[go: up one dir, main page]

JP7374045B2 - Load adjustment circuit - Google Patents

Load adjustment circuit Download PDF

Info

Publication number
JP7374045B2
JP7374045B2 JP2020095855A JP2020095855A JP7374045B2 JP 7374045 B2 JP7374045 B2 JP 7374045B2 JP 2020095855 A JP2020095855 A JP 2020095855A JP 2020095855 A JP2020095855 A JP 2020095855A JP 7374045 B2 JP7374045 B2 JP 7374045B2
Authority
JP
Japan
Prior art keywords
load
phase
circuit
secondary side
load adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020095855A
Other languages
Japanese (ja)
Other versions
JP2021189076A (en
Inventor
栄太郎 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2020095855A priority Critical patent/JP7374045B2/en
Publication of JP2021189076A publication Critical patent/JP2021189076A/en
Application granted granted Critical
Publication of JP7374045B2 publication Critical patent/JP7374045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

本願は、負担調整回路に関するものである。 The present application relates to a load adjustment circuit.

送配電線などの保護継電器は、電力量計測回路の二次側に接続されて、計測結果に基づいて動作する。保護継電器をアナログ式からディジタル式に変更する際、ディジタル式の負担の方が小さいため、従来から負担調整機構が設けられていた。
従来の負担調整回路としての負担調整機構は、ディジタル形保護継電器に内蔵される電源トランスの二次側に設けられる。この負担調整回路は、値の異なる複数の抵抗器を備え、電源トランスの二次側の負担を調整可能に設けられる(例えば特許文献1)。
A protective relay such as a power transmission/distribution line is connected to the secondary side of the power measurement circuit and operates based on the measurement result. When changing a protective relay from an analog type to a digital type, a load adjustment mechanism has traditionally been provided because the load of the digital type is smaller.
A load adjustment mechanism as a conventional load adjustment circuit is provided on the secondary side of a power transformer built into a digital protective relay. This load adjustment circuit includes a plurality of resistors having different values, and is provided to be able to adjust the load on the secondary side of the power transformer (for example, Patent Document 1).

特開2013-215055号公報Japanese Patent Application Publication No. 2013-215055

上記従来の負担調整回路は保護継電器に設置されるもので、汎用の保護継電器に適用できないものであった。また、抵抗器による負担調整のみ行うため、不平衡電圧の発生に対処できないものであった。 The conventional load adjustment circuit described above is installed in a protective relay, and cannot be applied to a general-purpose protective relay. Furthermore, since only load adjustment is performed using resistors, it is not possible to deal with the occurrence of unbalanced voltage.

本願は、上記のような課題を解決するための技術を開示するものであり、電力量計測回路の二次側の負担を信頼性良く調整して不平衡電圧を抑制すると共に、汎用性の高い負担調整回路を提供することを目的とする。 This application discloses a technology to solve the above problems, which reliably adjusts the load on the secondary side of the power consumption measurement circuit to suppress unbalanced voltage, and which is highly versatile. The purpose is to provide a load adjustment circuit.

本願に開示される負担調整回路は、三相交流回路の検出対象導体を一次側とする電力量計測回路の二次側の負担を調整するものであって、前記電力量計測回路は三相構成であって、前記電力量計測回路の二次側の各相間に線間負担を備え、該線間負担は、インダクタンス成分を含む誘導性負荷から成るものである。 The load adjustment circuit disclosed in the present application adjusts the load on the secondary side of a power amount measuring circuit whose primary side is a detection target conductor of a three-phase AC circuit , and the power amount measuring circuit has a three-phase configuration. A line-to-line load is provided between each phase on the secondary side of the power amount measuring circuit, and the line-to-line load is composed of an inductive load including an inductance component.

本願に開示される負担調整回路によれば、電力量計測回路の二次側の負担を信頼性良く調整して不平衡電圧を抑制すると共に、汎用性が向上する。 According to the load adjustment circuit disclosed in the present application, the load on the secondary side of the power amount measuring circuit is adjusted reliably, unbalanced voltage is suppressed, and versatility is improved.

実施の形態1による負担調整回路の構成を示す図である。1 is a diagram showing a configuration of a load adjustment circuit according to Embodiment 1. FIG. 実施の形態1による計測回路の二次側の各相負担を示す等価回路図である。FIG. 2 is an equivalent circuit diagram showing the load on each phase on the secondary side of the measurement circuit according to the first embodiment. 実施の形態1による計測回路の二次側の各相負担の構成を説明する図である。FIG. 3 is a diagram illustrating the configuration of each phase burden on the secondary side of the measurement circuit according to the first embodiment. 実施の形態1による機器更新を説明する図である。FIG. 3 is a diagram illustrating equipment updating according to the first embodiment. 実施の形態1による機器更新時の負担調整を説明する図である。FIG. 3 is a diagram illustrating load adjustment when updating equipment according to Embodiment 1;

実施の形態1.
図1は、実施の形態1による負担調整回路の構成を示す図である。
図1に示すように、負担調整回路1は、検出対象導体となる電力系統10(R相、S相、T相)を一次側とする電力量計測回路としてのVT回路2(計器用変圧器)の二次側に設けられる。負担調整回路1は、VT回路2の二次側における各相間に、インダクタンス成分を含む誘導性負荷から成る線間負担Zrs、Zst、Ztrを備える。
R相、S相間の線間負担ZrsはインピーダンスをZrsとし、S相、T相間の線間負担ZstはインピーダンスをZstとし、T相、R相間の線間負担Ztrは、インピーダンスをZtrとする。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of a load adjustment circuit according to the first embodiment.
As shown in FIG. 1, the load adjustment circuit 1 includes a VT circuit 2 (instrument transformer ) is provided on the secondary side of the The load adjustment circuit 1 includes line loads Zrs, Zst, and Ztr, which are inductive loads including inductance components, between each phase on the secondary side of the VT circuit 2.
The line load Zrs between the R phase and S phase has an impedance of Zrs, the line load Zst between the S phase and T phase has an impedance of Zst, and the line load Ztr between the T phase and R phase has an impedance of Ztr.

VT回路2の二次側には、図示しない保護継電器が接続されて、保護継電器は、VT回路2の計測結果に基づいて動作する。保護継電器をアナログ式からディジタル式に置き換える際、一般的に、アナログ式に比べディジタル式の負担が小さいため、VT回路2の二次側のインピーダンスが小さくなる。負担調整回路1は、VT回路2の二次側のインピーダンスの変化を調整するものである。 A protective relay (not shown) is connected to the secondary side of the VT circuit 2, and the protective relay operates based on the measurement results of the VT circuit 2. When replacing a protective relay from an analog type to a digital type, the impedance on the secondary side of the VT circuit 2 is generally reduced because the load on the digital type is smaller than that of the analog type. The load adjustment circuit 1 adjusts changes in impedance on the secondary side of the VT circuit 2.

各相間の線間電圧をVrs、Vst、Vtrとすると、各線間負担Zrs、Zst、Ztrが負担する電力Prs、Pst、Ptrは、線間電圧Vrs、Vst、Vtrとインピーダンス(Zrs、Zst、Ztr)とで、以下のように表される。 When the line voltages between each phase are Vrs, Vst, and Vtr, the power Prs, Pst, and Ptr borne by each line load Zrs, ) is expressed as follows.

Prs=(Vrs)/Zrs[VA]
Pst=(Vst)/Zst[VA]
Ptr=(Vtr)/Ztr[VA]
Prs=(Vrs) 2 /Zrs[VA]
Pst=(Vst) 2 /Zst[VA]
Ptr=(Vtr) 2 /Ztr[VA]

図2は、VT回路2の二次側の各相負担Zr、Zs、Ztを示す等価回路図である。
R相負担ZrsはインピーダンスをZrとし、S相負担ZsはインピーダンスをZsとし、T相負担ZtはインピーダンスをZtとする。
R相、S相、T相の各相負担Zr、Zs、Ztの両端電圧である各相電圧をVr、Vs、Vtとする。各相負担Zr、Zs、Ztが負担する電力Pr、Ps、Ptは、相電圧Vr、Vs、VtとインピーダンスZr、Zs、Ztとで、以下のように表される。
FIG. 2 is an equivalent circuit diagram showing the respective phase loads Zr, Zs, and Zt on the secondary side of the VT circuit 2.
The R phase load Zrs has an impedance of Zr, the S phase load Zs has an impedance of Zs, and the T phase load Zt has an impedance of Zt.
Let Vr, Vs, and Vt be the phase voltages that are the voltages across the respective phase loads Zr, Zs, and Zt of the R phase, S phase, and T phase. The powers Pr, Ps, and Pt borne by the phase loads Zr, Zs, and Zt are expressed as follows using the phase voltages Vr, Vs, and Vt and the impedances Zr, Zs, and Zt.

Pr=(Vr)/Zr[VA]
Ps=(Vs)/Zs[VA]
Pt=(Vt)/Zt[VA]
Pr=(Vr) 2 /Zr[VA]
Ps=(Vs) 2 /Zs[VA]
Pt=(Vt) 2 /Zt[VA]

ここで、各相負担Zr、Zs、Ztと線間負担Zrs、Zst、Ztrとのインピーダンスは、以下の関係式で表される。
Zr=(1/3)Zrs[Ω]
Zs=(1/3)Zst[Ω]
Zt=(1/3)Ztr[Ω]
Here, the impedance between the phase loads Zr, Zs, and Zt and the line loads Zrs, Zst, and Ztr is expressed by the following relational expression.
Zr=(1/3)Zrs[Ω]
Zs=(1/3)Zst[Ω]
Zt=(1/3)Ztr[Ω]

また、各相電圧Vr、Vs、Vtと各線間電圧Vrs、Vst、Vtrとは、以下の関係式で表される。
Vr=(1/√3)Vrs[V]
Vs=(1/√3)Vst[V]
Vt=(1/√3)Vtr[V]
Further, each phase voltage Vr, Vs, Vt and each line voltage Vrs, Vst, Vtr are expressed by the following relational expression.
Vr=(1/√3)Vrs[V]
Vs=(1/√3)Vst[V]
Vt=(1/√3)Vtr[V]

図3は、VT回路2の二次側の各相負担の構成を説明する図であり、この場合、R相について図示する。
図3(a)に示すR相負担Zrのインピーダンス(=Zr)には、抵抗成分とインダクタンス成分とキャパシタンス成分とが含まれており、図3(b)に示すR相抵抗Rr、R相インダクタンスLrおよびR相キャパシタンスCrを備えることと等価である。
FIG. 3 is a diagram illustrating the configuration of the burden on each phase on the secondary side of the VT circuit 2, and in this case, the R phase is illustrated.
The impedance (=Zr) of the R-phase burden Zr shown in FIG. 3(a) includes a resistance component, an inductance component, and a capacitance component, and the R-phase resistance Rr and R-phase inductance shown in FIG. 3(b) This is equivalent to providing Lr and R phase capacitance Cr.

ω=2πf(f:周波数[Hz])とすると、R相負担Zrのインピーダンス(=Zr)は、以下の式で表される。
Zr=Rr+j(ωLr-1/(ωCr))[Ω]
When ω=2πf (f: frequency [Hz]), the impedance (=Zr) of the R phase load Zr is expressed by the following formula.
Zr=Rr+j (ωLr-1/(ωCr)) [Ω]

図4は機器更新を説明する図であり、この場合、R相について図示する。
VT回路2の二次側に接続される保護継電器を、アナログ式であるアナログ機器11からディジタル式であるディジタル機器12に置き換える際、図4に示すように、インピーダンスが変化する。上述したように、一般的に、アナログ式に比べディジタル式の負担が小さいため、アナログ機器11のR相インピーダンスZr-Aよりも、ディジタル機器12のR相インピーダンスZr-Dが小さく、VT回路2の二次側のインピーダンスが小さくなる。
FIG. 4 is a diagram illustrating equipment updating, and in this case, the R phase is illustrated.
When replacing the protective relay connected to the secondary side of the VT circuit 2 from an analog device 11 to a digital device 12, the impedance changes as shown in FIG. 4. As mentioned above, since the digital type generally has a smaller load than the analog type, the R-phase impedance Zr-D of the digital device 12 is smaller than the R-phase impedance Zr-A of the analog device 11, and the VT circuit 2 The impedance on the secondary side of

図5は機器更新時の負担調整を説明する図である。
上述したように、インピーダンスには、抵抗成分とインダクタンス成分とキャパシタンス成分とが含まれているが、機器更新によるキャパシタンス成分の変化は比較的小さく、それによる悪影響も小さいため無視できる。このため、この実施の形態では、図5に示すように、アナログ機器11からディジタル機器12に変更する際、機器によるインピーダンス変化の内、抵抗変化分ΔRとインダクタンス変化分ΔLとを補償するように、各相の負担を調整する。即ち、抵抗変化分ΔRとインダクタンス変化分ΔLとを有する誘導性負荷を各相に挿入する。
FIG. 5 is a diagram illustrating load adjustment when updating equipment.
As described above, impedance includes a resistance component, an inductance component, and a capacitance component, but the change in the capacitance component due to equipment renewal is relatively small, and the adverse effects thereof are also small, so it can be ignored. Therefore, in this embodiment, when changing from analog equipment 11 to digital equipment 12, as shown in FIG. , adjust the load on each phase. That is, an inductive load having a resistance change ΔR and an inductance change ΔL is inserted into each phase.

キャパシタンス成分を無視すると、各相のアナログ機器11とディジタル機器12とのインピーダンスの差分は、以下の式で表される。
(Zr-A)-(Zr-D)=ΔR+jωΔL[Ω]
Ignoring the capacitance component, the difference in impedance between the analog device 11 and the digital device 12 of each phase is expressed by the following equation.
(Zr-A)-(Zr-D)=ΔR+jωΔL[Ω]

R相負担Zrと線間負担Zrsとのインピーダンスの関係から、線間負担Zrsのインピーダンス(=Zrs)は、3(ΔR+jωΔL)[Ω]となる。
なお、R相負担について説明したが、他相および他の線間負担についても同様である。
From the impedance relationship between the R phase load Zr and the line load Zrs, the impedance (=Zrs) of the line load Zrs is 3(ΔR+jωΔL) [Ω].
Note that although the R phase load has been described, the same applies to other phases and other inter-line loads.

以上のように、この実施の形態では、アナログ機器11からディジタル機器12に変更する際、誘導性負荷から成る線間負担Zrs、Zst、Ztrを備えた負担調整回路1を設けて、機器によるインピーダンス変化の内、抵抗変化分ΔRとインダクタンス変化分ΔLとを補償し、VT回路2の二次側の各相負担を調整する。
これにより、VT回路2の二次側の負担を信頼性良く調整できる。またインダクタンス成分を含む誘導性負荷を用いて負担調整を行うため、不平衡電圧を抑制できる。
さらに、負担調整回路1は保護継電器に設置されるものではなく、保護継電器とは離間した別構成であるため、汎用の保護継電器が適用でき、汎用性が向上する。
As described above, in this embodiment, when changing from analog equipment 11 to digital equipment 12, load adjustment circuit 1 equipped with line loads Zrs, Zst, and Ztr consisting of inductive loads is provided to adjust the impedance caused by the equipment. Of the changes, the resistance change ΔR and the inductance change ΔL are compensated, and the burden on each phase on the secondary side of the VT circuit 2 is adjusted.
Thereby, the load on the secondary side of the VT circuit 2 can be adjusted with high reliability. Furthermore, since load adjustment is performed using an inductive load including an inductance component, unbalanced voltage can be suppressed.
Furthermore, since the load adjustment circuit 1 is not installed in the protective relay but is a separate configuration separated from the protective relay, a general-purpose protective relay can be applied, improving versatility.

また、この実施の形態では、線間負担Zrs、Zst、Ztrを備えた負担調整回路1を用いたため、VT回路2の二次側に容易に設置できる。
なお、線間負担Zrs、Zst、Ztrの替わりに、各相負担を備えた負担調整回路を用いることもできる。
Further, in this embodiment, since the load adjustment circuit 1 having line loads Zrs, Zst, and Ztr is used, it can be easily installed on the secondary side of the VT circuit 2.
Note that instead of the inter-line loads Zrs, Zst, and Ztr, a load adjustment circuit having a load for each phase can also be used.

本願は、例示的な実施の形態が記載されているが、実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合が含まれるものとする。
Although this application describes exemplary embodiments, the various features, aspects, and functions described in the embodiments are not limited to the application of particular embodiments, and may be used alone or It is applicable to the embodiments in various combinations.
Therefore, countless variations not illustrated are envisioned within the scope of the technology disclosed herein. For example, this includes cases in which at least one component is modified, added, or omitted.

1 負担調整回路、2 VT回路、10 電力系統、11 アナログ機器、
12 ディジタル機器、ΔR 抵抗変化分、ΔL インダクタンス変化分、
Zrs,Zst,Ztr 線間負担。
1 load adjustment circuit, 2 VT circuit, 10 power system, 11 analog equipment,
12 Digital equipment, ΔR resistance change, ΔL inductance change,
Zrs, Zst, Ztr Load between lines.

Claims (2)

三相交流回路の検出対象導体を一次側とする電力量計測回路の二次側の負担を調整する負担調整回路において、
前記電力量計測回路は三相構成であって、前記電力量計測回路の二次側の各相間に線間負担を備え、該線間負担は、インダクタンス成分を含む誘導性負荷から成る
負担調整回路。
In a load adjustment circuit that adjusts the load on the secondary side of a power measurement circuit whose primary side is a conductor to be detected in a three-phase AC circuit ,
The electric energy measuring circuit has a three-phase configuration, and includes a line load between each phase on the secondary side of the electric energy measuring circuit, and the line load is composed of an inductive load including an inductance component .
Load adjustment circuit.
前記線間負担は、前記インダクタンス成分と抵抗成分とを備え、
前記電力量計測回路の二次側に接続される機器の変更に伴い、前記電力量計測回路の二次側における各相インピーダンスの変化を補償するように、前記インダクタンス成分および前記抵抗成分が決定される、
請求項1に記載の負担調整回路。
The line load includes the inductance component and the resistance component,
The inductance component and the resistance component are determined so as to compensate for changes in impedance of each phase on the secondary side of the electric energy measuring circuit due to changes in equipment connected to the secondary side of the electric energy measuring circuit. Ru,
The load adjustment circuit according to claim 1.
JP2020095855A 2020-06-02 2020-06-02 Load adjustment circuit Active JP7374045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020095855A JP7374045B2 (en) 2020-06-02 2020-06-02 Load adjustment circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020095855A JP7374045B2 (en) 2020-06-02 2020-06-02 Load adjustment circuit

Publications (2)

Publication Number Publication Date
JP2021189076A JP2021189076A (en) 2021-12-13
JP7374045B2 true JP7374045B2 (en) 2023-11-06

Family

ID=78849446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020095855A Active JP7374045B2 (en) 2020-06-02 2020-06-02 Load adjustment circuit

Country Status (1)

Country Link
JP (1) JP7374045B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249146A (en) 2000-03-07 2001-09-14 Meidensha Corp Burden adjusting circuit of current transformer
JP2004125561A (en) 2002-10-01 2004-04-22 Toshiba Corp Auxiliary power supply selection relay
JP2011152020A (en) 2010-01-25 2011-08-04 Mitsubishi Electric Corp Protective relay
JP5856975B2 (en) 2010-11-02 2016-02-10 帝國製薬株式会社 Topical patch containing felbinac
JP6082873B2 (en) 2013-04-08 2017-02-22 株式会社片山化学工業研究所 Antifouling agent and antifouling method for water-safe treatment facilities
JP6214932B2 (en) 2012-06-14 2017-10-18 日本特殊陶業株式会社 Glow plug with pressure sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856975U (en) * 1981-10-13 1983-04-18 三菱電機株式会社 Current transformer load adjustment device
JPS6082873A (en) * 1983-10-12 1985-05-11 Toshiba Corp Loading apparatus of instrument transformer
JPS6214932U (en) * 1985-07-09 1987-01-29
JP2013050385A (en) * 2011-08-31 2013-03-14 Panasonic Corp Power measuring instrument

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249146A (en) 2000-03-07 2001-09-14 Meidensha Corp Burden adjusting circuit of current transformer
JP2004125561A (en) 2002-10-01 2004-04-22 Toshiba Corp Auxiliary power supply selection relay
JP2011152020A (en) 2010-01-25 2011-08-04 Mitsubishi Electric Corp Protective relay
JP5856975B2 (en) 2010-11-02 2016-02-10 帝國製薬株式会社 Topical patch containing felbinac
JP6214932B2 (en) 2012-06-14 2017-10-18 日本特殊陶業株式会社 Glow plug with pressure sensor
JP6082873B2 (en) 2013-04-08 2017-02-22 株式会社片山化学工業研究所 Antifouling agent and antifouling method for water-safe treatment facilities

Also Published As

Publication number Publication date
JP2021189076A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
JP5672369B2 (en) Determination of fault current component of differential current
Emanuel Apparent power definitions for three-phase systems
JP7374045B2 (en) Load adjustment circuit
SE437096B (en) DEVICE FOR REDUCING THE EARTH FLOW IN NON-DIRECT POWER
US11364810B2 (en) Monitoring device for leakage currents
JP3501401B2 (en) Impedance detection circuit, impedance detection device, and impedance detection method
JP7013086B2 (en) Leakage current suppressor
JP6128921B2 (en) Non-interruptible insulation diagnosis device and non-interruptible insulation diagnosis method
JP2007205785A (en) Voltage measuring device of power apparatus
JP3501403B2 (en) Impedance detection circuit, impedance detection device, and impedance detection method
JPH07311231A (en) Insulation monitoring system by superimposing high frequency in high-voltage distribution equipment
CN112824911A (en) Device for testing arc suppression coil
JPS589595A (en) Operating state amount calculating device
JP3611235B2 (en) Active filter control method
JP3778474B2 (en) Ground fault suppression system and ground fault suppression method
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method
US2222711A (en) Circuit breaker testing arrangement
JPS5855458B2 (en) Zero-phase component detection device for three-phase circuit
CN211179972U (en) 10kV line voltage transformer accessory
JPH04151570A (en) Method for measuring effective component of leaking current and inspecting-current generating device used in this measurement
CN108732415A (en) Ac sensor and breaker
JPH1010184A (en) Abnormal insulation detector
KR20190019764A (en) Neutral ground reactor for preventing harmonics and manufacture method thereof
Nelson et al. High Resistance Grounding Analysis Using Symmetrical Components
JP2024104660A (en) Compensation device, program, and zero-phase voltage detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231024

R151 Written notification of patent or utility model registration

Ref document number: 7374045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151