formation under atmospheric pressure is preferable because the apparatus configuration can be simplified.
(剥離)
成膜して得られた酸化物半導体膜を自立膜とする場合には、下地として用いた基板110を、酸化物半導体膜から剥離することができる。剥離手段(方法)は特に限定されず、公知の手段であってもよい。剥離手段(方法)としては例えば、機械的衝撃を与えて剥離する手段、熱を加えて熱応力を利用して剥離する手段、超音波等の振動を加えて剥離する手段、エッチングして剥離する手段、レーザーリフトオフなどが挙げられる。前記剥離によって、前記酸化物半導体膜を自立膜として得ることができる。
(Peeling)
When the formed oxide semiconductor film is used as a free-standing film, the
(電気抵抗率の調整方法)
本発明に係る酸化物半導体膜の電気抵抗率調整方法では、作製した1μm以上の膜厚を有する酸化物半導体膜に対し熱処理を行うことで電気抵抗率を上昇させ、所望の値とする。これにより、例えば、所望の電気抵抗率より低い膜が得られた場合であっても、熱処理により電気抵抗率を調整でき、所望の電気抵抗率を有する酸化物半導体膜を得ることができる。また、酸化物半導体膜の電気抵抗率が所望の値よりも低めとなるようにして成膜しておき、熱処理により電気抵抗率を所望の範囲内とすれば、その後の半導体装置製造等のプロセスで受ける熱履歴による電気抵抗率の変動を抑制することもできる。なお、電気抵抗率を上昇させる熱処理は、すでに説明したとおりである。
(How to adjust electrical resistivity)
In the method for adjusting the electrical resistivity of an oxide semiconductor film according to the present invention, the produced oxide semiconductor film having a thickness of 1 μm or more is subjected to heat treatment to increase the electrical resistivity to a desired value. Thereby, for example, even if a film with lower electrical resistivity than the desired one is obtained, the electrical resistivity can be adjusted by heat treatment, and an oxide semiconductor film having the desired electrical resistivity can be obtained. Furthermore, if the oxide semiconductor film is formed so that the electrical resistivity is lower than the desired value, and the electrical resistivity is brought within the desired range by heat treatment, subsequent processes such as semiconductor device manufacturing etc. It is also possible to suppress fluctuations in electrical resistivity due to thermal history. Note that the heat treatment for increasing the electrical resistivity is as already explained.
(半導体装置)
本発明に係る酸化物半導体膜は、適宜構造設計を行うことで、半導体装置に利用できる。例えば、ショットキーバリアダイオード(SBD)、金属半導体電界効果トランジスタ(MESFET)、高電子移動度トランジスタ(HEMT)、金属酸化膜半導体電界効果トランジスタ(MOSFET)、静電誘導トランジスタ(SIT)、接合電界効果トランジスタ(JFET)、絶縁ゲート型バイポーラトランジスタ(IGBT)、発光ダイオード(LED)などそれぞれの半導体層を構成することができる。
(semiconductor device)
The oxide semiconductor film according to the present invention can be used for a semiconductor device by appropriately designing the structure. For example, Schottky barrier diode (SBD), metal semiconductor field effect transistor (MESFET), high electron mobility transistor (HEMT), metal oxide semiconductor field effect transistor (MOSFET), static induction transistor (SIT), junction field effect Each semiconductor layer can be configured as a transistor (JFET), an insulated gate bipolar transistor (IGBT), a light emitting diode (LED), or the like.
(電極)
半導体装置を構成するために必要となる電極の形成は、一般的な方法を用いることができる。すなわち、蒸着、スパッタ、CVD、めっきなどの他、樹脂等と一緒に接着させる印刷法など、いずれを用いてもかまわない。電極材料としては、Al、Ag、Ti、Pd、Au、Cu、Cr、Fe、W、Ta、Nb、Mn、Mo、Hf、Co、Zr、Sn、Pt、V、Ni、Ir、Zn、In、Ndなどの金属の他、酸化スズ、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェンまたはポリピロールなどの有機導電性化合物、いずれを用いてもかまわないし、これらの2種以上の合金、混合物でもかまわない。電極の厚さは、1~1000nmが好ましく、より好ましくは、10~500nmとすることができる。
(electrode)
A general method can be used to form the electrodes necessary for configuring the semiconductor device. That is, in addition to vapor deposition, sputtering, CVD, plating, and the like, any method such as a printing method for bonding together with resin or the like may be used. The electrode materials include Al, Ag, Ti, Pd, Au, Cu, Cr, Fe, W, Ta, Nb, Mn, Mo, Hf, Co, Zr, Sn, Pt, V, Ni, Ir, Zn, In. In addition to metals such as , Nd, metal oxide conductive films such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO), organic conductive compounds such as polyaniline, polythiophene, or polypyrrole, Either one may be used, or an alloy or a mixture of two or more of these may be used. The thickness of the electrode is preferably 1 to 1000 nm, more preferably 10 to 500 nm.
以下、実施例を挙げて本発明について詳細に説明するが、これは本発明を限定するものではない。 EXAMPLES The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereto.
(比較例1)
上述の成膜方法に基づいて、コランダム構造を有する酸化ガリウム(α-Ga2O3)の成膜を行った。
(Comparative example 1)
A film of gallium oxide (α-Ga 2 O 3 ) having a corundum structure was formed based on the film formation method described above.
具体的には、まず、第一の水溶液として、塩化スズ1%の水溶液を作製した。塩化スズは水に難溶のためこれに35%塩酸を2%混合し、第一の水溶液とした。第二の水溶液として、臭化ガリウム0.1mol/Lの水溶液を調整し、さらに48%臭化水素酸溶液を体積比で10%となるように含有させた。第二の水溶液0.5Lに対し、第一の水溶液を2.2mL混合し、これを原料溶液104aとした。
Specifically, first, a 1% tin chloride aqueous solution was prepared as the first aqueous solution. Since tin chloride is poorly soluble in water, 2% of 35% hydrochloric acid was mixed with it to prepare a first aqueous solution. As the second aqueous solution, an aqueous solution containing 0.1 mol/L of gallium bromide was prepared, and a 48% hydrobromic acid solution was further added to the solution at a volume ratio of 10%. 2.2 mL of the first aqueous solution was mixed with 0.5 L of the second aqueous solution, and this was used as a
上述のようにして得た原料溶液104aをミスト発生源104内に収容した。次に、基板110として4インチ(直径100mm)のc面サファイア基板を、成膜室107内でホットプレート108に隣接するように設置し、ホットプレート108を作動させて温度を500℃に昇温した。
The
続いて、流量調節弁103a、103bを開いてキャリアガス源102a、102bからキャリアガスとして窒素ガスを成膜室107内に供給し、成膜室107の雰囲気をキャリアガスで十分に置換するとともに、主キャリアガスの流量を2L/minに、希釈用キャリアガスの流量を5L/minにそれぞれ調節した。すなわち、キャリアガス流量Q=7L/minとした。
Subsequently, the
次に、超音波振動子106を2.4MHzで振動させ、その振動を、水105aを通じて原料溶液104aに伝播させることによって、原料溶液104aをミスト化してミストを生成した。このミストを、キャリアガスによって供給管109aを経て成膜室107内に導入した。そして、大気圧下、500℃の条件で、成膜室107内でミストを熱反応させて、基板110上にコランダム構造を有する酸化ガリウム(α-Ga2O3)の薄膜を形成した。成膜時間は15分とした。
Next, the
得られたα-Ga2O3薄膜の膜厚を、FILMETRICS社の干渉式膜厚計F-50を用い測定したところ、膜厚は0.8μmであった。また、シート抵抗を、ナプソン社製四探針抵抗率測定器RT-3000/RG-80を用いて測定したところ、シート抵抗は11.6MΩとなった。従って、電気抵抗率は928Ωcmと算出された。 The thickness of the obtained α-Ga 2 O 3 thin film was measured using an interferometric film thickness meter F-50 manufactured by FILMETRICS, and the film thickness was 0.8 μm. Further, when the sheet resistance was measured using a four-probe resistivity meter RT-3000/RG-80 manufactured by Napson, the sheet resistance was 11.6 MΩ. Therefore, the electrical resistivity was calculated to be 928 Ωcm.
得られたα-Ga2O3薄膜を、350℃で10分間、空気雰囲気下で熱処理した。この後、シート抵抗を測定し電気抵抗率を算出したところ、4680Ωcmとなり、電気抵抗率が約5倍になっていることが確認できた。 The obtained α-Ga 2 O 3 thin film was heat-treated at 350° C. for 10 minutes in an air atmosphere. Thereafter, when the sheet resistance was measured and the electrical resistivity was calculated, it was found to be 4680 Ωcm, which confirmed that the electrical resistivity was approximately 5 times higher.
(実施例1)
成膜時間を30分としたこと以外は、比較例1と同じ条件で成膜、評価を行った。この結果、膜厚は1.7μmとなった。熱処理前後の電気抵抗率は、それぞれ、1.6Ωcm、8.1Ωcmとなり、この場合も約5倍の電気抵抗率の上昇が確認された。
(Example 1)
Film formation and evaluation were performed under the same conditions as in Comparative Example 1, except that the film formation time was 30 minutes. As a result, the film thickness was 1.7 μm. The electrical resistivities before and after the heat treatment were 1.6 Ωcm and 8.1 Ωcm, respectively, and an approximately 5-fold increase in electrical resistivity was confirmed in this case as well.
(実施例2)
熱処理温度・時間を400℃・5分としたこと以外は、実施例1と同じ条件で成膜、評価を行った。熱処理前後の電気抵抗率は、それぞれ、1.8Ωcm、8.8Ωcmとなった。
(Example 2)
Film formation and evaluation were performed under the same conditions as in Example 1, except that the heat treatment temperature and time were 400° C. and 5 minutes. The electrical resistivities before and after the heat treatment were 1.8 Ωcm and 8.8 Ωcm, respectively.
(実施例3)
熱処理温度・時間を500℃・2分としたこと以外は、実施例1と同じ条件で成膜、評価を行った。熱処理前後の電気抵抗率は、それぞれ、1.7Ωcm、8.3Ωcmとなった。
(Example 3)
Film formation and evaluation were performed under the same conditions as in Example 1, except that the heat treatment temperature and time were 500° C. and 2 minutes. The electrical resistivities before and after the heat treatment were 1.7 Ωcm and 8.3 Ωcm, respectively.
(実施例4)
第一の水溶液として、酸化ゲルマニウム5%の水溶液を作製した。酸化ゲルマニウムの溶解促進のためこれに48%臭化水素を10%混合し、第一の水溶液とした。第二の水溶液として、臭化ガリウム0.1mol/Lの水溶液を調整し、さらに48%臭化水素酸溶液を体積比で10%となるように含有させた。第二の水溶液0.5Lに対し、第一の水溶液を5.0mL混合し、これを原料溶液104aとした。以降は実施例1と同じ条件で成膜、評価を行った。この結果、膜厚は1.7μmとなった。熱処理前後の電気抵抗率はそれぞれ9.7Ωcm、52Ωcmとなった。
(Example 4)
As the first aqueous solution, a 5% aqueous solution of germanium oxide was prepared. To promote dissolution of germanium oxide, 10% of 48% hydrogen bromide was mixed thereto to prepare a first aqueous solution. As the second aqueous solution, an aqueous solution containing 0.1 mol/L of gallium bromide was prepared, and a 48% hydrobromic acid solution was further added thereto to give a volume ratio of 10%. 5.0 mL of the first aqueous solution was mixed with 0.5 L of the second aqueous solution, and this was used as a
(実施例5)
成膜時間を60分としたこと以外は、実施例4と同じ条件で成膜、評価を行った。この結果、膜厚は3.3μmとなった。熱処理前後の電気抵抗率は、それぞれ、0.065Ωcm、0.31Ωcmとなった。
(Example 5)
Film formation and evaluation were performed under the same conditions as in Example 4, except that the film formation time was 60 minutes. As a result, the film thickness was 3.3 μm. The electrical resistivities before and after the heat treatment were 0.065 Ωcm and 0.31 Ωcm, respectively.
(実施例6)
第一の水溶液として、臭化スズ10%の水溶液を作製した。これに48%臭化水素を10%混合し、第一の水溶液とした。第二の水溶液として、臭化ガリウム0.1mol/Lの水溶液を調整し、さらに48%臭化水素酸溶液を体積比で10%となるように含有させた。第二の水溶液0.5Lに対し、第一の水溶液を10.0mL混合し、これを原料溶液104aとした。以降は実施例1と同じ条件で成膜、評価を行った。この結果、膜厚は1.7μmとなった。熱処理前後の電気抵抗率は、それぞれ、0.052Ωcm、0.34Ωcmとなった。
(Example 6)
A 10% tin bromide aqueous solution was prepared as the first aqueous solution. This was mixed with 10% of 48% hydrogen bromide to form a first aqueous solution. As the second aqueous solution, an aqueous solution containing 0.1 mol/L of gallium bromide was prepared, and a 48% hydrobromic acid solution was further added to the solution at a volume ratio of 10%. 10.0 mL of the first aqueous solution was mixed with 0.5 L of the second aqueous solution, and this was used as a
(実施例7)
成膜時間を60分としたこと以外は、実施例6と同じ条件で成膜、評価を行った。この結果、膜厚は3.4μmとなった。熱処理前後の電気抵抗率は、それぞれ、0.074Ωcm、0.49Ωcmとなった。
(Example 7)
Film formation and evaluation were performed under the same conditions as in Example 6, except that the film formation time was 60 minutes. As a result, the film thickness was 3.4 μm. The electrical resistivities before and after the heat treatment were 0.074 Ωcm and 0.49 Ωcm, respectively.
(実施例8)
第一の水溶液として、塩化スズ1%の水溶液を作製した。これに48%臭化水素を10%および過酸化水素をスズと等モルとなるよう混合し、第一の水溶液とした。第二の水溶液として、ヨウ化ガリウム0.1mol/Lの水溶液を調整し、さらに57%ヨウ化水素酸溶液を体積比で10%となるように含有させた。第二の水溶液0.5Lに対し、第一の水溶液を2.2mL混合し、これを原料溶液104aとした。以降は実施例1と同じ条件で成膜、評価を行った。この結果、膜厚は3.2μmとなった。熱処理前後の電気抵抗率はそれぞれ2.1Ωcm、9.9Ωcmとなった。
(Example 8)
A 1% tin chloride aqueous solution was prepared as the first aqueous solution. 10% of 48% hydrogen bromide and hydrogen peroxide were mixed in equimolar amounts with tin to form a first aqueous solution. As the second aqueous solution, an aqueous solution containing 0.1 mol/L of gallium iodide was prepared, and a 57% hydroiodic acid solution was further added to the solution at a volume ratio of 10%. 2.2 mL of the first aqueous solution was mixed with 0.5 L of the second aqueous solution, and this was used as a
(比較例2)
ドーパントを含有する水溶液と、ガリウムを含有する水溶液とを別々に作製せず、初めから混合した溶液とした。原料溶液104aとして、ヨウ化ガリウム0.1mol/Lの水溶液に48%臭化水素を10%、および、塩化スズをガリウムとの原子数比が実施例8と同じになるよう混合した。さらに、過酸化水素をスズと等モルとなるよう混合したところ、溶液は無色から褐色へ変化してしまい、沈殿物も確認された。この溶液を用い、実施例8と同様の成膜処理を行ったが、成膜されなかった。
(Comparative example 2)
An aqueous solution containing a dopant and an aqueous solution containing gallium were not prepared separately, but were mixed from the beginning. As
実施例1-8及び比較例1,2の結果を、表1に示す。 The results of Examples 1-8 and Comparative Examples 1 and 2 are shown in Table 1.
表1に示すとおり、膜厚を0.8μmとした比較例1では、特許文献6にも記載されているように、熱処理により膜の電気抵抗率が高くなった。一方、実施例1-8では、特許文献6において熱処理により電気抵抗率が低下するとされる膜厚が1μm以上の膜の場合でも、熱処理を行うことにより電気抵抗率を高くすることができた。 As shown in Table 1, in Comparative Example 1 in which the film thickness was 0.8 μm, the electrical resistivity of the film was increased by heat treatment, as also described in Patent Document 6. On the other hand, in Examples 1-8, even in the case of a film having a thickness of 1 μm or more, where heat treatment is said to reduce electrical resistivity in Patent Document 6, the electrical resistivity could be increased by heat treatment.
比較例2では、ドーパントを含有する水溶液と、ガリウムを含有する水溶液とを別々に作製しなかったため、過酸化水素の混合により原料溶液の分散性が低下し、成膜そのものができない結果となった。ドーパントを含有する水溶液と、ガリウムを含有する水溶液とを別々に作製した実施例8では、原料溶液の分散性が維持されていた。本発明に係る酸化物半導体膜の製造方法によれば、過酸化水素の使用も可能となる。 In Comparative Example 2, since the aqueous solution containing the dopant and the aqueous solution containing gallium were not prepared separately, the dispersibility of the raw material solution decreased due to the mixing of hydrogen peroxide, resulting in the inability to form a film itself. . In Example 8, in which an aqueous solution containing a dopant and an aqueous solution containing gallium were prepared separately, the dispersibility of the raw material solution was maintained. According to the method for manufacturing an oxide semiconductor film according to the present invention, it is also possible to use hydrogen peroxide.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiments. The above-mentioned embodiments are illustrative, and any embodiment that has substantially the same configuration as the technical idea stated in the claims of the present invention and has similar effects is the present invention. covered within the technical scope of
101…成膜装置、 102a…キャリアガス源、
102b…希釈用キャリアガス源、 103a…流量調節弁、
103b…流量調節弁、 104…ミスト発生源、 104a…原料溶液、
105…容器、 105a…水、 106…超音波振動子、 107…成膜室、
108…ホットプレート、 109…搬送部、 109a…供給管、
110…基板、 112…排気口、 116…発振器、 120…ミスト化部、
130…キャリアガス供給部、 140…成膜部。
101... Film forming apparatus, 102a... Carrier gas source,
102b...Dilution carrier gas source, 103a...Flow rate control valve,
103b...flow control valve, 104...mist generation source, 104a...raw material solution,
105... Container, 105a... Water, 106... Ultrasonic vibrator, 107... Film forming chamber,
108... Hot plate, 109... Conveyance section, 109a... Supply pipe,
110... Substrate, 112... Exhaust port, 116... Oscillator, 120... Mist forming section,
130... Carrier gas supply section, 140... Film forming section.
Claims (4)
ドーパント元素と、金属として少なくともガリウムを含み、
膜厚が1μm以上であり、
350℃以上500℃以下の温度で2分以上10分以下熱処理されることで、シート抵抗と膜厚の積で得られる電気抵抗率が4.7倍以上6.6倍以下に上昇するものであることを特徴とする酸化物半導体膜。 An oxide semiconductor film with a corundum structure containing gallium as a main component,
a dopant element and at least gallium as a metal;
The film thickness is 1 μm or more,
When heat treated at a temperature of 350°C or higher and 500°C or lower for 2 minutes or more and 10 minutes or less , the electrical resistivity obtained as the product of sheet resistance and film thickness increases by 4.7 times or more and 6.6 times or less. An oxide semiconductor film characterized by the following.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019114320A JP7409790B2 (en) | 2019-06-20 | 2019-06-20 | Oxide semiconductor film and semiconductor device |
JP2023003514A JP7615184B2 (en) | 2019-06-20 | 2023-01-13 | Method for adjusting electrical resistivity of oxide semiconductor film |
JP2023178122A JP7615270B2 (en) | 2019-06-20 | 2023-10-16 | Method for manufacturing oxide semiconductor film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019114320A JP7409790B2 (en) | 2019-06-20 | 2019-06-20 | Oxide semiconductor film and semiconductor device |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023003514A Division JP7615184B2 (en) | 2019-06-20 | 2023-01-13 | Method for adjusting electrical resistivity of oxide semiconductor film |
JP2023178122A Division JP7615270B2 (en) | 2019-06-20 | 2023-10-16 | Method for manufacturing oxide semiconductor film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021002545A JP2021002545A (en) | 2021-01-07 |
JP7409790B2 true JP7409790B2 (en) | 2024-01-09 |
Family
ID=73995488
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019114320A Active JP7409790B2 (en) | 2019-06-20 | 2019-06-20 | Oxide semiconductor film and semiconductor device |
JP2023003514A Active JP7615184B2 (en) | 2019-06-20 | 2023-01-13 | Method for adjusting electrical resistivity of oxide semiconductor film |
JP2023178122A Active JP7615270B2 (en) | 2019-06-20 | 2023-10-16 | Method for manufacturing oxide semiconductor film |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023003514A Active JP7615184B2 (en) | 2019-06-20 | 2023-01-13 | Method for adjusting electrical resistivity of oxide semiconductor film |
JP2023178122A Active JP7615270B2 (en) | 2019-06-20 | 2023-10-16 | Method for manufacturing oxide semiconductor film |
Country Status (1)
Country | Link |
---|---|
JP (3) | JP7409790B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7409790B2 (en) | 2019-06-20 | 2024-01-09 | 信越化学工業株式会社 | Oxide semiconductor film and semiconductor device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015196603A (en) | 2014-03-31 | 2015-11-09 | 株式会社Flosfia | Crystalline laminated structure and semiconductor device |
JP2015228495A (en) | 2014-05-08 | 2015-12-17 | 株式会社Flosfia | Crystalline laminated structure, semiconductor device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3930939B2 (en) * | 1997-03-25 | 2007-06-13 | 松下電器産業株式会社 | Dielectric thin film forming apparatus and forming method |
JP5055747B2 (en) | 2004-11-10 | 2012-10-24 | 大日本印刷株式会社 | Method for producing metal oxide film |
JP5793732B2 (en) | 2011-07-27 | 2015-10-14 | 高知県公立大学法人 | Highly crystalline conductive α-type gallium oxide thin film doped with dopant and method for producing the same |
JP6478103B2 (en) | 2015-01-29 | 2019-03-06 | 株式会社Flosfia | Film forming apparatus and film forming method |
JP2017010967A (en) * | 2015-06-16 | 2017-01-12 | 株式会社Flosfia | Deposition method |
JP6704167B2 (en) | 2015-12-11 | 2020-06-03 | 株式会社Flosfia | Method for forming inorganic oxide film |
JP6793942B2 (en) | 2016-11-01 | 2020-12-02 | 国立大学法人 和歌山大学 | Gallium oxide production method and crystal growth equipment |
JP7409790B2 (en) | 2019-06-20 | 2024-01-09 | 信越化学工業株式会社 | Oxide semiconductor film and semiconductor device |
-
2019
- 2019-06-20 JP JP2019114320A patent/JP7409790B2/en active Active
-
2023
- 2023-01-13 JP JP2023003514A patent/JP7615184B2/en active Active
- 2023-10-16 JP JP2023178122A patent/JP7615270B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015196603A (en) | 2014-03-31 | 2015-11-09 | 株式会社Flosfia | Crystalline laminated structure and semiconductor device |
JP2015228495A (en) | 2014-05-08 | 2015-12-17 | 株式会社Flosfia | Crystalline laminated structure, semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP7615184B2 (en) | 2025-01-16 |
JP2023174816A (en) | 2023-12-08 |
JP2023052378A (en) | 2023-04-11 |
JP2021002545A (en) | 2021-01-07 |
JP7615270B2 (en) | 2025-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6573206B2 (en) | Semiconductor device | |
JP6916426B2 (en) | Laminated structure and its manufacturing method, semiconductor device and crystal film | |
JP7374282B2 (en) | Method for forming gallium-containing film | |
JP6909191B2 (en) | Laminates, semiconductor devices and methods for manufacturing laminates | |
JP7615270B2 (en) | Method for manufacturing oxide semiconductor film | |
JP7105703B2 (en) | Oxide semiconductor film, laminate, and method for manufacturing oxide semiconductor film | |
JP7161457B2 (en) | LAMINATED STRUCTURE, SEMICONDUCTOR DEVICE, AND LAMINATED STRUCTURE MANUFACTURING METHOD | |
JP7592131B2 (en) | Laminated Structure | |
JP7161456B2 (en) | LAMINATED STRUCTURE, SEMICONDUCTOR DEVICE, AND LAMINATED STRUCTURE MANUFACTURING METHOD | |
CN114302982B (en) | Laminated structure and method for manufacturing laminated structure | |
JP7078581B2 (en) | Laminated structure, semiconductor device, and method for manufacturing the laminated structure | |
JP7078582B2 (en) | Method for forming a laminated structure, a semiconductor device, and a crystalline oxide film | |
JP7097861B2 (en) | Laminated structures, semiconductor devices and semiconductor systems | |
JP7078583B2 (en) | Semiconductor devices and methods for manufacturing semiconductor devices | |
JP7093329B2 (en) | Laminated structures, semiconductor devices and semiconductor systems | |
US20240234138A9 (en) | Oxide semiconductor film and film-forming method the same, semiconductor apparatus | |
KR20240063901A (en) | Film formation method, film formation equipment, and crystalline oxide film | |
KR20240000497A (en) | Laminated structure, semiconductor device, and manufacturing method of laminated structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210521 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220603 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20221018 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230113 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20230113 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20230123 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20230124 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20230407 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20230411 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231016 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7409790 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |