[go: up one dir, main page]

JP7395870B2 - axial gap motor - Google Patents

axial gap motor Download PDF

Info

Publication number
JP7395870B2
JP7395870B2 JP2019147286A JP2019147286A JP7395870B2 JP 7395870 B2 JP7395870 B2 JP 7395870B2 JP 2019147286 A JP2019147286 A JP 2019147286A JP 2019147286 A JP2019147286 A JP 2019147286A JP 7395870 B2 JP7395870 B2 JP 7395870B2
Authority
JP
Japan
Prior art keywords
core
yoke
electromagnetic steel
axial gap
gap motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019147286A
Other languages
Japanese (ja)
Other versions
JP2021029067A (en
JP2021029067A5 (en
Inventor
英伸 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2019147286A priority Critical patent/JP7395870B2/en
Priority to US16/945,958 priority patent/US11411447B2/en
Priority to CN202010784269.9A priority patent/CN112350460B/en
Publication of JP2021029067A publication Critical patent/JP2021029067A/en
Publication of JP2021029067A5 publication Critical patent/JP2021029067A5/ja
Application granted granted Critical
Publication of JP7395870B2 publication Critical patent/JP7395870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/182Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to stators axially facing the rotor, i.e. with axial or conical air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2796Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the rotor face a stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

本開示は、アキシャルギャップモーターに関する。 The present disclosure relates to axial gap motors.

アキシャルギャップモーターは、回転磁束が形成されるステーターとローターとの間のギャップをモーターの回転軸方向に備える。こうしたアキシャルギャップモーターは、コアを大きくできるので、薄型かつ出力トルクの大きなモーターを構成しやすいものの、磁束を形成するための巻線(コイル)を巻付けるコアとこのコアのバックヨークとの製造が、ラジアルギャップモーターと比べて困難であった。ラジアルギャップモーターでは、コアとバックヨークとを、同一形状の電磁鋼板を厚み方向に積層することで、容易に形成できるのに対して、アキシャルギャップモーターでは、コアは、バックヨークからその厚み方向に突出した形状であり、同一形状の電磁鋼板を積層することでは製造できないからである。このため、従来、バックヨークとコアとは別々に製造してから、両者を接合してステーターを構成している(例えば特許文献1参照)。 An axial gap motor includes a gap between a stator and a rotor in which a rotating magnetic flux is formed in the direction of the motor's rotation axis. Since the core of these axial gap motors can be made large, it is easy to construct a thin motor with a large output torque. , which was difficult compared to radial gap motors. In a radial gap motor, the core and back yoke can be easily formed by laminating electromagnetic steel plates of the same shape in the thickness direction, whereas in an axial gap motor, the core is formed by laminating the core and back yoke in the thickness direction from the back yoke. This is because it has a protruding shape and cannot be manufactured by laminating electromagnetic steel sheets of the same shape. For this reason, conventionally, the back yoke and the core are manufactured separately and then joined together to form the stator (for example, see Patent Document 1).

特許文献1では、バックヨークにコア(ティース)が嵌まる穴を設け、ここにコアを挿入しており、コアとバックヨークとの接合を、電磁鋼板のコーティング剤による固着や、接着剤による固定、あるいは溶接等により実現している。 In Patent Document 1, a hole into which a core (teeth) fits is provided in the back yoke, and the core is inserted into the hole, and the core and the back yoke are bonded by fixing with a coating agent of an electromagnetic steel plate or fixing with an adhesive. , or by welding.

特開2009-296825号公報JP2009-296825A

しかしながら、アキシャルギャップモーターでは、回転磁界によってローターを回転させる際、ローターを回転させるトルクの反力は、ステーター側のコアにおいて周方向の力として作用するため、モーターの高出力化を図るほど、コアとバックヨークの接合部に大きな力が働くことになる。このため、特許文献1の構成では、ステーターが損傷するおそれがある。 However, in an axial gap motor, when the rotor is rotated by a rotating magnetic field, the reaction force of the torque that rotates the rotor acts as a force in the circumferential direction on the core on the stator side. A large force will be applied to the joint between the back yoke and the back yoke. Therefore, in the configuration of Patent Document 1, there is a risk that the stator may be damaged.

本開示は、以下の形態又は適用例として実現することが可能である。即ち、本開示にかかるアキシャルギャップモーターは、回転するローターと、前記ローターに対向し、前記回転の軸と平行な第1方向にギャップを隔てて配置されたステーターと、を備え、前記ステーターは、磁束が貫通する薄板が前記第1方向と直交する第2方向に沿って積層されたコア、および前記コアを有する環状のヨークを有し、前記コアは、独立した複数の嵌込部を隔たった位置に有し、前記コア毎の前記複数の嵌込部は、前記ヨーク自体に前記複数の嵌込部に対応して形成された複数の取付部に嵌まり込んでいる。 The present disclosure can be realized as the following forms or application examples. That is, an axial gap motor according to the present disclosure includes a rotating rotor, and a stator that faces the rotor and is disposed with a gap in a first direction parallel to the axis of rotation, and the stator includes: A core in which thin plates through which magnetic flux passes are laminated along a second direction perpendicular to the first direction, and an annular yoke having the core, the core having a plurality of independent fitting parts separated from each other. The plurality of fitting portions for each core are fitted into a plurality of attachment portions formed on the yoke itself in correspondence with the plurality of fitting portions.

第1実施形態のアキシャルギャップモーターの概略構成を断面視で示す概略構成図。FIG. 1 is a schematic configuration diagram showing a schematic configuration of an axial gap motor according to a first embodiment in a cross-sectional view. ステーターの形状を例示する斜視図。FIG. 3 is a perspective view illustrating the shape of a stator. ステーターを構成する一つのコアとヨークとの取付関係を示す説明図。FIG. 3 is an explanatory diagram showing the attachment relationship between one core and yoke that constitute the stator. コアへのコイルの取り付け関係を例示する説明図。FIG. 3 is an explanatory diagram illustrating the attachment relationship of the coil to the core. コアをヨーク方向に向かって見た場合の形状を模式的に示す平面図。FIG. 3 is a plan view schematically showing the shape of the core when viewed toward the yoke. ヨークの内周側から外周側に向けた所定長さの溝形状の取付部を設けた場合を例示する説明図。FIG. 7 is an explanatory diagram illustrating a case where a groove-shaped attachment portion having a predetermined length is provided from the inner circumferential side to the outer circumferential side of the yoke. ヨークの外周側から内周側に向けた所定長さの溝形状の取付部を設けた場合を例示する説明図。FIG. 7 is an explanatory diagram illustrating a case where a groove-shaped attachment portion having a predetermined length is provided from the outer circumferential side to the inner circumferential side of the yoke. ヨークの幅方向略中心に、幅方向を長手方向とする開口部として取付部を設けた場合を例示する説明図。FIG. 7 is an explanatory diagram illustrating a case where a mounting portion is provided as an opening with the width direction as the longitudinal direction approximately at the center of the yoke in the width direction. 2種類のコアの形態と、積層される電磁鋼板の形状を例示する説明図。FIG. 3 is an explanatory diagram illustrating the forms of two types of cores and the shapes of electromagnetic steel sheets to be laminated. 他のコアの形態を示す説明図。FIG. 7 is an explanatory diagram showing other forms of the core. 他のステーターに用いられるヨークと取付部の形状を示す説明図。Explanatory drawing showing the shape of a yoke and a mounting part used in other stators. 図9に示したヨークに取り付けられるコアの形状とコアを形成する電磁鋼板の形状を例示する説明図。FIG. 10 is an explanatory diagram illustrating the shape of a core attached to the yoke shown in FIG. 9 and the shape of an electromagnetic steel plate forming the core. 他の実施形態であるステーターの一部を示す平面図。FIG. 7 is a plan view showing a part of a stator according to another embodiment. 更に、他の実施形態であるステーターの一部を示す平面図。Furthermore, the top view which shows a part of stator which is another embodiment. 第2実施形態のステーターの一部を示す斜視図。FIG. 7 is a perspective view showing a part of the stator of the second embodiment. 第2実施形態のコアを、ヨークに取り付けた状態を示す斜視図。FIG. 7 is a perspective view showing a state in which the core of the second embodiment is attached to a yoke. 第2実施形態のステーターの一部を平面視として示す説明図。FIG. 7 is an explanatory diagram showing a part of the stator of the second embodiment as viewed from above. 他の実施形態のステーターの構成を示す説明図。FIG. 6 is an explanatory diagram showing the configuration of a stator according to another embodiment. 更に他の実施形態のステーターの構成を示す説明図。FIG. 7 is an explanatory diagram showing the configuration of a stator according to still another embodiment. 更に他の実施形態のステーターの構成を示す説明図。FIG. 7 is an explanatory diagram showing the configuration of a stator according to still another embodiment. 更に他の実施形態のステーターの構成を示す説明図。FIG. 7 is an explanatory diagram showing the configuration of a stator according to still another embodiment. ヨークとコアとの電磁鋼板の積層方向を例示する説明図。FIG. 3 is an explanatory diagram illustrating the lamination direction of electromagnetic steel sheets of a yoke and a core. 電磁鋼板が径方向に沿って積層される場合を示す説明図。FIG. 2 is an explanatory diagram showing a case where electromagnetic steel sheets are laminated along the radial direction. 電磁鋼板が周方向に沿って積層される場合を示す説明図。FIG. 2 is an explanatory diagram showing a case where electromagnetic steel plates are laminated along the circumferential direction.

A.第1の態様:
(1)第1実施形態:
図1は、第1実施形態のアキシャルギャップモーター20の概略構成を断面視で示す概略構成図である。このアキシャルギャップモーター20は、回転軸21の軸方向中心に、ローター40を備え、このローター40の軸方向に両側にステーター31,32を備えるいわゆるダブルステーフー構造を備える。図示するように、回転軸21の軸方向上向きを符号A、この回転軸21に対する径方向外側向きを符号R、として各々示す。この符号A、Rで示す方向は、他の図でも同様に示した。符号Aの方向を軸方向、符号Rの方向を径方向と呼ぶことがある。これらの方向に加えて、ローター40やステーター31,32の周方向を、符号Cとして、併せて図示することがある。軸方向Aの向きを第1方向とすると、径方向Rや、周方向Cの向きが、第1方向に直交する第2方向に相当する。
A. First aspect:
(1) First embodiment:
FIG. 1 is a schematic cross-sectional view showing the schematic structure of an axial gap motor 20 according to the first embodiment. This axial gap motor 20 includes a rotor 40 at the axial center of a rotating shaft 21, and has a so-called double-staff structure in which stators 31 and 32 are provided on both sides of the rotor 40 in the axial direction. As illustrated, the upward axial direction of the rotating shaft 21 is indicated by the symbol A, and the outward direction in the radial direction with respect to the rotating shaft 21 is indicated by the symbol R, respectively. The directions indicated by the symbols A and R are similarly indicated in other figures. The direction indicated by symbol A is sometimes referred to as the axial direction, and the direction indicated by symbol R is sometimes referred to as the radial direction. In addition to these directions, the circumferential direction of the rotor 40 and the stators 31 and 32 may also be illustrated as C. If the direction of the axial direction A is a first direction, the directions of the radial direction R and the circumferential direction C correspond to a second direction orthogonal to the first direction.

回転軸21は、図1では、円柱体として示したが、中空の回転軸としてもよい。アキシャルギャップモーター20では、回転軸方向Aの厚みが薄くなり、径方向Rの寸法が大きくなる傾向にあるため、回転軸21の径を大きくし、中空軸として、内部にアキシャルギャップモーター20への配線を通すといった構成を取ることも望ましい。 Although the rotating shaft 21 is shown as a cylindrical body in FIG. 1, it may be a hollow rotating shaft. In the axial gap motor 20, the thickness in the rotation axis direction A tends to become thinner and the dimension in the radial direction R tends to increase. It is also desirable to adopt a configuration in which wiring is passed through.

この回転軸21の軸方向の略中心に固定されたローター40は、その径方向Rの終端近くに、複数個の永久磁石41,43を周方向に均等に、本実施形態では、12個配置している。永久磁石41,43の個数と配置は、アキシャルギャップモーター20の相数と極数とにより定められる。ローター40の中心部は、回転軸21が固定される固定部45が形成されており、回転軸21は、固定部45に圧入されて、固定される。もとより、キーとキー溝とにより両者を結合してもよい。 The rotor 40, which is fixed approximately at the axial center of the rotating shaft 21, has a plurality of permanent magnets 41, 43 arranged evenly in the circumferential direction, 12 in this embodiment, near the end of the rotor 40 in the radial direction R. are doing. The number and arrangement of the permanent magnets 41 and 43 are determined by the number of phases and the number of poles of the axial gap motor 20. A fixed part 45 to which the rotating shaft 21 is fixed is formed in the center of the rotor 40, and the rotating shaft 21 is press-fitted into the fixed part 45 and fixed. Of course, both may be coupled by a key and a keyway.

ローター40の固定部45には、軸受け23,24を介して、ステーター31,32が取り付けられる。この軸受け23,24により、回転軸21およびローター40は、ステーター31,32を側面ケース27で結合したモーターケースに対して、回転可能に保持される。ステーター31,32は、ローター40の永久磁石41,43に対向するように、ステーターコア(以下、単にコアという)51,52が設けられている。ステーター31の概略構成を、図2の斜視図に示した。本実施形態のアキシャルギャップモーター20は、三相4スロットの構成を備えることから、ステーター31当りのコア51の数は12個である。 The stators 31 and 32 are attached to the fixed portion 45 of the rotor 40 via bearings 23 and 24. The rotating shaft 21 and rotor 40 are rotatably held by the bearings 23 and 24 with respect to a motor case in which the stators 31 and 32 are connected by a side case 27. The stators 31 and 32 are provided with stator cores (hereinafter simply referred to as cores) 51 and 52 so as to face the permanent magnets 41 and 43 of the rotor 40. A schematic configuration of the stator 31 is shown in the perspective view of FIG. Since the axial gap motor 20 of this embodiment has a three-phase, four-slot configuration, the number of cores 51 per stator 31 is twelve.

ステーター31は、12個のコア51と、これらのコア51に共通に設けられたバックヨーク(以下単にヨークという)35と、各コア51の外周に巻き取られた巻線であるコイル61とからなる。ヨーク35は、コア51の径方向の幅と略同一の幅を有する環状、すなわちドーナツ形状の電磁鋼板を積層して構成されており、所定の厚みを有する。電磁鋼板の表面には、絶縁皮膜が形成されており、積層後、各電磁鋼板は絶縁被膜を溶融させて固着される。なお、接着剤の塗布や溶接によって、積層後の電磁鋼板を接合してもよい。電磁鋼板同士の接合は、後述するコアにおいても同様である。 The stator 31 is made up of 12 cores 51, a back yoke (hereinafter simply referred to as yoke) 35 provided in common to these cores 51, and a coil 61 that is a winding wound around the outer periphery of each core 51. Become. The yoke 35 is constructed by laminating annular, ie, donut-shaped, electromagnetic steel plates having a width that is substantially the same as the radial width of the core 51, and has a predetermined thickness. An insulating film is formed on the surface of the electromagnetic steel sheets, and after lamination, each electromagnetic steel sheet is fixed by melting the insulating film. Note that the laminated electromagnetic steel plates may be joined by applying an adhesive or by welding. The joining of electromagnetic steel plates is the same for the core described later.

コア51の外周を取り巻くコイル61は、コア51に個々に巻き取ってもよいが、予めボビン状に巻き取っておき、コア51の外周に嵌め込むものとしてもよい。もうひとつのステーター32も、同様に、12個のコア52と、これらのコア52に共通のヨーク36と、各コア52の外周に巻き取られたコイル63とを備える。12個のコア51に取り付けられた12個のコイル61は、3相4極の巻線を構成する。二つのステーター31,32は、ローター40を挟んで面対称の構造を備える。ローター40に設けられた12個の永久磁石41,43とコア51、コア52とは、第1方向である軸方向Aに沿った所定の距離のギャップを隔てて、向き合っている。 The coil 61 surrounding the outer periphery of the core 51 may be wound around the core 51 individually, or may be wound into a bobbin shape in advance and fitted onto the outer periphery of the core 51. The other stator 32 similarly includes twelve cores 52, a yoke 36 common to these cores 52, and a coil 63 wound around the outer periphery of each core 52. Twelve coils 61 attached to twelve cores 51 constitute a three-phase, four-pole winding. The two stators 31 and 32 have a plane-symmetrical structure with the rotor 40 in between. Twelve permanent magnets 41 and 43 provided on the rotor 40 and the cores 51 and 52 face each other with a gap of a predetermined distance along the axial direction A, which is the first direction.

次に、第1実施形態におけるコア51の構成、ならびにこのコア51とヨーク35との取り付けについて説明する。図3は、ステーター31を構成する一つのコア51とヨーク35との取付関係を示す説明図である。図示するように、本実施形態のコア51は、薄板状の電磁鋼板71を複数枚積層して構成される。各電磁鋼板71は同一形状をしており、正面視で、矩形形状の下端両側に凸形状の嵌込部72,73を有する。従って、複数の電磁鋼板71が積層されたコア51は、全体が直方体の形状をしており、嵌込部72,73もそれぞれ連続して、コア51下端両サイドに、2つの直方体形状の突出部を形成する。電磁鋼板71は一枚で使用されることはないので、「嵌込部」は、電磁鋼板71一枚について説明するときは凸形状の部分を指し、電磁鋼板71が積層された状態で説明するときはコア51下端の直方体形状の部分全体を指す。 Next, the configuration of the core 51 and the attachment of the core 51 and the yoke 35 in the first embodiment will be described. FIG. 3 is an explanatory diagram showing the attachment relationship between one core 51 and the yoke 35 that constitute the stator 31. As illustrated, the core 51 of this embodiment is constructed by laminating a plurality of thin electromagnetic steel sheets 71. Each electromagnetic steel sheet 71 has the same shape, and has convex fitting portions 72 and 73 on both sides of the lower end of a rectangular shape when viewed from the front. Therefore, the core 51 in which a plurality of electromagnetic steel plates 71 are laminated has a rectangular parallelepiped shape as a whole, and the fitting portions 72 and 73 are also continuous, and two rectangular parallelepiped protrusions are formed on both sides of the lower end of the core 51. form a section. Since the electromagnetic steel sheet 71 is not used alone, the "fitting part" refers to the convex-shaped part when describing one electromagnetic steel sheet 71, and the explanation will be made with the electromagnetic steel sheets 71 stacked together. "time" refers to the entire rectangular parallelepiped-shaped portion at the lower end of the core 51.

このコア51が取り付けられるヨーク35には、コア51の嵌込部72,73に対応して、ヨーク35の内周側から所定長さの溝状の取付部81,82が設けられている。ヨーク35の取付部81,82それぞれの大きさは、コア51の嵌込部72,73の大きさと等しいので、コア51の嵌込部72,73をヨーク35の取付部81,82に嵌め込むことで、コア51をヨーク35に固定することができる。すなわち、コア51が有する嵌込部72,73は、ヨーク35が有する取付部81,82に嵌まり込んでいる。嵌込部72,73が取付部81,82に取り付けられてコア51がヨーク35に固定される位置が、コアの固定位置である。固定位置にコア51が固定された状態を、図4に示した。コア51とヨーク35との固定は、嵌込部72,73を取付部81,82に圧入することによってもよいし、接着剤や溶接によって固定するものとしてもよい。図4に示した状態で、コア51にコイル61を嵌め込むことで、ステーター31は組み立てられる。 The yoke 35 to which the core 51 is attached is provided with groove-shaped attachment portions 81 and 82 having a predetermined length from the inner peripheral side of the yoke 35, corresponding to the fitting portions 72 and 73 of the core 51. The sizes of the mounting parts 81 and 82 of the yoke 35 are equal to the sizes of the fitting parts 72 and 73 of the core 51, so the fitting parts 72 and 73 of the core 51 are fitted into the mounting parts 81 and 82 of the yoke 35. This allows the core 51 to be fixed to the yoke 35. That is, the fitting parts 72 and 73 of the core 51 fit into the attachment parts 81 and 82 of the yoke 35. The position where the fitting parts 72 and 73 are attached to the attachment parts 81 and 82 and the core 51 is fixed to the yoke 35 is the core fixing position. FIG. 4 shows a state in which the core 51 is fixed at a fixed position. The core 51 and the yoke 35 may be fixed by press-fitting the fitting parts 72, 73 into the mounting parts 81, 82, or may be fixed by adhesive or welding. The stator 31 is assembled by fitting the coil 61 into the core 51 in the state shown in FIG. 4 .

図5は、このコア51をヨーク35方向に向かって見た場合の形状を模式的に示す平面図である。但し、コア51をヨーク35とは反対側から平面視した場合、ヨーク35の取付部81,82は本来は見えないが、取付関係を分かりやすく示すため、図では、取付部81,82の外形線を、隠れ線(破線)により示している。これは、他の図でも、特に断らない限り同様である。図5には、回転軸方向A、径方向R、周方向Cを示したが、図示の都合上、回転軸方向の中心Aは、ヨーク35の図形上の中心位置には描かれておらず、ヨーク35の図示された範囲に近接している。第1実施形態およびその変形例では、複数の取付部(ここでは2つの取付部81,82)は、ヨーク35の周方向Cに隔たった位置に設けられている。換言すれば、2つの取付部81,82は、ヨーク35の周方向Cに並んでいる。複数の取付部が、ヨーク35の径方向Rに沿って隔たっている場合の構成は、第2実施形態で説明する。電磁鋼板71の積層の方向は、径方向Rとなっている。電磁鋼板71の積層方向が、周方向Cとなっている構成については、他の実施形態の項で説明する。 FIG. 5 is a plan view schematically showing the shape of this core 51 when viewed toward the yoke 35. As shown in FIG. However, when the core 51 is viewed in plan from the side opposite to the yoke 35, the attachment parts 81 and 82 of the yoke 35 are not normally visible, but in order to clearly show the attachment relationship, the external shapes of the attachment parts 81 and 82 are shown in the figure. The lines are indicated by hidden lines (dashed lines). This also applies to other figures unless otherwise specified. Although the rotation axis direction A, the radial direction R, and the circumferential direction C are shown in FIG. 5, for convenience of illustration, the center A in the rotation axis direction is not drawn at the center position on the figure of the yoke 35. , close to the illustrated area of yoke 35. In the first embodiment and its modifications, the plurality of attachment parts (here, two attachment parts 81 and 82) are provided at positions separated from each other in the circumferential direction C of the yoke 35. In other words, the two attachment parts 81 and 82 are lined up in the circumferential direction C of the yoke 35. A configuration in which the plurality of attachment parts are separated along the radial direction R of the yoke 35 will be described in a second embodiment. The stacking direction of the electromagnetic steel sheets 71 is the radial direction R. A configuration in which the stacking direction of the electromagnetic steel sheets 71 is the circumferential direction C will be described in the section of other embodiments.

取付部81,82の位置は様々なバリエーションが可能である。例えば、図6Aに示すように、ヨーク35の内周側から外周側に向けた所定長さの溝形状の取付部81,82としてもよいし、図6Bに示すように、ヨーク35の外周側から内周側に向けた所定長さの溝形状の取付部83,84としてもよい。あるいは図6Cに示すように、ヨーク35の幅方向略中心に、幅方向を長手方向とする開口部として取付部85,86を設けてもよい。 Various variations are possible for the positions of the attachment parts 81 and 82. For example, as shown in FIG. 6A, groove-shaped mounting portions 81 and 82 having a predetermined length may be provided from the inner circumferential side of the yoke 35 toward the outer circumferential side, or as shown in FIG. 6B, The groove-shaped mounting portions 83 and 84 may have a predetermined length extending toward the inner circumferential side. Alternatively, as shown in FIG. 6C, mounting portions 85 and 86 may be provided approximately at the center of the yoke 35 in the width direction as openings whose longitudinal direction is the width direction.

以上説明した第1実施形態によれば、アキシャルギャップモーター20において、コア51は2つの嵌込部72,73がヨーク35の2つの取付部81,82によって固定されているので、ローター40を回転させる磁束によるトルクの反力がコア51に対して、周方向に加わっても、コア51がヨーク35から外れたり、せん断力により損傷を受けるという可能性を低減できる。また、本実施形態では、全ての電磁鋼板71の嵌込部72,73が周方向の力を受け止めるので、せん断力に対する強度を一層高めることができる。この他、本実施形態では、コア51を構成する電磁鋼板71は同一形状のものを用いることができ、コア51の製造を容易なものにできる。本実施形態では、コア51のヨーク35への取付は、複数の嵌込部72,73を取付部81,82に差し込むだけでよく、この点で、アキシャルギャップモーター20の製造を容易としている。 According to the first embodiment described above, in the axial gap motor 20, the two fitting parts 72 and 73 of the core 51 are fixed by the two attachment parts 81 and 82 of the yoke 35, so that the rotor 40 can be rotated. Even if a torque reaction force due to the magnetic flux is applied to the core 51 in the circumferential direction, the possibility that the core 51 will come off the yoke 35 or be damaged by shear force can be reduced. Moreover, in this embodiment, since the fitting parts 72 and 73 of all the electromagnetic steel plates 71 receive force in the circumferential direction, the strength against shear force can be further increased. In addition, in this embodiment, the electromagnetic steel plates 71 constituting the core 51 can be of the same shape, and the core 51 can be manufactured easily. In this embodiment, the core 51 can be attached to the yoke 35 by simply inserting the plurality of fitting portions 72 and 73 into the attachment portions 81 and 82, and in this respect, manufacturing of the axial gap motor 20 is facilitated.

更に、本実施形態では、嵌込部72,73と取付部81,82とが、ヨーク35の幅方向(径方向R)に亘って設けられているので、ヨーク35の周方向Cに掛かる力を受ける面積が広くなり、換言すれば、単位面積当たりの荷重が小さくなるので、周方向のせん断力に対する強度を一層高めることができる。 Furthermore, in this embodiment, since the fitting parts 72 and 73 and the attachment parts 81 and 82 are provided across the width direction (radial direction R) of the yoke 35, the force applied in the circumferential direction C of the yoke 35 is reduced. Since the receiving area becomes wider, in other words, the load per unit area becomes smaller, the strength against circumferential shear force can be further increased.

また、本実施形態では、コア51に電磁鋼板71を用いているので、アキシャルギャップモーター20を構成するコアとして高い効率を実現している。アキシャルギャップモーター20では、磁性体の粉末を高い圧力で固めた、いわゆる圧粉でコアを形成するものが知られているが、これに対して、電磁鋼板71を積層したコア51は、損失で約10%程度、出力トルクとしては約5%程度、それぞれ高い性能を示した。なお、本実施形態では、ヨーク35も同一形状の電磁鋼板を積層しているので、製造が容易であり、ヨークも含めて高い効率を実現している。 Further, in this embodiment, since the magnetic steel plate 71 is used for the core 51, high efficiency is achieved as a core constituting the axial gap motor 20. In the axial gap motor 20, it is known that the core is formed of so-called compacted powder, which is made by hardening magnetic powder under high pressure.In contrast, the core 51 made of laminated magnetic steel plates 71 is They showed high performance, with an output torque of about 10% and an output torque of about 5%. In this embodiment, since the yoke 35 is also made of laminated electromagnetic steel sheets having the same shape, manufacturing is easy and high efficiency is achieved including the yoke.

(2)第1の態様の他の実施形態1:
第1実施形態のアキシャルギャップモーター20では、嵌込部や取付部のそれぞれは、ヨーク35の幅方向に亘って設けられ、2つの嵌込部、あるいは2つの取付部は、ヨーク35の周方向Cに隔てられた位置に設けられている。この構成を備えた他の実施形態について以下説明する。図7は、コア51Aやコア51aの形態と、積層される電磁鋼板の形状を示す説明図である。図7において、各電磁鋼板は、積層方向に見た、正面図として描かれ、コア51A,51aは、ヨーク35の側から見た、下面図として描かれている。コア51A,51aは、いずれも2種類の電磁鋼板711,712を積層して形成される。
(2) Other embodiment 1 of the first aspect:
In the axial gap motor 20 of the first embodiment, each of the fitting portions and the attachment portions are provided across the width direction of the yoke 35, and the two fitting portions or the two attachment portions are provided in the circumferential direction of the yoke 35. It is located at a location separated by C. Other embodiments having this configuration will be described below. FIG. 7 is an explanatory diagram showing the form of the core 51A and the core 51a, and the form of the electromagnetic steel sheets to be laminated. In FIG. 7, each electromagnetic steel plate is depicted as a front view as seen in the lamination direction, and the cores 51A and 51a are depicted as a bottom view as seen from the yoke 35 side. The cores 51A, 51a are both formed by laminating two types of electromagnetic steel sheets 711, 712.

コア51Aは、複数枚の電磁鋼板711を積層した両側に、それぞれ1枚以上の電磁鋼板712を積層している。電磁鋼板711は、図2に示した第1実施形態の電磁鋼板71と同一の形状を有する。従って、この電磁鋼板711を積層した部分には、略直方体のコア51Aの下端に嵌込部72A,73Bが出っ張った形状となる。他方、電磁鋼板712は、電磁鋼板711と比べると、この嵌込部72A,73Aに相当する部位が除かれた略長方形状をしている。従って、この電磁鋼板712を積層した部分には、嵌込部72A,73Aに相当する出っ張りは存在しない。このような形状に、コア51Aを形成しても、このコア51Aは、図6Aに示した形状の取付部81,82、図6Bに示した形状の取付部83,84、図6Cに示した形状の取付部85,86に、それぞれ取り付けることができる。 In the core 51A, one or more electromagnetic steel plates 712 are laminated on both sides of a plurality of electromagnetic steel plates 711 laminated. The electromagnetic steel sheet 711 has the same shape as the electromagnetic steel sheet 71 of the first embodiment shown in FIG. Therefore, the portion where the electromagnetic steel sheets 711 are stacked has a shape in which fitting portions 72A and 73B protrude from the lower end of the substantially rectangular parallelepiped core 51A. On the other hand, compared to the electromagnetic steel plate 711, the electromagnetic steel plate 712 has a substantially rectangular shape with portions corresponding to the fitting portions 72A and 73A removed. Therefore, there is no protrusion corresponding to the fitting portions 72A, 73A in the layered portion of the electromagnetic steel sheets 712. Even if the core 51A is formed in such a shape, the core 51A has the attachment parts 81 and 82 in the shape shown in FIG. 6A, the attachment parts 83 and 84 in the shape shown in FIG. 6B, and the attachment parts 83 and 84 in the shape shown in FIG. 6C. It can be attached to the shaped attachment portions 85 and 86, respectively.

(3)他の実施形態2:
図7に示したもう一つの実施形態であるコア51aでは、積層された複数枚の電磁鋼板711に対して、その片側にのみ電磁鋼板712を複数枚積層している。この場合、嵌込部72A,73Aは、コア51aの径方向片側に寄せて形成される。このコア51aも、図6Aから図6Cに示した様々な形態の取付部81,82等に取り付けることができる。なお、コア51A,51aは、ヨーク35の面に対向する方向から、つまりヨーク35の平面視おいて上方から、取付部81,82等に取り付けてもよいし、図6A,図6Bの形態の取付部81~84に対しては、内周側外側あるいは外周側外側から、ヨーク35の面方向にスライドさせるようにして、取り付けてもよい。
(3) Other embodiment 2:
In the core 51a, which is another embodiment shown in FIG. 7, a plurality of electromagnetic steel plates 712 are laminated only on one side of a plurality of laminated electromagnetic steel plates 711. In this case, the fitting portions 72A and 73A are formed closer to one side in the radial direction of the core 51a. This core 51a can also be attached to attachment parts 81, 82, etc. in various forms shown in FIGS. 6A to 6C. Note that the cores 51A, 51a may be attached to the attachment portions 81, 82, etc. from the direction facing the surface of the yoke 35, that is, from above in a plan view of the yoke 35, or the cores 51A, 51a may be attached to the attachment portions 81, 82, etc. The mounting portions 81 to 84 may be attached by sliding in the surface direction of the yoke 35 from the outer side of the inner circumference or the outer side of the outer circumference.

(4)他の実施形態3:
図8は、更に他のコア51Bの形態を示す説明図である。このコア51Bは、上述したコア51,51A、51aが平面視の形状が長方形であったのに対して、平面視の形状が台形形状となっている点で相違する。コア51Bをこの形状とするためには、積層される全ての電磁鋼板の形状と異ならせる必要がある。つまり、各電磁鋼板の高さは同じで、幅(周方向長さ)は外周側に位置する電磁鋼板ほど大きな形状とされている。
(4) Other embodiment 3:
FIG. 8 is an explanatory diagram showing still another form of the core 51B. This core 51B is different in that the core 51, 51A, and 51a described above have a rectangular shape in a plan view, whereas the core 51B has a trapezoidal shape in a plan view. In order for the core 51B to have this shape, it is necessary to make it different from the shapes of all the electromagnetic steel sheets to be laminated. That is, the height of each electromagnetic steel plate is the same, and the width (circumferential length) of the electromagnetic steel plate is larger as the electromagnetic steel plate is located on the outer circumferential side.

図8には、コア51Bを構成する代表的な電磁鋼板として、ヨークの内周端に用いられる電磁鋼板721、コア51Bを構成する積層方向中程に用いられる電磁鋼板722、更にヨークの外周端に用いられる電磁鋼板723の3枚を例示した。図示するように、各電磁鋼板721,722,723は、それぞれ外形形状が異なるが、ヨーク側の取付部に取り付けられる嵌込部72B,73B等の形状は、図6Aに示した取付部81,82に取り付けられる形状、即ち、2つの平行に設けられた取付部81,82に取り付けられる形状となっている。この結果、電磁鋼板721では、その嵌込部72B,73Bは、電磁鋼板721の両端に設けられており、電磁鋼板722では、その嵌込部72C,73Cは、電磁鋼板722の両端から内側に位置して設けられており、電磁鋼板723では、その嵌込部72D,73Dは、電磁鋼板723の両端から更に内側に位置して設けられている。但し、全ての嵌込部の間隔は等しい。 FIG. 8 shows, as representative electromagnetic steel sheets constituting the core 51B, an electromagnetic steel plate 721 used at the inner circumferential end of the yoke, an electromagnetic steel plate 722 used at the middle in the stacking direction constituting the core 51B, and an electromagnetic steel plate 722 used at the outer circumferential edge of the yoke. Three electromagnetic steel sheets 723 used in this example are illustrated. As shown in the figure, the electromagnetic steel plates 721, 722, and 723 have different external shapes, but the shapes of the fitting parts 72B, 73B, etc. that are attached to the attachment part on the yoke side are the attachment parts 81 and 723 shown in FIG. 6A. 82, that is, the shape is such that it can be attached to two parallel attachment parts 81 and 82. As a result, in the electromagnetic steel sheet 721, the fitting portions 72B and 73B are provided at both ends of the electromagnetic steel sheet 721, and in the electromagnetic steel sheet 722, the fitting portions 72C and 73C are provided inward from both ends of the electromagnetic steel sheet 722. In the electromagnetic steel plate 723, the fitting portions 72D and 73D are provided further inward from both ends of the electromagnetic steel plate 723. However, the intervals between all the fitting parts are equal.

以上説明したコア51Bは、このコア51Bをヨーク35に取り付けると、ヨーク35の内周端において隣接するコア51B同士の間隔と、ヨーク35の外周端において隣接するコア51B同士の間隔とが、コアの平面視形状が長方形のものより、均等に近付けることができる。このため、ヨークに取り付けられるコア51Bの平面視における面積を大きくすることができ、コイルに通電した場合に発生しうる磁力を強め、アキシャルギャップモーター20としての出力を高めることができる。なお、コアを台形形状とした場合は、コアに取り付けるコイルも内形を、コアに合わせた台形形状とすることが好ましい。 When the core 51B described above is attached to the yoke 35, the distance between adjacent cores 51B at the inner peripheral end of the yoke 35 and the distance between adjacent cores 51B at the outer peripheral end of the yoke 35 are can be made closer to the same shape than when the plan view shape is rectangular. Therefore, the area of the core 51B attached to the yoke in plan view can be increased, the magnetic force that can be generated when the coil is energized can be strengthened, and the output of the axial gap motor 20 can be increased. In addition, when the core is trapezoidal, it is preferable that the internal shape of the coil attached to the core is trapezoidal to match the core.

(5)他の実施形態4:
更に他の実施形態として、ヨーク35とコア51Cからなるステーター31Cの構成を、図9、図10に例示する。この実施形態のステーター31Cに用いられるコア51Cは、図8に示したコア51Bと、コアの全体形状は近似している。即ち、コア51Cは、ヨーク35に取り付けたとき、ヨーク35の外周側ほど、周方向Cの幅が大きな略台形形状をしている。このコア51Cが図8に示したコア51Bと異なるのは、コア51C両側の嵌込部がヨーク35に設けられた取付部81C,82Cと同様、互いに平行ではなく、ヨーク35の中心から径方向Rに沿った形状とされている点である。
(5) Other embodiment 4:
As yet another embodiment, the configuration of a stator 31C including a yoke 35 and a core 51C is illustrated in FIGS. 9 and 10. The core 51C used in the stator 31C of this embodiment is similar in overall shape to the core 51B shown in FIG. 8. That is, when the core 51C is attached to the yoke 35, it has a substantially trapezoidal shape in which the width in the circumferential direction C becomes larger toward the outer circumference of the yoke 35. This core 51C is different from the core 51B shown in FIG. This point is shaped along R.

従って、図10に示すように、コア51Cを構成する各電磁鋼板は、全て大きさが異なり、略相似形の形状をしている。図10には、コア51Cを構成する代表的な電磁鋼板として、ヨークの内周端に用いられる電磁鋼板731、コア51Cを構成する積層方向中程に用いられる電磁鋼板732、更にヨークの外周端に用いられる電磁鋼板733の3枚を例示した。図示するように、各電磁鋼板731,732,733は、ヨーク側の取付部81C、82Cに取り付けられる嵌込部72E,73E等の形状は、図9に示した取付部81C,82Cに取り付けられる形状、即ち、径方向外側に向かって次第に間隔を広げる取付部81C,82Cに取り付けられる形状となっている。この結果、各電磁鋼板の両端に設けられた嵌込部の間隔は、電磁鋼板731の嵌込部72E,73Eの間が一番狭く、電磁鋼板732の嵌込部72F,73Fの間が次に狭く、電磁鋼板733では、その嵌込部72G,73Gの間が最も広い。 Therefore, as shown in FIG. 10, the electromagnetic steel plates constituting the core 51C are all different in size and have substantially similar shapes. FIG. 10 shows, as typical electromagnetic steel sheets constituting the core 51C, an electromagnetic steel plate 731 used at the inner circumferential end of the yoke, an electromagnetic steel plate 732 used in the middle in the stacking direction constituting the core 51C, and an electromagnetic steel plate 732 used at the outer circumferential edge of the yoke. Three electromagnetic steel sheets 733 used in this example are illustrated. As shown in the figure, each electromagnetic steel plate 731, 732, 733 has a shape such as a fitting part 72E, 73E attached to the attachment part 81C, 82C on the yoke side, which is attached to the attachment part 81C, 82C shown in FIG. In other words, it has a shape that allows it to be attached to attachment portions 81C and 82C whose spacing gradually increases toward the outside in the radial direction. As a result, the spacing between the fitting portions provided at both ends of each electromagnetic steel sheet is the narrowest between the fitting portions 72E and 73E of the electromagnetic steel sheet 731, and the narrowest between the fitting portions 72F and 73F of the electromagnetic steel sheet 732. In the case of the electromagnetic steel plate 733, the space between the fitting portions 72G and 73G is widest.

このような構成されたコア51Cは、コア51Bと同様、平面視台形形状をしており、ヨーク35上において、コアとして広い面積を確保することができる。また、ヨーク35の外周方向に近づくほど、二つの取付部81C,82Cの間隔が広くなっており、コア51Cの嵌込部をヨーク35上方から取付部81C,82Cに嵌め込むと、ヨーク35の表面に沿ったいずれの方向の力を受けても、コア51Cがスライドして外れるということがない。また、上述した他の実施形態のコア51,51A,51a,51Bと同様の作用効果を奏することは勿論である。 The core 51C configured in this manner has a trapezoidal shape in plan view like the core 51B, and can secure a large area on the yoke 35 as the core. Further, the distance between the two attachment parts 81C and 82C becomes wider as the distance approaches the outer circumferential direction of the yoke 35, and when the fitting part of the core 51C is fitted into the attachment parts 81C and 82C from above the yoke 35, the yoke 35 Even if a force is applied in any direction along the surface, the core 51C will not slide off. Moreover, it goes without saying that the same effects as the cores 51, 51A, 51a, and 51B of the other embodiments described above can be achieved.

(6)他の実施形態5:
図11は、更に他の実施形態であるステーター31Dの一部を示す平面図である。この実施形態では、ヨーク35側の取付部81,82は、第1実施形態と同じ形状をしている(図6A参照)。これに対して、コア51Dは、外形形状は、第1実施形態と同様であるものの、電磁鋼板の積層方向が異なっている。つまり、このコア51Dでは、電磁鋼板は、ヨーク35の周方向Cに沿って配列されている。このコア51Dは、従って、2種類の大きさの電磁鋼板741,742から構成される。電磁鋼板741は、コア51Dの両側にそれぞれ複数枚積層され、この電磁鋼板741に挟まれた中央領域には電磁鋼板741より小さな電磁鋼板742が、積層されている。これらの電磁鋼板741,742は、上辺を揃えて積層される。従って、積層され溶着された電磁鋼板からなるコア51Dは、電磁鋼板の積層方向は異なるものの、その外形形状は、第1実施形態のコア51と同様となる。この場合、高さ方向に長い電磁鋼板741の下側が突出して嵌込部741を構成することになり、これが取付部81,82に取り付けられる。
(6) Other embodiment 5:
FIG. 11 is a plan view showing a part of a stator 31D which is still another embodiment. In this embodiment, the attachment parts 81 and 82 on the yoke 35 side have the same shape as in the first embodiment (see FIG. 6A). On the other hand, although the core 51D has the same outer shape as the first embodiment, the direction in which the electromagnetic steel sheets are laminated is different. That is, in this core 51D, the electromagnetic steel plates are arranged along the circumferential direction C of the yoke 35. This core 51D is therefore composed of electromagnetic steel plates 741 and 742 of two different sizes. A plurality of electromagnetic steel plates 741 are laminated on both sides of the core 51D, and an electromagnetic steel plate 742 smaller than the electromagnetic steel plate 741 is laminated in the central region sandwiched between the electromagnetic steel plates 741. These electromagnetic steel plates 741 and 742 are stacked with their upper sides aligned. Therefore, the core 51D made of laminated and welded electromagnetic steel sheets has the same external shape as the core 51 of the first embodiment, although the lamination direction of the electromagnetic steel sheets is different. In this case, the lower side of the electromagnetic steel plate 741, which is long in the height direction, protrudes to form a fitting part 741, which is attached to the mounting parts 81 and 82.

掛かる形態のコア51Dでは、アキシャルギャップモーター20として周方向Cへの力が掛かったとき、複数枚の電磁鋼板741がその力を受けるので、せん断力に対して、十分な強度を確保することができる。また、矩形の電磁鋼板を積層するだけなので、電磁鋼板の加工が容易であるという利点を有する。更に、コアの数が増減したり、コアの周方向の大きさが設計変更された場合などでも、積層する電磁鋼板742の枚数を変えるだけで、容易に対応できる。 In the core 51D having this configuration, when a force is applied in the circumferential direction C as the axial gap motor 20, the plurality of electromagnetic steel plates 741 receive that force, so it is difficult to ensure sufficient strength against shearing force. can. Further, since rectangular electromagnetic steel sheets are simply laminated, the electromagnetic steel sheets have the advantage of being easy to process. Furthermore, even if the number of cores is increased or decreased or the circumferential size of the core is changed in design, this can be easily accommodated by simply changing the number of electromagnetic steel plates 742 to be laminated.

(7)他の実施形態6:
次に、他の実施形態6としてのステーター31Eについて、図12を用いて説明する。このステーター31Eでは、コア51Eを構成する電磁鋼板の積層方向や取付部81,82の構成は、他の実施形態5のステーター31Dと同様である。このステーター31Eでは、コア51Eの形状が、平面視台形形状をしている点で、コア51Dとは異なる。このコア51Eでは、平面視台形形状とするため、コア51Eの積層方向外側の電磁鋼板の大きさが、徐々に小さくなっている。つまり、この実施形態のコア51Eでは、図11に示したコア51Dと同様に、2種類の大小の電磁鋼板751および752を積層した外側に、ヨーク35の幅方向(径方向R)に対応した寸法が徐々に小さくなる複数枚の電磁鋼板753が積層される。
(7) Other embodiment 6:
Next, a stator 31E as another embodiment 6 will be described using FIG. 12. In this stator 31E, the stacking direction of the electromagnetic steel plates constituting the core 51E and the configuration of the attachment parts 81 and 82 are the same as in the stator 31D of the other fifth embodiment. This stator 31E differs from the core 51D in that the core 51E has a trapezoidal shape in plan view. Since this core 51E has a trapezoidal shape in plan view, the size of the electromagnetic steel sheets on the outside of the core 51E in the stacking direction gradually becomes smaller. That is, in the core 51E of this embodiment, like the core 51D shown in FIG. A plurality of electromagnetic steel plates 753 whose dimensions gradually become smaller are laminated.

この結果、この実施形態のコア51Eは、平面視台形形状を備えるものとなり、ヨーク35上において、コアとして広い面積を確保することができる。この実施形態でもコア51Eの周方向の大きさの変更に容易に対応できる。 As a result, the core 51E of this embodiment has a trapezoidal shape in plan view, and a large area can be secured as the core on the yoke 35. This embodiment can also easily accommodate changes in the circumferential size of the core 51E.

以上、第1の態様の様々な実施形態について説明したが、第1の態様の実施形態はこれに留まらない。上記の各実施形態では、取付部は、2つとしたが、3つ以上設けてもよい。3つの場合、例えば取付部81,82の中間に新たな取付部を設け、コアの対応する部分に嵌込部を増設すればよい。また、嵌込部は、同一形状の矩形の電磁鋼板を積層して形成した直方体のコアに後加工することにより、形成してもよい。後加工の際には、積層された電磁鋼板を治具等で固定して加工すればよい。この場合、嵌込部の形状や配置の自由度は高い。 Although various embodiments of the first aspect have been described above, the embodiments of the first aspect are not limited thereto. In each of the above embodiments, there are two attachment parts, but three or more attachment parts may be provided. In the case of three, for example, a new attachment part may be provided between the attachment parts 81 and 82, and a fitting part may be added to the corresponding part of the core. Further, the fitting portion may be formed by post-processing a rectangular parallelepiped core formed by laminating rectangular electromagnetic steel plates having the same shape. During post-processing, the laminated electromagnetic steel sheets may be fixed with a jig or the like. In this case, there is a high degree of freedom in the shape and arrangement of the fitting portion.

B.第2の態様:
(8)第2実施形態:
次に、図13以下を用いて、第2実施形態のアキシャルギャップモーター20の構成について説明する。第2実施形態とその他の実施形態をまとめて第2の態様と呼ぶ。上述した第1の態様では、取付部81,82等は、いずれもヨーク35の幅方向に亘って設けられ、複数の取付部はヨーク35の周方向に隔てて設けられていた。これに対して、第2の態様では、図13に示したように、2つの取付部91,92は、ヨーク35の最内周の位置である内周側端部と最外周の位置である外周側端部とに設けられる。取付部91,92の周方向の長さは第2実施形態では同一である。
B. Second aspect:
(8) Second embodiment:
Next, the configuration of the axial gap motor 20 of the second embodiment will be described using FIG. 13 and subsequent figures. The second embodiment and other embodiments are collectively referred to as a second aspect. In the first aspect described above, the attachment parts 81, 82, etc. are both provided across the width direction of the yoke 35, and the plurality of attachment parts are provided apart from each other in the circumferential direction of the yoke 35. On the other hand, in the second embodiment, as shown in FIG. 13, the two mounting portions 91 and 92 are located at the innermost end of the yoke 35 and at the outermost end. It is provided at the outer circumferential end. The lengths of the mounting portions 91 and 92 in the circumferential direction are the same in the second embodiment.

第2実施形態のステーター31Fは、複数個のコア51Fに対応する箇所に取付部91,92を備えたヨーク35と、このヨーク35に取り付けられる複数個のコア51Fと、各コア51Fに取り付けられる図示しないコイルとを備える。コイルの取り付けは、第1実施形態で説明したものと同じである(図4、図5参照)。 The stator 31F of the second embodiment includes a yoke 35 equipped with attachment parts 91 and 92 at locations corresponding to a plurality of cores 51F, a plurality of cores 51F attached to this yoke 35, and a plurality of cores 51F attached to each core 51F. It also includes a coil (not shown). The installation of the coil is the same as that described in the first embodiment (see FIGS. 4 and 5).

この実施形態のコア51Fは、第1実施形態のコア51と類似の形状を備える。即ち、下端両側において下方に突出した嵌込部77,78を備えた電磁鋼板76を積層した形態を備える。嵌込部77,78の間隔は、取付部91,92の間隔と等しい。嵌込部77は、ヨーク35の径方向の内側位置に対応して設けられ、嵌込部78はヨーク35の外側位置に対応して設けられる。すなわち、嵌込部77,78は、ヨーク35の径方向Rに並んでいる。嵌込部77,78の幅は、ヨーク35側の取付部91,92の周方向の幅に等しい。従って、コア51Fの嵌込部77,78をヨーク35の取付部91,92に嵌め込むようにして取り付けると、図14に示したように、コア51Fは、ヨーク35の幅方向に亘って配置される。コア51Fがヨーク35を取り付けられた状態を、平面視したのが図15である。この場合、図15に示したように、積層される電磁鋼板76は、全て同一の形状にできる。 The core 51F of this embodiment has a similar shape to the core 51 of the first embodiment. That is, it has a configuration in which electromagnetic steel sheets 76 are laminated, each having fitting portions 77 and 78 projecting downward on both sides of the lower end. The spacing between the fitting portions 77 and 78 is equal to the spacing between the mounting portions 91 and 92. The fitting portion 77 is provided corresponding to the inner position of the yoke 35 in the radial direction, and the fitting portion 78 is provided corresponding to the outer position of the yoke 35. That is, the fitting parts 77 and 78 are lined up in the radial direction R of the yoke 35. The width of the fitting parts 77 and 78 is equal to the circumferential width of the mounting parts 91 and 92 on the yoke 35 side. Therefore, when the core 51F is attached by fitting the fitting parts 77, 78 into the mounting parts 91, 92 of the yoke 35, the core 51F is arranged across the width direction of the yoke 35, as shown in FIG. . FIG. 15 is a plan view of the core 51F with the yoke 35 attached. In this case, as shown in FIG. 15, all of the stacked electromagnetic steel sheets 76 can have the same shape.

以上説明した第2実施形態によれば、アキシャルギャップモーター20において、コア51Fは2つの嵌込部77,78がヨーク35の2つの取付部91,92によって固定されているので、ローター40を回転させる磁束によるトルクの反力がコア51Fに対して、周方向Cに加わっても、コア51Fがヨーク35から外れたり、せん断力により損傷を受けるという可能性を低減できる。また、図14に占めたように、この実施形態のコア51Fは、ヨーク35の幅方向の全範囲を覆う形状にすることが容易であり、結果的にヨーク35に対して大きな面積のコアとすることができる。コアが大きくできれば、一般に小さいものよりモーターとしての出力を大きくできる。なお、電磁鋼板76の形状を、図8に示した電磁鋼板723のように、嵌込部77,78の外側に張出した部分が存在する形状とすれば、ヨーク35の幅方向に対して、更にコアの形状を大きなものにすることも可能である。 According to the second embodiment described above, in the axial gap motor 20, the two fitting parts 77 and 78 of the core 51F are fixed by the two mounting parts 91 and 92 of the yoke 35, so that the rotor 40 can be rotated. Even if a torque reaction force due to the magnetic flux is applied to the core 51F in the circumferential direction C, the possibility that the core 51F will come off the yoke 35 or be damaged by shear force can be reduced. Furthermore, as shown in FIG. 14, the core 51F of this embodiment can easily be shaped to cover the entire range of the yoke 35 in the width direction, and as a result, the core 51F has a large area relative to the yoke 35. can do. If the core can be made larger, the output of the motor can generally be larger than that of a smaller core. Note that if the shape of the electromagnetic steel plate 76 is such that there are parts projecting outward from the fitting parts 77 and 78 like the electromagnetic steel plate 723 shown in FIG. Furthermore, it is also possible to make the core shape larger.

更に、本実施形態では、コア51Fを構成する電磁鋼板76は同一形状のものを用いることができ、コア51Fの製造を容易なものにできる。本実施形態では、コア51Fのヨーク35への取付は、複数の嵌込部77,78を取付部91,92に差し込むだけでよく、この点で、アキシャルギャップモーター20の製造を容易なものにしている。 Furthermore, in this embodiment, the electromagnetic steel plates 76 constituting the core 51F can have the same shape, making it possible to easily manufacture the core 51F. In this embodiment, the core 51F can be attached to the yoke 35 by simply inserting the plurality of fitting portions 77 and 78 into the attachment portions 91 and 92. In this respect, manufacturing of the axial gap motor 20 is facilitated. ing.

(9)他の実施形態7:
図16に他の実施形態7のステーター31Gの構成を示す。このステーター31Gは、第2実施形態と同じ形状のヨーク35に、コア51Gを取り付けた構成を備える。このコア51Gは、平面視台形形状を有する。つまり他の実施形態7のコア51Gは、第2実施形態のコア51Fと同じ電磁鋼板76を積層した両側に、幅が漸減する複数の電磁鋼板761,762等を積層した構成を有する。この実施形態では、幅が漸減する複数の電磁鋼板761,762等は、電磁鋼板76に溶着され、一体化している。
(9) Other embodiment 7:
FIG. 16 shows the configuration of a stator 31G according to another embodiment 7. This stator 31G has a configuration in which a core 51G is attached to a yoke 35 having the same shape as the second embodiment. This core 51G has a trapezoidal shape in plan view. In other words, the core 51G of the seventh embodiment has a structure in which the same electromagnetic steel plates 76 as the core 51F of the second embodiment are laminated, and a plurality of electromagnetic steel plates 761, 762, etc. whose widths gradually decrease are laminated on both sides. In this embodiment, a plurality of electromagnetic steel plates 761, 762, etc. whose widths gradually decrease are welded to an electromagnetic steel plate 76 and are integrated.

この実施形態7のステーター31Gは、ヨーク35との取付については、第2実施形態のステーター31Fと同様の作用効果を僧衣する上、コア51Gの平面視における面積を大きくすることができ、コア51Gに設けられたコイル(不図示)の通電による磁力を高めることができる。図16に示した例では、ヨーク35側の取付部91と取付部92とは、同じ周方向長さとしたが、取付部92の周方向長さを長くし、電磁鋼板761,762等の片側に、嵌込部78を形成して、取付部92に嵌め込むようにしてもよい。この場合、コア51Gの固定はより強固なものとなる。 The stator 31G of the seventh embodiment has the same function and effect as the stator 31F of the second embodiment when attached to the yoke 35, and the area of the core 51G in a plan view can be increased. The magnetic force can be increased by energizing a coil (not shown) provided in the magnetic field. In the example shown in FIG. 16, the mounting part 91 and the mounting part 92 on the yoke 35 side have the same circumferential length, but the circumferential length of the mounting part 92 is made longer, and one side of the electromagnetic steel plates 761, 762, etc. Alternatively, a fitting portion 78 may be formed to fit into the mounting portion 92. In this case, the fixation of the core 51G becomes stronger.

(10)他の実施形態8:
更に他の実施形態8のステーター31Hの要部を図17に示す。このステーター31Hは、コア51Hと共に、第2実施形態や他の実施形態7と同じ形態の取付部91,92を備えるヨーク35とを備える。コア51Hは、電磁鋼板の積層方向が第2実施形態や他の実施形態7と異なり、ヨーク35の径方向Rになっている。コア51Hは、高さの異なる矩形の2種類の電磁鋼板を積層して構成される。つまり、コア51Hは、電磁鋼板772を複数枚積層した上で、その両側に、電磁鋼板772より高さの大きな電磁鋼板771を、それぞれ複数枚積層した構成を備える。このとき、電磁鋼板771および電磁鋼板772は、上辺が揃えられているので、電磁鋼板771の下端は、コア51Hの下方にそれぞれ突出した形となり、嵌込部77Aを形成する。この嵌込部77Aが取付部91,92に晴れ込まれることで、コア51Hはヨーク35に取り付けられる。
(10) Other embodiment 8:
FIG. 17 shows a main part of a stator 31H according to still another embodiment 8. The stator 31H includes a core 51H as well as a yoke 35 having mounting portions 91 and 92 having the same configuration as the second embodiment and the seventh embodiment. In the core 51H, the stacking direction of the electromagnetic steel sheets is different from the second embodiment and the other embodiment 7, and is in the radial direction R of the yoke 35. The core 51H is constructed by laminating two types of rectangular electromagnetic steel sheets with different heights. That is, the core 51H has a structure in which a plurality of electromagnetic steel plates 772 are laminated, and a plurality of electromagnetic steel plates 771, which are taller than the electromagnetic steel plates 772, are laminated on both sides. At this time, since the upper sides of the electromagnetic steel plate 771 and the electromagnetic steel plate 772 are aligned, the lower ends of the electromagnetic steel plate 771 each protrude below the core 51H, forming a fitting portion 77A. The core 51H is attached to the yoke 35 by fitting the fitting portion 77A into the attachment portions 91 and 92.

この実施形態8でも、第2実施形態や他の実施形態7同様、コア51Hは、複数箇所でヨーク35に取り付けられ、コア51Hにかかるせん断力に対して高い強度を示す。 In this embodiment 8 as well, like the second embodiment and the other embodiment 7, the core 51H is attached to the yoke 35 at a plurality of locations, and exhibits high strength against the shear force applied to the core 51H.

(11)他の実施形態9:
他の実施形態8と類似の実施形態9のステーター31Iの構成を図18に示す。この実施形態9では、ステーター31Iを構成するコア51Iは、平面視台形形状をしている。このため、積層される電磁鋼板は、全て大きさが異なる。中心部において積層された電磁鋼板782のヨーク35内周側端部には嵌込部を形成する電磁鋼板781であって、電磁鋼板782により高さの大きな電磁鋼板781が積層される。また、積層された電磁鋼板782のヨーク35外周側端部には嵌込部を形成する電磁鋼板783であって、電磁鋼板782により高さの大きな電磁鋼板783が積層される。全ての電磁鋼板は、ヨーク35の周方向Cに沿った長さが、ヨーク35の内周側から外周側にかけて漸増する形状となっている。
(11) Other embodiment 9:
FIG. 18 shows a configuration of a stator 31I according to a ninth embodiment, which is similar to the eighth embodiment. In this embodiment 9, a core 51I that constitutes a stator 31I has a trapezoidal shape in plan view. Therefore, the stacked electromagnetic steel sheets all have different sizes. An electromagnetic steel plate 781 that forms a fitting part at the inner circumferential end of the yoke 35 of the electromagnetic steel plates 782 stacked at the center and has a larger height than the electromagnetic steel plates 782 is stacked. Moreover, an electromagnetic steel plate 783 that forms a fitting part at the outer peripheral side end of the yoke 35 of the stacked electromagnetic steel plates 782 and has a larger height than the electromagnetic steel plate 782 is laminated. All the electromagnetic steel plates have a shape in which the length along the circumferential direction C of the yoke 35 gradually increases from the inner circumferential side to the outer circumferential side of the yoke 35.

従って、このヨーク35に設けられた取付部91A,92Aは、径方向外側、すなわち、外周側の取付部92Aの周方向Cに沿った長さの方が、径方向内側、すなわち、内周側の取付部91Aの長さより長い。かかる構成を有するステーター31Iは、他の実施形態8と同様の作用効果を奏得する上、更にコア51Iの平面視の面積を大きくでき、アキシャルギャップモーター20における出力の増大を図ることができる。 Therefore, the length along the circumferential direction C of the mounting portions 91A and 92A provided on the yoke 35 is on the radially outer side, that is, on the outer circumferential side, and the length along the circumferential direction C is on the radially inner side, that is, on the inner circumferential side. It is longer than the length of the mounting portion 91A. The stator 31I having such a configuration not only achieves the same effects as the other embodiment 8, but also can increase the area of the core 51I in plan view, and can increase the output of the axial gap motor 20.

(12)他の実施形態10:
次に他の実施形態10のステーター31Jの構成について、図19を用いて説明する。この実施形態10では、ステーター31Jを構成するコア51Jは、同じ形状の電磁鋼板を周方向Cに沿って積層しつつ、平面視において略台形形状のコアを実現している。ヨーク35は、他の実施形態9と同様に外周側の取付部92Bが、内周側の取付部91Bより、周方向Cに沿った長さが長い形状となっている。
(12) Other embodiment 10:
Next, the configuration of a stator 31J according to another embodiment 10 will be described using FIG. 19. In Embodiment 10, a core 51J constituting a stator 31J is formed by laminating electromagnetic steel plates of the same shape along the circumferential direction C to realize a core having a substantially trapezoidal shape in plan view. The yoke 35 has a shape in which the outer peripheral side mounting portion 92B is longer in length along the circumferential direction C than the inner peripheral side mounting portion 91B, similarly to the other embodiment 9.

他方、コア51Jを構成する電磁鋼板79は、全て同一の形状をしている。つまり、電磁鋼板79は、その両端に嵌込部77B,78Bを備え、積層された状態で、ヨーク35に取り付けられる。この電磁鋼板79は、図18下段の右端に示したように、その内周側の厚みd1が、外周側の厚みd2より小さくされている。このため、複数の電磁鋼板79を積層すると、コア51Jは、全体の平面視形状が台形形状となる。この状態では、コア51Jの嵌込部77B,78Bとヨークの取付部91B,92Bとの関係は、図18に示した他の実施形態と9と同様だが、本実施形態では、全ての電磁鋼板79が同一形状をしていること、および全ての電磁鋼板79が嵌込部77B,78Bにおいて、取付部91B,92Bに嵌め込まれ、強度を高めるのに寄与している点で優れる。 On the other hand, all the electromagnetic steel plates 79 forming the core 51J have the same shape. That is, the electromagnetic steel plate 79 is provided with fitting portions 77B and 78B at both ends thereof, and is attached to the yoke 35 in a stacked state. As shown at the right end in the lower part of FIG. 18, the electromagnetic steel plate 79 has a thickness d1 on the inner circumferential side smaller than a thickness d2 on the outer circumferential side. Therefore, when a plurality of electromagnetic steel sheets 79 are stacked, the entire core 51J has a trapezoidal shape in plan view. In this state, the relationship between the fitting parts 77B, 78B of the core 51J and the mounting parts 91B, 92B of the yoke is the same as in the other embodiments shown in FIG. 79 have the same shape, and all the electromagnetic steel plates 79 are fitted into the fitting parts 91B, 92B at the fitting parts 77B, 78B, which contributes to increasing the strength.

もとよりこの形状の電磁鋼板79を用いれば、その外周側、内周側は共に円弧の一部となるように積層することも可能である。この場合には、嵌込部77B,78Bも円弧状になるため、取付部91B,92Bも円弧状の形状とすればよい。なお、こうた内周側と外周側とで厚みの違う電磁鋼板79は、電磁鋼板をプレスにより型抜きする前段階で、ローラ軸方向の荷重が異なる圧延ローラを通すことで容易に製作することができる。 Of course, by using the electromagnetic steel sheets 79 having this shape, it is also possible to stack them so that both the outer and inner circumferential sides form part of an arc. In this case, since the fitting portions 77B and 78B also have an arc shape, the mounting portions 91B and 92B may also have an arc shape. The electromagnetic steel sheet 79, which has different thicknesses on the inner and outer circumferential sides, can be easily manufactured by passing the electromagnetic steel sheet through rolling rollers with different axial loads before punching the electromagnetic steel sheet with a press. I can do it.

以上、第2の態様の様々な実施形態について説明したが、第2の態様の実施形態はこれに留まらない。上記の各実施形態では、取付部91,92は、ヨーク35の最内周および最外周に凹部として設けたが、ヨーク35の最内周位置および最外周位置よりヨーク内側に開口部として設けてもよい。この場合、コア51Fを形成する電磁鋼板を、図8に示した電磁鋼板723のように、嵌込部77,78等をコア51Fの両端ではなく、両端から内側に入った位置に設け、これを積層してコア51Fを形成すればよい。また、取付部は、複数あればよく、例えば3つ以上設けてもよい。3つの場合、取付部91,92の中間に新たな取付部を設け、コアの対応する部分に嵌込部を増設するなどの構成を採用すればよい。また、嵌込部は、同一形状の矩形の電磁鋼板を積層して形成した直方体のコアに後加工することにより、形成してもよい。後加工の際には、積層された電磁鋼板を治具等で固定して加工すればよい。この場合、嵌込部の形状や配置の自由度は高い。 Although various embodiments of the second aspect have been described above, the embodiments of the second aspect are not limited thereto. In each of the above embodiments, the attachment parts 91 and 92 are provided as recesses at the innermost and outermost peripheries of the yoke 35, but they are provided as openings inside the yoke from the innermost and outermost positions of the yoke 35. Good too. In this case, the electromagnetic steel plate forming the core 51F is provided with fitting parts 77, 78, etc. not at both ends of the core 51F, but at positions inside from both ends, like the electromagnetic steel plate 723 shown in FIG. The core 51F may be formed by laminating the above. Further, there may be a plurality of attachment portions, for example, three or more attachment portions may be provided. In the case of three, a new mounting part may be provided between the mounting parts 91 and 92, and a fitting part may be added to the corresponding part of the core. Further, the fitting portion may be formed by post-processing a rectangular parallelepiped core formed by laminating rectangular electromagnetic steel plates having the same shape. During post-processing, the laminated electromagnetic steel sheets may be fixed with a jig or the like. In this case, there is a high degree of freedom in the shape and arrangement of the fitting portion.

C.他の態様:
上述した第1の態様および第2の態様は、取付部の配設方向の違いに対応しているが、この分け方は便宜的なものであり、例えば、第1の態様における取付部81,82を、ヨーク35の径方向Rに沿った方向に対して45度など斜めに配置してもよい。あるいは、図6Cに示した取付部85,86を略円形あるいは略矩形の開口部とし、径方向にずらして配置し、これに合わせた嵌込部を、コア側に形成するものとしてもよい。また、複数の嵌込部の各形状は、長方形に限らず、T字形状、十字形状、H字形状や円弧形状であってもよい。更に、複数の嵌込部の形状はそれぞれ異なっていてもよい。これらは取付部においても同様である。
C. Other aspects:
The above-described first aspect and second aspect correspond to the difference in the arrangement direction of the attachment part, but this division is for convenience; for example, the attachment part 81 in the first aspect, 82 may be arranged obliquely, such as at 45 degrees, with respect to the direction along the radial direction R of the yoke 35. Alternatively, the mounting portions 85 and 86 shown in FIG. 6C may be substantially circular or rectangular openings, and may be arranged to be shifted in the radial direction, and a corresponding fitting portion may be formed on the core side. Further, the shape of each of the plurality of fitting portions is not limited to a rectangle, but may be a T-shape, a cross-shape, an H-shape, or an arc shape. Furthermore, the shapes of the plurality of fitting portions may be different from each other. The same applies to the mounting portion.

上記の各実施形態で用いたコアは、同一形状の電磁鋼板を積層したものと異なる形状の電磁鋼板を積層したものとがある。前者は、電磁鋼板が1種類で済み、製造が容易である。他方、後者は、複数種類の形状の電磁鋼板を組み合わせるので、形状の自由度が高い。なお、電磁鋼板は、その厚みや材質など、1種類のものを用いてもよいが、2種類以上の電磁鋼板を取り混ぜてコアを形成してもよい。 The cores used in each of the above embodiments include cores made by laminating electromagnetic steel plates of the same shape and cores made by laminating electromagnetic steel plates of different shapes. The former requires only one type of electromagnetic steel sheet and is easy to manufacture. On the other hand, the latter has a high degree of freedom in shape because it combines electrical steel sheets with a plurality of shapes. Note that although one type of electromagnetic steel plate may be used in terms of thickness and material, the core may be formed by mixing two or more types of electromagnetic steel plates.

上述したアキシャルギャップモーター20において、各ステーターを構成するコアとヨークは、共に電磁鋼板により構成したが、コアとヨークにおける電磁鋼板の積層方向は、いずれであってもよい。図20に示すように、ヨーク35における電磁鋼板の積層方向は、アキシャルギャップモーター20の軸方向Aに沿った方向にしてよい。ヨーク35の内部を通る磁束の方向およびヨーク35の構成のし易さから、この積層方向が好ましい。これに対して、コアを形成する電磁鋼板の積層方向は、軸方向Aに沿った方向以外であることが好ましい。 In the above-described axial gap motor 20, the core and yoke constituting each stator are both made of electromagnetic steel sheets, but the lamination direction of the electromagnetic steel sheets in the core and yoke may be in any direction. As shown in FIG. 20, the stacking direction of the electromagnetic steel plates in the yoke 35 may be along the axial direction A of the axial gap motor 20. This lamination direction is preferable because of the direction of the magnetic flux passing through the inside of the yoke 35 and the ease of configuring the yoke 35. On the other hand, it is preferable that the lamination direction of the electromagnetic steel sheets forming the core is other than the direction along the axial direction A.

図21,図22に代表的な積層方向を、コア51Cおよびコア51Eを用いて示した。図21に例示したコア51Cでは、電磁鋼板は、径方向Rに沿った方向に積層される。また、図22に例示したコア51Eでは、電磁鋼板は、周方向Cに沿った方向に積層される。図21,図22に示したいずれの積層方向でも、コイル61によって形成される磁束がコア51C,51Eを通り易く、かつ渦電流による損失は小さくなる。 Typical stacking directions are shown in FIGS. 21 and 22 using cores 51C and 51E. In the core 51C illustrated in FIG. 21, the electromagnetic steel plates are laminated in the direction along the radial direction R. Further, in the core 51E illustrated in FIG. 22, the electromagnetic steel plates are laminated in the direction along the circumferential direction C. In either of the stacking directions shown in FIGS. 21 and 22, the magnetic flux formed by the coil 61 easily passes through the cores 51C and 51E, and loss due to eddy current is reduced.

D.アキシャルギャップモーターの製造方法:
こうしたアキシャルギャップモーター20の製造方法について簡単に説明する。このアキシャルギャップモーター20は、一般にM相巻線(Mは、3以上の奇数)を備えたモーターとして製造される。3相4極のアキシャルギャップモーター20であれば、コアの数は12となるが、そのアキシャルギャップモーター20の製造工程は、以下のようになる。
[1]ヨーク35に取り付けられるコア51等であって、複数の嵌込部72,73等を、ヨーク35に対向する側の異なる位置に備えたコア51を、磁束が貫通可能な薄板、例えば電磁鋼板71を積層して形成する工程T1、
[2]コア51等を、少なくとも12個準備する工程T1、
[3]12個のコア51等が固定される位置のそれぞれに、複数の嵌込部72,73等に対応して複数の取付部81,82等を備えるヨーク35を準備する工程T3、
[4]ヨーク35の取付部81,82等に、12個のコア51等のそれぞれの嵌込部72,73を嵌め込んで、ヨーク35とコア51等とを備えたステーター31等を組み立てる工程T4、
[5]ステーター31等の組み立ての前または後において、12個のコア51等のそれぞれに界磁コイル61を取り付ける工程T5、
[6]回転可能に支持されるローター40とステーター31等とを、コア51等のヨーク35と反対側の端面が、ローター40に対して、回転の軸Aと平行な方向に所定距離のギャップを隔てて配置される位置に組み付ける工程T6。
以上の工程により、アキシャルギャップモーター20は、製造される。なお、工程T1、T2の順序は同時であっても逆であっても差し支えない。
D. How to manufacture axial gap motor:
A method of manufacturing such an axial gap motor 20 will be briefly described. The axial gap motor 20 is generally manufactured as a motor equipped with an M-phase winding (M is an odd number of 3 or more). In the case of a three-phase, four-pole axial gap motor 20, the number of cores is 12, and the manufacturing process of the axial gap motor 20 is as follows.
[1] The core 51, which is attached to the yoke 35 and has a plurality of fitting parts 72, 73, etc. at different positions on the side facing the yoke 35, is made of a thin plate through which magnetic flux can pass, for example. Step T1 of laminating and forming electromagnetic steel sheets 71;
[2] Step T1 of preparing at least 12 cores 51, etc.;
[3] Step T3 of preparing the yoke 35 including a plurality of attachment parts 81, 82, etc. corresponding to the plurality of fitting parts 72, 73, etc. at each of the positions where the 12 cores 51, etc. are fixed;
[4] A step of assembling the stator 31 etc. including the yoke 35 and the core 51 etc. by fitting the fitting parts 72, 73 of the 12 cores 51 etc. into the attachment parts 81, 82 etc. of the yoke 35, respectively. T4,
[5] Step T5 of attaching the field coil 61 to each of the 12 cores 51 etc. before or after assembling the stator 31 etc.;
[6] The rotor 40, the stator 31, etc., which are rotatably supported, are arranged so that the end surface of the core 51, etc. on the opposite side to the yoke 35 has a gap of a predetermined distance with respect to the rotor 40 in a direction parallel to the axis of rotation A. Step T6 of assembling at a position that is separated by.
Through the above steps, the axial gap motor 20 is manufactured. Note that the order of steps T1 and T2 may be simultaneous or reversed.

かかる製造方法によれば、コイルへの通電によって、モーターの出力トルクの反力であって、ヨーク35の周方向に沿った力がコア51等に掛かっても、このせん断力に耐えるアキシャルギャップモーター20を容易に製造できる。 According to this manufacturing method, even if a force along the circumferential direction of the yoke 35 is applied to the core 51 etc. as a reaction force of the output torque of the motor by energizing the coil, the axial gap motor can withstand this shear force. 20 can be easily manufactured.

本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、ローターの軸方向に片側にステーターを備えるシングルステーターの構造としてもよい。また、軸を固定軸とし、ローターとステータとの配置を逆にして、固定軸の周りにアウターが回転する形態とすることもできる。更に、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present disclosure is not limited to the embodiments described above, and can be implemented in various configurations without departing from the spirit thereof. For example, the rotor may have a single stator structure with a stator on one side in the axial direction. It is also possible to adopt a configuration in which the shaft is a fixed shaft, the rotor and the stator are arranged in reverse, and the outer rotates around the fixed shaft. Furthermore, the technical features in the embodiments corresponding to the technical features in each form described in the column of the summary of the invention may be used to solve some or all of the above-mentioned problems, or to achieve one of the above-mentioned effects. In order to achieve some or all of the above, it is possible to replace or combine them as appropriate. Further, unless the technical feature is described as essential in this specification, it can be deleted as appropriate.

20…アキシャルギャップモーター、21…回転軸、27…側面ケース、31,31C~31J,32…ステーター、35,36…ヨーク、40…ローター、41,43…永久磁石、45…固定部、51,51A~51J,51a,52…コア、61,63…コイル、71,76,79…電磁鋼板、72,72A~72G…嵌込部、77,77A,77B,78…嵌込部、81~85,81C,91,92,92A,92B…取付部、711~783…電磁鋼板 20... Axial gap motor, 21... Rotating shaft, 27... Side case, 31, 31C to 31J, 32... Stator, 35, 36... Yoke, 40... Rotor, 41, 43... Permanent magnet, 45... Fixed part, 51, 51A to 51J, 51a, 52... Core, 61, 63... Coil, 71, 76, 79... Electromagnetic steel plate, 72, 72A to 72G... Fitting part, 77, 77A, 77B, 78... Fitting part, 81 to 85 , 81C, 91, 92, 92A, 92B...Mounting part, 711-783...Electromagnetic steel plate

Claims (9)

回転するローターと、
前記ローターに対向し、前記回転の軸と平行な第1方向にギャップを隔てて配置されたステーターと、
を備え、
前記ステーターは、磁束が貫通する薄板が前記第1方向と直交する第2方向に沿って積層されたコア、および前記コアを有する環状のヨークを有し、
前記コアは、独立した複数の嵌込部を隔たった位置に有し、前記コア毎の前記複数の嵌込部は、前記ヨーク自体に前記複数の嵌込部に対応して形成された複数の取付部に嵌まり込んでいる、
アキシャルギャップモーター。
a rotating rotor and
a stator facing the rotor and disposed with a gap in a first direction parallel to the axis of rotation;
Equipped with
The stator has a core in which thin plates through which magnetic flux passes are laminated along a second direction perpendicular to the first direction, and an annular yoke having the core,
The core has a plurality of independent fitting portions at separated positions, and the plurality of fitting portions for each core include a plurality of fitting portions formed on the yoke itself corresponding to the plurality of fitting portions. It is stuck in the mounting part,
Axial gap motor.
前記複数の嵌込部は、前記ヨークの周方向に並んでいる、請求項1記載のアキシャルギャップモーター。 The axial gap motor according to claim 1, wherein the plurality of fitting portions are arranged in a circumferential direction of the yoke. 前記複数の嵌込部は、前記ヨークの径方向に並んでいる、請求項1記載のアキシャルギャップモーター。 The axial gap motor according to claim 1, wherein the plurality of fitting portions are arranged in a radial direction of the yoke. 前記コアの前記積層の方向は、前記ヨークの径方向である、請求項1から請求項3のいずれか一項に記載のアキシャルギャップモーター。 The axial gap motor according to any one of claims 1 to 3, wherein the direction of the lamination of the core is a radial direction of the yoke. 前記コアの前記積層の方向は、前記ヨークの周方向である、請求項1から請求項3のいずれか一項に記載のアキシャルギャップモーター。 The axial gap motor according to any one of claims 1 to 3, wherein the direction of the lamination of the core is a circumferential direction of the yoke. 前記積層する薄板の厚さは、前記ヨークの外周側端部が前記ヨークの内周側端部より大きい、請求項5記載のアキシャルギャップモーター。 6. The axial gap motor according to claim 5, wherein the laminated thin plates have a thickness greater at an outer peripheral end of the yoke than at an inner peripheral end of the yoke. 前記コアは、同一形状の前記薄板同士が積層された、請求項1から請求項6のいずれか一項に記載のアキシャルギャップモーター。 The axial gap motor according to any one of claims 1 to 6, wherein the core is formed by laminating the thin plates having the same shape. 前記コアは、異なる形状の前記薄板を含んで積層された、請求項1から請求項6のいずれか一項に記載のアキシャルギャップモーター。 The axial gap motor according to any one of claims 1 to 6, wherein the core is laminated including the thin plates of different shapes. 前記薄板は表面に絶縁層を備えた電磁鋼板であり、
前記薄板が積層されたコアは、前記ヨークの径方向外側における前記ヨークの周方向長さが、前記ヨークの径方向内側における前記ヨークの周方向長さより大きい形状である、
請求項1から請求項8のいずれか一項に記載のアキシャルギャップモーター。
The thin plate is an electromagnetic steel plate with an insulating layer on the surface,
The core in which the thin plates are laminated has a shape in which a circumferential length of the yoke on the radially outer side of the yoke is larger than a circumferential length of the yoke on the radially inner side of the yoke.
The axial gap motor according to any one of claims 1 to 8.
JP2019147286A 2019-08-09 2019-08-09 axial gap motor Active JP7395870B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019147286A JP7395870B2 (en) 2019-08-09 2019-08-09 axial gap motor
US16/945,958 US11411447B2 (en) 2019-08-09 2020-08-03 Axial gap motor
CN202010784269.9A CN112350460B (en) 2019-08-09 2020-08-06 Axial gap motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019147286A JP7395870B2 (en) 2019-08-09 2019-08-09 axial gap motor

Publications (3)

Publication Number Publication Date
JP2021029067A JP2021029067A (en) 2021-02-25
JP2021029067A5 JP2021029067A5 (en) 2022-08-17
JP7395870B2 true JP7395870B2 (en) 2023-12-12

Family

ID=74357466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019147286A Active JP7395870B2 (en) 2019-08-09 2019-08-09 axial gap motor

Country Status (3)

Country Link
US (1) US11411447B2 (en)
JP (1) JP7395870B2 (en)
CN (1) CN112350460B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3896823A1 (en) * 2020-04-17 2021-10-20 Toyota Jidosha Kabushiki Kaisha Axial gap motor
JP2021175263A (en) * 2020-04-24 2021-11-01 セイコーエプソン株式会社 Axial gap motor
US11677303B2 (en) * 2021-10-21 2023-06-13 National Cheng Kung University Motor and coreless stator coil winding unit thereof
WO2023105404A1 (en) * 2021-12-06 2023-06-15 Mohammad Durali Modular axial flux motor
KR102736395B1 (en) * 2023-07-11 2024-11-29 주식회사 이플로우 Permanent magnet motor, stator structure and rotor structure of the permanent magnet motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005348552A (en) 2004-06-04 2005-12-15 Nissan Motor Co Ltd Stator structure of axial gap rotating electric machine
JP2008228363A (en) 2007-03-08 2008-09-25 Daikin Ind Ltd Armature cores, armatures, rotating electrical machines, compressors
JP2010220412A (en) 2009-03-17 2010-09-30 Mitsubishi Electric Corp Axial gap motor
JP2011045198A (en) 2009-08-21 2011-03-03 Daikin Industries Ltd Stator for axial-gap motor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004017488A1 (en) * 2002-08-16 2004-02-26 Yamaha Hatsudoki Kabushiki Kaisha Rotating electric machine
JP2006050745A (en) * 2004-08-03 2006-02-16 Nissan Motor Co Ltd Axial gap rotary electric machine
JP2010017072A (en) * 2008-06-06 2010-01-21 Daikin Ind Ltd Armature core, armature, method of manufacturing armature core and method for manufacturing armature
JP2009296825A (en) 2008-06-06 2009-12-17 Daikin Ind Ltd Armature core and method of manufacturing the armature core
JP4710993B2 (en) * 2009-02-26 2011-06-29 ダイキン工業株式会社 Armature core
JP4716060B2 (en) * 2009-11-30 2011-07-06 株式会社富士通ゼネラル Axial gap type electric motor and pump device
JP2012023879A (en) * 2010-07-15 2012-02-02 Daikin Ind Ltd Magnetic core of armature and rotary electric machine
KR101134215B1 (en) * 2010-09-29 2012-04-09 조윤현 Flat type rotating apparatus
JP6017990B2 (en) * 2013-02-21 2016-11-02 株式会社日本自動車部品総合研究所 Stator for rotating electrical machine
JP6459754B2 (en) 2015-04-28 2019-01-30 日本電産株式会社 motor
JP2018061341A (en) 2016-10-05 2018-04-12 Ntn株式会社 Axial gap type motor
KR20180051718A (en) * 2016-11-08 2018-05-17 한경대학교 산학협력단 Manufacturing system for axial type motor stator core

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005348552A (en) 2004-06-04 2005-12-15 Nissan Motor Co Ltd Stator structure of axial gap rotating electric machine
JP2008228363A (en) 2007-03-08 2008-09-25 Daikin Ind Ltd Armature cores, armatures, rotating electrical machines, compressors
JP2010220412A (en) 2009-03-17 2010-09-30 Mitsubishi Electric Corp Axial gap motor
JP2011045198A (en) 2009-08-21 2011-03-03 Daikin Industries Ltd Stator for axial-gap motor

Also Published As

Publication number Publication date
JP2021029067A (en) 2021-02-25
US20210044162A1 (en) 2021-02-11
US11411447B2 (en) 2022-08-09
CN112350460A (en) 2021-02-09
CN112350460B (en) 2024-06-11

Similar Documents

Publication Publication Date Title
JP7395870B2 (en) axial gap motor
EP1734639B1 (en) Rotor of flux barrier type synchronous reluctance motor and flux barrier type synchronous motor having the same
EP3091639B1 (en) Rotor core for rotating electrical machine, and manufacturing method thereof
US9190878B2 (en) Rotor including anti-rotation feature for multi-pole structure
JP5904416B2 (en) Rotating electric machine
JP5623498B2 (en) Stator core and stator, electric motor and compressor
JP5656719B2 (en) Permanent magnet type rotating electrical machine and method for manufacturing permanent magnet type rotating electrical machine
WO2017195498A1 (en) Rotor and rotary electric machine
JP2011120392A (en) Stator core, stator, motor, and compressor
JP6112970B2 (en) Permanent magnet rotating electric machine
JP2019088033A (en) Armature
JP5672149B2 (en) Rotating electric machine rotor and rotating electric machine using the same
JP5235912B2 (en) Reluctance motor
KR102771167B1 (en) Motor
CN117411211A (en) Permanent magnet embedded motor
JP5042253B2 (en) Armature of rotating electric machine and method for manufacturing the same
WO2017212575A1 (en) Permanent magnet motor
CN112542905A (en) Axial Gap Motor
JP2012023879A (en) Magnetic core of armature and rotary electric machine
JPWO2018207897A1 (en) Polyphase claw pole motor and stator constituting the polyphase claw pole motor
JP2011045198A (en) Stator for axial-gap motor
WO2020208924A1 (en) Permanent magnet rotating electric machine and permanent magnet rotating electric machine manufacturing method
WO2022107713A1 (en) Motor and stator manufacturing method
JPH04271240A (en) Stator of electric motor and manufacture of nonformed wound electric motor stator
JP5423971B2 (en) Axial gap type electric motor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7395870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150