JP7404387B2 - ビデオ処理方法、装置、記憶媒体及び記憶方法 - Google Patents
ビデオ処理方法、装置、記憶媒体及び記憶方法 Download PDFInfo
- Publication number
- JP7404387B2 JP7404387B2 JP2021559288A JP2021559288A JP7404387B2 JP 7404387 B2 JP7404387 B2 JP 7404387B2 JP 2021559288 A JP2021559288 A JP 2021559288A JP 2021559288 A JP2021559288 A JP 2021559288A JP 7404387 B2 JP7404387 B2 JP 7404387B2
- Authority
- JP
- Japan
- Prior art keywords
- mode
- block
- video block
- prediction mode
- current video
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 497
- 238000003672 processing method Methods 0.000 title claims description 27
- 239000011159 matrix material Substances 0.000 claims description 147
- 230000008569 process Effects 0.000 claims description 120
- 239000013598 vector Substances 0.000 claims description 103
- 238000006243 chemical reaction Methods 0.000 claims description 57
- 238000012545 processing Methods 0.000 claims description 51
- 230000004044 response Effects 0.000 claims description 36
- 230000015654 memory Effects 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 2
- 241000023320 Luma <angiosperm> Species 0.000 description 113
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 111
- 239000000523 sample Substances 0.000 description 103
- 230000009466 transformation Effects 0.000 description 46
- 238000005516 engineering process Methods 0.000 description 39
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 30
- 238000009795 derivation Methods 0.000 description 25
- 238000005192 partition Methods 0.000 description 23
- 230000011664 signaling Effects 0.000 description 17
- 239000000872 buffer Substances 0.000 description 11
- 238000004590 computer program Methods 0.000 description 10
- 238000010276 construction Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 238000013139 quantization Methods 0.000 description 10
- 239000013074 reference sample Substances 0.000 description 10
- 230000006870 function Effects 0.000 description 7
- 238000013507 mapping Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000012935 Averaging Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 6
- 230000003044 adaptive effect Effects 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 238000013519 translation Methods 0.000 description 4
- 101100226347 Escherichia phage lambda exo gene Proteins 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000011946 reduction process Methods 0.000 description 3
- FZEIVUHEODGHML-UHFFFAOYSA-N 2-phenyl-3,6-dimethylmorpholine Chemical compound O1C(C)CNC(C)C1C1=CC=CC=C1 FZEIVUHEODGHML-UHFFFAOYSA-N 0.000 description 2
- 101100129500 Caenorhabditis elegans max-2 gene Proteins 0.000 description 2
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000013138 pruning Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000013515 script Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- QEDQZYNGDXULGO-UHFFFAOYSA-N 3-methyl-2-(3-methylphenyl)morpholine Chemical compound CC1NCCOC1C1=CC=CC(C)=C1 QEDQZYNGDXULGO-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/593—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/11—Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/132—Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/105—Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/117—Filters, e.g. for pre-processing or post-processing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/12—Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
- H04N19/159—Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/186—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/80—Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
- H04N19/82—Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/80—Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Description
本願は2020年4月13日付で出願された国際特許出願番号第PCT/CN2020/084505号の国内段階におけるものであり、同出願は2019年4月12日付で出願された国際特許出願番号PCT/CN2019/082424号に対する優先権及び利益を主張している。前述の出願の開示全体は、本願の開示の一部分として参照により援用される。
本特許文献は、ビデオ・コーディング技術、デバイス及びシステムに関連する。
ビデオ圧縮の進歩にもかかわらず、デジタル・ビデオは、インターネットや他のデジタル通信ネットワークにおける最大の帯域幅を依然として占めている。ビデオを受信して表示することが可能な接続ユーザー・デバイス数が増加するにつれて、デジタル・ビデオの利用に対する帯域幅の需要は増加し続けるであろうということが予想される。
predSamples[ xHor + dX ][ yHor ] = ( ( upHor - dX ) * predSamples[ xHor ][ yHor ] + dX * predSamples[ xHor + upHor ][ yHor ] + offsetHor) / upHor, 及び
predSamples[ xVer ][ yVer + dY ] = ( ( upVer - dY ) * predSamples[ xVer ][ yVer ] + dY * predSamples[ xVer ][ yVer + upVer ]+ offsetVer ) / upVer
に従って決定され、offsetHor及びoffsetVerは整数であり、upHorは現在のビデオ・ブロックのサイズに基づく所定値と現在のビデオ・ブロックの幅との関数であり、 upVerは現在のビデオ・ブロックのサイズに基づく所定値と現在のビデオ・ブロックの高さとの関数であり、dXは、1・・・upHor-1であり、dYは、1・・・upVer-1であり、及びxHorはupHorに基づく位置であり、yHorは記upVerに基づく位置である。
1.1 HEVC/H.265におけるイントラ予測
イントラ予測は、予め想定されたカラー・チャネルで以前に再構成されたサンプルを使用して、所与のTB(変換ブロック)のサンプルを作成することを含む。イントラ予測モードは、ルマ及びクロマ・チャネルに対して別々にシグナリングされ、クロマ・チャネル・イントラ予測モードは、‘DM_CHROMA’モードを介してルマ・チャネル・イントラ予測モードにオプションとして依存する。イントラ予測モードは、PB(予測ブロック)レベルでシグナリングされるが、イントラ予測プロセスは、CUの残差四分木階層に従ってTBレベルで適用され、これにより1つのTBのコーディングがCU内の次のTBのコーディングに影響を及ぼすことを許容し、従って参照値として使用されるサンプルまでの距離を短縮する。
2.1 67個のイントラ予測モードによるイントラ・モード・コーディング
自然なビデオで提示される任意のエッジ方向を捕らえるために、方向イントラ・モードの数は、HEVCで使用されているような33個から65個へ拡張される。追加の方向モードは、図2において赤色の点線の矢印として描かれており、平面及びDCモードは同じままである。これらのより高密度な方向性イントラ予測モードは、全てのブロック・サイズに対して、そしてルマ及びクロマ・イントラ予測の両方に対して適用される。
幾つかの実施態様において、クロス・コンポーネント冗長性を低減するために、クロス・コンポーネント線形モデル(CCLM)予測モード(LMとも呼ばれる)がJEMにおいて使用されており、クロマ・サンプルは、以下のような線形モデルを使用することによって、同じCUの再構成済みのルマ・サンプルに基づいて予測される:
多重参照ライン(MRL)イントラ予測は、イントラ予測のために、より多くの参照ラインを使用する。図4において、4つの参照ラインの例が描かれており、ここで、セグメントA及びFのサンプルは、再構成された隣接するサンプルからフェッチされるのではなく、それぞれセグメントB及びEからの最も近いサンプルでパディングされる。HEVCイントラ・ピクチャ予測は、最も近い参照ライン(即ち参照ライン0)を使用する。MRLでは、2つの追加ライン(参照ライン1及び参照ライン3)が使用される。選択された参照ラインのインデックス(mrl_idx)は、シグナリングされて、イントラ予測子を生成するために使用される。0より大きな参照ラインidxの場合、追加の参照ライン・モードをMPMリストに含めるだけであり、残りのモード無しにmpmインデックスをシグナリングするだけである。
イントラ・サブ・パーティション(ISP)ツールは、ブロック・サイズに応じて、ルマ・イントラ予測ブロックを垂直に又は水平に2つ又は4つのサブ・パーティションに分割する。例えば、ISPの最小ブロック・サイズは4x8(又は8x4)である。ブロック・サイズが4×8(又は8×4)より大きい場合、対応するブロックは4つのサブ・パーティションで分割される。図5は、2つの可能性のある例を示す。すべてのサブ・パーティションは、少なくとも16サンプルを有するという条件を充足する。
アフィン線形重み付けイントラ予測(ALWIP、マトリクス・ベースのイントラ予測(MIP)としても知られている)は、JVET-N0217で提案されている。
幅Wと高さHの矩形ブロックのサンプルを予測するために、アフィン線形重み付けイントラ予測(ALWIP)は、ブロックの左のH個の再構成された隣接する境界サンプルによる1ラインと、ブロックの上のW個の再構成された隣接する境界サンプルによる1ラインとを入力として取る。再構成されたサンプルが利用可能でない場合、それらは通常のイントラ予測と同様に生成される。予測信号の生成は、次の3つのステップに基づく:
第1ステップでは、入力境界bdrytop及びbdryleftは、より小さな境界bdryred top及びbdryred leftに縮小される。ここで、bdryred top及びbdryred leftは、4×4ブロックの場合は双方ともに2サンプルで構成され、他の全ての場合は双方ともに4サンプルで構成される。
4×4ブロックの場合において、0≦i<2に関し、次のように定められる。
それ以外の場合において、ブロック幅WがW=4・2k,0≦i<4で与えられる場合、次のように定められる。
2.5.3 行列ベクトル乗算による縮小予測信号の生成
縮小された入力ベクトルbdryredから、縮小された予測信号predredを生成する。後者の信号は、幅Wred及び高さHredのダウンサンプリングされたブロックに関する信号である。ここで、Wred及び高さHredは次のように定められる。
平均化、行列ベクトル乗算、及び線形補間の全体的なプロセスが、図6-9で様々な形状に関して示されている。残りの形状は、図示のケースのうちの1つと同様に扱われることに留意されたい。
W×Hブロック(max(W,H)≧8)の場合、予測信号は、Wred×Hredに関する線形補間によって、縮小された予測信号から生じる。ブロックの形状に応じて、線形補間は、垂直方向、水平方向、又は双方向に行われる。線形補間が双方向に適用されるべきである場合、W<Hならば最初に水平方向に適用され、それ以外は最初に垂直方向に適用される。
提案されるALWIPモードは、次のように、従来のイントラ予測モードのMPMベース・コーディングと調和する。従来のイントラ予測モードに対するルマ及びクロマMPMリストの導出プロセスは、固定されたテーブルmap_alwip_to_angularidx,idx∈{0,1,2}を使用して、所与のPUに関するALWIPモードを、従来のイントラ予測モードの1つにマッピングする:
幾つかの実施形態において、このセクションで説明されるように、intra_lwip_flag, intra_lwip_mpm_flag, intra_lwip_mpm_idx及びintra_lwip_mpm_remainderに関連する部分が、開示される技術の実施形態に基づいてワーキング・ドラフトに追加されている。
シンタックス・テーブル
コーディング・ユニット・シンタックス
<begin>1に等しいintra_lwip_flag[ x0 ][ y0 ]は、ルマ・サンプルのイントラ予測タイプがアフィン線形重み付けイントラ予測であることを指定する。0に等しいintra_lwip_flag[ x0 ][ y0 ]は、ルマ・サンプルのイントラ予測タイプがアフィン線形重み付けイントラ予測ではないことを指定する。intra_lwip_flag[ x0 ][ y0 ]が存在し兄場合、それは0に等しいと推定される。シンタックス要素intra_lwip_mpm_flag[ x0 ][ y0 ], intra_lwip_mpm_idx[ x0 ][ y0 ]及び intra_lwip_mpm_remainder[ x0 ][ y0 ]は、ルマ・サンプルに対するアフィン線形重み付けイントラ予測モードを指定する。配列インデックスx0,y0は、ピクチャの左上ルマ・サンプルに対する、考察対象のコーディング・ブロックの左上ルマ・サンプルの位置(x0,y0)を指定する。intra_lwip_mpm_flag[ x0 ][ y0 ]が1に等しい場合、アフィン線形重み付けイントラ予測モードは、8.4.X条項に従って、隣接するイントラ予測済みコーディング・ユニットから推定される。intra_lwip_mpm_flag[ x0 ][ y0 ]が存在しない場合、それは1に等しいと推定される。<end>
intra_subpartitions_split_flag[ x0 ][ y0 ]は、イントラ・サブパーティション分割タイプが水平型であるか又は垂直型であるかを指定する。intra_subpartitions_split_flag[ x0 ][ y0 ]が存在しない場合、それは次のように推定される:
- intra_lwip_flag[ x0 ][ y0 ]が1に等しい場合、intra_subpartitions_split_flag[ x0 ][ y0 ]は0に等しいと推定される。
- それ以外の場合、以下を適用する:
- cbHeightがMaxTbSizeYより大きい場合、intra_subpartitions_split_flag[ x0 ][ y0 ]は0に等しいと推定される。
- それ以外の場合(cbHeightがMaxTbSizeYより大きい)intra_subpartitions_split_flag[ x0 ][ y0 ]は1に等しいと推定される。
復号化プロセス
8.4.1 イントラ予測モードでコーディングされたコーディング・ユニットに対する一般的な復号化プロセス
このプロセスに対する入力は次のとおりである:
- ルマ位置(xCb, yCb):現在のピクチャの左上ルマ・サンプルに対する現在のコーディング・ブロックの左上サンプルを指定する。
- 変数cbWidth:ルマ・サンプルの現在のコーディング・ブロックの幅を指定する。
- 変数cbHeight:ルマ・サンプルの現在のコーディング・ブロックの高さを指定する。
- 変数treeType:シングル又はデュアル・ツリーが使用されるかどうかを指定し、デュアル・ツリーが使用される場合には、現在のツリーがルマ又はクロマ成分に対応しているかどうかを指定する。
このプロセスの出力はループ内フィルタリング前の修正された再構成ピクチャである。条項8.7.1で指定されるような量子化パラメータの導出プロセスは、ルマ位置(xCb, yCb)、ルマ・サンプルにおける現在のコーディング・ブロックの幅cbWidth、ルマ・サンプルにおける現在のコーディング・ブロックの高さcbHeight、及び変数treeTypeを入力として、呼び出される。
treeTypeがSINGLE_TREEに等しい場合、又はtreeTypeがDUAL_TREE_LUMAに等しい場合、ルマ・サンプルの復号化プロセスは次のように指定される:
- pcm_flag[ xCb ][ yCb ]が1に等しい場合、再構成されたピクチャは次のように修正される:
SL[ xCb + i ][ yCb + j ] = pcm_sample_luma[ ( cbHeight * j ) + i ] << ( BitDepthY - PcmBitDepthY ), (8-6) with i = 0..cbWidth - 1, j = 0..cbHeight - 1
- それ以外の場合、以下を適用する:
1. ルマ・イントラ予測モードは次のように導出される:
- intra_lwip_flag[xCb] [yCb] が1に等しい場合、条項8.4.Xで指定されているようなアフィン線形重み付けイントラ予測モードの導出プロセスが、ルマ位置(xCb,yCb)、ルマ・サンプルにおける現在のコーディング・ブロックの幅cbWidth、及びルマ・サンプルにおける現在のコーディング・ブロックの高さcbHeightを入力として、呼び出される。
- それ以外の場合、条項8.4.2で指定されているようなルマ・イントラ予測モードの導出プロセスが、ルマ位置(xCb,yCb)、ルマ・サンプルにおける現在のコーディング・ブロックの幅cbWidth、及びルマ・サンプルにおける現在のコーディング・ブロックの高さcbHeightを入力として、呼び出される。
2. 条項8.4.4.1で指定されているようなイントラ・ブロックの一般的な復号化プロセスは、ルマ位置(xCb,yCb)、ツリー・タイプtreeType、cbWidthに等しく設定される変数nTbW、cbHeightに等しく設定される変数nTbH、IntraPredModeY[ xCb ][ yCb ]に等しく設定される変数predModeIntra、0に等しく設定される変数cIdxを入力として、呼び出され、出力はループ内フィルタリング前の修正された再構成ピクチャである。
・・・
<begin>
8.4.X アフィン線形重み付けイントラ予測モードの導出プロセス
このプロセスに対する入力は次のとおりである:
- ルマ位置(xCb, yCb):現在のピクチャの左上ルマ・サンプルに対する現在のコーディング・ブロックの左上サンプルを指定する。
- 変数cbWidth:ルマ・サンプルの現在のコーディング・ブロックの幅を指定する。
- 変数cbHeight:ルマ・サンプルの現在のコーディング・ブロックの高さを指定する。
このプロセスでは、アフィン線形加重イントラ予測モードIntraPredModeY[ xCb ][ yCb ]が導出される。IntraPredModeY[ xCb ][ yCb ]は以下のステップ順序で導出される:
1. 隣接位置( xNbA, yNbA )及び( xNbB, yNbB )はそれぞれ( xCb - 1, yCb )及び ( xCb, yCb - 1 )に等しく設定される。
2. XがA又はBに置き換わる場合、変数candLwipModeXは次のように導出される:
- 条項6.4.Xで指定されるようなブロックに対する利用可能性導出プロセス[Ed.(BB):隣接ブロック利用可能性検査プロセスtbd]は、(xCb, yCb)に等しく設定された位置(xCurrr, yCurr)と、(xNbX, yNbX)に等しく設定された隣接する位置(xNbY, yNbY)とを入力として、呼び出され、出力はavalableXに割り当てられる。
- 候補のアフィン線形重み付けイントラ予測モードcandLwipModeXは次のように導出される:
- 以下の条件のうちの1つ以上が真である場合、candLwipModeXは-1に設定される。
- 変数availableXはFALSEに等しい。
- CuPredMode[ xNbX ][ yNbX ]はMODE_INTRAに等しくなく、且つmh_intra_flag[ xNbX ][ yNbX ]は1に等しくない。
- pcm_flag[ xNbX ][ yNbX ]は1に等しい。
- XはBに等しく、且つyCb-1は( ( yCb >> CtbLog2SizeY ) << CtbLog2SizeY )より小さい。
- それ以外の場合、以下を適用する:
- 条項8.4.X.1で指定されるようなブロックに対するサイズ・タイプ導出プロセスは、ルマ・サンプルにおける現在のコーディング・ブロックの幅cbWidthと、ルマ・サンプルにおける現在のコーディング・ブロックの高さcbHeightとを入力として、呼び出され、出力は変数sizeIdに割り当てられる。
- intra_lwip_flag[ xNbX ][ yNbX ]が1に等しい場合、条項8.4.X.1で指定されるようなブロックに対するサイズ・タイプの導出プロセスは、ルマ・サンプルにおける隣接するコーディング・ブロックの幅nbWidthXと、ルマ・サンプルにおける隣接するコーディング・ブロックの高さnbHeightXを入力として、呼び出され、出力は変数sizeIdXに割り当てられる。
- sizeIdがsizeIdXに等しい場合、candLwipModeXはIntraPredModeY[ xNbX ][ yNbX ]に等しく設定される。
- それ以外の場合、candLwipModeXは-1に等しく設定される。
- それ以外の場合、candLwipModeXは、テーブル8-X1で指定されるようなIntraPredModeY[ xNbX ][ yNbX ]及びsizeIdを使用して導出される。
3. x=0..2においてcandLwipModeList[ x ]は、テーブル8-X1で指定されるようなlwipMpmCand[ sizeId ]を使用して、次のように導出される:
- candLwipModeA及びcandLwipModeBが双方とも-1に等しい場合、以下を適用する:
candLwipModeList[ 0 ] = lwipMpmCand[ sizeId ][ 0 ] (8-X1)
candLwipModeList[ 1 ] = lwipMpmCand[ sizeId ][ 1 ] (8-X2)
candLwipModeList[ 2 ] = lwipMpmCand[ sizeId ][ 2 ] (8-X3)
- それ以外の場合、以下を適用する:
- candLwipModeAがcandLwipModeBに等しい場合、或いはcandLwipModeA又はcandLwipModeBが-1に等しい場合、以下を適用する:
candLwipModeList[ 0 ] =( candLwipModeA != -1 ) ? candLwipModeA : candLwipModeB (8-X4)
- candLwipModeList[ 0 ]がlwipMpmCand[ sizeId ][ 0 ]に等しい場合、以下を適用する:
candLwipModeList[ 1 ] = lwipMpmCand[ sizeId ][ 1 ] (8-X5)
candLwipModeList[ 2 ] = lwipMpmCand[ sizeId ][ 2 ] (8-X6)
- それ以外の場合、以下を適用する:
candLwipModeList[ 1 ] = lwipMpmCand[ sizeId ][ 0 ] (8-X7)
candLwipModeList[ 2 ] = ( candLwipModeList[ 0 ] != lwipMpmCand[ sizeId ][ 1 ] ) ? lwipMpmCand[ sizeId ][ 1 ] : lwipMpmCand[ sizeId ][ 2 ] (8-X8)
- それ以外の場合、以下を適用する:
candLwipModeList[ 0 ] = candLwipModeA (8-X9)
candLwipModeList[ 1 ] = candLwipModeB (8-X10)
- candLwipModeA及びcandLwipModeBの双方がlwipMpmCand[ sizeId ][ 0 ]に等しくない場合、以下を適用する:
candLwipModeList[ 2 ] = lwipMpmCand[ sizeId ][ 0 ] (8-X11)
- それ以外の場合、以下を適用する:
- candLwipModeA及びcandLwipModeBの双方がlwipMpmCand[ sizeId ][ 1 ]に等しくない場合、以下を適用する:
candLwipModeList[ 2 ] = lwipMpmCand[ sizeId ][ 1 ] (8-X12)
- それ以外の場合、以下を適用する:
candLwipModeList[ 2 ] = lwipMpmCand[ sizeId ][ 2 ] (8-X13)
4. IntraPredModeY[ xCb ][ yCb ]は、以下の手順を適用することによって導出される:
- intra_lwip_mpm_flag[ xCb ][ yCb ]が1に等しい場合、IntraPredModeY[ xCb ][ yCb ]はcandLwipModeList[ intra_lwip_mpm_idx[ xCb ][ yCb ] ]に等しく設定される。
- それ以外の場合、IntraPredModeY[ xCb ][ yCb ]は、以下のステップ順序を適用することによって導出される:
1. candLwipModeList[ i ]がi=0..1に対して及びi,j=(i+1)..2に対してcandLwipModeList[ j ]より大きい場合、双方の値は次のように交換される:
( candLwipModeList[ i ], candLwipModeList[ j ] ) = Swap( candLwipModeList[ i ], candLwipModeList[ j ] ) (8-X14)
2. IntraPredModeY[ xCb ][ yCb ]は、以下のステップ順序を適用することによって導出される:
i. IntraPredModeY[ xCb ][ yCb ]は、 intra_lwip_mpm_remainder[ xCb ][ yCb ]に等しく設定される。
ii. 両端を含む0ないし2に等しいiに関し、IntraPredModeY[ xCb ][ yCb ]がcandLwipModeList[ i ]以上である場合、IntraPredModeY[ xCb ][ yCb ]の値は1つインクリメントされる。
x = xCb..xCb + cbWidth - 1及びy = yCb..yCb + cbHeight - 1において変数IntraPredModeY[ x ][ y ]は、IntraPredModeY[ xCb ][ yCb ]に等しく設定される。
8.4.X.1 予測ブロック・サイズ・タイプの導出プロセス
このプロセスに対する入力は次のとおりである:
- 変数cbWidth:ルマ・サンプルの現在のコーディング・ブロックの幅を指定する。
- 変数cbHeight:ルマ・サンプルの現在のコーディング・ブロックの高さを指定する。
このプロセスの出力は変数sizeIdである。
変数sizeIdは次のように導出される:
- cbWidth及びcbHeightの双方が4に等しい場合、sizeIdは0に等しく設定される。
- それ以外の場合、cbWidth及びcbHeightの双方が8以下である場合、sizeIdは1に等しく設定される
- それ以外の場合、sizeIdは2に等しく設定される。
テーブル8-X1 - イントラ予測及びアフィン線形重み付けイントラ予測モード間のマッピングの仕様
8.4.2 ルマ・イントラ予測モードの導出プロセス
このプロセスに対する入力は次のとおりである:
- ルマ位置(xCb, yCb):現在のピクチャの左上ルマ・サンプルに対する現在のルマ・コーディング・ブロックの左上サンプルを指定する。
- 変数cbWidth:ルマ・サンプルの現在のコーディング・ブロックの幅を指定する。
- 変数cbHeight:ルマ・サンプルの現在のコーディング・ブロックの高さを指定する。
このプロセスでは、ルマ・イントラ予測モードIntraPredModeY[ xCb ][ yCb ]が導出される。
テーブル8-1は、イントラ予測モードIntraPredModeY[ xCb ][ yCb ]と関連する名称に対する値を指定している。
テーブル8-1 イントラ予測モード及び関連する名称の仕様
IntraPredModeY[xCb][yCb]は、以下のステップ順序で導出される。
1. 隣接する位置( xNbA, yNbA )及び( xNbB, yNbB )はそれぞれ( xCb - 1, yCb + cbHeight - 1 )及び( xCb + cbWidth - 1, yCb - 1 )に等しく設定される。
2. XがA又はBで置換される場合、変数candIntraPredModeXは次のように導出される:
- 条項6.4.Xで指定されるようなブロックに対する利用可能性導出プロセス<begin>[Ed.(BB):隣接ブロック利用可能性検査プロセスtbd]<end>は、( xCb, yCb )に等しく設定された位置( xCurr, yCurr )と、( xNbX, yNbX )に等しく設定された隣接する位置( xNbY, yNbY )とを入力として、呼び出され、出力はavailableXに割り当てられる。
- 候補イントラ予測モードcandIntraPredModeXは次のように導出される:
- 以下の条件のうちの1つ以上が真である場合、candIntraPredModeXはINTRA_PLANARに等しく設定される。
- 変数availableXはFALSEに等しい。
- CuPredMode[ xNbX ][ yNbX ]はMODE_INTRAに等しくなく、且つciip_flag[ xNbX ][ yNbX ]は1に等しくない。
- pcm_flag[ xNbX ][ yNbX ]は1に等しい。
- XはBに等しく、且つyCb-1は( ( yCb >> CtbLog2SizeY ) << CtbLog2SizeY )より小さい。
- それ以外の場合、candIntraPredModeXは次のように導出される。
- intra_lwip_flag[ xCb ][ yCb ]が1に等しい場合、candIntraPredModeXは以下のステップ順序で導出される:
i. 条項8.4.X.1で指定されるようなブロックに対するサイズ・タイプ導出プロセスは、ルマ・サンプルにおける現在のコーディング・ブロックの幅cbWidthと、ルマ・サンプルにおける現在のコーディング・ブロックの高さcbHeightとを入力として、呼び出され、出力は変数sizeIdに割り当てられる。
ii. candIntraPredModeXは、テーブル8-X3で指定されるようなIntraPredModeY[ xNbX ][ yNbX ]及びsizeIdを使用して導出される。
- それ以外の場合、candIntraPredModeXはIntraPredModeY[ xNbX ][ yNbX ]に等しく設定される。
3. 変数ispDefaultMode1及びispDefaultMode2は次のように定義される:
- IntraSubPartitionsSplitTypeがISP_HOR_SPLITに等しい場合、ispDefaultMode1はINTRA_ANGULAR18に等しく設定され、ispDefaultMode2はINTRA_ANGULAR5に等しく設定される。
- それ以外の場合、ispDefaultMode1はINTRA_ANGULAR50に等しく設定され、ispDefaultMode2はINTRA_ANGULAR63に等しく設定される。
・・・
テーブル8-X3 - アフィン線形重み付けイントラ予測モードとイントラ予測モードとの間のマッピングの仕様
このプロセスに対する入力は次のとおりである:
- ルマ位置(xCb, yCb):現在のピクチャの左上ルマ・サンプルに対する現在のクロマ・コーディング・ブロックの左上サンプルを指定する。
- 変数cbWidth:ルマ・サンプルの現在のコーディング・ブロックの幅を指定する。
- 変数cbHeight:ルマ・サンプルの現在のコーディング・ブロックの高さを指定する。
このプロセスでは、クロマ・イントラ予測モードIntraPredModeC[ xCb ][ yCb ]が導出される。
- intra_lwip_flag[ xCb ][ yCb ]が1に等しい場合、lumaIntraPredModeは以下のようなステップ順序で導出される。
i. 条項8.4.X.1で指定されるようなブロックに対するサイズ・タイプ導出プロセスは、ルマ・サンプルにおける現在のコーディング・ブロックの幅cbWidthと、ルマ・サンプルにおける現在のコーディング・ブロックの高さcbHeightとを入力として、呼び出され、出力は変数sizeIdに割り当てられる。
ii. ルマ・イントラ予測モードは、テーブル8-X3で指定されるようなIntraPredModeY[ xCb + cbWidth / 2 ][ yCb + cbHeight / 2 ]及びsizeIdを使用して導出される。
- それ以外の場合、lumaIntraPredModeはIntraPredModeY[ xCb + cbWidth / 2 ][ yCb + cbHeight / 2 ]に等しく設定される。
クロマ・イントラ予測モードIntraPredModeC[ xCb ][ yCb ]は、テーブル8-2及びテーブル8-3で指定されるようなintra_chroma_pred_mode[ xCb ][ yCb ]及び lumaIntraPredModeを使用して導出される。
・・・
xxx. イントラサンプル予測
<begin>
このプロセスに対する入力は次のとおりである:
- サンプル位置(xTbCmp, yTbCmp):現在のピクチャの左上サンプルに対する現在の変換ブロックの左上サンプルを指定する。
- 変数predModeIntra:イントラ予測モードを指定する。
- 変数nTbW:変換ブロックの幅を指定する。
- 変数nTbH :変換ブロックの高さを指定する。
- 変数nCbW:コーディング・ブロックの幅を指定する。
- 変数nCbH :コーディング・ブロックの高さを指定する。
- 変数cIdx:現在のブロックの色成分を指定する。
このプロセスの出力は、x=0..nTbW-1, y=0..nTbH-1に関する予測されたサンプルpredSamples[ x ][ y ]である。
予測されたサンプルpredSamples[ x ][ y ]は、次のように導出される:
- intra_lwip_flag[ xTbCmp ][ yTbCmp ]が1に等しく、cIdxが0に等しい場合、条項8.4.4.2.X1で指定されているようなアフィン線形重み付けイントラ・サンプル予測プロセスは、位置( xTbCmp, yTbCmp )、イントラ予測モードpredModeIntra、変換ブロック幅nTbW及び高さnTbHを、入力として呼び出され、出力はpredSamplesである。
- それ以外の場合、8.4.4.2.X1で指定されているような一般的なイントラ・サンプル予測プロセスは、位置( xTbCmp, yTbCmp )、イントラ予測モードpredModeIntra、変換ブロック幅nTbW及び高さnTbH、コーディング・ブロック幅nCbW及び高さnCbH、及び変数cIdxを入力として、呼び出され、出力はpredSamplesである。
8.4.4.2.X1 アフィン線形重み付けイントラ・サンプル予測
このプロセスに対する入力は次のとおりである:
- サンプル位置(xTbCmp, yTbCmp):現在のピクチャの左上サンプルに対する現在の変換ブロックの左上サンプルを指定する。
- 変数predModeIntra:イントラ予測モードを指定する。
- 変数nTbW:変換ブロックの幅を指定する。
- 変数nTbH :変換ブロックの高さを指定する。
このプロセスの出力は、x=0..nTbW-1, y=0..nTbH-1に関する予測されたサンプルpredSamples[ x ][ y ]である。
条項8.4.X.1で指定されているようなブロックに対するサイズ・タイプ導出プロセスは、変換ブロック幅nTbWと、変換ブロック高さnTbHとを、入力として呼び出され、出力は変数sizeIdに割り当てられる。
変数numModes, boundarySize, predW, predH及びpredCは、表8-X4で指定されているようなsizeIdを使用して導出される。
テーブル8-X4 - sizedIdに依存するモード数、境界サンプル・サイズ、及び予測サイズの仕様
isTransposed = ( predModeIntra > ( numModes / 2 ) ) ? 1 : 0 (8-X15)
フラグneedUpsBdryHor及びneedUpsBdryVerは、次のように導出される:
needUpsBdryHor = ( nTbW > predW ) ? TRUE : FALSE (8-X16)
needUpsBdryVer = ( nTbH > predH ) ? TRUE : FALSE (8-X17)
変数variables upsBdryW及びupsBdryHは、次のように導出される:
upsBdryW = ( nTbH > nTbW ) ? nTbW : predW (8-X18)
upsBdryH = ( nTbH > nTbW ) ? predH : nTbH (8-X19)
変数lwipW及びlwipHは、次のように導出される:
lwipW = ( isTransposed = = 1) ? predH : predW (8-X20)
lwipH = ( isTransposed = = 1) ? predW : predH (8-X21)
x = 0..nTbW - 1に関する参照サンプルrefT[ x ]及びy = 0..nTbH - 1に関する参照サンプルrefL[ y ]の生成に関し、条項8.4.4.2.X2で指定されているような参照サンプル導出プロセスは、サンプル位置(xTbCmp, yTbCmp)、変換ブロック幅nTbW、及び変換ブロック高nTbH を入力として、上及び左の参照サンプルx = 0..nTbW - 1に関するrefT[ x ]及びy = 0..nTbH - 1に関するrefL[ y ]をそれぞれ出力として、呼び出される。
x = 0..2 * boundarySize - 1に関する境界サンプルp[x]の生成に関し、以下を適用する:
- 条項8.4.4.2.X3で指定されているような境界縮小プロセスは、上の参照サンプルに関し、ブロック・サイズnTbW、参照サンプルrefT、境界サイズboundarySize、アップサンプリング境界フラグneedUpsBdryVer、アップサンプリング境界サイズupsBdryWを入力として、x = 0..boundarySize - 1に関する縮小境界サンプルredT[ x ]、及びx = 0..upsBdryW - 1に関するアップサンプリング境界サンプルupsBdryT[ x ]を出力として、呼び出される。
- 条項8.4.4.2.X3で指定されているような境界縮小プロセスは、左の参照サンプルに関し、ブロック・サイズnTbH、参照サンプルrefL、境界サイズboundarySize、アップサンプリング境界フラグneedUpsBdryHor、アップサンプリング境界サイズupsBdryHを入力として、x = 0..boundarySize - 1に関する縮小境界サンプルredL[ x ]、及びx = 0..upsBdryH - 1に関するアップサンプリング境界サンプルupsBdryL[ x ]を出力として、呼び出される。
- 縮小された上及び左の境界サンプルredT及びredLは、次のように境界サンプル・アレイpに割り当てられる:
- isTransposedが1に等しい場合、p[x]はx = 0..boundarySize - 1に関してredL[ x ]に等しく設定され、p[ x + boundarySize ]はx = 0..boundarySize - 1に関してredT[ x ]に等しく設定される。
- それ以外の場合、p[ x ]は、x = 0..boundarySize - 1に関してredT[ x ]に等しく設定され、p[ x + boundarySize ]はx = 0..boundarySize - 1に関してredL[ x ]に等しく設定される。
predModeIntraに従うイントラ・サンプル予測プロセスの場合、以下のステップ順序を適用する:
1. x = 0..lwipW - 1, y = 0..lwipH - 1に関するアフィン線形重み付けサンプルは、次のように導出される:
- 変数modeIdは次のように導出される:
modeId = predModeIntra - ( isTransposed = = 1) ? ( numModes / 2 ) : 0 (8-X22)
- x = 0..2 * boundarySize - 1, y = 0..predC * predC - 1に関する重み行列mWeight[ x ][ y ]は、テーブル8-XX[TBD:重み行列を加える]で指定されるようなsizeId及びmodeIdを使用して導出される。
- y = 0..predC * predC - 1に関するバイアス・ベクトルvBias[ y ]は、テーブル8-XX[TBD:バイアス・ベクトルを加える]で指定されるようなsizeId及びmodeIdを使用して導出される。
- 変数sWは、テーブル8-X5で指定されるようなsizeId及びmodeIdを使用して導出される。
- x = 0..lwipW - 1, y = 0..lwipH - 1に関するアフィン線形重み付けサンプルpredLwip[ x ][ y ]は、次のように導出される:
- isTransposedが1に等しい場合、x = 0..predW - 1, y = 0..predH - 1に関するpredLwip[ x ][ y ]は、predLwip[ y ][ x ]に等しく設定される。
- needUpsBdryVerがTRUEに等しいか、又はneedUpsBdryHorがTRUEに等しい場合、条項8.4.4.2.X4で指定されているような予測アップサンプリング・プロセスは、入力ブロック幅predW、入力ブロック高predH、アフィン線形重み付けサンプルpredLwip、変換ブロック幅nTbW、変換ブロック高さnTbH、アップサンプリング境界幅upsBdryW、アップサンプリング境界高さupsBdryH、上アップサンプリング境界サンプルupsBdryT、及び左アップサンプリング境界サンプルupsBdryLを入力として、呼び出され、出力は予測サンプル・アレイpredSamplesである。
- それ以外の場合、x = 0..nTbW - 1, y = 0..nTbH - 1に関するpredSamples[ x ][ y ]は、predLwip[ x ][ y ]に等しく設定される。
テーブル8-X5 - izeId及びmodeIdに依存するウェイト・シフトの仕様
このプロセスに対する入力は次のとおりである:
- サンプル位置( xTbY, yTbY ):現在のピクチャの左上ルマ・サンプルに対する現在の変換ブロックの左上ルマ・サンプルを指定する。
- 変数nTbW:変換ブロック幅を指定する。
- 変数nTbH:変換ブロック高さを指定する。
このプロセスの出力は上及び左参照サンプル、それぞれx = 0..nTbW - 1に関するrefT[ x ]及びy = 0..nTbH - 1に関するrefL[ y ]である。
隣接するサンプル、x = 0..nTbW - 1に関するrefT[ x ]及びy = 0..nTbH - 1に関するrefL[ y ]は、ループ内フィルタ・プロセスに先行する構築済みサンプルであり、次のように導出される:
- 上及び左の隣接するルマ位置( xNbT, yNbT )及び( xNbL, yNbL )は、
( xNbT, yNbT ) = ( xTbY + x, yTbY - 1 ) (8-X28)
( xNbL, yNbL ) = ( xTbY - 1, yTbY + y ) (8-X29)
によって指定される。
- 条項6.4.X [Ed. (BB):隣接ブロック利用可能性検査プロセスtbd]で指定されるようなブロックに対する利用可能性導出プロセスは、(xTbY, yTbY)に等しく設定される現在のルマ位置(xCurrr, yCurrr)と、上の隣接するルマ位置(xNbT, yNbT)とを入力として、呼び出され、出力はx = 0..nTbW-1に関してavailTop[ x ]に割り当てられる。
- 条項6.4.X [Ed. (BB):隣接ブロック利用可能性検査プロセスtbd]で指定されるようなブロックに対する利用可能性導出プロセスは、(xTbY, yTbY)に等しく設定される現在のルマ位置(xCurrr, yCurrr)と、左の隣接するルマ位置(xNbL, yNbL)とを入力として、呼び出され、出力はy = 0..nTbH-1に関してavailLeft[ y ]に割り当てられる。
- x = 0..nTbW - 1に関する上の参照サンプルrefT[ x ]は次のように導出される:
- x = 0..nTbW - 1に関する全てのavailTop[ x ]がTRUEに等しい場合、位置( xNbT, yNbT )におけるサンプルは、x = 0..nTbW - 1に関するrefT[ x ]に割り当てられる。
- それ以外の場合、availTop[ 0 ]がFALSEに等しい場合、x = 0..nTbW - 1に関する全てのrefT[ x ]は、1 << ( BitDepthY - 1 )に等しく設定される。
- それ以外の場合、x = 0..nTbW - 1に関する参照サンプルrefT[ x ]は、以下のステップ順序によって導出される:
1. 変数lastTは、FALSEに等しい、x = 1..nTbW - 1に関するシーケンスavailTop[ x ]の第1要素の位置xに等しく設定される。
2. 全てのx = 0..lastT - 1に関し、位置( xNbT, yNbT )におけるサンプルは、refT[ x ]に割り当てられる。
3. 全てのx = lastT..nTbW - 1に関し、refT[ x ]はrefT[ lastT - 1 ]に等しく設定される。
- x = 0..nTbH - 1に関する左の参照サンプルrefL[ y ]は次のように導出される:
- y = 0..nTbH - 1に関する全てのavailLeft[ y ]がTRUEに等しい場合、位置( xNbL, yNbL )におけるサンプルは、y = 0..nTbH - 1に関するrefL[ y ]に割り当てられる。
- それ以外の場合、availLeft[ 0 ]がFALSEに等しい場合、y = 0..nTbH - 1に関する全てのrefL[ y ]は、1 << ( BitDepthY - 1 )に等しく設定される。
- それ以外の場合、y = 0..nTbH - 1に関する参照サンプルrefL[ y ]は、以下のステップ順序によって導出される:
1. 変数lastLは、FALSEに等しい、y = 1..nTbH - 1に関するシーケンスavailLeft[ y ]の第1要素の位置yに等しく設定される。
2. 全てのy = 0..lastL - 1に関し、位置( xNbL, yNbL )におけるサンプルは、refL[ y ]に割り当てられる。
3. 全てのy = lastL..nTbH - 1に関し、refL[ y ]はrefL[ lastL - 1 ]に等しく設定される。
境界縮小プロセスの仕様
このプロセスに対する入力は次のとおりである:
- 変数nTbX:変換ブロック・サイズを指定する。
- 参照サンプルrefX[ x ]:x = 0..nTbX - 1。
- 変数boundarySize:ダウンサンプリングした境界サイズを指定する。
- フラグneedUpsBdryX:アップサンプリングに中間境界サンプルが必要とされるかどうかを指定する。
- 変数upsBdrySize:アップサンプリングに対する境界サイズを指定する。
このプロセスの出力は、x = 0..boundarySize - 1に関する縮小境界サンプルredX[ x ]、及びx = 0..upsBdrySize - 1に関するアップサンプリング境界サンプルupsBdryX[ x ]である。
x = 0..upsBdrySize - 1に関するアップサンプリング境界サンプルupsBdryX[ x ]は、次のように導出される:
- needUpsBdryXがTRUEに等しく、upsBdrySizeがnTbXより小さい場合、以下を適用する:
x = 0..boundarySize - 1に関する縮小境界サンプルredX[ x ]は、次のように導出される:
- boundarySizeがupsBdrySizeより小さい場合、以下を適用する
8.4.4.2.X4 予測アップサンプリング・プロセスの仕様
このプロセスに対する入力は次のとおりである:
- 変数predW:入力ブロック幅を指定する。
- 変数predH:入力ブロック高さを指定する。
- アフィン線形重み付けサンプルpredLwip[ x ][ y ]:x = 0..predW - 1, y = 0..predH - 1。
- 変数nTbW:変換ブロック幅を指定する。
- 変数nTbH:変換ブロック高さを指定する。
- 変数upsBdryW:アップサンプリング境界幅を指定する。
- 変数upsBdryH:アップサンプリング境界高さを指定する。
- 上のアップサンプリング境界サンプルupsBdryT[ x ]:x = 0..upsBdryW - 1。
- 左のアップサンプリング境界サンプルupsBdryL[ x ]:x = 0..upsBdryH - 1。
このプロセスの出力は、x = 0..nTbW - 1, y = 0..nTbH - 1.に関する予測サンプルpredSamples[ x ][ y ]である。
スパースな予測サンプルpredSamples[ m ][ n ]は、x = 0..predW - 1, y = 0..predH - 1に関してpredLwip[ x ][ y ]から次のように導出される:
upHor = nTbW / predW (8-X34)
upVer = nTbH / predH (8-X35)
predSamples[ ( x + 1 ) * upHor - 1 ][ ( y + 1 ) * upVer - 1 ] = predLwip[ x ][ y ] (8-X36)
x = 0..upsBdryW - 1に関する上の境界サンプルupsBdryT[ x ]は、次のように、predSamples[ m ][ -1 ]に割り当てられる:
predSamples[ ( x + 1 ) * ( nTbW / upsBdryW ) - 1 ][ -1 ] = upsBdryT[ x ] (8-X37)
y = 0..upsBdryH - 1に関する左の境界サンプルupsBdryL[ y ]は、次のように、predSamples[ -1 ][ n ]に割り当てられる:
predSamples[ -1 ][ ( y + 1 ) * ( nTbH / upsBdryH ) - 1 ] = upsBdryL[ y ] (8-X38)
x = 0..nTbW - 1, y = 0..nTbH - 1に関する予測サンプルpredSamples[ x ][ y ]は、次のように導出される:
- nTbHがnTbWより大きい場合、以下のステップ順序を適用する:
1. upHorが1より大きい場合、m = 0..predW - 1, n = 1..predHの全てのスパースな位置に関する水平アップサンプリング( xHor, yHor ) = ( m * upHor - 1, n * upVer - 1 )は、dX = 1..upHor - 1に関して次のように適用される:
predSamples[ xHor + dX ][ yHor ] = ( ( upHor - dX ) * predSamples[ xHor ][ yHor ] + dX * predSamples[ xHor + upHor ][ yHor ] ) / upHor (8-X39)
2. m = 0..nTbW - 1, n = 0..predH - 1の全てのスパースな位置に関する垂直アップサンプリング( xVer, yVer ) = ( m, n * upVer - 1 )は、dY = 1..upVer - 1に関して次のように適用される:
predSamples[ xVer ][ yVer + dY ] = ( ( upVer - dY ) * predSamples[ xVer ][ yVer ] + dY * predSamples[ xVer ][ yVer + upVer ] ) / upVer (8-X40)
- それ以外の場合、以下のステップ順序を適用する:
1. upVerが1より大きい場合、m = 1..predW, n = 0..predH - 1の全てのスパースな位置に関する垂直アップサンプリング( xVer, yVer ) = ( m * upHor - 1, n * upVer - 1 )は、(8-X40)で指定されるようにdY = 1..upVer - 1に関して適用される。
2. m = 0..predW - 1, n = 0..nTbH - 1の全てのスパースな位置に関する水平アップサンプリング( xHor, yHor ) = ( m * upHor - 1, n )は、(8-X39)で指定されるようにdX = 1..upHor - 1に関して適用される。
<end>
テーブル9-9 - シンタックス要素及び関連するバイナリゼーション
幅Wと高さHの矩形ブロックのサンプルを予測するために、アフィン線形重み付けイントラ予測(Affine linear weighted intra prediction,ALWIP)は、ブロックの左側にあるH個の再構成された隣接境界サンプルの1ラインと、ブロックの上側にあるW個の再構成された隣接境界サンプルの1ラインとを入力として取る。再構成されたサンプルが利用できない場合、それらは通常のイントラ予測と同様に生成される。ALWIPはルマ・イントラ・ブロックに適用されるだけである。クロマ・イントラ・ブロックに対しては、従来のイントラ・コーディング・モードが適用される。
[0143]予測信号の生成は、以下の3つのステップに基づいている:
[0144]1. 境界サンプルのうち、W=H=4の場合は4サンプル、それ以外の場合は8サンプルが、平均化により抽出される。
[0145]2. 行列ベクトル乗算に続いてオフセットの加算が、平均化されたサンプルを入力として用いて実行される。その結果は、元のブロック中のサブサンプリングされたサンプルのセットに関する縮小された予測信号である。
[0146]3. 残りの位置における予測信号は、各方向の単一ステップ線形補間である線形補間によって、サブサンプリングされたセットに関する予測信号から生成される。
[0147]ALWIPモードが適用されるべきである場合、ALWIPモードのインデックスpredmodeは、3MPMSと共にMPM-listを使用してシグナリングされる。ここで、MPMの導出は、以下のように、上及び左PUのイントラ・モードを使用して実行される。従来のイントラ予測モードpredmodeAngularの各々にALWIPモードを割り当てる3つの固定されたテーブルmap_angular_to_alwipidx,idx∈{0,1,2}が存在する。
[0148]predmodeALWIP = map_angular_to_alwipidx[predmodeAngular]
[0149]-[0151]
幅W及び高さHのPU各々に関し、インデックス
idx(PU) = idx(W,H) ∈{0,1,2}
を定義し、これは、3つのセットのうちALWIPパラメータが取り出される元のセットを指定する。
[0152]上記の予測ユニットPUaboveが利用可能であり、現在のPUと同じCTUに所属し、イントラ・モードにある場合であって、idx(PU) = idx(PUabove)であり、且つALWIPモードpredmodeALWIP aboveと共にPUaboveに関してALWIPが適用される場合、次のように設定する。
[0153]modeALWIPabove = predmodeALWIP above
[0154]上のPUが利用可能であり、現在のPUと同じCTUに所属し、イントラ・モードにある場合であって、従来のイントラ予測モードpredmodeAngular aboveが上のPUに適用される場合、次のように設定する。
[0155]modeALWIP above = map_angular_to_alwipidx(PUabove)[predmodeAngular above]
3.1 多重変換選択(MTS)
HEVCで採用されているDCT-IIに加えて、多重変換選択(Multiple Transform Selection,MTS)方式が、インター及びイントラ・コーディング・ブロック双方の残差コーディングに使用される。それはDCT8/DST7から選択される複数の変換を使用する。新たに導入される変換行列はDST-VIIとDCT-VIIIである。
縮小二次変換(RST)は16×16及び16×64のノン・セパラブル変換それぞれを4×4及び8×8ブロックに適用する。一次フォワード変換とインバース変換は、2つの1-D水平/垂直変換パスと同じ方法で依然として実行される。二次フォワード変換とインバース変換は、一次変換とは別のプロセス・ステップである。エンコーダについては、一次フォワード変換が最初に実行され、次いで二次フォワード変換と量子化、そしてCABACビット符号化が続く。デコーダについては、CABACビット復号化及び逆量子化、そして二次インバース変換が先ず実行され、一次インバース変換が続く。RSTは、イントラ・スライス及びインター・スライス双方のイントラ・コーディングされたTUにのみ適用される。
多重参照ライン(MRL)及びイントラ・サブ・パーティション(ISP)コーディング・ツールが適用されるか否かにかかわらず、統一された6-MPMリストがイントラ・ブロックに対して提案される。MPMリストは、VTM4.0でのように、左及び上の隣接するブロックの左上のイントラ・モードに基づいて構成される。左のモードをLeftとし、上のブロックのモードをAboveと仮定すると、統一されたMPMリストは次のように構成される:
・ 隣接するブロックが利用可能でない場合、そのイントラ・モードはデフォルトで平面(Planar)に設定される。
・ 双方のモードLeftとAboveが非角度モードである場合:
a. MPMリスト→{Planar, DC, V, H, V-4, V+4}
・ モードLeftとAboveのうちの一方が非角度モードであり、他方が非角度モードである場合:
a. モードMaxを、Left及びAboveのうちのより大きなモードとして設定する。
b. MPMリスト→{Planar, Max, DC, Max -1, Max +1, Max -2}
・ LeftとAbove双方が角度モードであり、それらが相違する場合:
a. モードMaxを、Left及びAboveのうちのより大きなモードとして設定する。
b. モードLeft及びAboveの相違が両端を含む2ないし62の範囲内にある場合:
i. MPMリスト→{Planar, Left, Above, DC, Max-1, Max+1}
c. それ以外の場合
i. MPMリスト→{Planar, Left, Above, DC, Max-2, Max+2}
・ Left及びAbove双方が角度モードであり、それらが同じである場合:
a. MPMリスト→{Planar, Left, Left-1, Left+1, DC, Left-2}
JVET-N0217におけるALWIPの設計は、次のような問題を有する:
4) 次式で upsBdryXを計算する場合
ここで開示される技術の実施形態は、既存の実装の欠点を克服し、それにより、ビデオ・コーディングに、より高い符号化効率をもたらすが、より少ない計算の複雑さしかもたらさない。ビデオ・コーディングの関するマトリクス・ベースのイントラ予測方法は、本文書で説明されるように、既存の及び将来の双方のビデオ・コーディング規格を向上させる可能性があり、種々の実装について説明されている以下の実施例において解明される。以下に提供される開示される技術の例は、一般的な概念を説明しており、限定として解釈されるようには意図されていない。実施例では、明示的に相反するように示されていない限り、これらの実施例で説明される種々の特徴は組み合わせられる可能性がある。
In another example, offset0=offset1= ((1<<n)>>1)-1 又は ((1<<(n-1)))-1 である。
Clip3(min, max, x)は次のように定義される:
1. ALWIP用のMPMリストの全部又は一部は、非ALWIPイントラ・モード(例えば、ノーマル・イントラ・モード、MRL、ISP)用のMPMリストを構築する手順の全部又は一部に従って構築される、ということが提案される。
a. 一例では、ALWIP用のMPMリストのサイズは、非ALWIPイントラ・モードのMPMリストのサイズと同じであってもよい。
i. 例えば、MPMリストのサイズは、ALWIP及び非ALWIPイントラ・モード双方に対して6である。
b. 一例では、ALWIP用のMPMリストは、非ALWIPイントラ・モードのMPMリストから導出することができる。
i. 一例では、非ALWIPイントラ・モード用のMPMリストは、最初に構築されてもよい。その後、それらの一部又は全部がMPMを変換することができ、更にこれをALWIPコーディングされたブロックのMPMリストに追加することができる。
1) 更に、代替的に、変換されたMPMを、ALWIPコーディングされたブロックのMPMリストに追加する場合に、プルーニングが適用されてもよい。
2) デフォルト・モードは、ALWIPコーディングされたブロックのMPMリストに追加されてもよい。
a. 一例では、デフォルト・モードは、非ALWIPイントラ・モードのMPMリストから変換されたものの前に追加されてもよい。
b. 代替的に、デフォルト・モードは、非ALWIPイントラ・モードのMPMリストから変換されたものの後に追加されてもよい。
c. 代替的に、デフォルト・モードは、非ALWIPイントラ・モードのMPMリストから変換されたものとインターリーブ方式で追加されてもよい。
d. 一例では、デフォルト・モードは、全ての種類のブロックに対して同一であるように固定されてもよい。
e. 代替的に、デフォルト・モードは、隣接するブロックの利用可能性、隣接するブロックのモード情報、ブロック寸法のようなコーディングされた情報に従って決定されてもよい。
ii. 一例では、非ALWIPイントラ・モード用のMPMリストの1つのイントラ予測モードは、それがALWIPのMPMリストに投入された場合に、対応するALWIPイントラ予測モードに変換されることが可能である。
1) 代替的に、非ALWIPイントラ・モード用のMPMリストのすべてのイントラ予測モードは、ALWIPのMPMリストを構築するために使用される前に、対応するALWIPイントラ予測モードに変換されてもよい。
2) 代替的に、非ALWIPイントラ・モードのMPMリストがALWIPのMPMリストを導出するために更に使用されてもよい場合には、すべての候補イントラ予測モード(隣接するブロックからのイントラ予測モード、及びPlanar及びDCのようなデフォルト・イントラ予測モードを含む可能性がある)は、非ALWIPイントラ・モードのMPMリストを構築するために使用される前に、対応するALWIPイントラ予測モードに変換されてもよい。
3) 一例では、2つの変換されたALWIPイントラ予測モードが比較されてもよい。
a. 一例では、それらが同じである場合、それらのうちの一方のみが、ALWIPのMPMリストに投入されることが可能である。
b. 一例では、それらが同じである場合、それらのうちの一方のみが、非ALWIPイントラ・モードのMPMリストに投入されることが可能である。
iii. 一例では、非ALWIPイントラ・モードのMPMリスト内のS個のうちのK個のイントラ予測モードが、ALWIPモードのMPMリストとして選択される可能性がある。例えば、Kは3に等しく、Sは6に等しい。
1) 一例では、非ALWIPイントラ・モードのMPMリストのうちの最初のK個のイントラ予測モードが、ALWIPモードのMPMリストとして選択されてもよい。
2. ALWIP用のMPMリストを導出するために使用される1つ又は複数の隣接するブロックは、非ALWIPイントラ・モード(例えば、ノーマル・イントラ・モード、MRL、又はISP)用のMPMリストを導出するために使用されてもよいことが、提案される。
a. 一例では、ALWIPのMPMリストを導出するために使用される現在のブロックの左に隣接するブロックは、非ALWIPイントラ・モードのMPMリストを導出するために使用されるものと同じであるべきである。
i. 現在のブロックの左上隅が(xCb, yCb)であり、現在のブロックの幅と高さがWとHであると仮定すると、一例では、ALWIPと非ALWIPイントラ・モードの双方についてMPMリストを導出するために使用される左隣接ブロックは、位置(xCb-1, yCb)をカバーしてもよい。別の例では、ALWIPモードと非ALWIPイントラ・モードの双方のMPMリストを導出するために使用される左隣接ブロックは、位置(xCb-1, yCb+H-1)をカバーしてもよい。
ii. 例えば、統一されたMPMリスト構成で使用される左隣接ブロック及び上隣接ブロックは、図10に示されるようなA2及びB2である。
b. 一例では、ALWIPのMPMリストを導出するために使用される現在のブロックの上の隣接するブロックは、非ALWIPイントラ・モードのMPMリストを導出するために使用されるものと同じであるべきである。
i. 現在のブロックの左上隅が(xCb, yCb)であり、現在のブロックの幅と高さがWとHであると仮定すると、一例では、ALWIPと非ALWIPイントラ・モードの双方について、MPMリストを導出するために使用される上隣接ブロックは、位置(xCb, yCb-1)をカバーしてもよい。別の例では、ALWIPモードと非ALWIPイントラ・モードの双方のMPMリストを導出するために使用される上隣接ブロックは、位置(xCb+W-1、yCb-1)をカバーしてもよい。
ii. 例えば、統一されたMPMリスト構成で使用される左隣接ブロック及び上隣接ブロックは、図10に示されるようなA1及びB1である。
3. ALWIP用のMPMリストは、現在のブロックの幅及び/又は高さに応じて異なる方法で構築されてもよいことが、提案される。
a. 一例では、異なるブロック寸法について、異なる隣接するブロックがアクセスされてもよい。
4. ALWIP用のMPMリストと非ALWIPイントラ・モード用のMPMリストは、手順は同じであるが、異なるパラメータで構成されてもよいことが、提案される。
a. 一例では、非ALWIPイントラ・モードのMPMリスト構築手順において、S個のうちK個のイントラ予測モードは、ALWIPモードで使用されるMPMリストに対して導出される可能性がある。例えば、Kは3に等しく、Sは6に等しい。
i. 一例では、MPMリスト構築手順における最初のK個のイントラ予測モードは、ALWIPモードで使用されるMPMリストに対して導出されてもよい。
b. 一例では、MPMリストの第1モードは異なっていてもよい。
i. 例えば、非ALWIPイントラ・モードのMPMリストの第1モードはPlanarであってもよいが、ALWIPのMPMリストのMode X0であってもよい。
1) 一例では、X0は、Planarから変換されたALWIPイントラ予測モードであってもよい。
c. 一例では、MPMリストにおけるスタッフィング・モードは異なっていてもよい。
i. 例えば、非ALWIPイントラ・モードについてのMPMリストの最初の3つのスタッフィング・モードは、DC、Vertical及びHorizontalであってもよいが、ALWIPについてはMPMリストのMode X1, X2, X3であってもよい。
1) 一例では、X1、X2、X3は、異なるsizeIdについては異なっていてもよい。
ii. 一例では、スタッフィング・モードの数は異なっていてもよい。
d. 一例では、MPMリスト内の隣接するモードは異なっていてもよい。
i. 例えば、隣接するブロックのノーマル・イントラ予測モードは、非ALWIPイントラ・モードのためのMPMリストを構築するために使用される。そして、それらをALWIPイントラ予測モードに変換して、ALWIPモード用のMPMリストを構築する。
e. 一例では、MPMリスト内のシフトされたモードは異なっていてもよい。
i. 例えば、X+K0(Xはノーマル・イントラ予測モードであり、K0は整数である)は、非ALWIPイントラ・モード用のMPMリストに投入されてもよい。また、Y+K1(YはALWIPイントラ予測モードであり、K1は整数である)は、ALWIP用のMPMリストに投入されることが可能であり、K0はK1とは異なっていてもよい。
1) 一例では、K1は幅及び高さに依存してもよい。
5. 非ALWIPイントラ・モードで現在のブロックのMPMリストを構築する際に、隣接するブロックがALWIPでコーディングされている場合、隣接するブロックは使用不能であるとして扱われることが、提案される。
a. 代替的に、非ALWIPイントラ・モードで現在のブロックのMPMリストを構築する際に、ALWIPでコーディングされている場合、隣接するブロックは、予め定義されたイントラ予測モード(例えば、Planar)でコーディングされているものとして扱われる。
6. ALWIPモードで現在のブロックのMPMリストを構成する際に、隣接するブロックが非ALWIPイントラ・モードでコーディングされている場合、隣接するブロックは使用不能であるとして扱われることが、提案される。
a. 代替的に、ALWIPモードで現在のブロックのMPMリストを構成する際に、非ALWIPイントラ・モードでコーディングされている場合、隣接するブロックは、予め定義されたALWIPイントラ予測モードXでコーディングされているものとして扱われる。
i. 一例では、Xは、幅及び/又は高さのようなブロック寸法に依存してもよい。
7. ライン・バッファからALWIPフラグのストレージを削除することが提案される。
a. 一例では、アクセスされるべき2番目のブロックが現在のブロックと比較して異なるLCU/CTU行/領域に位置する場合、2番目のブロックはALWIPでコーディングされているかどうかの条件付けられた検査はスキップされる。
b. 一例では、アクセスされるべき2番目のブロックが現在のブロックと比較して異なるLCU/CTU行/領域に位置する場合、2番目のブロックは、ノーマル・イントラ・コーディングされたブロックとして扱われるように、非ALWIPモードと同様に扱われる。
8. ALWIPフラグを符号化する場合、高々K個(K>=0)のコンテキストが使用されてもよい。
a. 一例では、K=1である。
9. ALWIPモードに関連するモード・インデックスを直接的に格納する代わりに、ALWIPコーディングされたブロックの変換されたイントラ予測モードを格納することが、提案される。
a. 一例では、1つのALWIPコーディングされたブロックに関連する復号化されたモード・インデックスは、セクション2.5.7に説明されるようなmap_alwip_to_angularに従って、ノーマル・イントラ・モードにマッピングされる。
b. 更に、代替的に、ALWIPフラグの格納は、完全に除去される。
c. 更に、代替的に、ALWIPモードの格納は、完全に除去される。
d. 更に、代替的に、1つの隣接する/現在のブロックがALWIPフラグでコーディングされるかどうかの状態検査は、スキップされてもよい。
e. 更に、代替的に、ALWIPコーディングされたブロックに割り当てられたモードの変換、及び1つのアクセスされたブロックに関連するノーマル・イントラ予測は、スキップされてもよい。
異なるカラー成分に関するALWIP
10. 対応するルマ・ブロックがALWIPモードでコーディングされる場合に、推定されるクロマ・イントラ・モード(例えば、DMモード)は常に適用されるかもしれないことが、提案される。
a. 一例では、クロマ・イントラ・モードは、対応するルマ・ブロックがALWIPモードでコーディングされている場合には、シグナリング無しにDMモードであると推定される。
b. 一例では、対応するルマ・ブロックは、所与の場所に位置するクロマ・サンプルの対応するサンプル(例えば、現在のクロマ・ブロックの左上、現在のクロマ・ブロックの中央)をカバーするものであってもよい。
c. 一例では、DMモードは、例えば(ALWIP)モードをノーマル・イントラ・モードの1つにマッピングすることによって、対応するルマ・ブロックのイントラ予測モードに従って導出されてもよい。
11. クロマ・ブロックの対応するルマ・ブロックがALWIPモードでコーディングされる場合、幾つかのDMモードが導出される可能性がある。
12. 1つの対応するルマ・ブロックがALWIPモードでコーディングされる場合、特殊モードがクロマ・ブロックに割り当てられることが、提案される。
a. 一例では、特殊モードは、ALWIPコーディングされたブロックに関連するイントラ予測モードにかかわらず、所与のノーマル・イントラ予測モードであるように定義される。
b. 一例では、イントラ予測の多様な方法がこの特殊モードに割り当てられてもよい。
13. ALWIPがクロマ成分に適用されてもよいことが、提案される。
a. 一例では、マトリクス及び/又はバイアス・ベクトルは、異なるカラー成分に対しては異なっていてもよい。
b. 一例では、行列及び/又はバイアス・ベクトルは、Cb及びCrに対して一緒に事前に定義されてもよい。
i. 一例では、Cb及びCr成分は連結されてもよい。
ii. 一例では、Cb及びCr成分はインターリーブされてもよい。
c. 一例では、クロマ成分は、対応するルマ・ブロックと同じALWIPイントラ予測モードを共有してもよい。
i. 一例では、対応するルマ・ブロックがALWIPモードを適用し、クロマ・ブロックがDMモードでコーディングされる場合、同じALWIPイントラ予測モードがクロマ成分に適用される。
ii. 一例では、同じALWIPイントラ予測モードがクロマ成分に適用され、その後の線形補間をスキップすることができる。
iii. 一例では、同じALWIPイントラ予測モードが、サブサンプリングされた行列及び/又はバイアス・ベクトルとともに、クロマ成分に適用される。
d. 一例では、異なる成分に対するALWIPイントラ予測モードの数は異なっていてもよい。
i. 例えば、クロマ成分に対するALWIPイントラ予測モードの数は、同じブロック幅と高さのルマ・コンポーネントに対する数より少なくてもよい。
ALWIPの適用
14. ALWIPを適用できるかどうかをシグナリングしてもよいことが、提案される。
a. 例えば、シーケンス・レベルで(例えば、SPSで)、ピクチャ・レベルで(例えば、PPS又はピクチャ・ヘッダで)、スライス・レベルで(例えば、スライス・ヘッダで)、タイル・グループ・レベルで(例えば、タイル・グループ・ヘッダで)、タイル・レベルで、CTU行レベルで、又はCTUレベルでシグナリングされてもよい。
b. 例えば、ALWIPが適用できない場合、intra_lwip_flagはシグナリングされず、0であると推定されてもよい。
15. ALWIPを適用できるかどうかは、ブロック幅(W)及び/又は高さ(H)に依存してもよいことが、提案される。
c. 例えば、W>=T1(又はW>T1)及びH>=T2(又はH>T2)である場合に、ALWIPは適用されない場合がある。例えば、T1=T2=32である。
i. 例えば、W<=T1(又はW<T1)及びH<=T2(又はH<T2)である場合に、ALWIPは適用されない場合がある。例えば、T1=T2=32である。
d. 例えば、W>=T1(又はW>T1)又はH>=T2(又はH>T2)である場合に、ALWIPは適用されない場合がある。例えば、T1=T2=32である。
i. 例えば、W<=T1(又はW<T1)又はH<=T2(又はH<T2)である場合に、ALWIPは適用されない場合がある。例えば、T1=T2=32、又はT1=T2=8である。
e. 例えば、W+H>= T(又はW*H> T)である場合、ALWIPは適用されないかもしれない。例えば、T=256である。
i. 例えば、W+H<=T(又はW + H< T)である場合、ALWIPは適用されないかもしれない。例えば、T=256である。
f. 例えば、W*H>= T(又はW*H>T)である場合、ALWIPは適用されないかもしれない。例えば、T = 256である。
i. 例えば、W*H<= T(又はW*H<T)である場合、ALWIPは適用されないかもしれない。例えば、T=256である。
g. 例えば、ALWIPを適用できない場合、intra_lwip_flag はシグナリングされず、0であると推定されてもよい。
ALWPにおける計算上の問題
16. ALWIPに係わる如何なるシフト演算も、Sによる数だけ左シフト又は右シフトのみが可能であることが提案され、ここで、Sは0以上でなければならない。
a. 一例では、Sが0以上である場合、右シフト動作は異なる場合がある。
i. 一例では、upsBdryX[x]は次のように計算されるべきである。
a. 一例では、
predSamples[ xHor + dX ][ yHor ] = ( ( upHor - dX ) * predSamples[ xHor ][ yHor ] + dX * predSamples[ xHor + upHor ][ yHor ] +offsetHor) / upHor (8-X39) 及
predSamples[ xVer ][ yVer + dY ] = ( ( upVer - dY ) * predSamples[ xVer ][ yVer ] + dY * predSamples[ xVer ][ yVer + upVer ]+offsetVer ) / upVer (8-X40)
であり、ここで、offsetHor及びoffsetVerは整数である。例えば、offsetHor = upHor/2及びoffsetVer = upVer/2である。
他のコーディング・ツールとの相互関連
18. ALWIPはCIIPコーディングされたブロックに使用されてもよいことが、提案される。
a. 一例では、CIIPコーディングされたブロックにおいて、ALWIPイントラ予測モード又はPlanarのようなノーマル・イントラ予測モードが、イントラ予測信号を生成するために使用されるか否かが、明示的にシグナリングされてもよい。
b. 一例では、ALWIPイントラ予測モード又はPlanarのようなノーマル・イントラ予測モードが、イントラ予測信号を生成するために使用されてもよいかどうかは、暗黙のうちに推定することができる。
i. 一例では、ALWIPイントラ予測モードは、CIIPコーディングされたブロックでは決して使用されない可能性がある。
1) 代替的に、ノーマル・イントラ予測は、CIIPコーディングされたブロックでは決して使用されない可能性がある。
ii. 一例では、ALWIPイントラ予測モード又はPlanarのようなノーマル・イントラ予測モードがイントラ予測信号を生成するために使用されるかどうかは、隣接するブロックの情報から推測されてもよい。
19. CCLMモードにおいて、隣接するルマ・サンプルをダウンサンプリングするために使用される手順の全部又は一部は、ALWIPモードにおいて、隣接するサンプルをダウンサンプリングするために使用されてもよいことが、提案される。
a. 代替的に、ALWIPモードにおいて、隣接するルマ・サンプルをダウンサンプリングするために使用される手順の全部又は一部は、CCLMモードにおいて、隣接するサンプルをダウンサンプリングするために使用されてもよい。
b. ダウンサンプリング手順は、CCLMプロセス及びALWIPプロセスで使用される場合に、異なるパラメータ/引数と共に呼び出されてもよい。
c. 一例では、CCLMプロセスにおけるダウンサンプリング方法(隣接するルマ位置の選択、ダウンサンプリング・フィルタなど)は、ALWIPプロセスにおいて利用されてもよい。
d. 隣接するルマ・サンプルをダウンサンプリングするために使用される手順は、少なくとも、ダウンサンプリングされた位置の選択、ダウンサンプリングフィルタ、丸め、及びクリッピング処理を含む。
20. ALWIPモードでコーディングされるブロックは、RST又は/及び二次変換又は/及び回転変換又は/及びノン・セパラブル二次変換(Non-Separable Secondary Transform,NSST)を適用することはできないことが、提案される。
a. 一例において、そのような制約が適用されてもよいかどうかは、例えば、(15)で説明される条件と同様に、ブロックの寸法情報に依存してもよい。
b. 代替的に、RST又は/及び二次変換又は/及び回転変換又は/及びNSSTが適用される場合、ALWIPモードは許可されない可能性がある。
c. 代替的に、ALWIPモードでコーディングさえるブロックは、RST又は/及び二次変換又は/及び回転変換又は/及びノン・セパラブル二次変換(NSST)を適用してもよい。
i. 一例では、変換行列の選択は、ALWIPイントラ予測モードに依存してもよい。
ii. 一例では、変換行列の選択は、ALWIPイントラ予測モードから変換されるノーマル・イントラ予測モードに依存してもよい。
iii. 一例では、変換行列の選択は、ALWIPイントラ予測モードから変換されるノーマル・イントラ予測モードの分類に依存してもよい。
21. ALWIPモードでコーディングされたブロックは、ブロック・ベースDPCM (BDPCM)又は残差RDPCMを適用できないことが、提案される。
a. 代替的に、BDPCM又はRDPCMが適用される場合に、ALWIPモードは許可されない可能性がある。
22. ALWIPモードでコーディングされるブロックはDCT‐IIのみを変換として使用できることが、提案される。
a. 一例では、変換行列インデックスのシグナリングは常にスキップされる。
b. 代替的に、ALWIPモードでコーディングされるブロックに使用される変換は、明示的にシグナリングされるのではなく、暗黙的に導出できることが、提案される。例えば、変換は、JVET-M0303で提案される方法に従って選択されてもよい。
c. 代替的に、ALWIPモードでコーディングされるブロックは変換スキップのみを使用できることが、提案される。
i. 更に、代替的に、ALWIPが使用される場合、変換スキップの使用を示すシグナリングはスキップされる。
d. 一例では、ALWIPモード情報(例えば、イネーブルされた/ディセーブルされた、予測モードインデックス)は、変換行列の指示の後に条件付きでシグナリングされてもよい。
i. 一例では、所与の変換行列(例えば、変換スキップ又はDCT-II)に対して、ALWIPモード情報の指示がシグナリングされてもよい。
ii. 更に、代替的に、ALWIPモード情報の指示は、幾つかの予め定義された変換行列に対してスキップされてもよい。
23. ALWIPモードでコーディングされるブロックは、選択された変換がモードに依存する場合に、ALWIPイントラ予測モードから変換されるノーマル・イントラ予測でコーディングされていると想定されることが、提案される。
24. ALWIPモードは変換スキップを使用できない可能性がある。
a. 例えば、この場合、変換スキップの使用の指示を更にシグナリングする必要はない。
b. 代替的に、変換スキップが適用される場合に、ALWIPモードは許可されない可能性がある。
i. 例えば、変換スキップがこのケースに適用される場合、ALWIPモード情報をシグナリングする必要はない。
25. デブロッキング・フィルタ、サンプル適応オフセット(SAO)、適応ループ・フィルタ(ALF)のようなフィルタリング・プロセスにおいて、フィルタを選択する方法、及び/又はサンプルをフィルタリングするかどうかは、ALWIPの使用によって決定されてもよい。
26. ALWIPモードでは、フィルタリングされていない隣接するサンプルが使用されてもよい。
a. 代替的に、フィルタリングされた隣接するサンプルは、ALWIPモードで使用されてもよい。
b. 一例では、フィルタリングされた隣接するサンプルはダウンサンプリングに使用されもよく、フィルタリングされてない隣接するサンプルはアップサンプリングに使用されてもよい。
c. 一例では、フィルタリングされていない隣接するサンプルはダウンサンプリングに使用されてもよく、フィルタリングされた隣接するサンプルはアップサンプリングに使用されてもよい。
d. 一例では、フィルタリングされた左に隣接するサンプルはアップサンプリングに使用されてもよく、フィルタリングされてない上に隣接するサンプルはアップサンプリングに使用されてもよい。
e. 一例では、フィルタリングされていない左に隣接するサンプルはアップサンプリングに使用されてもよく、フィルタリングされた上に隣接するサンプルはアップサンプリングに使用されてもよい。
f. 一例では、フィルタリングされた又はフィルタリングされてない隣接するサンプルはALWIPモードに依存していてもよい。
i. 一例において、ALWIPモードは、従来のイントラ予測モードに変換される可能性があり、フィルタリングされた又はフィルタリングされていない隣接するサンプルが使用されるかどうかは、変換された従来のイントラ予測モードに依存する可能性がある。例えば、このような決定は従来のイントラ予測モードと同じである。
ii. 代替的に、フィルタリングされた又はフィルタリングされてない隣接するサンプルがALWIPモードに使用されるかどうかは、シグナリングされてもよい。
g. 一例では、フィルタリングされたサンプルは、従来のイントラ予測モードと同様に生成されてもよい。
27. どの行列又は/及びオフセット・ベクトルが使用されるのかは、リシェイピング(クロマ・スケーリングによるルマ・マッピング(LMCS)としても知られている)情報に依存する可能性がある。
a. 一例では、リシェイピングがオン及びオフされる場合に、異なる行列又は/及びオフセット・ベクトルが使用されてもよい。
b. 一例では、異なる行列又は/及びオフセット・ベクトルが、異なるリシェイピング・パラメータに使用されてもよい。
c. 一例では、ALWIPは、オリジナル・ドメインで常に実行されてもよい。
i. 例えば、隣接するサンプルは、(リシェイピングが適用される場合)ALWIPで使用される前に、オリジナル・ドメインにマッピングされる。
28. ALWIPは、リシェイピングが適用される場合に、ディセーブルにされる可能性がある。
a. 代替的に、ALWIPがイネーブルにされる場合に、リシェイピングはディセーブルにされてもよい。
b. 一例では、リシェイピングが適用される場合に、ALWIPはHDR(ハイ・ダイナミック・レンジ)コンテンツに対してディセーブルにされてもよい。
29. ALWIPで使用される行列は、サンプルのビット深度に依存する可能性がある。
30. ALWIPによって生成される予測は、更に使用されるべき予測信号を取得するために処理されることになる中間信号として、取り扱われてもよいことが、提案される。
a. 一例では、位置依存イントラ予測コンビネーション(Position Dependent Intra Prediction Combination,PDPC)は、更に使用される予測信号を生成するために、ALWIPによって生成される予測に関して適用されてもよい。
b. 一例では、ALWIPによって生成される境界サンプル予測は、更に使用されるべき予測信号を生成するために、隣接するサンプルと共にフィルタリングされることが可能である。
31. バイリニア補間フィルタ以外の補間フィルタは、ALWIPのアップサンプリング・プロセスで使用されてもよいことが、提案される。
a. 一例では、4タップ補間フィルタは、ALWIPのアップサンプリング・プロセスで使用されてもよい。
i. 例えば、クロマ成分の動き補償を行うために使用されるVVCにおける4タップ補間フィルタは、ALWIPのアップサンプリング・プロセスで使用されてもよい。
ii. 例えば、角度イントラ予測を行うために使用されるVVCにおける4タップ補間フィルタは、ALWIPのアップサンプリング・プロセスにおいて使用されてもよい。
iii. 例えば、ルマ成分の動き補償を行うために使用されるVVCにおける8タップ補間フィルタは、ALWIPのアップサンプリング・プロセスで使用されてもよい。
[0185]上述の実施例は、以下で説明される方法、例えば方法1100ないし1400、及び2000ないし3800の状況に組み込まれることが可能であり、これらの方法はビデオ・エンコーダ及び/又はデコーダで実装される可能性がある。
[0186]図11は、ビデオ処理のための例示的な方法のフローチャートを示す。方法1100は、ステップ1102において、現在のビデオ・ブロックがアフィン線形重み付けイントラ予測(ALWIP)モードを使用してコーディングされることを決定するステップを含む。
図15は、ビデオ処理装置1500のブロック図である。装置1500は、本願で説明される1つ以上の方法を実装するために使用されてもよい。装置1500は、スマートフォン、タブレット、コンピュータ、モノのインターネット(IoT)受信機などで具体化されてもよい。装置1500は、1つ以上のプロセッサ1502、1つ以上のメモリ1504、及びビデオ処理ハードウェア1506を含んでもよい。プロセッサ1502は、本文書で説明される1つ以上の方法(方法1100ないし1400、及び2000ないし3800を含むが、これらに限定されない)を実装するように構成されてもよい。メモリ(memories)1504は、本願で説明される方法及び技術を実装するために使用されるデータ及びコードを記憶するために使用されてもよい。ビデオ処理ハードウェア1506は、ハードウェア回路において、本文書で説明される幾つかの技術を実装するために使用されてもよい。
方法3600の幾つかの実施形態において、境界サンプルupsBdryX[x]は、以下のうちの1つの式を使用して計算され:
方法3600の幾つかの実施形態において、境界サイズは、現在のビデオ・ブロック・サイズに基づいて事前に定義される。方法3600の幾つかの実施形態において、uDwnは、uDwn=nTbs/boundarySize として計算され、nTbs及びboundarySizeはそれぞれ現在のビデオ・ブロック・サイズ及び境界サイズを表す。方法3600の幾つかの実施形態において、境界サンプルupsBdryX[x]は、以下のうちの1つの式を使用して計算される:
predSamples[ xHor + dX ][ yHor ] = ( ( upHor - dX ) * predSamples[ xHor ][ yHor ] + dX * predSamples[ xHor + upHor ][ yHor ] + offsetHor) / upHor,及び
predSamples[ xVer ][ yVer + dY ] = ( ( upVer - dY ) * predSamples[ xVer ][ yVer ] + dY * predSamples[ xVer ][ yVer + upVer ]+ offsetVer ) / upVer,
に従って決定され、offsetHor及びoffsetVerは整数であり、upHorは現在のビデオ・ブロックのサイズに基づく所定値と現在のビデオ・ブロックの幅との関数であり、upVerは現在のビデオ・ブロックのサイズに基づく所定値と現在のビデオ・ブロックの高さとの関数であり、dXは、1・・・upHor-1であり、dYは、1・・・upVer-1であり、及びxHorはupHorに基づく位置であり、yHorは記upVerに基づく位置である。方法3700の幾つかの実施形態において、offsetHor=upHor/2、及び offsetVer=upVer/2である。
Claims (16)
- ビデオ処理方法であって:
ビデオの現在のビデオ・ブロックと前記ビデオのビットストリームとの間の変換に関し、前記現在のビデオ・ブロックの空間的に隣接するブロックを決定するステップであって、前記現在のビデオ・ブロックはイントラ・ブロックであり、前記空間的に隣接するブロックには第1予測モードが適用され、前記第1予測モードにおいては、前記空間的に隣接するブロックの予測サンプルは、前記空間的に隣接するブロックのサイズに基づいて前記空間的に隣接するブロックの参照サンプルに関して境界ダウンサンプリング処理を行って行列ベクトル乗算処理を行った後に選択的にアップサンプリング処理を行うことによって導出される、ステップ;
前記空間的に隣接するブロックについては、前記第1予測モードを第2予測モードとして扱うステップであって、前記第2予測モードは前記第1予測モードとは異なる、ステップ;
前記第2予測モードに基づいて、前記現在のビデオ・ブロックのモード候補リストを構築するステップ;
前記モード候補リストに基づいて、前記現在のビデオ・ブロックの予測モードを決定するステップであって、前記現在のビデオ・ブロックの予測モードは前記第1予測モードとは異なる、ステップ;及び
前記現在のビデオ・ブロックの予測モードに基づいて、前記ビデオの現在のビデオ・ブロックと前記ビデオのビットストリームとの間の変換を実行するステップ;
を含み、
前記第1予測モードを適用するかどうかは、第2シンタックス要素を含む複数のシンタックス要素によって指定され、
前記第2シンタックス要素の少なくとも1つのビンは、コンテキスト・ベースでコーディングされており、
前記空間的に隣接するブロックの幅-高さの比率が2より大きいことに応じて、シーケンス番号が3のコンテキストが前記第2シンタックス要素の第1ビンに使用される、方法。
- 前記複数のシンタックス要素は第1シンタックス要素を更に含み、前記第1シンタックス要素はシーケンス・パラメータ・セットに含まれ、前記第2シンタックス要素はコーディング・ユニット・レベルのシンタックス要素である、請求項1に記載の方法。
- 前記第2シンタックス要素が前記ビットストリームに含まれていないことに応じて、前記第1予測モードは適用されない、請求項1に記載の方法。
- 前記第2シンタックス要素について、K個より多いコンテキストは使用されない、請求項1に記載の方法。
- Kは4に等しい、請求項4に記載の方法。
- 前記空間的に隣接するブロックの幅-高さの比率が2以下であることに応じて、シーケンス番号が0、1又は2のコンテキストの中から選択された1つのコンテキストが前記第2シンタックス要素の第1ビンに使用される、請求項1-5のうちの何れか1項に記載の方法。
- 前記第1予測モードは複数のタイプを含み、前記空間的に隣接するブロックのタイプ・インデックスは、以前のビデオ・ブロックのタイプ・インデックスを指すことを除外して導出される、請求項1-6のうちの何れか1項に記載の方法。
- 前記空間的に隣接するブロックの前記タイプ・インデックスは、前記ビットストリームに明示的に含まれる、請求項7に記載の方法。
- 前記空間的に隣接するブロックの前記サイズに基づく前記境界ダウンサンプリング処理で導出されるダウンサンプリング因子は1以上であり、前記境界ダウンサンプリング処理から導出されるダウンサンプリングされた参照サンプルを連結することに基づいて、1次元ベクトル・アレイが更に導出され、前記1次元ベクトル・アレイは前記行列ベクトル乗算処理の入力として使用される、請求項1-8のうちの何れか1項に記載の方法。
- 前記第2予測モードにおいて、予測値を導出するために、距離に基づく重み付け計算が垂直方向及び水平方向において参照値に適用される、請求項1-9のうちの何れか1項に記載の方法。
- 前記第2予測モードは平面モードを含む、請求項1-10のうちの何れか1項に記載の方法。
- 前記ビデオの現在のビデオ・ブロックと前記ビデオのビットストリームとの間の変換は、前記現在のビデオ・ブロックを前記ビットストリームに符号化することを含む、請求項1-11のうちの何れか1項に記載の方法。
- 前記ビデオの現在のビデオ・ブロックと前記ビデオのビットストリームとの間の変換は、前記現在のビデオ・ブロックを前記ビットストリームから復号化することを含む、請求項1-11のうちの何れか1項に記載の方法。
- プロセッサと命令を伴う非一時的なメモリとを備えるビデオ・データを処理する装置であって、前記命令は、前記プロセッサにより実行されると、前記プロセッサに:
ビデオの現在のビデオ・ブロックと前記ビデオのビットストリームとの間の変換に関し、前記現在のビデオ・ブロックの空間的に隣接するブロックを決定するステップであって、前記現在のビデオ・ブロックはイントラ・ブロックであり、前記空間的に隣接するブロックには第1予測モードが適用され、前記第1予測モードにおいては、前記空間的に隣接するブロックの予測サンプルは、前記空間的に隣接するブロックのサイズに基づいて前記空間的に隣接するブロックの参照サンプルに関して境界ダウンサンプリング処理を行って行列ベクトル乗算処理を行った後に選択的にアップサンプリング処理を行うことによって導出される、ステップ;
前記空間的に隣接するブロックについては、前記第1予測モードを第2予測モードとして扱うステップであって、前記第2予測モードは前記第1予測モードとは異なる、ステップ;
前記第2予測モードに基づいて、前記現在のビデオ・ブロックのモード候補リストを構築するステップ;
前記モード候補リストに基づいて、前記現在のビデオ・ブロックの予測モードを決定するステップであって、前記現在のビデオ・ブロックの予測モードは前記第1予測モードとは異なる、ステップ;及び
前記現在のビデオ・ブロックの予測モードに基づいて、前記ビデオの現在のビデオ・ブロックと前記ビデオのビットストリームとの間の変換を実行するステップ;
を行わせ、
前記第1予測モードを適用するかどうかは、第2シンタックス要素を含む複数のシンタックス要素によって指定され、
前記第2シンタックス要素の少なくとも1つのビンは、コンテキスト・ベースでコーディングされており、
前記空間的に隣接するブロックの幅-高さの比率が2より大きいことに応じて、シーケンス番号が3のコンテキストが前記第2シンタックス要素の第1ビンに使用される、装置。 - 命令を記憶する非一時的なコンピュータ読み取り可能な記憶媒体であって、前記命令は、プロセッサに:
ビデオの現在のビデオ・ブロックと前記ビデオのビットストリームとの間の変換に関し、前記現在のビデオ・ブロックの空間的に隣接するブロックを決定するステップであって、前記現在のビデオ・ブロックはイントラ・ブロックであり、前記空間的に隣接するブロックには第1予測モードが適用され、前記第1予測モードにおいては、前記空間的に隣接するブロックの予測サンプルは、前記空間的に隣接するブロックのサイズに基づいて前記空間的に隣接するブロックの参照サンプルに関して境界ダウンサンプリング処理を行って行列ベクトル乗算処理を行った後に選択的にアップサンプリング処理を行うことによって導出される、ステップ;
前記空間的に隣接するブロックについては、前記第1予測モードを第2予測モードとして扱うステップであって、前記第2予測モードは前記第1予測モードとは異なる、ステップ;
前記第2予測モードに基づいて、前記現在のビデオ・ブロックのモード候補リストを構築するステップ;
前記モード候補リストに基づいて、前記現在のビデオ・ブロックの予測モードを決定するステップであって、前記現在のビデオ・ブロックの予測モードは前記第1予測モードとは異なる、ステップ;及び
前記現在のビデオ・ブロックの予測モードに基づいて、前記ビデオの現在のビデオ・ブロックと前記ビデオのビットストリームとの間の変換を実行するステップ;
を行わせ、
前記第1予測モードを適用するかどうかは、第2シンタックス要素を含む複数のシンタックス要素によって指定され、
前記第2シンタックス要素の少なくとも1つのビンは、コンテキスト・ベースでコーディングされており、
前記空間的に隣接するブロックの幅-高さの比率が2より大きいことに応じて、シーケンス番号が3のコンテキストが前記第2シンタックス要素の第1ビンに使用される、記憶媒体。 - ビデオのビットストリームを記憶する方法であって、
現在のビデオ・ブロックの空間的に隣接するブロックを決定するステップであって、前記現在のビデオ・ブロックはイントラ・ブロックであり、前記空間的に隣接するブロックには第1予測モードが適用され、前記第1予測モードにおいては、前記空間的に隣接するブロックの予測サンプルは、前記空間的に隣接するブロックのサイズに基づいて前記空間的に隣接するブロックの参照サンプルに関して境界ダウンサンプリング処理を行って行列ベクトル乗算処理を行った後に選択的にアップサンプリング処理を行うことによって導出される、ステップ;
前記空間的に隣接するブロックについては、前記第1予測モードを第2予測モードとして扱うステップであって、前記第2予測モードは前記第1予測モードとは異なる、ステップ;
前記第2予測モードに基づいて、前記現在のビデオ・ブロックのモード候補リストを構築するステップ;
前記モード候補リストに基づいて、前記現在のビデオ・ブロックの予測モードを決定するステップであって、前記現在のビデオ・ブロックの予測モードは前記第1予測モードとは異なる、ステップ;
前記現在のビデオ・ブロックの予測モードに基づいて、前記ビットストリームを前記現在のビデオ・ブロックから生成するステップ;及び
前記ビットストリームを、非一時的なコンピュータ読み取り可能な記憶媒体に記憶するステップ;
を含み、
前記第1予測モードを適用するかどうかは、第2シンタックス要素を含む複数のシンタックス要素によって指定され、
前記第2シンタックス要素の少なくとも1つのビンは、コンテキスト・ベースでコーディングされており、
前記空間的に隣接するブロックの幅-高さの比率が2より大きいことに応じて、シーケンス番号が3のコンテキストが前記第2シンタックス要素の第1ビンに使用される、方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNPCT/CN2019/082424 | 2019-04-12 | ||
CN2019082424 | 2019-04-12 | ||
PCT/CN2020/084505 WO2020207502A1 (en) | 2019-04-12 | 2020-04-13 | Most probable mode list construction for matrix-based intra prediction |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022526991A JP2022526991A (ja) | 2022-05-27 |
JP7404387B2 true JP7404387B2 (ja) | 2023-12-25 |
Family
ID=72750962
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021559285A Active JP7299341B2 (ja) | 2019-04-12 | 2020-04-13 | ビデオ処理方法、装置、記憶媒体、及び記憶方法 |
JP2021559284A Active JP7303325B2 (ja) | 2019-04-12 | 2020-04-13 | ビデオ処理方法、装置、記憶媒体、及び記憶方法 |
JP2021559286A Active JP7299342B2 (ja) | 2019-04-12 | 2020-04-13 | ビデオ処理方法、装置、記憶媒体、及び記憶方法 |
JP2021559287A Pending JP2022526990A (ja) | 2019-04-12 | 2020-04-13 | ビデオ処理方法、装置、記憶媒体、及び記録媒体 |
JP2021559288A Active JP7404387B2 (ja) | 2019-04-12 | 2020-04-13 | ビデオ処理方法、装置、記憶媒体及び記憶方法 |
JP2023102125A Pending JP2023123639A (ja) | 2019-04-12 | 2023-06-22 | マトリクス・ベースのイントラ予測における計算 |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021559285A Active JP7299341B2 (ja) | 2019-04-12 | 2020-04-13 | ビデオ処理方法、装置、記憶媒体、及び記憶方法 |
JP2021559284A Active JP7303325B2 (ja) | 2019-04-12 | 2020-04-13 | ビデオ処理方法、装置、記憶媒体、及び記憶方法 |
JP2021559286A Active JP7299342B2 (ja) | 2019-04-12 | 2020-04-13 | ビデオ処理方法、装置、記憶媒体、及び記憶方法 |
JP2021559287A Pending JP2022526990A (ja) | 2019-04-12 | 2020-04-13 | ビデオ処理方法、装置、記憶媒体、及び記録媒体 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023102125A Pending JP2023123639A (ja) | 2019-04-12 | 2023-06-22 | マトリクス・ベースのイントラ予測における計算 |
Country Status (13)
Country | Link |
---|---|
US (8) | US11457220B2 (ja) |
EP (5) | EP3939314A4 (ja) |
JP (6) | JP7299341B2 (ja) |
KR (6) | KR20210145754A (ja) |
CN (8) | CN113678440B (ja) |
AU (2) | AU2020256658A1 (ja) |
BR (2) | BR112021020065A2 (ja) |
CA (2) | CA3135966A1 (ja) |
MX (2) | MX2021012230A (ja) |
PH (2) | PH12021552535A1 (ja) |
SG (2) | SG11202110939TA (ja) |
WO (7) | WO2020207502A1 (ja) |
ZA (2) | ZA202107451B (ja) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200028856A (ko) | 2018-09-07 | 2020-03-17 | 김기백 | 인트라 예측을 이용한 영상 부호화/복호화 방법 및 장치 |
EP3939314A4 (en) | 2019-04-12 | 2022-06-08 | Beijing Bytedance Network Technology Co., Ltd. | MATRIX-BASED INTRA PREDICTION-BASED TRANSFORMATION CODING |
KR102744182B1 (ko) | 2019-04-16 | 2024-12-19 | 두인 비전 컴퍼니 리미티드 | 인트라 코딩 모드에서의 행렬 도출 |
EP3952313B1 (en) * | 2019-04-16 | 2024-05-29 | LG Electronics Inc. | Transform in intra prediction-based image coding |
AU2020259889A1 (en) * | 2019-04-16 | 2021-11-11 | Panasonic Intellectual Property Corporation Of America | Encoding device, decoding device, encoding method, and decoding method |
CN113826395B (zh) * | 2019-04-16 | 2023-06-30 | Lg电子株式会社 | 图像编码中基于矩阵的帧内预测的变换 |
CN118118665A (zh) * | 2019-04-16 | 2024-05-31 | Lg电子株式会社 | 解码设备、编码设备和发送设备 |
ES2975941T3 (es) | 2019-04-17 | 2024-07-18 | Huawei Tech Co Ltd | Armonización de intrapredicción basada en matriz y selección de núcleo de transformada secundaria |
US11381808B2 (en) * | 2019-04-25 | 2022-07-05 | Hfi Innovation Inc. | Method and apparatus of matrix based intra prediction in image and video processing |
CN119277062A (zh) * | 2019-04-27 | 2025-01-07 | 数码士有限公司 | 基于帧内预测处理视频信号的方法和设备 |
AU2020265960A1 (en) * | 2019-04-27 | 2021-08-19 | Huawei Technologies Co., Ltd. | An encoder, a decoder and corresponding methods of intra prediction |
CN117241018A (zh) | 2019-05-01 | 2023-12-15 | 北京字节跳动网络技术有限公司 | 使用滤波的基于矩阵的帧内预测 |
CN117097912A (zh) | 2019-05-01 | 2023-11-21 | 北京字节跳动网络技术有限公司 | 基于矩阵的帧内预测的上下文编码 |
WO2020226424A1 (ko) | 2019-05-08 | 2020-11-12 | 엘지전자 주식회사 | Mip 및 lfnst를 수행하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법 |
WO2020228672A1 (en) | 2019-05-10 | 2020-11-19 | Beijing Bytedance Network Technology Co., Ltd. | Context modeling of reduced secondary transforms in video |
WO2020228663A1 (en) * | 2019-05-11 | 2020-11-19 | Beijing Bytedance Network Technology Co., Ltd. | Interactions among multiple intra coding methods |
JP2022533190A (ja) | 2019-05-22 | 2022-07-21 | 北京字節跳動網絡技術有限公司 | アップサンプリングを使用した行列ベースのイントラ予測 |
WO2020239017A1 (en) | 2019-05-31 | 2020-12-03 | Beijing Bytedance Network Technology Co., Ltd. | One-step downsampling process in matrix-based intra prediction |
CN119254990A (zh) * | 2019-06-03 | 2025-01-03 | Lg电子株式会社 | 图像解码方法、图像编码方法和数据发送方法 |
JP7379541B2 (ja) * | 2019-06-03 | 2023-11-14 | エルジー エレクトロニクス インコーポレイティド | マトリックスに基づくイントラ予測装置及び方法 |
CN113950836B (zh) | 2019-06-05 | 2024-01-12 | 北京字节跳动网络技术有限公司 | 基于矩阵的帧内预测的上下文确定 |
CN117241014A (zh) | 2019-06-05 | 2023-12-15 | 华为技术有限公司 | Mpm列表构建方法、色度块的帧内预测模式获取方法及装置 |
EP3967032A4 (en) | 2019-06-07 | 2022-07-27 | Beijing Bytedance Network Technology Co., Ltd. | CONDITIONAL SIGNALING OF A REDUCED SECONDARY TRANSFORM FOR VIDEO BIANARY FLOWS |
CN119277085A (zh) * | 2019-06-10 | 2025-01-07 | 株式会社 Xris | 用于对图像信号进行编码/解码方法及其装置 |
US11128868B2 (en) | 2019-06-11 | 2021-09-21 | Mediatek Inc. | Method and apparatus of matrix-based intra prediction for video coding |
US11589065B2 (en) * | 2019-06-24 | 2023-02-21 | Hyundai Motor Company | Method and apparatus for intra-prediction coding of video data |
CN112514381A (zh) * | 2019-06-25 | 2021-03-16 | Oppo广东移动通信有限公司 | 图像编解码方法、编码器、解码器以及存储介质 |
CN119629366A (zh) * | 2019-07-07 | 2025-03-14 | Oppo广东移动通信有限公司 | 图像预测方法、编码器、解码器以及存储介质 |
JP2022541700A (ja) * | 2019-07-24 | 2022-09-27 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | イントラ予測モードに関連するエンコーダ、デコーダ、および対応する方法 |
CN114208190B (zh) | 2019-08-03 | 2023-12-15 | 北京字节跳动网络技术有限公司 | 视频编解码中缩减二次变换的矩阵的选择 |
JP7568348B2 (ja) | 2019-08-14 | 2024-10-16 | 北京字節跳動網絡技術有限公司 | イントラモードにおける予測サンプルフィルタリングのための重み付け係数 |
CN117376556A (zh) | 2019-08-14 | 2024-01-09 | 北京字节跳动网络技术有限公司 | 位置相关帧内预测样点滤波 |
WO2021032045A1 (en) | 2019-08-17 | 2021-02-25 | Beijing Bytedance Network Technology Co., Ltd. | Context modeling of side information for reduced secondary transforms in video |
WO2021043299A1 (en) | 2019-09-05 | 2021-03-11 | Beijing Bytedance Network Technology Co., Ltd. | Range constrains for block vector in intra-block copy mode |
GB2588406B (en) * | 2019-10-22 | 2022-12-07 | British Broadcasting Corp | Video encoding and video decoding |
KR20220082847A (ko) | 2019-10-28 | 2022-06-17 | 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 | 색상 성분에 기초한 신택스 시그널링 및 파싱 |
EP3955574B1 (en) | 2019-12-19 | 2024-09-25 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Image component prediction method, encoder, decoder, and storage medium |
US12069305B2 (en) * | 2021-04-16 | 2024-08-20 | Tencent America LLC | Low memory design for multiple reference line selection scheme |
US12120335B2 (en) * | 2021-08-24 | 2024-10-15 | Tencent America LLC | Hardware friendly design for intra mode coding |
WO2023140547A1 (ko) * | 2022-01-19 | 2023-07-27 | 현대자동차주식회사 | 다중 참조라인들을 이용하는 크로마 채널 코딩을 위한 방법 및 장치 |
WO2024137862A1 (en) * | 2022-12-22 | 2024-06-27 | Bytedance Inc. | Method, apparatus, and medium for video processing |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020205705A1 (en) | 2019-04-04 | 2020-10-08 | Tencent America LLC | Simplified signaling method for affine linear weighted intra prediction mode |
JP2022501896A (ja) | 2018-09-21 | 2022-01-06 | オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. | ビデオ信号符号化/復号化方法およびそのための機器 |
JP2022514870A (ja) | 2018-12-20 | 2022-02-16 | フラウンホーファー-ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン | 隣接サンプル減少を伴う線形またはアフィン変換を使用するイントラ予測 |
Family Cites Families (172)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100323676B1 (ko) | 2000-01-27 | 2002-02-07 | 구자홍 | 디지털 동영상 수신 장치 |
US7142601B2 (en) | 2003-04-14 | 2006-11-28 | Mitsubishi Electric Research Laboratories, Inc. | Transcoding compressed videos to reducing resolution videos |
WO2005086981A2 (en) | 2004-03-10 | 2005-09-22 | Sindhara Supermedia, Inc. | Methods and apparatuses for compressing digital image data with motion prediction |
US8340177B2 (en) * | 2004-07-12 | 2012-12-25 | Microsoft Corporation | Embedded base layer codec for 3D sub-band coding |
CN100461867C (zh) * | 2004-12-02 | 2009-02-11 | 中国科学院计算技术研究所 | 一种帧内图像预测编码方法 |
JP5026092B2 (ja) | 2007-01-12 | 2012-09-12 | 三菱電機株式会社 | 動画像復号装置および動画像復号方法 |
KR101365575B1 (ko) * | 2007-02-05 | 2014-02-25 | 삼성전자주식회사 | 인터 예측 부호화, 복호화 방법 및 장치 |
KR101433169B1 (ko) * | 2008-01-03 | 2014-08-28 | 경희대학교 산학협력단 | 인트라 방향성에 따른 모드 예측 및 양자화 매트릭스와스캐닝 적용 방법 및 장치 |
CN101848383A (zh) * | 2009-03-24 | 2010-09-29 | 虹软(上海)科技有限公司 | 对mpeg2格式视频进行降采样解码的方法 |
US20100246675A1 (en) | 2009-03-30 | 2010-09-30 | Sony Corporation | Method and apparatus for intra-prediction in a video encoder |
RU2011149204A (ru) | 2009-06-09 | 2013-06-10 | Сони Корпорейшн | Устройство и способ обработки изображений |
CN101646081A (zh) * | 2009-06-18 | 2010-02-10 | 杭州高特信息技术有限公司 | 一种avs快速帧内预测方法及装置 |
CN102045560B (zh) * | 2009-10-23 | 2013-08-07 | 华为技术有限公司 | 一种视频编解码方法及设备 |
KR20110045949A (ko) * | 2009-10-28 | 2011-05-04 | 삼성전자주식회사 | 회전 변환을 이용한 영상 부호화, 복호화 방법 및 장치 |
WO2011125313A1 (ja) | 2010-04-09 | 2011-10-13 | 三菱電機株式会社 | 動画像符号化装置および動画像復号装置 |
JP5544996B2 (ja) | 2010-04-09 | 2014-07-09 | ソニー株式会社 | 画像処理装置および方法 |
RU2595515C2 (ru) | 2010-05-14 | 2016-08-27 | Томсон Лайсенсинг | Способы и устройство для внутреннего кодирования блока, имеющего пиксели, распределенные по группам |
WO2012014461A1 (ja) * | 2010-07-28 | 2012-02-02 | パナソニック株式会社 | 符号化方法および復号化方法 |
CN102377993B (zh) | 2010-08-05 | 2014-09-03 | 富士通株式会社 | 帧内预测模式选择方法和系统 |
US8885701B2 (en) * | 2010-09-08 | 2014-11-11 | Samsung Electronics Co., Ltd. | Low complexity transform coding using adaptive DCT/DST for intra-prediction |
US8923395B2 (en) * | 2010-10-01 | 2014-12-30 | Qualcomm Incorporated | Video coding using intra-prediction |
CN101977316B (zh) | 2010-10-27 | 2012-07-25 | 无锡中星微电子有限公司 | 一种可伸缩编码方法 |
US9167252B2 (en) | 2010-12-01 | 2015-10-20 | Texas Instruments Incorporated | Quantization matrix compression in video coding |
KR102086145B1 (ko) | 2010-12-13 | 2020-03-09 | 한국전자통신연구원 | 인트라 예측 방법 및 그 장치 |
BR112013014371B8 (pt) * | 2011-01-07 | 2022-05-24 | Hfi Innovation Inc | Método e aparelho de codificação aperfeiçoada de modo de predição intra crominância |
US8861593B2 (en) | 2011-03-15 | 2014-10-14 | Sony Corporation | Context adaptation within video coding modules |
JP2012238927A (ja) | 2011-05-09 | 2012-12-06 | Sony Corp | 画像処理装置及び画像処理方法 |
US9894353B2 (en) * | 2011-06-13 | 2018-02-13 | Sun Patent Trust | Method and apparatus for encoding and decoding video using intra prediction mode dependent adaptive quantization matrix |
US9392301B2 (en) | 2011-07-01 | 2016-07-12 | Qualcomm Incorporated | Context adaptive entropy coding for non-square blocks in video coding |
CN102427530B (zh) | 2011-10-11 | 2013-10-23 | 北京工业大学 | 帧内预测方法 |
KR101947658B1 (ko) * | 2011-10-24 | 2019-02-14 | (주)대가람 | 영상 복호화 방법 및 장치 |
KR20130049526A (ko) * | 2011-11-04 | 2013-05-14 | 오수미 | 복원 블록 생성 방법 |
US9088796B2 (en) | 2011-11-07 | 2015-07-21 | Sharp Kabushiki Kaisha | Video decoder with enhanced CABAC decoding |
US9451287B2 (en) | 2011-11-08 | 2016-09-20 | Qualcomm Incorporated | Context reduction for context adaptive binary arithmetic coding |
WO2013129203A1 (ja) * | 2012-02-29 | 2013-09-06 | ソニー株式会社 | 画像処理装置および方法 |
US20150043637A1 (en) | 2012-04-13 | 2015-02-12 | Sony Corporation | Image processing device and method |
CN104919798B (zh) * | 2012-04-16 | 2018-12-14 | 华为技术有限公司 | 量化矩阵编码的方法和装置 |
US9277211B2 (en) * | 2012-04-20 | 2016-03-01 | Futurewei Technologies, Inc. | Binarization scheme for intra prediction residuals and improved intra prediction in lossless coding in HEVC |
GB2501535A (en) | 2012-04-26 | 2013-10-30 | Sony Corp | Chrominance Processing in High Efficiency Video Codecs |
US9538205B2 (en) | 2012-06-01 | 2017-01-03 | Sharp Kabushiki Kaisha | Arithmetic decoding device, image decoding apparatus, arithmetic coding device, and image coding apparatus |
HUE063933T2 (hu) * | 2012-06-29 | 2024-02-28 | Electronics & Telecommunications Res Inst | Eljárás és eszköz képek kódolására/dekódolására |
US9998727B2 (en) * | 2012-09-19 | 2018-06-12 | Qualcomm Incorporated | Advanced inter-view residual prediction in multiview or 3-dimensional video coding |
WO2014052740A1 (en) | 2012-09-28 | 2014-04-03 | Vid Scale, Inc. | Adaptive upsampling for multi-layer video coding |
US20140098883A1 (en) | 2012-10-09 | 2014-04-10 | Nokia Corporation | Method and apparatus for video coding |
US10147202B2 (en) * | 2013-03-15 | 2018-12-04 | Arm Limited | Methods of and apparatus for encoding and decoding data |
US9521425B2 (en) | 2013-03-19 | 2016-12-13 | Qualcomm Incorporated | Disparity vector derivation in 3D video coding for skip and direct modes |
US9716894B2 (en) * | 2013-03-25 | 2017-07-25 | Qualcomm Incorporated | Intra prediction modes for lossy coding when transform is skipped |
US20160073107A1 (en) * | 2013-04-15 | 2016-03-10 | Intellectual Discovery Co., Ltd | Method and apparatus for video encoding/decoding using intra prediction |
US20150016533A1 (en) * | 2013-07-12 | 2015-01-15 | Qualcomm Incorporated | Intra motion compensation extensions |
CN103391443A (zh) * | 2013-08-05 | 2013-11-13 | 深圳市云宙多媒体技术有限公司 | 一种大尺寸块的亮度变换域帧内预测编解码方法及系统 |
US10148971B2 (en) | 2013-09-24 | 2018-12-04 | Vid Scale, Inc. | Inter-layer prediction for scalable video coding |
EP3058739B1 (en) * | 2013-10-14 | 2019-08-07 | Microsoft Technology Licensing, LLC | Features of intra block copy prediction mode for video and image coding and decoding |
KR102250092B1 (ko) | 2013-10-14 | 2021-05-10 | 삼성전자주식회사 | 다시점 비디오 부호화 방법 및 장치, 다시점 비디오 복호화 방법 및 장치 |
US10110910B2 (en) | 2013-10-21 | 2018-10-23 | Vid Scale, Inc. | Parallel decoding method for layered video coding |
US10397607B2 (en) * | 2013-11-01 | 2019-08-27 | Qualcomm Incorporated | Color residual prediction for video coding |
KR101786414B1 (ko) | 2013-12-13 | 2017-10-17 | 브이아이디 스케일, 인크. | 보간을 이용하는 루마 및 크로마의 위상 정렬을 위한 컬러 색역 스케일러블 비디오 코딩 디바이스 및 방법 |
WO2015103124A1 (en) | 2014-01-02 | 2015-07-09 | Vid Scale, Inc. | Color space conversion |
CA2934699A1 (en) | 2014-01-03 | 2015-07-09 | Microsoft Technology Licensing, Llc | Block vector prediction in video and image coding/decoding |
WO2015131330A1 (en) * | 2014-03-04 | 2015-09-11 | Microsoft Technology Licensing, Llc | Encoding strategies for adaptive switching of color spaces, color sampling rates and/or bit depths |
WO2015131388A1 (en) | 2014-03-07 | 2015-09-11 | Qualcomm Incorporated | Simplification of depth intra mode coding in 3d video coding |
EP3138293A4 (en) | 2014-04-29 | 2017-05-24 | Microsoft Technology Licensing, LLC | Encoder-side decisions for sample adaptive offset filtering |
AU2014202921B2 (en) * | 2014-05-29 | 2017-02-02 | Canon Kabushiki Kaisha | Method, apparatus and system for de-blocking a block of video samples |
US10142642B2 (en) * | 2014-06-04 | 2018-11-27 | Qualcomm Incorporated | Block adaptive color-space conversion coding |
KR102413529B1 (ko) * | 2014-06-19 | 2022-06-24 | 마이크로소프트 테크놀로지 라이센싱, 엘엘씨 | 통합된 인트라 블록 카피 및 인터 예측 모드 |
CN106664416B (zh) | 2014-07-06 | 2019-11-05 | Lg电子株式会社 | 处理视频信号的方法及其装置 |
US9918105B2 (en) * | 2014-10-07 | 2018-03-13 | Qualcomm Incorporated | Intra BC and inter unification |
WO2016074147A1 (en) | 2014-11-11 | 2016-05-19 | Mediatek Singapore Pte. Ltd. | Separated coding tree for luma and chroma |
TWI511530B (zh) * | 2014-12-09 | 2015-12-01 | Univ Nat Kaohsiung 1St Univ Sc | Distributed video coding system and decoder for distributed video coding system |
US10097839B2 (en) | 2014-12-19 | 2018-10-09 | Qualcomm Incorporated | Palette mode for subsampling format |
US10958927B2 (en) | 2015-03-27 | 2021-03-23 | Qualcomm Incorporated | Motion information derivation mode determination in video coding |
WO2016167538A1 (ko) | 2015-04-12 | 2016-10-20 | 엘지전자(주) | 비디오 신호의 인코딩, 디코딩 방법 및 그 장치 |
EP4013051A1 (en) * | 2015-06-05 | 2022-06-15 | Dolby Laboratories Licensing Corporation | Methods for encoding and decoding intra-frame prediction |
US10306240B2 (en) * | 2015-06-08 | 2019-05-28 | Vid Scale, Inc. | Intra block copy mode for screen content coding |
CN115134607B (zh) | 2015-06-11 | 2025-02-18 | 杜比实验室特许公司 | 使用自适应去块滤波编码和解码图像的方法及其装置 |
KR101809630B1 (ko) * | 2015-06-11 | 2017-12-15 | 인텔렉추얼디스커버리 주식회사 | 적응적인 디블록킹 필터링에 관한 부호화/복호화 방법 및 장치 |
WO2016199330A1 (ja) | 2015-06-12 | 2016-12-15 | パナソニックIpマネジメント株式会社 | 画像符号化方法、画像復号方法、画像符号化装置および画像復号装置 |
US10531084B2 (en) * | 2015-06-15 | 2020-01-07 | Lg Electronics Inc. | Intra prediction mode based image processing method, and apparatus therefor |
US20160373770A1 (en) | 2015-06-18 | 2016-12-22 | Qualcomm Incorporated | Intra prediction and intra mode coding |
US20160373742A1 (en) * | 2015-06-18 | 2016-12-22 | Qualcomm Incorporated | Intra prediction and intra mode coding |
US11463689B2 (en) * | 2015-06-18 | 2022-10-04 | Qualcomm Incorporated | Intra prediction and intra mode coding |
US20160373782A1 (en) | 2015-06-18 | 2016-12-22 | Qualcomm Incorporated | Intra prediction and intra mode coding |
US10841593B2 (en) | 2015-06-18 | 2020-11-17 | Qualcomm Incorporated | Intra prediction and intra mode coding |
US10142627B2 (en) | 2015-06-18 | 2018-11-27 | Qualcomm Incorporated | Intra prediction and intra mode coding |
US11477484B2 (en) * | 2015-06-22 | 2022-10-18 | Qualcomm Incorporated | Video intra prediction using hybrid recursive filters |
EP3320684B1 (en) | 2015-07-08 | 2024-09-04 | InterDigital Madison Patent Holdings, SAS | Enhanced chroma coding using cross plane filtering |
EP3329679A1 (en) | 2015-07-28 | 2018-06-06 | VID SCALE, Inc. | High dynamic range video coding architectures with multiple operating modes |
WO2017041271A1 (en) | 2015-09-10 | 2017-03-16 | Mediatek Singapore Pte. Ltd. | Efficient context modeling for coding a block of data |
WO2017052174A1 (ko) * | 2015-09-21 | 2017-03-30 | 엘지전자(주) | 계수 유도 예측을 이용하여 비디오 신호를 처리하는 방법 및 장치 |
US10491922B2 (en) * | 2015-09-29 | 2019-11-26 | Qualcomm Incorporated | Non-separable secondary transform for video coding |
CN108141585B (zh) * | 2015-10-22 | 2021-11-19 | Lg 电子株式会社 | 视频编码系统中的帧内预测方法和装置 |
KR102160624B1 (ko) | 2015-11-02 | 2020-09-28 | 돌비 레버러토리즈 라이쎈싱 코오포레이션 | 하이 다이내믹 레인지 비디오의 crc 코드들을 포함한 계층화된 표현 및 전달 |
WO2017084577A1 (en) | 2015-11-18 | 2017-05-26 | Mediatek Inc. | Method and apparatus for intra prediction mode using intra prediction filter in video and image compression |
US10200719B2 (en) | 2015-11-25 | 2019-02-05 | Qualcomm Incorporated | Modification of transform coefficients for non-square transform units in video coding |
US10863207B2 (en) | 2015-11-27 | 2020-12-08 | Mediatek Inc. | Method and apparatus of entropy coding and context modelling for video and image coding |
US10448011B2 (en) * | 2016-03-18 | 2019-10-15 | Mediatek Inc. | Method and apparatus of intra prediction in image and video processing |
US10455228B2 (en) * | 2016-03-21 | 2019-10-22 | Qualcomm Incorporated | Determining prediction parameters for non-square blocks in video coding |
EP3442232A4 (en) | 2016-04-06 | 2019-12-04 | KT Corporation | METHOD AND APPARATUS FOR PROCESSING VIDEO SIGNAL |
CN109076243B (zh) * | 2016-05-04 | 2022-01-25 | 夏普株式会社 | 用于对变换数据进行编码的系统和方法 |
KR20190015216A (ko) * | 2016-05-05 | 2019-02-13 | 브이아이디 스케일, 인크. | 인트라 코딩을 위한 제어 포인트 기반의 인트라 방향 표현 |
EP3244614A1 (en) * | 2016-05-13 | 2017-11-15 | Thomson Licensing | A method and a device for decoding an intra predicted block of a picture and corresponding coding method and coding device |
US10547854B2 (en) * | 2016-05-13 | 2020-01-28 | Qualcomm Incorporated | Neighbor based signaling of intra prediction modes |
US11228770B2 (en) * | 2016-05-16 | 2022-01-18 | Qualcomm Incorporated | Loop sample processing for high dynamic range and wide color gamut video coding |
WO2017204427A1 (ko) * | 2016-05-23 | 2017-11-30 | 가온미디어 주식회사 | 영상 처리 방법, 그를 이용한 영상 복호화 및 부호화 방법 |
KR20180136555A (ko) * | 2016-06-03 | 2018-12-24 | 엘지전자 주식회사 | 영상 코딩 시스템에서 인트라 예측 방법 및 장치 |
US10484712B2 (en) * | 2016-06-08 | 2019-11-19 | Qualcomm Incorporated | Implicit coding of reference line index used in intra prediction |
US20170374369A1 (en) * | 2016-06-24 | 2017-12-28 | Mediatek Inc. | Methods and Apparatuses of Decoder Side Intra Mode Derivation |
CN116708773A (zh) * | 2016-07-18 | 2023-09-05 | 韩国电子通信研究院 | 图像编码/解码方法和装置以及存储比特流的记录介质 |
GB2552323B (en) | 2016-07-18 | 2020-04-29 | Imagination Tech Ltd | Mip map compression |
US10368107B2 (en) | 2016-08-15 | 2019-07-30 | Qualcomm Incorporated | Intra video coding using a decoupled tree structure |
CN109565602A (zh) | 2016-08-15 | 2019-04-02 | 诺基亚技术有限公司 | 视频编码和解码 |
US10326986B2 (en) * | 2016-08-15 | 2019-06-18 | Qualcomm Incorporated | Intra video coding using a decoupled tree structure |
US10721489B2 (en) | 2016-09-06 | 2020-07-21 | Qualcomm Incorporated | Geometry-based priority for the construction of candidate lists |
CN109691099B (zh) | 2016-09-13 | 2023-10-27 | 韩国电子通信研究院 | 视频编码/解码方法和装置以及在其中存储比特流的记录介质 |
EP3301916A1 (en) * | 2016-09-30 | 2018-04-04 | Thomson Licensing | Method and apparatus for omnidirectional video coding with adaptive intra most probable modes |
WO2018064948A1 (en) * | 2016-10-04 | 2018-04-12 | Mediatek Inc. | Method and apparatus for intra chroma coding in image and video coding |
US10506228B2 (en) * | 2016-10-04 | 2019-12-10 | Qualcomm Incorporated | Variable number of intra modes for video coding |
KR102410424B1 (ko) | 2016-10-04 | 2022-06-17 | 한국전자통신연구원 | 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체 |
US11095893B2 (en) * | 2016-10-12 | 2021-08-17 | Qualcomm Incorporated | Primary transform and secondary transform in video coding |
CN116916018A (zh) * | 2016-10-28 | 2023-10-20 | 韩国电子通信研究院 | 视频编码/解码方法和设备以及存储比特流的记录介质 |
CN116156161A (zh) | 2017-01-04 | 2023-05-23 | 三星电子株式会社 | 视频解码方法和设备以及视频编码方法和设备 |
US11025903B2 (en) | 2017-01-13 | 2021-06-01 | Qualcomm Incorporated | Coding video data using derived chroma mode |
CN117395406A (zh) * | 2017-04-28 | 2024-01-12 | 英迪股份有限公司 | 图像解码方法、图像编码方法和用于发送比特流的方法 |
US10638126B2 (en) | 2017-05-05 | 2020-04-28 | Qualcomm Incorporated | Intra reference filter for video coding |
US10609414B2 (en) | 2017-05-08 | 2020-03-31 | Qualcomm Incorporated | Context modeling for transform coefficient coding |
EP3622713B1 (en) * | 2017-05-09 | 2024-11-13 | Google LLC | Directional intra-prediction coding |
US10951908B2 (en) | 2017-05-24 | 2021-03-16 | Lg Electronics Inc. | Method and device for decoding image according to intra prediction in image coding system |
KR102466945B1 (ko) * | 2017-06-21 | 2022-11-14 | 엘지전자 주식회사 | 영상 코딩 시스템에서 인트라 예측에 따른 영상 디코딩 방법 및 장치 |
CN109151468B (zh) | 2017-06-28 | 2020-12-08 | 华为技术有限公司 | 一种图像数据的编码、解码方法及装置 |
CN117499630A (zh) * | 2017-07-06 | 2024-02-02 | Lx 半导体科技有限公司 | 图像解码设备、图像编码设备、用于发送图像数据的设备 |
CN109302608B (zh) | 2017-07-25 | 2021-06-22 | 华为技术有限公司 | 图像处理方法、设备及系统 |
CN116055721A (zh) * | 2017-07-28 | 2023-05-02 | 松下电器(美国)知识产权公司 | 编码装置和编码方法 |
US11172203B2 (en) * | 2017-08-08 | 2021-11-09 | Mediatek Inc. | Intra merge prediction |
US11082721B2 (en) * | 2017-09-07 | 2021-08-03 | Lg Electronics Inc. | Method and apparatus for entropy-encoding and entropy-decoding video signal |
CN107749987B (zh) | 2017-09-30 | 2020-09-18 | 河海大学 | 一种基于块运动估计的数字视频稳像方法 |
JP2021010046A (ja) | 2017-10-06 | 2021-01-28 | シャープ株式会社 | 画像符号化装置及び画像復号装置 |
KR102487032B1 (ko) | 2018-02-14 | 2023-01-11 | 돌비 레버러토리즈 라이쎈싱 코오포레이션 | 레이트 왜곡 최적화를 이용한 비디오 코딩에서의 이미지 재성형 |
KR102422798B1 (ko) | 2018-03-08 | 2022-07-19 | 삼성전자주식회사 | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 |
US10284860B1 (en) | 2018-07-02 | 2019-05-07 | Tencent America LLC | Method and apparatus for video coding |
CN117097892A (zh) * | 2018-07-06 | 2023-11-21 | Lg电子株式会社 | 图像编码/解码设备和图像数据发送设备 |
KR20200028856A (ko) | 2018-09-07 | 2020-03-17 | 김기백 | 인트라 예측을 이용한 영상 부호화/복호화 방법 및 장치 |
KR20240007716A (ko) | 2018-09-13 | 2024-01-16 | 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. | 아핀 선형 가중 인트라 예측 |
CN117880501A (zh) * | 2018-10-07 | 2024-04-12 | 三星电子株式会社 | 用于编码或解码视频信号的视频信号处理方法和设备 |
AU2019374663B2 (en) * | 2018-11-08 | 2023-02-09 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Image signal encoding/decoding method, and device for same |
US11445203B2 (en) | 2019-01-04 | 2022-09-13 | Qualcomm Incorporated | Sub-partition intra prediction in video coding |
KR102597617B1 (ko) | 2019-02-26 | 2023-11-03 | 애플 인크. | 영상 신호 부호화/복호화 방법 및 이를 위한 장치 |
MX2021010159A (es) | 2019-02-28 | 2021-09-14 | Apple Inc | Metodo para codificar/decodificar se?al de imagen, y dispositivo para el mismo. |
EP3935842A1 (en) * | 2019-03-05 | 2022-01-12 | FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. | Use-case driven context model selection for hybrid video coding tools |
CN118921455A (zh) * | 2019-03-12 | 2024-11-08 | 苹果公司 | 用于对图像信号进行编码/解码的方法及其装置 |
EP3939314A4 (en) | 2019-04-12 | 2022-06-08 | Beijing Bytedance Network Technology Co., Ltd. | MATRIX-BASED INTRA PREDICTION-BASED TRANSFORMATION CODING |
EP3949414A4 (en) | 2019-04-16 | 2023-04-12 | HFI Innovation Inc. | METHODS AND APPARATUS FOR CODING VIDEO DATA WITH ADAPTIVE SECONDARY TRANSFORM SIGNALING |
KR102744182B1 (ko) | 2019-04-16 | 2024-12-19 | 두인 비전 컴퍼니 리미티드 | 인트라 코딩 모드에서의 행렬 도출 |
JP7260665B2 (ja) | 2019-04-20 | 2023-04-18 | エルジー エレクトロニクス インコーポレイティド | Bdpcmに基づく映像コーディング方法、及びその装置 |
US11381808B2 (en) | 2019-04-25 | 2022-07-05 | Hfi Innovation Inc. | Method and apparatus of matrix based intra prediction in image and video processing |
CN119277062A (zh) | 2019-04-27 | 2025-01-07 | 数码士有限公司 | 基于帧内预测处理视频信号的方法和设备 |
AU2020265960A1 (en) | 2019-04-27 | 2021-08-19 | Huawei Technologies Co., Ltd. | An encoder, a decoder and corresponding methods of intra prediction |
CN117241018A (zh) | 2019-05-01 | 2023-12-15 | 北京字节跳动网络技术有限公司 | 使用滤波的基于矩阵的帧内预测 |
CN117097912A (zh) | 2019-05-01 | 2023-11-21 | 北京字节跳动网络技术有限公司 | 基于矩阵的帧内预测的上下文编码 |
US11284093B2 (en) | 2019-05-09 | 2022-03-22 | Qualcomm Incorporated | Affine linear weighted intra prediction in video coding |
US11363284B2 (en) | 2019-05-09 | 2022-06-14 | Qualcomm Incorporated | Upsampling in affine linear weighted intra prediction |
US11277637B2 (en) | 2019-05-09 | 2022-03-15 | Qualcomm Incorporated | Reference sampling for matrix intra prediction mode |
TWI816439B (zh) | 2019-05-10 | 2023-09-21 | 弗勞恩霍夫爾協會 | 以區塊為基礎之預測技術 |
JP2022533190A (ja) * | 2019-05-22 | 2022-07-21 | 北京字節跳動網絡技術有限公司 | アップサンプリングを使用した行列ベースのイントラ予測 |
WO2020239017A1 (en) | 2019-05-31 | 2020-12-03 | Beijing Bytedance Network Technology Co., Ltd. | One-step downsampling process in matrix-based intra prediction |
CN119254990A (zh) | 2019-06-03 | 2025-01-03 | Lg电子株式会社 | 图像解码方法、图像编码方法和数据发送方法 |
CN113950836B (zh) | 2019-06-05 | 2024-01-12 | 北京字节跳动网络技术有限公司 | 基于矩阵的帧内预测的上下文确定 |
WO2020251470A1 (en) | 2019-06-14 | 2020-12-17 | Telefonaktiebolaget Lm Ericsson (Publ) | Simplified downsampling for matrix based intra prediction |
US11197025B2 (en) | 2019-06-21 | 2021-12-07 | Qualcomm Incorporated | Signaling of matrix intra prediction parameters in video coding |
CN113225563B (zh) * | 2019-06-25 | 2023-07-18 | Oppo广东移动通信有限公司 | 映射方法、编码器、解码器以及计算机存储介质 |
US11284073B2 (en) | 2019-07-08 | 2022-03-22 | Hyundai Motor Company | Method and apparatus for intra prediction coding of video data involving matrix based intra-prediction |
CN110708559B (zh) | 2019-09-03 | 2022-03-25 | 北京达佳互联信息技术有限公司 | 图像处理方法、装置及存储介质 |
US20210092405A1 (en) | 2019-09-19 | 2021-03-25 | Qualcomm Incorporated | Matrix combination for matrix-weighted intra prediction in video coding |
KR20220082847A (ko) | 2019-10-28 | 2022-06-17 | 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 | 색상 성분에 기초한 신택스 시그널링 및 파싱 |
-
2020
- 2020-04-13 EP EP20787123.7A patent/EP3939314A4/en active Pending
- 2020-04-13 EP EP20786940.5A patent/EP3935833A4/en active Pending
- 2020-04-13 KR KR1020217031705A patent/KR20210145754A/ko not_active Ceased
- 2020-04-13 KR KR1020217031662A patent/KR20210150391A/ko active Pending
- 2020-04-13 WO PCT/CN2020/084505 patent/WO2020207502A1/en unknown
- 2020-04-13 BR BR112021020065A patent/BR112021020065A2/pt unknown
- 2020-04-13 PH PH1/2021/552535A patent/PH12021552535A1/en unknown
- 2020-04-13 JP JP2021559285A patent/JP7299341B2/ja active Active
- 2020-04-13 MX MX2021012230A patent/MX2021012230A/es unknown
- 2020-04-13 CN CN202080028043.4A patent/CN113678440B/zh active Active
- 2020-04-13 CA CA3135966A patent/CA3135966A1/en active Pending
- 2020-04-13 CA CA3135944A patent/CA3135944A1/en active Pending
- 2020-04-13 BR BR112021020026A patent/BR112021020026A2/pt unknown
- 2020-04-13 CN CN202080028110.2A patent/CN113678439B/zh active Active
- 2020-04-13 KR KR1020217031445A patent/KR20210150387A/ko active Pending
- 2020-04-13 JP JP2021559284A patent/JP7303325B2/ja active Active
- 2020-04-13 SG SG11202110939TA patent/SG11202110939TA/en unknown
- 2020-04-13 WO PCT/CN2020/084462 patent/WO2020207492A1/en unknown
- 2020-04-13 KR KR1020217031712A patent/KR20210145755A/ko active Pending
- 2020-04-13 CN CN202080028106.6A patent/CN113785588B/zh active Active
- 2020-04-13 EP EP20788326.5A patent/EP3935854A4/en active Pending
- 2020-04-13 WO PCT/CN2020/084486 patent/WO2020207497A1/en active Application Filing
- 2020-04-13 AU AU2020256658A patent/AU2020256658A1/en active Pending
- 2020-04-13 CN CN202080028112.1A patent/CN113661713B/zh active Active
- 2020-04-13 WO PCT/CN2020/084499 patent/WO2020207500A1/en active Application Filing
- 2020-04-13 CN CN202311458812.6A patent/CN117336469A/zh active Pending
- 2020-04-13 WO PCT/CN2020/084455 patent/WO2020207491A1/en unknown
- 2020-04-13 EP EP20788567.4A patent/EP3935836A4/en active Pending
- 2020-04-13 WO PCT/CN2020/084488 patent/WO2020207498A1/en unknown
- 2020-04-13 EP EP20788667.2A patent/EP3935838A4/en active Pending
- 2020-04-13 WO PCT/CN2020/084472 patent/WO2020207493A1/en unknown
- 2020-04-13 JP JP2021559286A patent/JP7299342B2/ja active Active
- 2020-04-13 SG SG11202110936PA patent/SG11202110936PA/en unknown
- 2020-04-13 KR KR1020217031428A patent/KR20210145752A/ko active Pending
- 2020-04-13 CN CN202080028084.3A patent/CN113678459B/zh active Active
- 2020-04-13 CN CN202080028113.6A patent/CN113678436B/zh active Active
- 2020-04-13 JP JP2021559287A patent/JP2022526990A/ja active Pending
- 2020-04-13 PH PH1/2021/552534A patent/PH12021552534A1/en unknown
- 2020-04-13 MX MX2021012229A patent/MX2021012229A/es unknown
- 2020-04-13 JP JP2021559288A patent/JP7404387B2/ja active Active
- 2020-04-13 CN CN202080028042.XA patent/CN113678453B/zh active Active
- 2020-04-13 AU AU2020257009A patent/AU2020257009A1/en active Pending
- 2020-04-13 KR KR1020247043240A patent/KR20250008982A/ko active Pending
-
2021
- 2021-06-09 US US17/343,041 patent/US11457220B2/en active Active
- 2021-06-09 US US17/342,996 patent/US11451782B2/en active Active
- 2021-06-09 US US17/343,086 patent/US20210297672A1/en active Granted
- 2021-06-09 US US17/342,951 patent/US11425389B2/en active Active
- 2021-06-10 US US17/343,980 patent/US11463702B2/en active Active
- 2021-10-04 ZA ZA2021/07451A patent/ZA202107451B/en unknown
- 2021-10-04 ZA ZA2021/07450A patent/ZA202107450B/en unknown
- 2021-12-29 US US17/646,412 patent/US11831877B2/en active Active
-
2023
- 2023-05-18 US US18/319,658 patent/US20230353744A1/en active Pending
- 2023-06-22 JP JP2023102125A patent/JP2023123639A/ja active Pending
- 2023-11-03 US US18/501,526 patent/US20240064307A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022501896A (ja) | 2018-09-21 | 2022-01-06 | オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. | ビデオ信号符号化/復号化方法およびそのための機器 |
JP2022514870A (ja) | 2018-12-20 | 2022-02-16 | フラウンホーファー-ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン | 隣接サンプル減少を伴う線形またはアフィン変換を使用するイントラ予測 |
WO2020205705A1 (en) | 2019-04-04 | 2020-10-08 | Tencent America LLC | Simplified signaling method for affine linear weighted intra prediction mode |
JP2022516846A (ja) | 2019-04-04 | 2022-03-03 | テンセント・アメリカ・エルエルシー | アフィン線形加重イントラ予測モードのための簡易シグナリング方法 |
Non-Patent Citations (4)
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7404387B2 (ja) | ビデオ処理方法、装置、記憶媒体及び記憶方法 | |
JP7612795B2 (ja) | イントラコーディングモードにおけるマトリクスの導出 | |
JP7632852B2 (ja) | マトリクスベースイントラ予測のためのコンテキスト決定 | |
JP7524433B2 (ja) | フィルタリングを用いた行列ベースイントラ予測 | |
KR102698314B1 (ko) | 업샘플링을 이용한 행렬 기반 인트라 예측 | |
JP2024003124A (ja) | 行列ベースイントラ予測における制約されたアップサンプリングプロセス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211005 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230516 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230815 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7404387 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |