[go: up one dir, main page]

JP7400728B2 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same Download PDF

Info

Publication number
JP7400728B2
JP7400728B2 JP2020553300A JP2020553300A JP7400728B2 JP 7400728 B2 JP7400728 B2 JP 7400728B2 JP 2020553300 A JP2020553300 A JP 2020553300A JP 2020553300 A JP2020553300 A JP 2020553300A JP 7400728 B2 JP7400728 B2 JP 7400728B2
Authority
JP
Japan
Prior art keywords
liquid crystal
group
crystal aligning
aligning agent
diamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020553300A
Other languages
Japanese (ja)
Other versions
JPWO2020080477A1 (en
Inventor
達哉 名木
貴裕 須賀
玲久 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2020080477A1 publication Critical patent/JPWO2020080477A1/en
Application granted granted Critical
Publication of JP7400728B2 publication Critical patent/JP7400728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/94Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/31Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • C07C323/33Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to a carbon atom of the same non-condensed six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/38Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/04Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • C07D219/08Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/38Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
    • C07D241/40Benzopyrazines
    • C07D241/44Benzopyrazines with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1085Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/50Pyrenes; Hydrogenated pyrenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子に関する。 The present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element using the same.

現在、液晶表示素子に用いられる液晶配向膜には、多くの場合、ポリイミド膜が使用されている。このポリイミド膜の液晶配向膜は、ポリイミドの前駆体であるポリアミック酸の溶液又は溶媒可溶性のポリイミドの溶液を基板に塗布し、焼成して得られる膜をラビング処理などの配向処理する方法により作製されている。このポリアミック酸や溶媒可溶性のポリイミドは、一般的に、テトラカルボン酸二無水物などのテトラカルボン酸誘導体と、ジアミン化合物との縮重合反応によって製造されている。 Currently, polyimide films are often used for liquid crystal alignment films used in liquid crystal display elements. The liquid crystal alignment film of this polyimide film is produced by applying a solution of polyamic acid, which is a precursor of polyimide, or a solution of solvent-soluble polyimide to a substrate, and then firing the resulting film, which undergoes an alignment treatment such as rubbing. ing. This polyamic acid and solvent-soluble polyimide are generally produced by a polycondensation reaction between a tetracarboxylic acid derivative such as a tetracarboxylic dianhydride and a diamine compound.

かかるポリアミック酸やポリイミドなどの原料であるジアミン化合物は、これから得られる液晶配向膜の特性、ひいては、液晶表示素子の特性に影響するので重要であり、従来から種々のジアミン化合物が使用されており、提案されている。 Diamine compounds, which are raw materials for such polyamic acids and polyimides, are important because they affect the properties of the liquid crystal alignment film obtained from them, and by extension, the properties of liquid crystal display elements, and various diamine compounds have been used in the past. Proposed.

例えば、特許文献1には、以下のジアミン化合物から得られた液晶配向剤が提案されている。

Figure 0007400728000001
For example, Patent Document 1 proposes a liquid crystal aligning agent obtained from the following diamine compounds.
Figure 0007400728000001

日本特開2005-157346号公報Japanese Patent Application Publication No. 2005-157346

しかしながら、近年、液晶表示素子の高性能化、大面積化、表示デバイスの省電力化等が進み、それに加えて様々な環境下で液晶表示素子が使用されるようになり、液晶配向膜に求められる特性も厳しいものになってきている。とりわけ、液晶表示素子の利用が進むにつれ、良好な液晶配向性を確保するのが困難となる問題や、液晶配向膜を作製する際の感度マージンが小さい問題が顕著となってくる。なお、ここで感度マージンとは、偏光紫外線を照射した際に良好な液晶配向特性を得ることが出来る感度領域の事を言う。 However, in recent years, the performance of liquid crystal display elements has increased, the area has become larger, and the power consumption of display devices has improved, and in addition, liquid crystal display elements have come to be used in a variety of environments. The characteristics that can be achieved are also becoming more severe. In particular, as the use of liquid crystal display elements progresses, the problem of difficulty in ensuring good liquid crystal alignment and the problem of a small sensitivity margin when producing a liquid crystal alignment film become more prominent. Note that the sensitivity margin here refers to a sensitivity region in which good liquid crystal alignment characteristics can be obtained when irradiated with polarized ultraviolet light.

良好な液晶配向性を確保できなくなると、光抜けや配向不良が発生しやすくなる。また、感度マージンが小さいと、長期駆動時の表示ムラや、紫外線照射機の照度ムラから液晶配向方位の面内バラつきを引き起こし、黒表示にした際に光抜けやムラの原因となる。このため、良好な液晶配向性や向上した感度マージンに対して強い要求があるものの、従来提案されている技術では、かかる要求を十分に満たすことができない。 If good liquid crystal alignment cannot be ensured, light leakage and alignment defects are likely to occur. Furthermore, if the sensitivity margin is small, it causes display unevenness during long-term driving and in-plane variation in the alignment direction of the liquid crystal due to uneven illuminance from an ultraviolet irradiation device, which causes light leakage and unevenness when displaying black. For this reason, although there is a strong demand for good liquid crystal alignment and improved sensitivity margin, conventionally proposed techniques cannot sufficiently satisfy these demands.

本発明は、上記の事情を鑑みてなされたものであり、良好な液晶配向性を有する液晶配向膜を得ることができ、且つ、感度マージンが増大した液晶配向剤を提供することを目的とする。 The present invention was made in view of the above circumstances, and an object of the present invention is to provide a liquid crystal aligning agent that can obtain a liquid crystal alignment film having good liquid crystal alignment properties and has an increased sensitivity margin. .

本発明者らは、上記課題を解決するために鋭意検討を行った結果、新規なジアミンから得られる重合体を含有する液晶配向剤が、上記の課題を満たすことを見出した。
本発明は、かかる知見に基づくものであり、下記を要旨とするものである。
下記式[1]で表される構造を有するジアミンを含有するジアミン成分とテトラカルボン酸二無水物成分との反応で得られるポリアミック酸、及び該ポリアミック酸をイミド化して得られるポリイミドからなる群より選ばれる少なくとも1つの重合体を含有することを特徴とする液晶配向剤。

Figure 0007400728000002
(式[1]中、A及びAは、それぞれ独立して、置換基を有していてもよい単環基又は縮合環基であり、A及びAは、同時に単環基であることはない。X は、酸素原子又は硫黄原子であり、は、単結合、酸素原子又は硫黄原子である。Qは、炭素数1又は2のアルキレン基である。m及びnは、それぞれ独立して、1~3の整数である。) The present inventors conducted intensive studies to solve the above problems, and as a result, discovered that a liquid crystal aligning agent containing a polymer obtained from a novel diamine satisfies the above problems.
The present invention is based on this knowledge and has the following gist.
From the group consisting of a polyamic acid obtained by the reaction of a diamine component containing a diamine having the structure represented by the following formula [1] and a tetracarboxylic dianhydride component, and a polyimide obtained by imidizing the polyamic acid. A liquid crystal aligning agent characterized by containing at least one selected polymer.
Figure 0007400728000002
(In formula [1], A 1 and A 2 are each independently a monocyclic group or a fused ring group which may have a substituent, and A 1 and A 2 are simultaneously a monocyclic group. There is no such thing . , each independently is an integer from 1 to 3.)

本発明の液晶配向剤によれば、良好な液晶配向性を有する液晶配向膜を得ることができ、且つ、感度マージンを増大させることができる。 According to the liquid crystal aligning agent of the present invention, a liquid crystal aligning film having good liquid crystal aligning properties can be obtained, and the sensitivity margin can be increased.

<本発明の特定ジアミン>
本発明の液晶配向剤の原料として使用されるジアミンは、下記の式[1]で表される構造を有するジアミンである。

Figure 0007400728000003
上記式[1]中、A及びAは、それぞれ独立して、置換基を有していてもよい単環基又は縮合環基であり、A及びAは、同時に単環基であることはない。X は、酸素原子又は硫黄原子であり、は、単結合、酸素原子又は硫黄原子である。Qは、炭素数1又は2のアルキレン基である。m及びnは、それぞれ独立して、1~3の整数である。
<Specific diamine of the present invention>
The diamine used as a raw material for the liquid crystal aligning agent of the present invention is a diamine having a structure represented by the following formula [1].
Figure 0007400728000003
In the above formula [1], A 1 and A 2 are each independently a monocyclic group or a fused ring group which may have a substituent, and A 1 and A 2 are simultaneously a monocyclic group. It never happens. X 1 is an oxygen atom or a sulfur atom, and X 2 is a single bond, an oxygen atom or a sulfur atom. Q is an alkylene group having 1 or 2 carbon atoms. m and n are each independently an integer of 1 to 3.

単環基とは、単環から水素原子を2個除いた残りの原子団をいう。単環としては、例えば、ベンゼン;フラン、チオフェン、ピロール、オキサゾール、チアゾール、イミダゾール、ピラゾール等の5員複素環;ピラン、ピロン、ピリジン、ピリダジン、ピリミジン、ピラジン等の6員複素環が挙げられる。単環は、好ましくは、ベンゼン又はピリジンである。なお、単環がベンゼンである場合、単環基はフェニレン基である。 A monocyclic group refers to an atomic group remaining after two hydrogen atoms are removed from a monocyclic ring. Examples of the monocycle include benzene; 5-membered heterocycles such as furan, thiophene, pyrrole, oxazole, thiazole, imidazole, and pyrazole; and 6-membered heterocycles such as pyran, pyrone, pyridine, pyridazine, pyrimidine, and pyrazine. The monocycle is preferably benzene or pyridine. In addition, when a monocyclic group is benzene, a monocyclic group is a phenylene group.

縮合環基とは、縮合環から水素原子を2個除いた残りの原子団をいう。縮合環としては、例えば、ナフタレン、テトラリン、インデン、フルオレン、アントラセン、フェナントレン、ピレン等の縮合多環芳香族炭化水素;ベンゾフラン、チオナフテン、インドール、カルバゾール、クマリン、ベンゾ-ピロン、キノリン、イソキノリン、アクリジン、フタラジン、キナゾリン、キノキサリン等の縮合多環式複素環が挙げられる。縮合環は、好ましくは、ナフチレン、アントラセン、ピレン、インドール、カルバゾール、クマリン、ベンゾ-ピロン、キノリン、又はイソキノリンである。 A fused ring group refers to an atomic group remaining after two hydrogen atoms are removed from a fused ring. Examples of the fused ring include fused polycyclic aromatic hydrocarbons such as naphthalene, tetralin, indene, fluorene, anthracene, phenanthrene, and pyrene; benzofuran, thionaphthene, indole, carbazole, coumarin, benzo-pyrone, quinoline, isoquinoline, acridine, Examples include fused polycyclic heterocycles such as phthalazine, quinazoline, and quinoxaline. The fused ring is preferably naphthylene, anthracene, pyrene, indole, carbazole, coumarin, benzo-pyrone, quinoline, or isoquinoline.

単環基及び縮合環基は、更に置換基を有していてもよい。単環基及び縮合環基が有していてもよい置換基としては、炭素数1~4のアルキル、炭素数1~4のアルコキシ、ハロゲン原子等が挙げられる。 The monocyclic group and the fused ring group may further have a substituent. Examples of substituents that the monocyclic group and the fused ring group may have include alkyl having 1 to 4 carbon atoms, alkoxy having 1 to 4 carbon atoms, and a halogen atom.

及びXは、好ましくは、酸素原子である。Qは、液晶配向規制力の観点から、好ましくは、炭素数2のアルキレンである。m及びnは、好ましくは、1である。X 1 and X 2 are preferably oxygen atoms. Q is preferably alkylene having 2 carbon atoms from the viewpoint of liquid crystal alignment regulating ability. m and n are preferably 1.

特定ジアミンの好ましい具体例としては、以下のものが挙げられるが、これらに限定されない。

Figure 0007400728000004
Preferred specific examples of the specific diamine include, but are not limited to, the following.
Figure 0007400728000004

<テトラカルボン酸二無水物成分>
本発明のポリイミド前駆体を得るためには、下記式[7]で表されるテトラカルボン酸二無水物(特定テトラカルボン酸二無水物ともいう)又はその誘導体をテトラカルボン酸二無水物成分の一部として用いることが好ましい。
<Tetracarboxylic dianhydride component>
In order to obtain the polyimide precursor of the present invention, a tetracarboxylic dianhydride represented by the following formula [7] (also referred to as a specific tetracarboxylic dianhydride) or a derivative thereof is used as a tetracarboxylic dianhydride component. It is preferable to use it as a part.

Figure 0007400728000005
Figure 0007400728000005

式[7]中、Zは、4価の有機基であり、例えば、下記式(X1-1)~(X1-19)の構造が挙げられる。In formula [7], Z 1 is a tetravalent organic group, and examples thereof include structures of the following formulas (X1-1) to (X1-19).

Figure 0007400728000006
Figure 0007400728000006

上記式(X1-1)及び(X1-2)において、R~R12はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。但し、R~Rの少なくとも一つは水素原子以外の基である。In the above formulas (X1-1) and (X1-2), R 3 to R 12 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, An alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group. However, at least one of R 3 to R 6 is a group other than a hydrogen atom.

液晶配向性の観点から、Xの構造は、上記式(X1-1)、(X1-3)、(X1-4)が好ましく、(X1-1)の中では、下記式(X1-1-1)~(X1-1-5)で表される構造から選ばれる少なくとも1種がより好ましく、下記式(X1-1-1)が特に好ましい。式[7]で表されるテトラカルボン酸二無水物又はその誘導体は2種以上を混合して用いてもよい。From the viewpoint of liquid crystal orientation, the structure of At least one type selected from the structures represented by -1) to (X1-1-5) is more preferred, and the following formula (X1-1-1) is particularly preferred. Two or more types of tetracarboxylic dianhydride or its derivatives represented by formula [7] may be used in combination.

Figure 0007400728000007
Figure 0007400728000007

上記式[7]で表されるテトラカルボン酸二無水物又はその誘導体の使用割合は、本発明の重合体に用いられるテトラカルボン酸二無水物成分1モルに対して50モル%以上が好ましく、70モル%以上がより好ましく、80モル%以上が更に好ましい。
また、本発明の重合体の重合に用いられるテトラカルボン酸二無水物成分は、上記式[7]で表されるテトラカルボン酸二無水物又はその誘導体を含むと、分解物による輝点の抑制や液晶配向性の観点から好ましい。
The usage ratio of the tetracarboxylic dianhydride or its derivative represented by the above formula [7] is preferably 50 mol% or more with respect to 1 mol of the tetracarboxylic dianhydride component used in the polymer of the present invention, More preferably 70 mol% or more, and even more preferably 80 mol% or more.
Furthermore, if the tetracarboxylic dianhydride component used in the polymerization of the polymer of the present invention contains the tetracarboxylic dianhydride represented by the above formula [7] or a derivative thereof, bright spots due to decomposition products may be suppressed. It is preferable from the viewpoint of liquid crystal orientation.

本発明の重合体の重合に用いられるテトラカルボン酸二無水物成分は、上記式[7]以外のテトラカルボン酸二無水物又はその誘導体を含有していてもよい。
上記式[7]以外のテトラカルボン酸二無水物又はその誘導体は、形成される液晶配向膜の液晶配向性、電圧保持特性及び蓄積電荷などの特性を考慮して、1種又は2種以上を用いることができる。
The tetracarboxylic dianhydride component used in the polymerization of the polymer of the present invention may contain a tetracarboxylic dianhydride other than the above formula [7] or a derivative thereof.
One or more tetracarboxylic dianhydrides or derivatives thereof other than the above formula [7] may be used, taking into consideration the properties such as liquid crystal orientation, voltage holding characteristics, and accumulated charge of the liquid crystal alignment film to be formed. Can be used.

<本発明の重合体>
本発明における重合体とは、ポリアミック酸、及び/又は該ポリアミック酸をイミド化して得られるポリイミドを意味する。
<Polymer of the present invention>
The polymer in the present invention means a polyamic acid and/or a polyimide obtained by imidizing the polyamic acid.

<ポリアミック酸>
本発明のポリアミック酸は、特定ジアミンを含有するジアミン成分とテトラカルボン酸二無水物成分との反応によって得られる。
上記テトラカルボン酸二無水物成分との反応によりポリアミック酸を得るためのジアミン成分において、特定ジアミンの含有割合に制限はない。ジアミン成分における特定ジアミンの含有量は、100%であってもよい。しかし、液晶配向膜に要求される種々の特性、例えば、液晶のプレチルト角を大きくする特性、液晶の垂直配向性を高める、などの特性を満足させることから、種々のジアミンが併用することができる。重合に用いられるジアミン成分における特定ジアミンの含有割合は、1~50mol%が好ましく、特に好ましくは5~30mol%が好ましい。
<Polyamic acid>
The polyamic acid of the present invention is obtained by reacting a diamine component containing a specific diamine with a tetracarboxylic dianhydride component.
In the diamine component for obtaining a polyamic acid by reaction with the above-mentioned tetracarboxylic dianhydride component, there is no limit to the content ratio of the specific diamine. The content of the specific diamine in the diamine component may be 100%. However, various diamines can be used in combination because they satisfy the various properties required for liquid crystal alignment films, such as increasing the pretilt angle of liquid crystals and increasing the vertical alignment of liquid crystals. . The content of the specific diamine in the diamine component used in the polymerization is preferably 1 to 50 mol%, particularly preferably 5 to 30 mol%.

上記ジアミン成分において、特定ジアミンが100mol%未満の場合に併用される、特定ジアミン以外のジアミン(以下、その他のジアミンともいう。)としては、脂環式ジアミン、芳香族-脂肪族ジアミン、芳香族ジアミン、複素環式ジアミン、脂肪族ジアミンなどが挙げられる。 In the above diamine component, diamines other than the specific diamine (hereinafter also referred to as other diamines) that are used in combination when the specific diamine is less than 100 mol% include alicyclic diamine, aromatic-aliphatic diamine, aromatic diamine, Examples include diamines, heterocyclic diamines, aliphatic diamines, and the like.

脂環式ジアミンの例としては、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルアミン、イソホロンジアミン等が挙げられる。
芳香族ジアミン類の例としては、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、3,5-ジアミノトルエン、1,4-ジアミノ-2-メトキシベンゼン、2,5-ジアミノ-p-キシレン、1,3-ジアミノ-4-クロロベンゼン、3,5-ジアミノ安息香酸、1,4-ジアミノ-2,5-ジクロロベンゼン、4,4’-ジアミノ-1,2-ジフェニルエタン、4,4’-ジアミノ-2,2’-ジメチルビベンジル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’―ジメチルジフェニルメタン、2,2’-ジアミノスチルベン、4,4’-ジアミノスチルベン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、3,5-ビス(4-アミノフェノキシ)安息香酸、4,4’-ビス(4-アミノフェノキシ)ビベンジル、2,2-ビス[(4-アミノフェノキシ)メチル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフロロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、1,1-ビス(4-アミノフェニル)シクロヘキサン、α、α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、2,2-ビス(3-アミノフェニル)ヘキサフロロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフロロプロパン、4,4’-ジアミノジフェニルアミン、2,4-ジアミノジフェニルアミン、1,8-ジアミノナフタレン、1,5-ジアミノナフタレン、1,5-ジアミノアントラキノン、1,3-ジアミノピレン、1,6-ジアミノピレン、1,8―ジアミノピレン、2,7-ジアミノフルオレン、1,3-ビス(4-アミノフェニル)テトラメチルジシロキサン、ベンジジン、2,2’-ジメチルベンジジン、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,5-ビス(4-アミノフェニル)ペンタン、1,6-ビス(4-アミノフェニル)ヘキサン、1,7-ビス(4-アミノフェニル)ヘプタン、1,8-ビス(4-アミノフェニル)オクタン、1,9-ビス(4-アミノフェニル)ノナン、1,10-ビス(4-アミノフェニル)デカン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)ヘキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、ジ(4-アミノフェニル)プロパン-1,3-ジオエート、ジ(4-アミノフェニル)ブタン-1,4-ジオエート、ジ(4-アミノフェニル)ペンタン-1,5-ジオエート、ジ(4-アミノフェニル)ヘキサン-1,6-ジオエート、ジ(4-アミノフェニル)ヘプタン-1,7-ジオエート、ジ(4-アミノフェニル)オクタン-1,8-ジオエート、ジ(4-アミノフェニル)ノナン-1,9-ジオエート、ジ(4-アミノフェニル)デカン-1,10-ジオエート、1,3-ビス〔4-(4-アミノフェノキシ)フェノキシ〕プロパン、1,4-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ブタン、1,5-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ペンタン、1,6-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘキサン、1,7-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘプタン、1,8-ビス〔4-(4-アミノフェノキシ)フェノキシ〕オクタン、1,9-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ノナン、1,10-ビス〔4-(4-アミノフェノキシ)フェノキシ〕デカンなどが挙げられる。
Examples of alicyclic diamines include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4'-diaminodicyclohexylmethane, 4,4'-diamino-3,3'-dimethyldicyclohexylamine, and isophorone diamine. etc.
Examples of aromatic diamines include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 3,5-diaminotoluene, 1,4-diamino -2-methoxybenzene, 2,5-diamino-p-xylene, 1,3-diamino-4-chlorobenzene, 3,5-diaminobenzoic acid, 1,4-diamino-2,5-dichlorobenzene, 4,4 '-Diamino-1,2-diphenylethane, 4,4'-diamino-2,2'-dimethylbibenzyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane , 4,4'-diamino-3,3'-dimethyldiphenylmethane, 2,2'-diaminostilbene, 4,4'-diaminostilbene, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4, 4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 4,4'-diaminobenzophenone, 1,3-bis(3-aminophenoxy)benzene, 1,3- Bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 3,5-bis(4-aminophenoxy)benzoic acid, 4,4'-bis(4-aminophenoxy)bibenzyl, 2,2-bis[(4-aminophenoxy)methyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis[4-(4-aminophenoxy) phenyl]propane, bis[4-(3-aminophenoxy)phenyl]sulfone, bis[4-(4-aminophenoxy)phenyl]sulfone, 1,1-bis(4-aminophenyl)cyclohexane, α, α'- Bis(4-aminophenyl)-1,4-diisopropylbenzene, 9,9-bis(4-aminophenyl)fluorene, 2,2-bis(3-aminophenyl)hexafluoropropane, 2,2-bis(4 -aminophenyl)hexafluoropropane, 4,4'-diaminodiphenylamine, 2,4-diaminodiphenylamine, 1,8-diaminonaphthalene, 1,5-diaminonaphthalene, 1,5-diaminanthraquinone, 1,3-diaminopyrene , 1,6-diaminopyrene, 1,8-diaminopyrene, 2,7-diaminofluorene, 1,3-bis(4-aminophenyl)tetramethyldisiloxane, benzidine, 2,2'-dimethylbenzidine, 1, 2-bis(4-aminophenyl)ethane, 1,3-bis(4-aminophenyl)propane, 1,4-bis(4-aminophenyl)butane, 1,5-bis(4-aminophenyl)pentane, 1,6-bis(4-aminophenyl)hexane, 1,7-bis(4-aminophenyl)heptane, 1,8-bis(4-aminophenyl)octane, 1,9-bis(4-aminophenyl) Nonane, 1,10-bis(4-aminophenyl)decane, 1,3-bis(4-aminophenoxy)propane, 1,4-bis(4-aminophenoxy)butane, 1,5-bis(4-amino phenoxy)pentane, 1,6-bis(4-aminophenoxy)hexane, 1,7-bis(4-aminophenoxy)heptane, 1,8-bis(4-aminophenoxy)octane, 1,9-bis(4-aminophenoxy)heptane, -aminophenoxy)nonane, 1,10-bis(4-aminophenoxy)decane, di(4-aminophenyl)propane-1,3-dioate, di(4-aminophenyl)butane-1,4-dioate, di(4-aminophenyl)butane-1,4-dioate, (4-aminophenyl)pentane-1,5-dioate, di(4-aminophenyl)hexane-1,6-dioate, di(4-aminophenyl)heptane-1,7-dioate, di(4-aminophenyl) ) octane-1,8-dioate, di(4-aminophenyl)nonane-1,9-dioate, di(4-aminophenyl)decane-1,10-dioate, 1,3-bis[4-(4- Aminophenoxy)phenoxy]propane, 1,4-bis[4-(4-aminophenoxy)phenoxy]butane, 1,5-bis[4-(4-aminophenoxy)phenoxy]pentane, 1,6-bis[4 -(4-aminophenoxy)phenoxy]hexane, 1,7-bis[4-(4-aminophenoxy)phenoxy]heptane, 1,8-bis[4-(4-aminophenoxy)phenoxy]octane, 1,9 -bis[4-(4-aminophenoxy)phenoxy]nonane, 1,10-bis[4-(4-aminophenoxy)phenoxy]decane, and the like.

芳香族-脂肪族ジアミンの例としては、3-アミノベンジルアミン、4-アミノベンジルアミン、3-アミノ-N-メチルベンジルアミン、4-アミノ-N-メチルベンジルアミン、3-アミノフェネチルアミン、4-アミノフェネチルアミン、3-アミノ-N-メチルフェネチルアミン、4-アミノ-N-メチルフェネチルアミン、3-(3-アミノプロピル)アニリン、4-(3-アミノプロピル)アニリン、3-(3-メチルアミノプロピル)アニリン、4-(3-メチルアミノプロピル)アニリン、3-(4-アミノブチル)アニリン、4-(4-アミノブチル)アニリン、3-(4-メチルアミノブチル)アニリン、4-(4-メチルアミノブチル)アニリン、3-(5-アミノペンチル)アニリン、4-(5-アミノペンチル)アニリン、3-(5-メチルアミノペンチル)アニリン、4-(5-メチルアミノペンチル)アニリン、2-(6-アミノナフチル)メチルアミン、3-(6-アミノナフチル)メチルアミン、2-(6-アミノナフチル)エチルアミン、3-(6-アミノナフチル)エチルアミンなどが挙げられる。 Examples of aromatic-aliphatic diamines include 3-aminobenzylamine, 4-aminobenzylamine, 3-amino-N-methylbenzylamine, 4-amino-N-methylbenzylamine, 3-aminophenethylamine, 4-aminobenzylamine, Aminophenethylamine, 3-amino-N-methylphenethylamine, 4-amino-N-methylphenethylamine, 3-(3-aminopropyl)aniline, 4-(3-aminopropyl)aniline, 3-(3-methylaminopropyl) Aniline, 4-(3-methylaminopropyl)aniline, 3-(4-aminobutyl)aniline, 4-(4-aminobutyl)aniline, 3-(4-methylaminobutyl)aniline, 4-(4-methyl) aminobutyl)aniline, 3-(5-aminopentyl)aniline, 4-(5-aminopentyl)aniline, 3-(5-methylaminopentyl)aniline, 4-(5-methylaminopentyl)aniline, 2-( Examples include 6-aminonaphthyl)methylamine, 3-(6-aminonaphthyl)methylamine, 2-(6-aminonaphthyl)ethylamine, and 3-(6-aminonaphthyl)ethylamine.

複素環式ジアミンの例としては、2,6-ジアミノピリジン、2,4-ジアミノピリジン、2,4-ジアミノ-1,3,5-トリアジン、2,7-ジアミノジベンゾフラン、3,6-ジアミノカルバゾール、2,4-ジアミノ-6-イソプロピル-1,3,5-トリアジン、2,5-ビス(4-アミノフェニル)-1,3,4-オキサジアゾールなどが挙げられる。
脂肪族ジアミンの例としては、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,3-ジアミノ-2,2-ジメチルプロパン、1,6-ジアミノ-2,5-ジメチルヘキサン、1,7-ジアミノ-2,5-ジメチルヘプタン、1,7-ジアミノ-4,4-ジメチルヘプタン、1,7-ジアミノ-3-メチルヘプタン、1,9-ジアミノ-5-メチルノナン、1,12-ジアミノドデカン、1,18-ジアミノオクタデカン、1,2-ビス(3-アミノプロポキシ)エタンなどが挙げられる。
Examples of heterocyclic diamines include 2,6-diaminopyridine, 2,4-diaminopyridine, 2,4-diamino-1,3,5-triazine, 2,7-diaminodibenzofuran, 3,6-diaminocarbazole. , 2,4-diamino-6-isopropyl-1,3,5-triazine, 2,5-bis(4-aminophenyl)-1,3,4-oxadiazole, and the like.
Examples of aliphatic diamines include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,3-diamino-2,2-dimethylpropane, 1,6-diamino-2,5-dimethylhexane, 1,7- Diamino-2,5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1,7-diamino-3-methylheptane, 1,9-diamino-5-methylnonane, 1,12-diaminododecane, Examples include 1,18-diaminooctadecane and 1,2-bis(3-aminopropoxy)ethane.

側鎖にアルキル基、フッ素含有アルキル基、芳香環、脂肪族環、複素環、又はそれらからなる大環状置換体を有するジアミンを併用してもよい。具体的には、下記の式[DA-101]~[DA-130]で示されるジアミンを例示される。

Figure 0007400728000008
(Rは、炭素数1~22を有する、アルキル基又はフッ素含有アルキル基である。)A diamine having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocycle, or a macrocyclic substituent thereof in the side chain may be used in combination. Specifically, diamines represented by the following formulas [DA-101] to [DA-130] are exemplified.
Figure 0007400728000008
(R 6 is an alkyl group or a fluorine-containing alkyl group having 1 to 22 carbon atoms.)

Figure 0007400728000009
(Sは、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又はNH-であり、Rは炭素数1~22を有する、アルキル基若しくはフッ素含有アルキル基である。)
Figure 0007400728000009
(S 5 is -COO-, -OCO-, -CONH-, -NHCO-, -CH 2 -, -O-, -CO-, or NH-, and R 6 has 1 to 22 carbon atoms. , an alkyl group or a fluorine-containing alkyl group).

Figure 0007400728000010
(Sは、-O-、-OCH-、-CHO-、-COOCH-、又はCHOCO-であり、Rは炭素数1~22を有する、アルキル基、アルコキシ基、フッ素含有アルキル基若しくはフッ素含有アルコキシ基である。)
Figure 0007400728000010
(S 6 is -O-, -OCH 2 -, -CH 2 O-, -COOCH 2 -, or CH 2 OCO-, and R 7 is an alkyl group or alkoxy group having 1 to 22 carbon atoms, (A fluorine-containing alkyl group or a fluorine-containing alkoxy group.)

Figure 0007400728000011
(Sは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、又はCH-であり、Rは炭素数1~22を有する、アルキル基、アルコキシ基、フッ素含有アルキル基若しくはフッ素含有アルコキシ基である。)
Figure 0007400728000011
(S 7 is -COO-, -OCO-, -CONH-, -NHCO-, -COOCH 2 -, -CH 2 OCO-, -CH 2 O-, -OCH 2 -, or CH 2 -, R 8 is an alkyl group, alkoxy group, fluorine-containing alkyl group, or fluorine-containing alkoxy group having 1 to 22 carbon atoms.)

Figure 0007400728000012
(Sは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-、又はNH-であり、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基である。)
Figure 0007400728000012
(S 8 is -COO-, -OCO-, -CONH-, -NHCO-, -COOCH 2 -, -CH 2 OCO-, -CH 2 O- , -OCH 2 -, -CH 2 -, -O -, or NH-, and R 9 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group.)

Figure 0007400728000013
Figure 0007400728000014
(R10は炭素数3~12のアルキル基であり、1,4-シクロへキシレンのシス-トランス異性は、それぞれトランス体である。)
Figure 0007400728000013
Figure 0007400728000014
(R 10 is an alkyl group having 3 to 12 carbon atoms, and each cis-trans isomer of 1,4-cyclohexylene is a trans isomer.)

Figure 0007400728000015
Figure 0007400728000015
Figure 0007400728000016
Figure 0007400728000016

光により配向処理する場合においては、特定ジアミンと上記[DA-101]~[DA-130]のジアミンを併用させることで、更に安定したプレチルト角を得ることができるため好ましい。併用できるより好ましいジアミンとしては、式[DA-110]~[DA-130]が好ましく、より好ましくは[DA-110]~[DA-116]のジアミンである。これらのジアミンの好ましい含有量は、特に限定はされないが、ジアミン成分中の5~50mol%が好ましく、印刷性の点では5~30mol%が好ましい。
また、以下の式[DA-131]~[DA-138]で表されるジアミンを併用させてもよい。
In the case of alignment treatment using light, it is preferable to use the specific diamine and the above-mentioned diamines [DA-101] to [DA-130] in combination because a more stable pretilt angle can be obtained. More preferable diamines that can be used in combination are those of formulas [DA-110] to [DA-130], and more preferably diamines of formulas [DA-110] to [DA-116]. The preferred content of these diamines is not particularly limited, but is preferably 5 to 50 mol% in the diamine component, and preferably 5 to 30 mol% from the viewpoint of printability.
Further, diamines represented by the following formulas [DA-131] to [DA-138] may be used in combination.

Figure 0007400728000017
(mは0~3の整数であり、式[DA-138]中、nは1~5の整数である)。
Figure 0007400728000017
(m is an integer of 0 to 3, and in formula [DA-138], n is an integer of 1 to 5).

式[DA-131]、式[DA-132]等のジアミンを含有させることにより、液晶配向膜とした際の電圧保持特性を向上させることができ、式[DA-133]~[DA-138]のジアミンは蓄積電化の低減に効果がある。 By containing diamines such as formula [DA-131] and formula [DA-132], voltage holding characteristics when used as a liquid crystal alignment film can be improved, and formulas [DA-133] to [DA-138] ] Diamines are effective in reducing accumulated charge.

更に、下記の式[DA-139]で表されるジアミノシロキサンなども、その他のジアミンとして挙げることができる。

Figure 0007400728000018
(mは、1~10の整数である。)Furthermore, diaminosiloxane represented by the following formula [DA-139] can also be mentioned as other diamines.
Figure 0007400728000018
(m is an integer from 1 to 10.)

更に、下記の式(8)で表されるジアミンも、その他のジアミンとして挙げることができる。

Figure 0007400728000019
(式(8)中、Yは芳香族基に結合する窒素原子又は含窒素芳香族複素環を有する2価の有機基である。)Furthermore, a diamine represented by the following formula (8) can also be mentioned as other diamines.
Figure 0007400728000019
(In formula (8), Y2 is a nitrogen atom bonded to an aromatic group or a divalent organic group having a nitrogen-containing aromatic heterocycle.)

式(8)中のYの例としては、下記式(Y2-1)~(Y2-12)が挙げられる。

Figure 0007400728000020
Examples of Y 2 in formula (8) include the following formulas (Y2-1) to (Y2-12).
Figure 0007400728000020

その他のジアミンは、液晶配向膜とした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種、又は2種以上を混合して使用することもできる。 Other diamines may be used alone or in combination of two or more, depending on the properties such as liquid crystal orientation, voltage holding characteristics, and accumulated charge when used as a liquid crystal alignment film.

<ポリアミック酸の製造>
テトラカルボン酸二無水物成分とジアミン成分との反応により、本発明のポリアミック酸を得る方法は、既知の手法を用いることができる。例えば、テトラカルボン酸二無水物成分とジアミン成分とを有機溶媒中で反応させる方法である。この場合、テトラカルボン酸二無水物成分とジアミンとの反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。
<Production of polyamic acid>
A known method can be used to obtain the polyamic acid of the present invention by reacting the tetracarboxylic dianhydride component and the diamine component. For example, there is a method in which a tetracarboxylic dianhydride component and a diamine component are reacted in an organic solvent. In this case, the reaction between the tetracarboxylic dianhydride component and the diamine is advantageous in that it proceeds relatively easily in an organic solvent and no by-products are generated.

テトラカルボン酸二無水物成分とジアミンとの反応に用いる有機溶媒としては、生成したポリアミック酸が溶解するものであれば限定されない。その具体例を以下に挙げる。
N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミドなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。更に、ポリアミック酸を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で上記溶媒に混合して使用してもよい。
The organic solvent used for the reaction between the tetracarboxylic dianhydride component and the diamine is not limited as long as it can dissolve the produced polyamic acid. Specific examples are listed below.
N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, γ-butyrolactone , isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl Carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, Diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate mono Propyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, Methylcyclohexene, propyl ether, dihexyl ether, dioxane, n-hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, acetic acid n -Butyl, acetate propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methylethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropion Acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N,N-dimethylpropanamide, 3-ethoxy-N,N- Examples include dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, and the like. These may be used alone or in combination. Furthermore, even a solvent that does not dissolve polyamic acid may be mixed with the above-mentioned solvent to the extent that the produced polyamic acid does not precipitate.

また、有機溶媒中の水分は重合反応を阻害し、更には生成したポリアミック酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものが好ましい。
テトラカルボン酸二無水物成分とジアミン成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物成分をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いても良い。また、テトラカルボン酸二無水物成分又はジアミン成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させても良く、個別に順次反応させても良く、更に個別に反応させた低分子量体を混合反応させ高分子量体としても良い。
Further, since moisture in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyamic acid, it is preferable that the organic solvent be dehydrated and dried as much as possible.
When reacting a tetracarboxylic dianhydride component and a diamine component in an organic solvent, a solution in which the diamine component is dispersed or dissolved in an organic solvent is stirred, and the tetracarboxylic dianhydride component is reacted as it is or in an organic solvent. A method in which the diamine component is added by dispersing or dissolving it in a solvent, a method in which the diamine component is added to a solution in which the tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, and a method in which the diamine component is added by dispersing or dissolving the tetracarboxylic dianhydride component in an organic solvent. Examples include a method of adding them alternately, and any of these methods may be used. In addition, when the tetracarboxylic dianhydride component or the diamine component consists of multiple types of compounds, they may be reacted in a pre-mixed state, they may be reacted individually in sequence, and furthermore, low molecular weight compounds may be reacted individually. It is also possible to make a high molecular weight product by subjecting it to a mixed reaction.

テトラカルボン酸二無水物成分とジアミン成分とを反応させる温度は-20~150℃のうちの任意の温度を選択することができるが、好ましくは-5~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、テトラカルボン酸二無水物成分とジアミン成分の反応溶液中での合計濃度は、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
ポリアミック酸の重合反応においては、テトラカルボン酸二無水物成分の合計モル数とジアミン成分の合計モル数との比は、0.8~1.2であることが好ましく、0.9~1.1がより好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。
The temperature at which the tetracarboxylic dianhydride component and the diamine component are reacted can be any temperature in the range of -20 to 150°C, but is preferably in the range of -5 to 100°C. In addition, the reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution will become too high, making it difficult to stir uniformly. Therefore, the total concentration of the tetracarboxylic dianhydride component and the diamine component in the reaction solution is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction can be carried out at a high concentration, and then an organic solvent can be added.
In the polymerization reaction of polyamic acid, the ratio of the total number of moles of the tetracarboxylic dianhydride component to the total number of moles of the diamine component is preferably 0.8 to 1.2, more preferably 0.9 to 1. 1 is more preferred. Similar to normal polycondensation reactions, the closer this molar ratio is to 1.0, the larger the molecular weight of the polyamic acid produced becomes.

<ポリイミド>
本発明のポリイミドは、前記のポリアミック酸を脱水閉環させて得られるポリイミドであり、液晶配向膜を得るための重合体として有用である。
本発明のポリイミドにおいて、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
ポリアミック酸をイミド化させる方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化法、及びポリアミック酸の溶液に触媒を添加する触媒イミド化法が挙げられる。
ポリアミック酸を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行うのが好ましい。
<Polyimide>
The polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the polyamic acid described above, and is useful as a polymer for obtaining a liquid crystal alignment film.
In the polyimide of the present invention, the dehydration ring closure rate (imidization rate) of the amic acid group does not necessarily have to be 100%, and can be arbitrarily adjusted depending on the use and purpose.
Examples of methods for imidizing polyamic acid include a thermal imidization method in which a polyamic acid solution is directly heated, and a catalytic imidization method in which a catalyst is added to a polyamic acid solution.
When thermally imidizing polyamic acid in a solution, the temperature is 100 to 400°C, preferably 120 to 250°C, and the process is preferably carried out while removing water produced by the imidization reaction from the system.

ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量は、アミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適した塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量、反応温度、反応時間等を調節することにより制御することができる。 Catalytic imidization of polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to a solution of polyamic acid and stirring at -20 to 250°C, preferably 0 to 180°C. The amount of the basic catalyst is 0.5 to 30 times the mole of the amic acid group, preferably 2 to 20 times the mole, and the amount of the acid anhydride is 1 to 50 times the mole of the amic acid group, preferably 3 to 20 times the mole of the amic acid group. 30 moles. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, etc. Among them, pyridine is preferred because it has basicity suitable for advancing the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, etc. Among them, acetic anhydride is preferably used because it facilitates purification after the reaction is completed. The imidization rate by catalytic imidization can be controlled by adjusting the amount of catalyst, reaction temperature, reaction time, etc.

本発明の液晶配向剤に含有される重合体の分子量は、得られる塗膜の強度、塗膜形成時の作業性、及び塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。 The molecular weight of the polymer contained in the liquid crystal aligning agent of the present invention is determined by the GPC (Gel Permeation Chromatography) method, considering the strength of the resulting coating film, workability during coating film formation, and uniformity of the coating film. The measured weight average molecular weight is preferably 5,000 to 1,000,000, more preferably 10,000 to 150,000.

<液晶配向剤>
本発明の液晶配向剤は、液晶配向膜を形成するための塗布液であり、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液である。ここで、前記の樹脂成分は、上記した本発明の重合体から選ばれる少なくとも一種の重合体を含む。樹脂成分の液晶配向剤中の含有量は、1~20質量%が好ましく、より好ましくは3~15質量%、特に好ましくは3~10質量%である。
樹脂成分は、全てが本発明の重合体であってもよく、それ以外の他の重合体が混合されていてもよい。その際、樹脂成分中における前記他の重合体の含有量は0.5~15質量%、好ましくは1~10質量%である。
かかる他の重合体は、例えば、テトラカルボン酸ニ無水物成分と反応させるジアミン成分として、特定ジアミン化合物以外のジアミン化合物を使用して得られるポリアミック酸又はポリイミドなどが挙げられる。
<Liquid crystal alignment agent>
The liquid crystal alignment agent of the present invention is a coating liquid for forming a liquid crystal alignment film, and is a solution in which a resin component for forming a resin film is dissolved in an organic solvent. Here, the resin component includes at least one kind of polymer selected from the above-mentioned polymers of the present invention. The content of the resin component in the liquid crystal aligning agent is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, particularly preferably 3 to 10% by mass.
All of the resin components may be the polymer of the present invention, or other polymers may be mixed therein. At this time, the content of the other polymer in the resin component is 0.5 to 15% by mass, preferably 1 to 10% by mass.
Examples of such other polymers include polyamic acids or polyimides obtained by using a diamine compound other than the specific diamine compound as the diamine component to be reacted with the tetracarboxylic dianhydride component.

本発明の液晶配向剤に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。
The organic solvent used in the liquid crystal aligning agent of the present invention is not particularly limited as long as it is an organic solvent that dissolves the resin component. Specific examples are listed below.
N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N,N-dimethylpropanamide, 3-ethoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4-hydroxy-4-methyl-2-pentanone, etc. . These may be used alone or in combination.

本発明の液晶配向剤は、上記以外の成分を含有してもよい。その例としては、液晶配向剤を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒多物質など、液晶配向膜と基板との密着性を向上させる化合物などである。
膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、次のものが挙げられる。
The liquid crystal aligning agent of the present invention may contain components other than those described above. Examples include compounds that improve the adhesion between the liquid crystal aligning film and the substrate, such as solvent-rich substances that improve the uniformity of the film thickness and surface smoothness when the liquid crystal aligning agent is applied.
Specific examples of solvents (poor solvents) that improve film thickness uniformity and surface smoothness include the following.

例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、ジプロピレングリコールジメチルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、2-ブトキシ-1-プロパノール、2,6-ジメチル-4-ヘプタノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどの低表面張力を有する溶媒などが挙げられる。
これらの貧溶媒は1種類でも複数種類を混合して用いてもよい。上記溶媒を用いる場合は、液晶配向剤に含まれる溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。
For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoacetate. Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether , dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, dipropylene glycol dimethyl ether, 3-methyl-3- Methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether , 1-hexanol, n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl acetate, methyl pyruvate, pyruvin Ethyl acid, methyl 3-methoxypropionate, methylethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate , 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 2-butoxy-1-propanol, 2,6-dimethyl-4-heptanol, 1-phenoxy-2-propanol , propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2-(2-ethoxypropoxy)propanol, Examples include solvents having low surface tension such as lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, and lactate isoamyl ester.
These poor solvents may be used alone or in combination. When the above-mentioned solvent is used, it is preferably 5 to 80% by mass, more preferably 20 to 60% by mass of the total solvent contained in the liquid crystal aligning agent.

膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向剤に含有される樹脂成分の100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
Examples of compounds that improve film thickness uniformity and surface smoothness include fluorosurfactants, silicone surfactants, and nonionic surfactants.
More specifically, for example, FTOP EF301, EF303, EF352 (manufactured by Tochem Products), Megafac F171, F173, R-30 (manufactured by Dainippon Ink), Florado FC430, FC431 (manufactured by Sumitomo 3M) , Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.). The proportion of these surfactants used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass, based on 100 parts by mass of the resin component contained in the liquid crystal aligning agent.

液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物、エポキシ基含有化合物などが挙げられる。
例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4,4’-ジアミノジフェニルメタン等が挙げられる。
Specific examples of compounds that improve the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane , N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-triethoxysilyl- 1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis(oxyethylene)-3-aminopropyltrimethoxy Silane, N-bis(oxyethylene)-3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neo Pentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol , N,N,N',N',-tetraglycidyl-m-xylene diamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N',-tetraglycidyl -4,4'-diaminodiphenylmethane and the like.

更に、基板と膜の密着性向上に加え、バックライトによる電気特性低下などを防ぐ目的で、以下のようなフェノプラスト系の添加剤を含有させることが好ましい。具体的なフェノプラスト系添加剤を以下に示す。

Figure 0007400728000021
Further, in addition to improving the adhesion between the substrate and the film, it is preferable to include the following phenoplast-based additives for the purpose of preventing deterioration of electrical properties due to backlighting. Specific phenoplast additives are shown below.
Figure 0007400728000021

基板との密着性を向上させる化合物を使用する場合、その使用量は、樹脂成分の100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
本発明の液晶配向剤には、上記の他、液晶配向膜の誘電率、導電性などの電気特性を変化させる目的で、誘電体、導電物質、更には、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物等を添加してもよい。
When using a compound that improves adhesion to the substrate, the amount used is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass, per 100 parts by mass of the resin component. be. If the amount used is less than 0.1 part by mass, no effect of improving adhesion can be expected, and if it is more than 30 parts by mass, the alignment of the liquid crystal may deteriorate.
In addition to the above, the liquid crystal aligning agent of the present invention includes dielectrics, conductive substances, and furthermore, for the purpose of changing the electrical properties such as dielectric constant and conductivity of the liquid crystal aligning film. A crosslinkable compound or the like may be added for the purpose of increasing hardness or compactness.

<液晶配向膜及び液晶表示素子>
本発明の液晶配向剤は、基板上に塗布し、焼成した後、ラビング処理や光照射などで配向処理をし、又は垂直配向用途などでは配向処理無しで液晶配向膜として用いることができる。この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス基板、アクリル基板、ポリカーボネート基板などのプラスチック基板などを用いることができる。また、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェットなどの方法で行うが一般的である。その他の塗布方法としては、ディップ、ロールコーター、スリットコーター、スピンナーなどがあり、目的に応じてこれらを用いてもよい。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal aligning agent of the present invention is coated on a substrate, baked, and then subjected to alignment treatment by rubbing or light irradiation, or can be used as a liquid crystal alignment film without alignment treatment in vertical alignment applications. At this time, the substrate used is not particularly limited as long as it is a highly transparent substrate, and plastic substrates such as glass substrates, acrylic substrates, and polycarbonate substrates can be used. Furthermore, it is preferable to use a substrate on which ITO electrodes and the like for driving the liquid crystal are formed, from the viewpoint of process simplification. In addition, in a reflective liquid crystal display element, an opaque material such as a silicon wafer can be used for only one substrate, and in this case, a light-reflecting material such as aluminum can also be used for the electrodes.
The method of applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexo printing, and inkjet are generally used. Other coating methods include dip, roll coater, slit coater, spinner, etc., and these may be used depending on the purpose.

液晶配向剤を基板上に塗布した後の焼成は、ホットプレートなどの加熱手段により50~300℃、好ましくは80~250℃で行い、溶媒を蒸発させて、塗膜を形成させることができる。焼成後に形成される塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜をラビング又は偏光紫外線の照射などで処理する。
本発明の液晶配向剤から得られる液晶配向膜を配向処理する方法は、ラビング処理法でもよいが、本発明の液晶配向剤では、上記のように、拡大された照射量マージンで配向処理が得られるために光配向処理法が好適である。光配向処理法の好ましい例としては、前記液晶配向膜の表面に、100~800nmの波長を有する放射線、好ましくは紫外線又は可視光線を用いることができる。なかでも、好ましくは100~400nm、より好ましくは、200~400nmの波長を有する紫外線である。
光配向処理法における光照射量は、1~10,000mJ/cmが好ましく、なかでも100~5,000mJ/cmがより好ましく、特に、100~2000mJ/cmが好ましい。
本発明の液晶表示素子は、上記した手法により本発明の液晶配向剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。
After applying the liquid crystal aligning agent onto the substrate, baking is performed at 50 to 300° C., preferably 80 to 250° C., using a heating means such as a hot plate to evaporate the solvent and form a coating film. The thickness of the coating film formed after firing is preferably 5 to 300 nm, and more preferably 5 to 300 nm, because if it is too thick, it will be disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may decrease. Preferably it is 10 to 100 nm. When liquid crystals are to be horizontally aligned or tilted, the coating film after firing is treated by rubbing or irradiation with polarized ultraviolet rays.
The method for aligning the liquid crystal aligning film obtained from the liquid crystal aligning agent of the present invention may be a rubbing treatment method, but with the liquid crystal aligning agent of the present invention, the alignment treatment can be performed with an expanded irradiation dose margin as described above. Therefore, the photo-alignment treatment method is suitable. As a preferable example of the photo-alignment treatment method, radiation having a wavelength of 100 to 800 nm, preferably ultraviolet rays or visible light, can be used on the surface of the liquid crystal alignment film. Among these, ultraviolet light having a wavelength of preferably 100 to 400 nm, more preferably 200 to 400 nm.
The amount of light irradiation in the photo-alignment treatment method is preferably 1 to 10,000 mJ/cm 2 , more preferably 100 to 5,000 mJ/cm 2 , particularly preferably 100 to 2000 mJ/cm 2 .
The liquid crystal display element of the present invention is obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then producing a liquid crystal cell by a known method to obtain a liquid crystal display element.

液晶セル作製の一例を挙げるならば、液晶配向膜の形成された1対の基板を用意し、片方の基板の液晶配向膜上にスペーサーを散布し、液晶配向膜面が内側になるように、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサーを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止する方法などが例示できる。スペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。 To give an example of liquid crystal cell production, a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers are sprinkled on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Examples include a method in which the other substrate is bonded together and liquid crystal is injected under reduced pressure for sealing, or a method in which liquid crystal is dropped onto the surface of a liquid crystal alignment film on which spacers have been sprinkled, and then the substrates are bonded together and sealed. The thickness of the spacer is preferably 1 to 30 μm, more preferably 2 to 10 μm.

以下に実施例を挙げ、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。以下における化合物の略号及び各特性の測定方法は、次のとおりである。
NMP:N-メチル-2-ピロリドン、 GBL:γ―ブチロラクトン、
BCS:ブチルセロソルブ、

Figure 0007400728000022
Figure 0007400728000023
Figure 0007400728000024
The present invention will be described in more detail with reference to Examples below, but the present invention is not limited thereto. The abbreviations of the compounds and the measurement methods for each property below are as follows.
NMP: N-methyl-2-pyrrolidone, GBL: γ-butyrolactone,
BCS: butyl cellosolve,
Figure 0007400728000022
Figure 0007400728000023
Figure 0007400728000024

Figure 0007400728000025
Figure 0007400728000025

1.化合物[DA―3]の合成例
以下のスキームに従って化合物[DA-3]を合成した。
1. Synthesis Example of Compound [DA-3] Compound [DA-3] was synthesized according to the following scheme.

Figure 0007400728000026
Figure 0007400728000026

化合物[1]の合成
ジメチルホルムアミド(1050g)に対して、6-ブロモナフタレン-2-オール(150g、672mmol)を加え、氷冷下に冷やした。それに対して水素化ナトリウム(60%、29.6g)を少しずつ加え、氷冷下で1時間撹拌した後、ベンジルブロミド(121g)を加え、室温で1時間撹拌した。更に、水冷下、純水(750g)を少しずつ加えて撹拌し、結晶を析出させた。得られる結晶を含む液を濾過し、濾物をメタノール(750g)でスラリー洗浄し、濾過し、濾物を乾燥させることで化合物[1]を得た(収量:207g、収率:98%、白色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):8.13(d, 1H, J = 2.0 Hz), 7.85(d, 1H, J = 9.2 Hz), 7.78(d, 1H, J = 8.8 Hz), 7.58(dd, 1H, J = 8.8 Hz, 2.4Hz), 7.53-7.48(m, 3H), 7.44-7.40(m, 2H), 7.38-7.33(m, 1H), 7.30(dd, 1H, J = 9.0 Hz, 2.6 Hz), 5.22(s, 2H).
Synthesis of Compound [1] 6-bromonaphthalen-2-ol (150 g, 672 mmol) was added to dimethylformamide (1050 g), and the mixture was cooled on ice. Sodium hydride (60%, 29.6 g) was added little by little thereto, and the mixture was stirred for 1 hour under ice-cooling, then benzyl bromide (121 g) was added, and the mixture was stirred at room temperature for 1 hour. Further, while cooling with water, pure water (750 g) was added little by little and stirred to precipitate crystals. The obtained crystal-containing liquid was filtered, the filtered material was slurried washed with methanol (750 g), filtered, and the filtered material was dried to obtain compound [1] (yield: 207 g, yield: 98%, white crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 8.13(d, 1H, J = 2.0 Hz), 7.85(d, 1H, J = 9.2 Hz), 7.78(d, 1H, J = 8.8 Hz), 7.58 (dd, 1H, J = 8.8 Hz, 2.4Hz), 7.53-7.48(m, 3H), 7.44-7.40(m, 2H), 7.38-7.33(m, 1H), 7.30(dd, 1H, J = 9.0 Hz, 2.6 Hz), 5.22(s, 2H).

化合物[2]の合成
テトラヒドロフラン(1000g)に対して、tert-ブトキシナトリウム(82.6g)及びベンゾフェノンイミン(126g)を加え、室温で30分撹拌した。これに対して化合物[1](207g、661mmol)、Pd(dba)(3.03g)及びBINAP(6.17g)を加え、窒素雰囲気下、65℃で23時間撹拌した。室温まで冷却した後、1規定塩酸(1000g)を加え、室温で15分撹拌し、水層を分取した。更に有機層に対し、酢酸エチル(200g)、ヘキサン(100g)及び1規定塩酸(500g)を加えて、分取した水層に加えた。水冷下、水酸化ナトリウム(80g)を加えてアルカリ性とした。有機層を分取し、飽和塩化ナトリウム水溶液で洗浄した後、硫酸ナトリウムで乾燥させ、濾過し、濾液を濃縮することで粗体を得た(154g)。粗体に対し、酢酸エチル(462g)を加えて70℃で加熱溶解させた後、ヘキサン(770g)を加え、冷却した。そして、濾過し、濾物を乾燥させることで化合物[2]を得た(収量:124g、収率:74%、薄茶色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):7.50-7.43(m, 4H), 7.42-7.37(m, 2H), 7.35-7.30(m, 1H), 7.19(d, 1H, J = 2.8 Hz), 7.04(dd, 1H, J = 8.8 Hz, 2.8 Hz), 6.90(dd, 1H, J = 8.8 Hz, 2.0 Hz), 6.80(d, 1H, J = 2.0 Hz), 5.13(br, 4H).
Synthesis of Compound [2] Sodium tert-butoxy (82.6 g) and benzophenone imine (126 g) were added to tetrahydrofuran (1000 g), and the mixture was stirred at room temperature for 30 minutes. Compound [1] (207 g, 661 mmol), Pd 2 (dba) 3 (3.03 g) and BINAP (6.17 g) were added to this, and the mixture was stirred at 65° C. for 23 hours under a nitrogen atmosphere. After cooling to room temperature, 1N hydrochloric acid (1000 g) was added, stirred at room temperature for 15 minutes, and the aqueous layer was separated. Furthermore, ethyl acetate (200 g), hexane (100 g) and 1N hydrochloric acid (500 g) were added to the organic layer, and the mixture was added to the separated aqueous layer. While cooling with water, sodium hydroxide (80 g) was added to make it alkaline. The organic layer was separated, washed with a saturated aqueous sodium chloride solution, dried over sodium sulfate, filtered, and the filtrate was concentrated to obtain a crude product (154 g). Ethyl acetate (462 g) was added to the crude product and dissolved by heating at 70°C, then hexane (770 g) was added and cooled. Compound [2] was obtained by filtering and drying the filtered product (yield: 124 g, yield: 74%, light brown crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 7.50-7.43(m, 4H), 7.42-7.37(m, 2H), 7.35-7.30(m, 1H), 7.19(d, 1H, J = 2.8 Hz ), 7.04(dd, 1H, J = 8.8 Hz, 2.8 Hz), 6.90(dd, 1H, J = 8.8 Hz, 2.0 Hz), 6.80(d, 1H, J = 2.0 Hz), 5.13(br, 4H) .

化合物[3]の合成
ジクロロメタン(1000g)に対して、化合物[2](124g、497mmol)及び二炭酸ジ-tert-ブチル(130g)を加え、室温で20時間撹拌した。反応が完結していなかったため、二炭酸ジ-tert-ブチル(10g)を追加添加し、更に室温で20時間撹拌した。飽和炭酸水素ナトリウム水溶液(1000mL)及びジクロロメタン(300g)を加え、分液した。有機層を純水(450mL)、飽和塩化ナトリウム水溶液(300mL)の順に洗浄し、硫酸ナトリウムで乾燥させた後、濾過し、濾液を濃縮することで粗体を得た(198g)。粗体に対し、酢酸エチル(600g)を加えて70℃で加熱溶解させた後、ヘキサン(1000g)を加え、冷却した。そして、濾過し、濾物を乾燥させることで化合物[3]を得た(収量:142g、収率:82%、白色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):9.46(s, 1H), 8.02(s, 1H), 7.69(t, 2H, J = 8.6 Hz), 7.52-7.49(m, 2H), 7.45(dd, 1H, J = 9.0 Hz, 2.2 Hz), 7.43-7.39(m, 2H), 7.37-7.32(m, 2H), 7.17(dd, 1H, J = 9.0 Hz, 2.6 Hz), 5.18(s, 2H), 1.50(s, 9H).
Synthesis of Compound [3] Compound [2] (124 g, 497 mmol) and di-tert-butyl dicarbonate (130 g) were added to dichloromethane (1000 g), and the mixture was stirred at room temperature for 20 hours. Since the reaction was not completed, di-tert-butyl dicarbonate (10 g) was further added and the mixture was further stirred at room temperature for 20 hours. Saturated aqueous sodium hydrogen carbonate solution (1000 mL) and dichloromethane (300 g) were added and the mixture was separated. The organic layer was washed with pure water (450 mL) and a saturated aqueous sodium chloride solution (300 mL) in that order, dried over sodium sulfate, filtered, and the filtrate was concentrated to obtain a crude product (198 g). Ethyl acetate (600 g) was added to the crude product and dissolved by heating at 70°C, then hexane (1000 g) was added and cooled. Compound [3] was obtained by filtering and drying the filtered product (yield: 142 g, yield: 82%, white crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 9.46(s, 1H), 8.02(s, 1H), 7.69(t, 2H, J = 8.6 Hz), 7.52-7.49(m, 2H), 7.45( dd, 1H, J = 9.0 Hz, 2.2 Hz), 7.43-7.39(m, 2H), 7.37-7.32(m, 2H), 7.17(dd, 1H, J = 9.0 Hz, 2.6 Hz), 5.18(s, 2H), 1.50(s, 9H).

化合物[4]の合成
エタノール(976g)に対して、化合物[3](122g、349mmol)及び5%パラジウムカーボン(12.2g)を加え、水素雰囲気下、40℃で96時間撹拌した。得られる撹拌液から触媒を濾別し、濾液を濃縮することで化合物[4]を得た(収量:89.3g、収率:99%、白色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):9.52(s, 1H), 9.37(s, 1H), 7.94(s, 1H), 7.62-7.59(m, 1H), 7.56(d, 1H, J = 9.2 Hz), 7.39(dd, 1H, J = 9.0 Hz, 2.2 Hz), 7.04-7.00(m, 2H), 1.50(s, 9H).
Synthesis of Compound [4] Compound [3] (122 g, 349 mmol) and 5% palladium carbon (12.2 g) were added to ethanol (976 g), and the mixture was stirred at 40° C. for 96 hours under a hydrogen atmosphere. The catalyst was filtered off from the resulting stirred liquid, and the filtrate was concentrated to obtain compound [4] (yield: 89.3 g, yield: 99%, white crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 9.52(s, 1H), 9.37(s, 1H), 7.94(s, 1H), 7.62-7.59(m, 1H), 7.56(d, 1H, J = 9.2 Hz), 7.39(dd, 1H, J = 9.0 Hz, 2.2 Hz), 7.04-7.00(m, 2H), 1.50(s, 9H).

化合物[5]の合成
ジメチルスルホキシド(500g)に対して、4-クロロニトロベンゼン(100g、635mmol)、エチレングリコール(551g)及び水酸化ナトリウム(23.1g)を加え、100℃で19時間撹拌した。室温まで冷却した後、酢酸エチル(560g)及び純水(700g)を加え、分液した。上層を回収したうえで、下層に酢酸エチル(300g)を加えて分液し、上層を合わせた。合わせた上層に純水(400g)及び飽和塩化ナトリウム水溶液(200g)を加えて再度分液し、酢酸エチル層を硫酸ナトリウムで乾燥後、濾過し、濾液を濃縮することで粗体を得た(110g)。粗体に対し、酢酸エチル(330g)を加えて60℃で加熱溶解させた後、ヘキサン(550g)を加え、冷却した。そして、得られる液を濾過し、濾物を乾燥させることで化合物[5]を得た(収量:64.2g、収率:55%、淡黄色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):8.21(d, 2H, J = 9.4 Hz), 7.16(d, 2H, J = 9.4 Hz), 4.97(t, 1H, J = 5.6 Hz), 4.15(t, 2H, J = 4.8 Hz), 3.77-3.73(m, 2H).
Synthesis of Compound [5] To dimethyl sulfoxide (500 g), 4-chloronitrobenzene (100 g, 635 mmol), ethylene glycol (551 g) and sodium hydroxide (23.1 g) were added and stirred at 100° C. for 19 hours. After cooling to room temperature, ethyl acetate (560 g) and pure water (700 g) were added to separate the layers. After collecting the upper layer, ethyl acetate (300 g) was added to the lower layer to separate the layers, and the upper layers were combined. Pure water (400 g) and saturated aqueous sodium chloride solution (200 g) were added to the combined upper layer and the layers were separated again. The ethyl acetate layer was dried over sodium sulfate, filtered, and the filtrate was concentrated to obtain a crude product ( 110g). Ethyl acetate (330 g) was added to the crude product and dissolved by heating at 60° C., then hexane (550 g) was added and cooled. Then, the obtained liquid was filtered and the filtered material was dried to obtain compound [5] (yield: 64.2 g, yield: 55%, pale yellow crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 8.21(d, 2H, J = 9.4 Hz), 7.16(d, 2H, J = 9.4 Hz), 4.97(t, 1H, J = 5.6 Hz), 4.15 (t, 2H, J = 4.8 Hz), 3.77-3.73(m, 2H).

化合物[6]の合成
ジクロロメタン(1264g)に対して、化合物[5](63.2g、345mmol)を加え、氷冷下に冷やした。これに対してトリエチルアミン(52.4g)、トシルクロリド(69.0g)及び4-ジメチルアミノピリジン(1.26g)を加え、室温で19時間撹拌した。純水(632g)を加え、分液してジクロロメタン層を回収し、1規定塩酸(300g)、純水(300g)、飽和塩化ナトリウム水溶液(300g)の順に分液洗浄し、無水硫酸ナトリウムで乾燥させて、濾過し、濾液を濃縮することで化合物[6]を得た(収量:108g、収率:93%、白色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):8.18(d, 2H, J = 9.2 Hz), 7.80(d, 2H, J = 8.6 Hz), 7.47(d, 2H, J = 8.6 Hz), 7.05(d, 2H, J = 9.2 Hz), 4.40-4.37(m, 2H), 4.35-4.31(m, 2H), 2.41(s, 3H).
Synthesis of Compound [6] Compound [5] (63.2 g, 345 mmol) was added to dichloromethane (1264 g), and the mixture was cooled on ice. To this were added triethylamine (52.4 g), tosyl chloride (69.0 g) and 4-dimethylaminopyridine (1.26 g), and the mixture was stirred at room temperature for 19 hours. Add pure water (632 g), separate the layers, collect the dichloromethane layer, wash with 1N hydrochloric acid (300 g), pure water (300 g), and saturated aqueous sodium chloride solution (300 g) in this order, and dry over anhydrous sodium sulfate. Compound [6] was obtained by filtering and concentrating the filtrate (yield: 108 g, yield: 93%, white crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 8.18(d, 2H, J = 9.2 Hz), 7.80(d, 2H, J = 8.6 Hz), 7.47(d, 2H, J = 8.6 Hz), 7.05 (d, 2H, J = 9.2 Hz), 4.40-4.37(m, 2H), 4.35-4.31(m, 2H), 2.41(s, 3H).

化合物[7]の合成
ジメチルホルムアミド(360g)に対して、化合物[4](45.0g、174mmol)、化合物[6](61.5g)及び炭酸カリウム(36.0g)を加え、80℃で21時間撹拌した。室温まで冷却した後、純水(720g)を加えて結晶を析出させた。得られる結晶を含む液を濾過し、濾物をメタノール(360g)でスラリー洗浄し、濾過し、濾物を乾燥させることで化合物[7]を得た(収量:67.2g、収率:91%、淡黄土色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):9.47(s, 1H), 8.23(d, 2H, J = 9.2 Hz), 8.02(s, 1H), 7.72-7.69(m, 2H), 7.46(dd, 1H, J = 8.8 Hz, 2.0 Hz), 7.31(d, 1H, J = 2.4 Hz), 7.24(d, 2H, J = 9.2 Hz), 7.14(dd, 1H, J = 9.0 Hz, 2.6 Hz), 4.56-4.53(m, 2H), 4.46-4.43(m, 2H), 1.50(s, 9H).
Synthesis of compound [7] Compound [4] (45.0 g, 174 mmol), compound [6] (61.5 g) and potassium carbonate (36.0 g) were added to dimethylformamide (360 g), and the mixture was heated at 80°C. Stirred for 21 hours. After cooling to room temperature, pure water (720 g) was added to precipitate crystals. The obtained crystal-containing liquid was filtered, the filtered material was slurried washed with methanol (360 g), filtered, and the filtered material was dried to obtain compound [7] (yield: 67.2 g, yield: 91 %, pale ocher crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 9.47(s, 1H), 8.23(d, 2H, J = 9.2 Hz), 8.02(s, 1H), 7.72-7.69(m, 2H), 7.46( dd, 1H, J = 8.8 Hz, 2.0 Hz), 7.31(d, 1H, J = 2.4 Hz), 7.24(d, 2H, J = 9.2 Hz), 7.14(dd, 1H, J = 9.0 Hz, 2.6 Hz) ), 4.56-4.53(m, 2H), 4.46-4.43(m, 2H), 1.50(s, 9H).

化合物[8]の合成
クロロホルム(1096g)に対して、化合物[7](73.1g、172mmol)を加えて、水冷下で撹拌しながら、トリフルオロ酢酸(98.1g)を加え、50℃で19時間撹拌した。得られる撹拌液を室温まで冷却した後、トリエチルアミン(87.0g)及び純水(1096g)を加えて結晶を析出させた。得られる結晶を含む液を濾過し、濾物をメタノール(365g)でスラリー洗浄した後、濾過し、濾物を乾燥させることで粗体を得た(49.5g)。粗体に対し、ジメチルホルムアミド(124g)を加え、80℃で加熱溶解させた後、メタノール(248g)を加えて冷却し、結晶を析出させた。得られる結晶を含む液を濾過し、濾物を乾燥させることで化合物[8]を得た(収量:47.3g、収率:85%、橙色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):8.23(d, 2H, J = 9.2 Hz), 7.51(dd, 1H, J = 8.8 Hz, 2.4 Hz), 7.45(dd, 1H, J = 8.8 Hz, 2.4 Hz), 7.24(dd, 2H, J = 9.2 Hz, 2.4 Hz), 7.27(s, 1H), 7.01(d, 1H, J = 9.2 Hz), 6.91(d, 1H, J = 8.8 Hz), 6.80(s, 1H), 5.15(br, 2H), 4.55-4.51(m, 2H), 4.41-4.37(m, 2H).
Synthesis of Compound [8] Compound [7] (73.1 g, 172 mmol) was added to chloroform (1096 g), trifluoroacetic acid (98.1 g) was added while stirring under water cooling, and the mixture was heated at 50°C. Stirred for 19 hours. After cooling the resulting stirred liquid to room temperature, triethylamine (87.0 g) and pure water (1096 g) were added to precipitate crystals. The obtained crystal-containing liquid was filtered, and the filtered material was washed with methanol (365 g) as a slurry, filtered, and the filtered material was dried to obtain a crude product (49.5 g). Dimethylformamide (124 g) was added to the crude product, and the mixture was heated and dissolved at 80° C., and then methanol (248 g) was added and cooled to precipitate crystals. The obtained crystal-containing liquid was filtered and the filtered material was dried to obtain compound [8] (yield: 47.3 g, yield: 85%, orange crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 8.23(d, 2H, J = 9.2 Hz), 7.51(dd, 1H, J = 8.8 Hz, 2.4 Hz), 7.45(dd, 1H, J = 8.8 Hz) , 2.4 Hz), 7.24(dd, 2H, J = 9.2 Hz, 2.4 Hz), 7.27(s, 1H), 7.01(d, 1H, J = 9.2 Hz), 6.91(d, 1H, J = 8.8 Hz) , 6.80(s, 1H), 5.15(br, 2H), 4.55-4.51(m, 2H), 4.41-4.37(m, 2H).

化合物[DA―3]の合成
ジメチルホルムアミド(371g)に対して、化合物[8](46.4g、143mmol)及び5%パラジウムカーボン(4.6g)を加え、水素雰囲気下、60℃で19時間撹拌した。反応があまり進行していなかったため、オートクレーブ中、0.4MPa水素雰囲気下、60℃で8時間撹拌した。窒素置換した後、触媒を濾別し、濾液を濃縮させて内容量を80gとした。ジメチルホルムアミド(46g)を加え、90℃で加熱溶解させた後、メタノール(210g)を加えて冷却し、結晶を析出させた。そして、得られる結晶を含む液を濾過し、濾物を乾燥させることで、化合物[DA―3]を得た(収量:33.4g、収率:79%、淡紫色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):7.50(d, 1H, J = 8.8 Hz), 7.44(d, 1H, J = 8.8 Hz), 7.13(d, 1H, J = 2.8 Hz), 7.00(dd, 1H, J = 8.8 Hz, 2.8 Hz), 6.90(dd, 1H, J = 8.8 Hz, 2.4 Hz), 6.79(d, 1H, J = 2.4 Hz), 6.71(d, 2H, J = 8.8 Hz), 6.52(d, 2H, J = 8.8 Hz), 5.13(br, 2H), 4.63(br, 2H), 4.28-4.25(m, 2H), 4.20-4.17(m, 2H).
Synthesis of Compound [DA-3] Compound [8] (46.4 g, 143 mmol) and 5% palladium on carbon (4.6 g) were added to dimethylformamide (371 g), and the mixture was heated at 60°C for 19 hours under a hydrogen atmosphere. Stirred. Since the reaction had not progressed much, the mixture was stirred at 60° C. for 8 hours in an autoclave under a 0.4 MPa hydrogen atmosphere. After purging with nitrogen, the catalyst was filtered off, and the filtrate was concentrated to a content of 80 g. Dimethylformamide (46 g) was added and dissolved by heating at 90° C., then methanol (210 g) was added and cooled to precipitate crystals. Then, the obtained crystal-containing liquid was filtered and the filtered material was dried to obtain compound [DA-3] (yield: 33.4 g, yield: 79%, light purple crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 7.50(d, 1H, J = 8.8 Hz), 7.44(d, 1H, J = 8.8 Hz), 7.13(d, 1H, J = 2.8 Hz), 7.00 (dd, 1H, J = 8.8 Hz, 2.8 Hz), 6.90(dd, 1H, J = 8.8 Hz, 2.4 Hz), 6.79(d, 1H, J = 2.4 Hz), 6.71(d, 2H, J = 8.8 Hz), 6.52(d, 2H, J = 8.8 Hz), 5.13(br, 2H), 4.63(br, 2H), 4.28-4.25(m, 2H), 4.20-4.17(m, 2H).

2.化合物[DA―4]の合成例
以下のスキームに従って化合物[DA-4]を合成した。
2. Synthesis Example of Compound [DA-4] Compound [DA-4] was synthesized according to the following scheme.

Figure 0007400728000027
Figure 0007400728000027

化合物[4]の合成
化合物[3]の合成中間体である化合物[4]を使用した。
Synthesis of Compound [4] Compound [4], which is a synthetic intermediate of Compound [3], was used.

化合物[9]の合成
ジメチルホルムアミド(607g)中、エチレングリコールジトシラート(60.7g、164mmol)、化合物[4](89.3g)及び炭酸カリウム(56.7g)加え、80℃で22時間撹拌した。撹拌液を室温まで冷却した後、純水(1200g)を加えて結晶を析出させた。そして、得られる結晶を含む液を濾過し、濾物をメタノール(450g)でスラリー洗浄し、濾過し、濾物を乾燥させることで粗体を得た(83.9g)。粗体に対し、ジメチルホルムアミド(839g)を加え、90℃で加熱溶解させた後、メタノール(839g)を加えて冷却し、結晶を析出させた。そして、得られる結晶を含むを濾過し、濾物を乾燥させることで化合物[9]を得た(収量:71.2g、収率:80%、橙色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):9.43(s, 2H), 7.99(br, 2H), 7.67(d, 4H, J = 8.8 Hz), 7.43(dd, 2H, J = 8.8 Hz, 2.4 Hz), 7.28(d, 2H, J = 2.4 Hz), 7.12(dd, 2H, J = 8.8Hz, 2.4 Hz), 4.42(s, 4H), 1.47(s, 18H).
Synthesis of Compound [9] In dimethylformamide (607 g), ethylene glycol ditosylate (60.7 g, 164 mmol), compound [4] (89.3 g) and potassium carbonate (56.7 g) were added, and the mixture was heated at 80°C for 22 hours. Stirred. After cooling the stirred liquid to room temperature, pure water (1200 g) was added to precipitate crystals. Then, the obtained crystal-containing liquid was filtered, and the filtered material was slurried washed with methanol (450 g), filtered, and the filtered material was dried to obtain a crude product (83.9 g). Dimethylformamide (839 g) was added to the crude product, and the mixture was heated and dissolved at 90° C., and then methanol (839 g) was added and cooled to precipitate crystals. Then, the obtained crystal-containing liquid was filtered and the filtered material was dried to obtain compound [9] (yield: 71.2 g, yield: 80%, orange crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 9.43(s, 2H), 7.99(br, 2H), 7.67(d, 4H, J = 8.8 Hz), 7.43(dd, 2H, J = 8.8 Hz, 2.4 Hz), 7.28(d, 2H, J = 2.4 Hz), 7.12(dd, 2H, J = 8.8Hz, 2.4 Hz), 4.42(s, 4H), 1.47(s, 18H).

化合物[DA-4]の合成
クロロホルム(1143g)中、化合物[9](71.2g、129mmol)を加えて、水冷下に冷やした。これにトリフルオロ酢酸(160g)を加え、50℃で24時間撹拌した。室温まで冷却した後、トリエチルアミン(142g)及び純水(1143g)を加えて結晶を析出させた。そして、得られる結晶を含む液を濾過し、濾物をメタノール(400g)でスラリー洗浄し、濾過し、濾物を乾燥させることで粗体を得た(37.5g)。粗体に対し、ジメチルホルムアミド(225g)を加え、90℃で加熱溶解させた後、メタノール(225g)を加えて冷却し、結晶を析出させた。得られる結晶を含む液を濾過し、濾物を乾燥させることで化合物[DA―4]を得た(収量:33.5g、収率:75%、淡赤紫色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):7.51(d, 2H, J = 8.8 Hz), 7.45(d, 2H, J = 8.8 Hz), 7.17(d, 2H, J = 2.4 Hz), 7.02(dd, 2H, J = 8.8 Hz, 2.4 Hz), 6.91(dd, 2H, J = 8.8Hz, 2.4 Hz), 6.80(d, 2H, J = 2.4 Hz), 5.14(br, 4H), 4.37(s, 4H).
Synthesis of Compound [DA-4] Compound [9] (71.2 g, 129 mmol) was added to chloroform (1143 g), and the mixture was cooled with water. Trifluoroacetic acid (160 g) was added to this, and the mixture was stirred at 50°C for 24 hours. After cooling to room temperature, triethylamine (142 g) and pure water (1143 g) were added to precipitate crystals. Then, the obtained crystal-containing liquid was filtered, and the filtrate was washed as a slurry with methanol (400 g), filtered, and the filtrate was dried to obtain a crude product (37.5 g). Dimethylformamide (225 g) was added to the crude product, and the mixture was heated and dissolved at 90° C., and then methanol (225 g) was added and cooled to precipitate crystals. The obtained crystal-containing liquid was filtered and the filtered material was dried to obtain compound [DA-4] (yield: 33.5 g, yield: 75%, pale reddish-purple crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 7.51(d, 2H, J = 8.8 Hz), 7.45(d, 2H, J = 8.8 Hz), 7.17(d, 2H, J = 2.4 Hz), 7.02 (dd, 2H, J = 8.8 Hz, 2.4 Hz), 6.91(dd, 2H, J = 8.8Hz, 2.4 Hz), 6.80(d, 2H, J = 2.4 Hz), 5.14(br, 4H), 4.37( s, 4H).

3.化合物[DA―5]の合成例
以下のスキームに従って化合物[DA―5]を合成した。
3. Synthesis Example of Compound [DA-5] Compound [DA-5] was synthesized according to the following scheme.

Figure 0007400728000028
Figure 0007400728000028

化合物[4]の合成
化合物[3]の合成中間体である化合物[4]を使用した。
Synthesis of Compound [4] Compound [4], which is a synthetic intermediate of Compound [3], was used.

化合物[10]の合成
ジメチルホルムアミド(35g)中、4-ヒドロキシ-4’-ニトロビフェニル(5.00g、23.2mmol)及び炭酸カリウム(8.02g)を加え、80℃で30分撹拌した。そこに、2-ブロモエタノール(4.35g)のジメチルホルムアミド(5g)溶液を加え、100℃で16時間撹拌した。室温まで冷却した後、純水(80g)を加えて撹拌し、析出物を濾別した。濾物をメタノール(35g)でスラリー洗浄し、濾過し、濾物を乾燥させることで化合物[10]を得た(収量:4.35g、収率:72%、黄色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):8.27(d, 2H, J = 7.2 Hz), 7.92(d, 2H, J = 7.2 Hz), 7.76(d, 2H, J = 6.8 Hz), 7.09(d, 2H, J = 6.8 Hz), 4.90(t, 1H, J = 4.2Hz), 4.07(t, 2H, J = 4.0 Hz), 3.77-3.73(m, 2H).
Synthesis of Compound [10] In dimethylformamide (35 g), 4-hydroxy-4'-nitrobiphenyl (5.00 g, 23.2 mmol) and potassium carbonate (8.02 g) were added and stirred at 80° C. for 30 minutes. A solution of 2-bromoethanol (4.35 g) in dimethylformamide (5 g) was added thereto, and the mixture was stirred at 100° C. for 16 hours. After cooling to room temperature, pure water (80 g) was added and stirred, and the precipitate was filtered off. Compound [10] was obtained by slurry washing the filtrate with methanol (35 g), filtering, and drying the filtrate (yield: 4.35 g, yield: 72%, yellow crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 8.27(d, 2H, J = 7.2 Hz), 7.92(d, 2H, J = 7.2 Hz), 7.76(d, 2H, J = 6.8 Hz), 7.09 (d, 2H, J = 6.8 Hz), 4.90(t, 1H, J = 4.2Hz), 4.07(t, 2H, J = 4.0 Hz), 3.77-3.73(m, 2H).

化合物[11]の合成
ジクロロメタン(80g)中、化合物[10](4.00g、15.4mmol)を加え、氷冷下に冷やした。これにトリエチルアミン(2.34g)、トシルクロリド(3.09g)及び4-ジメチルアミノピリジン(0.06g)を加え、室温で21時間撹拌した。純水(40g)を加え、分液してジクロロメタン層を回収し、1規定塩酸(40g)、純水(40g)、飽和塩化ナトリウム水溶液(20g)の順に分液洗浄し、無水硫酸マグネシウムで乾燥させて、濾過し、濾液を濃縮することで化合物[11]を得た(収量:6.10g、収率:96%、橙色固体)。
1H-NMR(400MHz, DMSO-d6, δppm):8.27(d, 2H, J = 7.2 Hz), 7.92(d, 2H, J = 7.2 Hz), 7.81(d, 2H, J = 6.8 Hz), 7.74(d, 2H, J = 7.2 Hz), 7.48(d, 2H, J = 6.8 Hz), 7.00(d, 2H, J = 7.2 Hz), 4.39-4.36(m, 2H), 4.26-4.23(m, 2H), 2.09(s, 3H).
Synthesis of Compound [11] Compound [10] (4.00 g, 15.4 mmol) was added to dichloromethane (80 g), and the mixture was cooled on ice. Triethylamine (2.34 g), tosyl chloride (3.09 g) and 4-dimethylaminopyridine (0.06 g) were added to this, and the mixture was stirred at room temperature for 21 hours. Add pure water (40 g), separate the layers, collect the dichloromethane layer, wash with 1N hydrochloric acid (40 g), pure water (40 g), and saturated sodium chloride aqueous solution (20 g) in this order, and dry over anhydrous magnesium sulfate. Compound [11] was obtained by filtering and concentrating the filtrate (yield: 6.10 g, yield: 96%, orange solid).
1H-NMR (400MHz, DMSO-d6, δppm): 8.27(d, 2H, J = 7.2 Hz), 7.92(d, 2H, J = 7.2 Hz), 7.81(d, 2H, J = 6.8 Hz), 7.74 (d, 2H, J = 7.2 Hz), 7.48(d, 2H, J = 6.8 Hz), 7.00(d, 2H, J = 7.2 Hz), 4.39-4.36(m, 2H), 4.26-4.23(m, 2H), 2.09(s, 3H).

化合物[12]の合成
ジメチルホルムアミド(36g)中、化合物[4](3.64g、14.0mmol)、化合物[11](6.10g)及び炭酸カリウム(2.91g)を加え、80℃で21時間撹拌した。室温まで冷却した後、純水(72g)を加えて結晶を析出させた。濾過し、濾物をメタノール(36g)でスラリー洗浄し、濾過し、濾物を乾燥させることで化合物[12]を得た(収量:5.80g、収率:83%、淡黄色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):9.44(s, 1H), 8.27(d, 2H, J = 7.2 Hz), 8.01(s, 1H), 7.94(d, 2H, J = 7.2 Hz), 7.80-7.77(m, 2H), 7.71(d, 2H, J = 7.2 Hz), 7.47(dd, 1H, J = 7.2 Hz, 1.6 Hz), 7.31(d, 1H, J = 1.6 Hz), 7.19-7.15(m, 3H), 4.46-4.44(m, 4H), 1.50(s, 9H).
Synthesis of Compound [12] In dimethylformamide (36 g), compound [4] (3.64 g, 14.0 mmol), compound [11] (6.10 g) and potassium carbonate (2.91 g) were added, and the mixture was heated at 80°C. Stirred for 21 hours. After cooling to room temperature, pure water (72 g) was added to precipitate crystals. Compound [12] was obtained by filtering, slurry washing the filtrate with methanol (36 g), filtration, and drying the filtrate (yield: 5.80 g, yield: 83%, pale yellow crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 9.44(s, 1H), 8.27(d, 2H, J = 7.2 Hz), 8.01(s, 1H), 7.94(d, 2H, J = 7.2 Hz) , 7.80-7.77(m, 2H), 7.71(d, 2H, J = 7.2 Hz), 7.47(dd, 1H, J = 7.2 Hz, 1.6 Hz), 7.31(d, 1H, J = 1.6 Hz), 7.19 -7.15(m, 3H), 4.46-4.44(m, 4H), 1.50(s, 9H).

化合物[13]の合成
クロロホルム(87g)中、化合物[12](5.80g、11.6mmol)を加えて、水冷下に冷やした。そこに、トリフルオロ酢酸(6.61g)を加え、50℃で22時間撹拌した。室温まで冷却した後、トリエチルアミン(5.86g)及び純水(87g)を加えて結晶を析出させた。得られる結晶を含む液を濾過し、濾物をメタノール(60g)でスラリー洗浄した後、濾過し、濾物を乾燥させることで粗体を得た(4.3g)。粗体に対し、ジメチルホルムアミド(43g)を加え、80℃で加熱撹拌した後、メタノール(43g)を加えて冷却し、濾過し、濾物を乾燥させることで化合物[13]を得た(収量:4.13g、収率:89%、橙色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):8.27(d, 2H, J = 6.8 Hz), 7.94(d, 2H, J = 6.8 Hz), 7.78(d, 2H, J = 6.8 Hz), 7.52(d, 1H, J = 6.8 Hz), 7.46(d, 1H, J = 6.8 Hz), 7.47-7.45(m, 3H), 7.03(d, 1H, J = 6.8 Hz), 6.92(d, 1H, J = 6.8 Hz), 6.82(s, 1H), 5.22(br, 2H), 4.46-4.42(m, 2H), 4.40-4.37(m, 2H).
Synthesis of Compound [13] Compound [12] (5.80 g, 11.6 mmol) was added to chloroform (87 g), and the mixture was cooled with water. Trifluoroacetic acid (6.61 g) was added thereto, and the mixture was stirred at 50°C for 22 hours. After cooling to room temperature, triethylamine (5.86 g) and pure water (87 g) were added to precipitate crystals. The obtained crystal-containing liquid was filtered, and the filter cake was washed with methanol (60 g) as a slurry, filtered, and the filter cake was dried to obtain a crude product (4.3 g). Dimethylformamide (43 g) was added to the crude product, heated and stirred at 80°C, then methanol (43 g) was added, cooled, filtered, and the filtrate was dried to obtain compound [13] (yield : 4.13 g, yield: 89%, orange crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 8.27(d, 2H, J = 6.8 Hz), 7.94(d, 2H, J = 6.8 Hz), 7.78(d, 2H, J = 6.8 Hz), 7.52 (d, 1H, J = 6.8 Hz), 7.46(d, 1H, J = 6.8 Hz), 7.47-7.45(m, 3H), 7.03(d, 1H, J = 6.8 Hz), 6.92(d, 1H, J = 6.8 Hz), 6.82(s, 1H), 5.22(br, 2H), 4.46-4.42(m, 2H), 4.40-4.37(m, 2H).

化合物[DA―5]の合成
ジメチルホルムアミド(41g)中、化合物[13](4.13g、10.3mmol)及び5%パラジウムカーボン(0.41g)を加え、水素雰囲気下、室温で25時間撹拌した。窒素置換した後、ジメチルホルムアミド(82g)を加えて120℃に加熱し、熱時濾過により触媒を濾別し、濾液を濃縮することで粗体を得た(3.84g)。粗体に対し、ジメチルホルムアミド(19g)を加えて100℃で加熱溶解させた後、メタノール(31g)を少しずつ加えて冷却し、結晶を析出させた。得られる結晶を含む液を濾過し、濾物を乾燥させることで、化合物[DA―5]を得た(収量:3.33g、収率:87%、茶色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):7.51(d, 1H, J = 6.8 Hz), 7.47-7.44(m, 3H), 7.29(d, 2H, J = 6.8 Hz), 7.16(d, 1H, J = 1.6 Hz), 7.03-6.99(m, 3H), 6.91(dd, 1H, J = 6.8 Hz, 1.6 Hz), 6.80(d, 1H, J = 1.6 Hz), 6.62(d, 2H, J = 6.8 Hz), 5.11(br, 4H), 4.35(br, 4H).
Synthesis of Compound [DA-5] Compound [13] (4.13 g, 10.3 mmol) and 5% palladium on carbon (0.41 g) were added to dimethylformamide (41 g), and the mixture was stirred at room temperature under a hydrogen atmosphere for 25 hours. did. After purging with nitrogen, dimethylformamide (82 g) was added and heated to 120° C., the catalyst was removed by filtration while hot, and the filtrate was concentrated to obtain a crude product (3.84 g). Dimethylformamide (19 g) was added to the crude product and dissolved by heating at 100° C., and then methanol (31 g) was added little by little and cooled to precipitate crystals. The obtained crystal-containing liquid was filtered and the filtered material was dried to obtain compound [DA-5] (yield: 3.33 g, yield: 87%, brown crystals).
1H-NMR (400MHz, DMSO-d6, δppm): 7.51(d, 1H, J = 6.8 Hz), 7.47-7.44(m, 3H), 7.29(d, 2H, J = 6.8 Hz), 7.16(d, 1H, J = 1.6 Hz), 7.03-6.99(m, 3H), 6.91(dd, 1H, J = 6.8 Hz, 1.6 Hz), 6.80(d, 1H, J = 1.6 Hz), 6.62(d, 2H, J = 6.8 Hz), 5.11(br, 4H), 4.35(br, 4H).

4.化合物[DA-14]の合成例
1,2-エチレンジオールを1,3-プロパンジオールに変更したこと以外は、化合物[DA-3]の合成方法と同様の合成方法によって、化合物[DA-14]を得た。
4. Synthesis Example of Compound [DA-14] Compound [DA-14] was synthesized by the same synthesis method as that of compound [DA-3] except that 1,2-ethylenediol was changed to 1,3-propanediol. ] was obtained.

5.化合物[DA-15]の合成例
エチレングリコールジトシラートを1,3-プロパンジオールジトシラートに変更したこと以外は、化合物[DA-4]の合成方法と同様の合成方法によって、化合物[DA-15]を得た。
5. Synthesis Example of Compound [DA-15] Compound [DA-15] was synthesized by the same synthesis method as that of compound [DA-4] except that ethylene glycol ditosylate was changed to 1,3-propanediol ditosylate. -15] was obtained.

[粘度]
E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[分子量]
GPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
GPC装置:Shodex社製(GPC-101)、カラム:Shodex社製(KD803、KD805の直列)、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)、流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定した。
[viscosity]
Measurement was performed using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) with a sample volume of 1.1 mL, a cone rotor TE-1 (1° 34', R24), and a temperature of 25°C.
[Molecular weight]
It was measured using a GPC (normal temperature gel permeation chromatography) device, and the number average molecular weight (Mn) and weight average molecular weight (Mw) were calculated as polyethylene glycol and polyethylene oxide equivalent values.
GPC device: Shodex (GPC-101), column: Shodex (KD803, KD805 in series), column temperature: 50°C, eluent: N,N-dimethylformamide (lithium bromide-water as an additive) (30 mmol/L for phosphoric acid/ anhydrous crystal (o-phosphoric acid), 10 ml/L for tetrahydrofuran (THF)), flow rate: 1.0 ml/min Calibration curve creation Standard samples: TSK standard polyethylene oxide manufactured by Tosoh Corporation (weight average molecular weight (Mw) approximately 900,000, 150,000, 100,000, 30,000) and polyethylene glycol manufactured by Polymer Laboratory (peak top molecular weight (Mp) ) approx. 12,000, 4,000, 1,000). In order to avoid overlapping peaks, the measurement was carried out using a mixed sample of 4 types of 900,000, 100,000, 12,000, and 1,000, and a sample of 3 types of 150,000, 30,000, and 4,000. Two samples of the mixed sample were measured separately.

<イミド化率の測定>
ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500、日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
イミド化率(%)=(1-α・x/y)×100
上記式において、xはアミド酸のNH基由来のプロトンピーク積算値であり、yは基準プロトンのピーク積算値であり、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
<Measurement of imidization rate>
Put 20 mg of polyimide powder into an NMR sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku Co., Ltd.)), and add deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixture) (0. 53 ml) was added and completely dissolved by applying ultrasound. This solution was subjected to proton NMR measurement at 500 MHz using an NMR measuring device (JNW-ECA500, manufactured by JEOL Datum). The imidization rate is determined using a proton derived from a structure that does not change before and after imidization as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of the amic acid that appears around 9.5 ppm to 10.0 ppm. It was calculated using the following formula using the integrated value.
Imidization rate (%) = (1-α・x/y)×100
In the above formula, x is the integrated value of the proton peak derived from the NH group of the amic acid, y is the integrated peak value of the standard proton, and α is the NH of the amic acid in the case of polyamic acid (imidization rate is 0%). It is the ratio of the number of reference protons to one base proton.

[FFS駆動液晶セルの構成]
フリンジフィールドスィッチング(Fringe Field Switching:FFS)モード用の液晶セルは、面形状の共通電極-絶縁層-櫛歯形状の画素電極からなるFOP(Finger on Plate)電極層が表面に形成されている第1のガラス基板と、表面に高さ4μmの柱状スペーサーを有し裏面に帯電防止の為のITO膜が形成されている第2のガラス基板とを、一組とした。上記の画素電極は、中央部分が内角160°で屈曲した幅3μmの電極要素が6μmの間隔を開けて平行になるように複数配列された櫛歯形状を有しており、1つの画素は、複数の電極要素の屈曲部を結ぶ線を境に第1領域と第2領域を有している。
なお、第1のガラス基板に形成する液晶配向膜は、画素屈曲部の内角を等分する方向と液晶の配向方向とが直交するように配向処理し、第2のガラス基板に形成する液晶配向膜は、液晶セルを作製した時に第1の基板上の液晶の配向方向と第2の基板上の液晶の配向方向とが一致するように配向処理する。
[Configuration of FFS drive liquid crystal cell]
A liquid crystal cell for fringe field switching (FFS) mode has a FOP (Finger on Plate) electrode layer formed on its surface, which consists of a planar common electrode, an insulating layer, and a comb-shaped pixel electrode. A pair of the glass substrate No. 1 and a second glass substrate having columnar spacers with a height of 4 μm on the front surface and an ITO film for preventing static electricity formed on the back surface were made into a set. The above pixel electrode has a comb-teeth shape in which a plurality of electrode elements each having a width of 3 μm and whose central portion is bent at an internal angle of 160° are arranged in parallel with an interval of 6 μm. It has a first region and a second region separated by a line connecting the bent portions of the plurality of electrode elements.
The liquid crystal alignment film formed on the first glass substrate is aligned so that the direction that equally divides the internal angle of the pixel bend and the alignment direction of the liquid crystal are perpendicular to each other, and the liquid crystal alignment film formed on the second glass substrate is The film is aligned so that the alignment direction of the liquid crystal on the first substrate matches the alignment direction of the liquid crystal on the second substrate when the liquid crystal cell is produced.

[液晶セルの作製]
上記一組のガラス基板それぞれの表面に、孔径1.0μmのフィルターで濾過した液晶配向剤をスピンコート塗布にて塗布し80℃のホットプレート上で2分間乾燥させた。その後、塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を所定量照射し、次いで230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜付き基板を得た。
次に、上記一組の液晶配向膜付きガラス基板の一方にシール剤を印刷し、もう一方の基板を液晶配向膜面が向き合うように貼り合わせ、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置してから残像特性の評価を実施した。
[Preparation of liquid crystal cell]
A liquid crystal aligning agent filtered through a filter with a pore size of 1.0 μm was applied on the surface of each of the above pair of glass substrates by spin coating, and dried on a hot plate at 80° C. for 2 minutes. After that, the coated film surface was irradiated with a predetermined amount of linearly polarized ultraviolet light with a wavelength of 254 nm with an extinction ratio of 26:1 through a polarizing plate, and then baked in a hot air circulation oven at 230°C for 30 minutes to form a liquid crystal film with a thickness of 100 nm. A substrate with an alignment film was obtained.
Next, a sealant was printed on one of the above-mentioned pair of glass substrates with a liquid crystal alignment film, and the other substrate was bonded so that the liquid crystal alignment film surfaces faced each other, and the sealant was cured to prepare an empty cell. Liquid crystal MLC-3019 (manufactured by Merck & Co., Ltd.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS-driven liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 120° C. for 1 hour, left overnight, and then the afterimage characteristics were evaluated.

[長期交流駆動による残像特性評価]
上記で作製したFFS駆動液晶セルに対し、60℃の恒温環境下、周波数60Hzで±5Vの交流電圧を120時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
上記の処理を行った液晶セルに関して、電圧無印加状態における、画素の第1領域の液晶の配向方向と第2領域の液晶の配向方向とのずれを角度として算出した。
具体的には、偏光軸が直交するように配置された2枚の偏光板の間に液晶セルを設置し、バックライトを点灯させ、画素の第1領域の透過光強度が最も小さくなるように液晶セルの配置角度を調整し、次に画素の第2領域の透過光強度が最も小さくなるように液晶セルを回転させたときに要する回転角度を求めた。
長期交流駆動による残像特性は、この回転角度の値が小さいほど良好であると言える。液晶セルの角度Δの値が0.1°以下の場合には「良好」と評価した。
[Evaluation of afterimage characteristics by long-term AC drive]
An AC voltage of ±5 V at a frequency of 60 Hz was applied for 120 hours to the FFS-driven liquid crystal cell produced above in a constant temperature environment of 60°C. Thereafter, the pixel electrode and counter electrode of the liquid crystal cell were short-circuited, and the cell was left at room temperature for one day.
Regarding the liquid crystal cell subjected to the above treatment, the deviation between the orientation direction of the liquid crystal in the first region of the pixel and the orientation direction of the liquid crystal in the second region in a state where no voltage is applied was calculated as an angle.
Specifically, a liquid crystal cell is installed between two polarizing plates arranged so that the polarization axes are perpendicular to each other, the backlight is turned on, and the liquid crystal cell is set so that the intensity of transmitted light in the first area of the pixel is the smallest. The rotation angle required to rotate the liquid crystal cell so that the intensity of transmitted light in the second region of the pixel was minimized was determined.
It can be said that the smaller the value of this rotation angle, the better the afterimage characteristics due to long-term AC driving are. When the value of the angle Δ of the liquid crystal cell was 0.1° or less, it was evaluated as "good".

[ポリアミック酸及びポリイミドの合成例]
以下、ポリアミック酸及びポリイミドの合成例を示す。なお、それらの命名において、Aは(A)成分であること、Bは(B)成分であること、Cは(A)成分と(B)成分のいずれでもないこと、及びPIはポリイミドであることを表す。
[Synthesis example of polyamic acid and polyimide]
Examples of synthesis of polyamic acid and polyimide are shown below. In addition, in these nomenclatures, A is the (A) component, B is the (B) component, C is neither the (A) component nor the (B) component, and PI is polyimide. represents something.

<合成例1>
撹拌装置付き及び窒素導入管付きの200mL四つ口フラスコに、DA-1を1.95g(8.00mmol)、DA-2を1.30g(12.0mmol)、DA-3を3.53g(12.0mmol)及びDA-7を1.90g(8.00mmol)を取り、NMPを99.73g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、CA-1を7.35g(32.8mmol)、CA-2を1.50g(6.0mmol)添加し、40℃で24時間撹拌してポリアミック酸溶液(A-1)(粘度:460mPa・s)を得た。ポリアミック酸の分子量は、Mn=9100、Mw=28000であった。
<Synthesis example 1>
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, add 1.95 g (8.00 mmol) of DA-1, 1.30 g (12.0 mmol) of DA-2, and 3.53 g (12.0 mmol) of DA-3. 12.0 mmol) and 1.90 g (8.00 mmol) of DA-7 were taken, 99.73 g of NMP was added thereto, and the mixture was stirred and dissolved while supplying nitrogen. While stirring this diamine solution, 7.35 g (32.8 mmol) of CA-1 and 1.50 g (6.0 mmol) of CA-2 were added, and the mixture was stirred at 40°C for 24 hours to form a polyamic acid solution (A- 1) (viscosity: 460 mPa·s) was obtained. The molecular weight of the polyamic acid was Mn=9100 and Mw=28000.

<合成例2~11、16~19>
ジアミン成分及びテトラカルボン酸成分を下記表1に示すものに変更したこと以外は、合成例1と同様に実施することにより、下記表1に示すポリアミック酸溶液(A-2)~(A-11)、(B-1)~(B-4)を得た。得られたポリアミック酸の粘度、及び分子量は、下記表1に示す。
<Synthesis Examples 2 to 11, 16 to 19>
Polyamic acid solutions (A-2) to (A-11) shown in Table 1 below were prepared in the same manner as Synthesis Example 1 except that the diamine component and tetracarboxylic acid component were changed to those shown in Table 1 below. ), (B-1) to (B-4) were obtained. The viscosity and molecular weight of the obtained polyamic acid are shown in Table 1 below.

Figure 0007400728000029
Figure 0007400728000029

<合成例12>
撹拌装置付き及び窒素導入管付きの3L四つ口フラスコに得られたポリアミック酸溶液(A-1)を100g取り、NMPを50g加え、30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を16.30g、ピリジンを5.05g加えて、50℃で3時間加熱し、化学イミド化を行った。得られた反応液を600mlのメタノールに撹拌しながら投入し、析出した沈殿物を濾取し、同様の操作を2回実施することで樹脂粉末を洗浄した後、60℃で12時間乾燥することで、ポリイミド樹脂粉末を得た。このポリイミド樹脂粉末のイミド化率は71%であり、Mn=11000、Mw=38000であった。得られたポリイミド樹脂粉末3.60gを100ml三角フラスコに取り、固形分濃度が12%になるようにNMPを26.4g加え、70℃で24時間撹拌し溶解させてポリイミド溶液(A-1-PI)を得た(下記表2参照)。
<Synthesis example 12>
100 g of the obtained polyamic acid solution (A-1) was placed in a 3L four-neck flask equipped with a stirrer and a nitrogen inlet tube, 50 g of NMP was added, and the mixture was stirred for 30 minutes. To the obtained polyamic acid solution, 16.30 g of acetic anhydride and 5.05 g of pyridine were added, and the mixture was heated at 50° C. for 3 hours to perform chemical imidization. The resulting reaction solution was poured into 600 ml of methanol with stirring, the precipitate was collected by filtration, the same operation was performed twice to wash the resin powder, and then dried at 60° C. for 12 hours. Thus, polyimide resin powder was obtained. The imidization rate of this polyimide resin powder was 71%, Mn=11,000, and Mw=38,000. 3.60 g of the obtained polyimide resin powder was placed in a 100 ml Erlenmeyer flask, 26.4 g of NMP was added so that the solid content concentration was 12%, and the mixture was stirred at 70°C for 24 hours to dissolve and form a polyimide solution (A-1- PI) was obtained (see Table 2 below).

<合成例13~15、20~21>
ポリアミック酸溶液(A-1)の代わりに、下記表2のポリアミックを使用したこと、及びイミド化条件を下記表2のイミド化条件に変更したこと以外は、合成例8と同様に実施することにより、ポリイミド溶液(A-2-PI)~ポリイミド溶液(A-11-PI)を得た。得られたポリイミドの分子量は、下記表2に示す。
<Synthesis Examples 13-15, 20-21>
Perform the same procedure as Synthesis Example 8, except that the polyamic shown in Table 2 below was used instead of the polyamic acid solution (A-1), and the imidization conditions were changed to those shown in Table 2 below. A polyimide solution (A-2-PI) to a polyimide solution (A-11-PI) were obtained. The molecular weight of the obtained polyimide is shown in Table 2 below.

Figure 0007400728000030
Figure 0007400728000030

[液晶配向剤の製造]
<実施例1>
合成例12で得られた12質量%のポリイミド酸溶液(A-1―PI)4.0g、及び合成例10で得られた15質量%のポリアミック酸溶液(B-1)4.8gを50ml三角フラスコに取り、NMP1.20g、GBL6.00g及びBCS4.00gを加え、25℃にて8時間混合して、液晶配向剤(1)を得た(下記表3参照)。この液晶配向剤には、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
[Manufacture of liquid crystal alignment agent]
<Example 1>
50 ml of 4.0 g of the 12 mass % polyimide acid solution (A-1-PI) obtained in Synthesis Example 12 and 4.8 g of the 15 mass % polyamic acid solution (B-1) obtained in Synthesis Example 10. The mixture was placed in an Erlenmeyer flask, 1.20 g of NMP, 6.00 g of GBL, and 4.00 g of BCS were added thereto, and mixed at 25° C. for 8 hours to obtain a liquid crystal aligning agent (1) (see Table 3 below). No abnormalities such as turbidity or precipitation were observed in this liquid crystal aligning agent, and it was confirmed that it was a uniform solution.

<実施例2~16、比較例1~2>
ポリイミド酸溶液(A-1―PI)及びポリアミック酸溶液(B-1)の代わりに、下記表3のポリアミック酸溶液及びポリイミド溶液を用いたこと以外は、実施例1と同様に実施することにより、液晶配向剤(2)~(18)を得た。これらの液晶配向剤には、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Examples 2 to 16, Comparative Examples 1 to 2>
By carrying out in the same manner as in Example 1, except that the polyamic acid solution and polyimide solution shown in Table 3 below were used instead of the polyimide acid solution (A-1-PI) and the polyamic acid solution (B-1). , liquid crystal alignment agents (2) to (18) were obtained. No abnormalities such as turbidity or precipitation were observed in these liquid crystal aligning agents, and it was confirmed that they were uniform solutions.

Figure 0007400728000031
Figure 0007400728000031

[長期交流駆動による残像評価結果(紫外線照射前に焼成を行った場合)]
<実施例21>
実施例1の液晶配向剤(1)を孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を照射した後、230℃の熱風循環式オーブンで30分間焼成させて、液晶配向膜付き基板を得た。得られた上記2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置して、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、上記紫外線の照射量が200mJ/cmの場合には、0.09°であり、300mJ/cmの場合には、0.1°であり、いずれも0.1°以下であるから、液晶配向剤(1)によれば良好な液晶配向性が得られた(下記表4参照)。
[Afterimage evaluation results due to long-term AC drive (when baking is performed before UV irradiation)]
<Example 21>
After filtering the liquid crystal alignment agent (1) of Example 1 through a filter with a pore size of 1.0 μm, the prepared substrate with the electrode and a glass substrate having a columnar spacer with a height of 4 μm on which an ITO film is formed on the back surface. It was applied by spin coating. After drying on a hot plate at 80° C. for 2 minutes, baking was performed in a hot air circulation oven at 230° C. for 30 minutes to form a coating film with a thickness of 100 nm. This coating surface was irradiated with linearly polarized ultraviolet rays with a wavelength of 254 nm with an extinction ratio of 26:1 through a polarizing plate, and then baked in a hot air circulation oven at 230° C. for 30 minutes to obtain a substrate with a liquid crystal alignment film. . The above-mentioned two substrates obtained above are combined into a set, a sealant is printed on the substrate, and the other substrate is attached so that the liquid crystal alignment film surfaces face each other and the alignment direction is 0°, and then the seal is applied. The agent was cured to create an empty cell. Liquid crystal MLC-3019 (manufactured by Merck & Co., Ltd.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS-driven liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 120° C. for 1 hour, left overnight, and afterimage evaluation by long-term AC driving was performed. The value of the angle Δ of this liquid crystal cell after long-term AC driving is 0.09° when the amount of ultraviolet rays irradiated is 200 mJ/cm 2 , and 0.1° when the amount of ultraviolet rays is 300 mJ/cm 2 Since both of these angles were 0.1° or less, good liquid crystal alignment was obtained using the liquid crystal aligning agent (1) (see Table 4 below).

<実施例22~32、比較例21、22>
実施例1の液晶配向剤(1)の代わりに、下記表4に示した液晶配向剤を用いたこと、及び紫外線照射量を下記表4の紫外線照射量に変更したこと以外は、実施例21と全く同様の方法によってFFS駆動液晶セルを作製し、長期交流駆動による残像評価を実施した。それぞれにおける長期交流駆動後におけるこの液晶セルの角度Δの値を表4に示す。
<Examples 22 to 32, Comparative Examples 21 and 22>
Example 21 except that the liquid crystal aligning agent shown in Table 4 below was used instead of the liquid crystal aligning agent (1) of Example 1, and the amount of ultraviolet irradiation was changed to the amount of ultraviolet irradiation shown in Table 4 below. An FFS-driven liquid crystal cell was prepared in exactly the same manner as described above, and afterimage evaluation was performed by long-term AC driving. Table 4 shows the values of the angle Δ of this liquid crystal cell after long-term AC driving in each case.

Figure 0007400728000032
Figure 0007400728000032

[長期交流駆動による残像評価結果(紫外線照射前に焼成を行わなかった場合)]
<実施例41>
実施例1の液晶配向剤(1)を用いて孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で2分間乾燥させた後、この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を照射した後、230℃の熱風循環式オーブンで30分間焼成させて、膜厚100nmの液晶配向膜付き基板を得た。得られた上記2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置して、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、上記紫外線の照射量が200mJ/cmの場合には、0.07°であり、300mJ/cmの場合には、0.07°であり、いずれも0.1°以下であるから、液晶配向剤(1)によれば良好な液晶配向性が得られた(下記表5参照)。
[Results of afterimage evaluation due to long-term AC drive (when baking was not performed before UV irradiation)]
<Example 41>
After filtering with a filter with a pore size of 1.0 μm using the liquid crystal aligning agent (1) of Example 1, the prepared substrate with the electrode and a columnar spacer with a height of 4 μm on which an ITO film is formed on the back surface are provided. It was applied to a glass substrate by spin coating. After drying on a hot plate at 80°C for 2 minutes, the coating surface was irradiated with linearly polarized ultraviolet rays with a wavelength of 254 nm with an extinction ratio of 26:1 through a polarizing plate, and then heated in a hot air circulation oven at 230°C. It was baked for 30 minutes to obtain a substrate with a liquid crystal alignment film having a film thickness of 100 nm. The above-mentioned two substrates obtained above are combined into a set, a sealant is printed on the substrate, and the other substrate is attached so that the liquid crystal alignment film surfaces face each other and the alignment direction is 0°, and then the seal is applied. The agent was cured to create an empty cell. Liquid crystal MLC-3019 (manufactured by Merck & Co., Ltd.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS-driven liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 120° C. for 1 hour, left overnight, and afterimage evaluation by long-term AC driving was performed. The value of the angle Δ of this liquid crystal cell after long-term AC driving is 0.07° when the amount of ultraviolet rays irradiated is 200 mJ/cm 2 , and 0.07° when the amount of ultraviolet rays is 300 mJ/cm 2 Since both of these angles were 0.1° or less, good liquid crystal alignment was obtained using the liquid crystal aligning agent (1) (see Table 5 below).

<実施例42~49、比較例41、42>
実施例1の液晶配向剤(1)の代わりに、下記表5に示した液晶配向剤を用いたこと、及び紫外線照射量を下記表5の紫外線照射量に変更したこと以外は、実施例41と全く同様の方法によってFFS駆動液晶セルを作製し、長期交流駆動による残像評価を実施した。それぞれにおける長期交流駆動後におけるこの液晶セルの角度Δの値を表5に示す。
<Examples 42 to 49, Comparative Examples 41 and 42>
Example 41 except that the liquid crystal aligning agent shown in Table 5 below was used instead of the liquid crystal aligning agent (1) of Example 1, and the amount of ultraviolet irradiation was changed to the amount of ultraviolet irradiation shown in Table 5 below. An FFS-driven liquid crystal cell was prepared in exactly the same manner as described above, and afterimage evaluation was performed by long-term AC driving. Table 5 shows the values of the angle Δ of this liquid crystal cell after long-term AC driving in each case.

Figure 0007400728000033
Figure 0007400728000033

表4及び表5に示すように、実施例1~12は角度Δ(deg.)も0.1°以下の角度Δであり良好な残像特性であることから、液晶表示素子の表示品位改善に優れる。 As shown in Tables 4 and 5, Examples 1 to 12 have an angle Δ (deg.) of 0.1° or less and have good afterimage characteristics, so they are useful for improving the display quality of liquid crystal display elements. Excellent.

本発明の液晶配向剤は、高精細化、低コスト化が要求される大型液晶表示素子や、スマートフォン、携帯電話などのモバイル用液晶表示素子などの広範な分野で使用される。
なお、2018年10月18日に出願された日本特許出願2018-196761号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal aligning agent of the present invention is used in a wide range of fields, such as large-sized liquid crystal display elements that require high definition and low cost, and mobile liquid crystal display elements such as smartphones and mobile phones.
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-196761 filed on October 18, 2018 are cited here as disclosure of the specification of the present invention. , is something to be taken in.

Claims (10)

下記式[1]で表される構造を有するジアミンを含有するジアミン成分とテトラカルボン酸二無水物成分との反応で得られるポリアミック酸、及び該ポリアミック酸をイミド化して得られるポリイミドからなる群より選ばれる少なくとも1つの重合体を含有することを特徴とする液晶配向剤。
Figure 0007400728000034
(式[1]中、A及びAは、それぞれ独立して、置換基を有していてもよい単環基又は縮合環基であり、A及びAは、同時に単環基であることはない。X は、酸素原子又は硫黄原子であり、は、単結合、酸素原子又は硫黄原子である。Qは、炭素数1又は2のアルキレン基である。m及びnは、それぞれ独立して、1~3の整数である。)
From the group consisting of a polyamic acid obtained by the reaction of a diamine component containing a diamine having the structure represented by the following formula [1] and a tetracarboxylic dianhydride component, and a polyimide obtained by imidizing the polyamic acid. A liquid crystal aligning agent characterized by containing at least one selected polymer.
Figure 0007400728000034
(In formula [1], A 1 and A 2 are each independently a monocyclic group or a fused ring group which may have a substituent, and A 1 and A 2 are simultaneously a monocyclic group. There is no such thing . , each independently is an integer from 1 to 3.)
前記式[1]において、Qが炭素数2のアルキレン基である、請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein in the formula [1], Q is an alkylene group having 2 carbon atoms. 前記式[1]において、X及びXが酸素原子である、請求項1又は2に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1 or 2, wherein in the formula [1], X 1 and X 2 are oxygen atoms. 前記式[1]で表される構造を有するジアミンが、下記で表されるいずれかのジアミンである、請求項1~3のいずれか1項に記載の液晶配向剤。
Figure 0007400728000035
Figure 0007400728000036
Figure 0007400728000037
The liquid crystal aligning agent according to any one of claims 1 to 3, wherein the diamine having the structure represented by the formula [1] is one of the diamines shown below.
Figure 0007400728000035
Figure 0007400728000036
Figure 0007400728000037
前記ジアミン成分中の式[1]で表される構造を有するジアミンの含有量が、5~95mol%である、請求項1~4のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 4, wherein the content of diamine having a structure represented by formula [1] in the diamine component is 5 to 95 mol%. 前記テトラカルボン酸二無水物成分が、下記式[7]で表されるテトラカルボン酸二無水物又はその誘導体である、請求項1~5のいずれか1項に記載の液晶配向剤。
Figure 0007400728000038
(式[7]中、Zは、4価の有機基である。)
The liquid crystal aligning agent according to any one of claims 1 to 5, wherein the tetracarboxylic dianhydride component is a tetracarboxylic dianhydride represented by the following formula [7] or a derivative thereof.
Figure 0007400728000038
(In formula [7], Z 1 is a tetravalent organic group.)
が、下記式(X1-1)~(X1-19)のいずれかで表される構造のいずれかである、請求項6に記載の液晶配向剤。
Figure 0007400728000039
(式(X1-1)及び(X1-2)中、R~R12はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。但し、R~Rの少なくとも一つは水素原子以外の基である。)
The liquid crystal aligning agent according to claim 6, wherein Z 1 has a structure represented by any one of the following formulas (X1-1) to (X1-19).
Figure 0007400728000039
(In formulas (X1-1) and (X1-2), R 3 to R 12 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, An alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group.However, at least one of R 3 to R 6 is a group other than a hydrogen atom. be.)
が、式(X1-1)で表される構造である、請求項7に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 7, wherein Z 1 has a structure represented by formula (X1-1). 請求項1~8のいずれかに記載の液晶配向剤から得られる液晶配向膜。 A liquid crystal aligning film obtained from the liquid crystal aligning agent according to any one of claims 1 to 8. 請求項9に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 9.
JP2020553300A 2018-10-18 2019-10-17 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same Active JP7400728B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018196761 2018-10-18
JP2018196761 2018-10-18
PCT/JP2019/040943 WO2020080477A1 (en) 2018-10-18 2019-10-17 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same

Publications (2)

Publication Number Publication Date
JPWO2020080477A1 JPWO2020080477A1 (en) 2021-09-30
JP7400728B2 true JP7400728B2 (en) 2023-12-19

Family

ID=70283857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020553300A Active JP7400728B2 (en) 2018-10-18 2019-10-17 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same

Country Status (5)

Country Link
JP (1) JP7400728B2 (en)
KR (1) KR20210076925A (en)
CN (1) CN112912792A (en)
TW (1) TWI837196B (en)
WO (1) WO2020080477A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI834894B (en) * 2020-07-13 2024-03-11 奇美實業股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TWI849179B (en) * 2020-07-13 2024-07-21 奇美實業股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2023286733A1 (en) * 2021-07-12 2023-01-19 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070537A (en) 2008-08-20 2010-04-02 Chisso Corp Diamine, liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device
JP4840137B2 (en) 2004-04-28 2011-12-21 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
JP2014527555A (en) 2011-08-02 2014-10-16 ロリク アーゲーRolic Ag Photo-alignment material
JP2017198975A (en) 2016-04-25 2017-11-02 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film and method for producing the same, liquid crystal element, polymer and compound
CN108165281A (en) 2017-12-29 2018-06-15 常州市尚科新材料有限公司 Aligning agent for liquid crystal and its preparation method and application

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004035522A1 (en) * 2002-08-30 2006-02-16 株式会社 ビーエフ研究所 Diagnostic probes and therapeutic agents for prion protein storage diseases and dyes for prion protein
JP4779339B2 (en) 2003-11-05 2011-09-28 Jnc株式会社 Liquid crystal aligning agent and liquid crystal display element using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840137B2 (en) 2004-04-28 2011-12-21 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
JP2010070537A (en) 2008-08-20 2010-04-02 Chisso Corp Diamine, liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device
JP2014527555A (en) 2011-08-02 2014-10-16 ロリク アーゲーRolic Ag Photo-alignment material
JP2017198975A (en) 2016-04-25 2017-11-02 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film and method for producing the same, liquid crystal element, polymer and compound
CN108165281A (en) 2017-12-29 2018-06-15 常州市尚科新材料有限公司 Aligning agent for liquid crystal and its preparation method and application

Also Published As

Publication number Publication date
TWI837196B (en) 2024-04-01
JPWO2020080477A1 (en) 2021-09-30
CN112912792A (en) 2021-06-04
WO2020080477A1 (en) 2020-04-23
KR20210076925A (en) 2021-06-24
TW202031858A (en) 2020-09-01

Similar Documents

Publication Publication Date Title
JP5387793B2 (en) Liquid crystal alignment agent
JP7027890B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TW201118062A (en) Diamine compound, polyamic acid, polyimide, and liquid crystal aligning agent
JP6314827B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR101742838B1 (en) Liquid crystal aligning agent and liquid crystal display element using same
TWI649362B (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
JP2016029058A (en) Polyimide precursor, polyimide, liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element
JP7400728B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
WO2013146890A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7081488B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6278216B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
JP6996509B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
JP6569872B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
JP6795074B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2019163904A1 (en) Manufacturing method of liquid crystal display element
JP7428138B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN117925256A (en) Liquid crystal alignment agent, method for producing same, liquid crystal alignment film, and liquid crystal display element
TW202130704A (en) Liquid crystal aligning agent, radical generation film and method for producing in-plane switching liquid crystal cell
JP2013125065A (en) Ester group-containing dicarboxylic anhydride, manufacturing method and application thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R151 Written notification of patent or utility model registration

Ref document number: 7400728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151