JP7371869B2 - Transmission device, electric vehicle including the device, and method for driving the device - Google Patents
Transmission device, electric vehicle including the device, and method for driving the device Download PDFInfo
- Publication number
- JP7371869B2 JP7371869B2 JP2020531800A JP2020531800A JP7371869B2 JP 7371869 B2 JP7371869 B2 JP 7371869B2 JP 2020531800 A JP2020531800 A JP 2020531800A JP 2020531800 A JP2020531800 A JP 2020531800A JP 7371869 B2 JP7371869 B2 JP 7371869B2
- Authority
- JP
- Japan
- Prior art keywords
- power source
- gear
- planetary gear
- input shaft
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 title claims description 67
- 238000000034 method Methods 0.000 title description 43
- 230000009977 dual effect Effects 0.000 claims description 78
- 230000033001 locomotion Effects 0.000 claims description 29
- 238000002485 combustion reaction Methods 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 description 13
- 239000003638 chemical reducing agent Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000013480 data collection Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000009194 climbing Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/44—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
- F16H3/72—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
- F16H3/724—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/32—Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/44—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
- F16H3/72—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K1/02—Arrangement or mounting of electrical propulsion units comprising more than one electric motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/04—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or kind of gearing
- B60K17/06—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or kind of gearing of change-speed gearing
- B60K17/08—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or kind of gearing of change-speed gearing of mechanical type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/04—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or kind of gearing
- B60K17/12—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or kind of gearing of electric gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/61—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
- B60L50/62—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/90—Vehicles comprising electric prime movers
- B60Y2200/91—Electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/70—Gearings
- B60Y2400/73—Planetary gearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/32—Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
- F16H2001/327—Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear with orbital gear sets comprising an internally toothed ring gear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/0021—Transmissions for multiple ratios specially adapted for electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Structure Of Transmissions (AREA)
- Retarders (AREA)
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Description
本開示は、トランスミッション装置に関し、特に、デュアル動力源を有するトランスミッション装置に関する。 TECHNICAL FIELD The present disclosure relates to a transmission device, and more particularly to a transmission device having dual power sources.
遊星歯車を有するトランスミッションが運転の際に、歯と歯が噛み合う時に生じる歯面の隙間(バックラッシュとも称される)が除去できないというキー課題のため、特に歯車が頻繁に運動方向が変更される時に、バックラッシュによる歯の間の衝撃によって生じる振動、騒音、摩損などの現象のため、トランスミッションの使用寿命が減少されるとともに、運行精度が不正確などの問題が起きる。いくつかの高精度、小型化、大トルク、出力方向が頻繁に変更される高度な製品、例えば工業ロボット構造における各運動関節の箇所のRV減速機は、RV減速機の高い位置決め精度と非常に長い使用寿命に達するために、RV減速機の材料選択と製造精度に対する要求が非常に高く、よって、必ず製造コストの向上をもたらす。しかしながら、いくら加工精度が高くても、歯と歯が噛み合う時の歯面の隙間も完全に除去できるわけではない(図3参照)。例えば、遊星歯車は運動方向が頻繁に変更される時に、固定された内歯リングの歯面上に異なる方向の2つの力の衝撃を頻繁に受け、歯車の間の隙間がいくら小さくても、歯と歯の間の歯面の隙間も頻繁に変換される。歯車の摩損につれて、歯と歯の間の歯面の隙間が加速して拡大され、RV減速機が無効になる。 When a transmission with planetary gears is operated, the key problem is that the gap between the tooth surfaces (also known as backlash) that occurs when the teeth mesh cannot be eliminated, so the direction of movement of the gears changes frequently. Sometimes, due to phenomena such as vibration, noise, and wear caused by the impact between the teeth due to backlash, the service life of the transmission is shortened and problems such as inaccurate operation accuracy occur. Some high precision, miniaturization, large torque, advanced products where the output direction is frequently changed, such as RV reducer at each motion joint location in industrial robot structure, the high positioning accuracy of RV reducer and very In order to reach a long service life, the requirements for material selection and manufacturing accuracy of RV reducers are very high, thus inevitably leading to an increase in manufacturing costs. However, no matter how high the machining accuracy is, it is not possible to completely eliminate the gaps between the tooth surfaces when the teeth mesh (see Fig. 3). For example, when the direction of movement of a planetary gear changes frequently, it is frequently subjected to the impact of two forces in different directions on the tooth surface of a fixed internal toothed ring, no matter how small the gap between the gears. The flank gaps between teeth are also frequently transformed. As the gears wear out, the flank gaps between the teeth accelerate and widen, rendering the RV speed reducer ineffective.
また、周知のように、現在、電気自動車にFMモーターが幅広く使用され、FMモーターは高速運転中に効率が高く、約94%であるが、低速運転中に効率が低く、約70%以下である(図4参照)。しかしながら、電気自動車が走行過程において、道路状況の変化に応じて頻繁に加減速される必要があり、低速運転から高速運転までの過程において、多くの電気エネルギーが無駄になり、これら無駄になる電気エネルギーが電気自動車において熱になって冷却水に流される。 In addition, as is well known, FM motors are currently widely used in electric vehicles. FM motors have high efficiency during high-speed driving, about 94%, but low efficiency during low-speed driving, below about 70%. Yes (see Figure 4). However, during the driving process of an electric vehicle, it is necessary to frequently accelerate or decelerate according to changes in road conditions, and in the process from low-speed driving to high-speed driving, a lot of electrical energy is wasted. In an electric car, energy is turned into heat and passed through the cooling water.
また、電気自動車の周波数変換モーターについて、車両の始動時または負荷をかけて登坂する時に過負荷運転になり、モーター出力のピーク値は定格出力の2倍以上に達することがある。上記2点の課題は電動自動車の走行が設計マイレージに達せないキーである。 Furthermore, the frequency conversion motor of an electric vehicle may become overloaded when starting the vehicle or climbing a hill with a load applied, and the peak value of the motor output may reach more than twice the rated output. The above two issues are the keys to the ability of electric vehicles to reach their designed mileage.
本開示内容は従来の技術の不足を解決するためになされてもので、デュアル動力源を有するトランスミッション装置であって、前記デュアル動力源によって駆動される遊星歯車アセンブリを含み、前記遊星歯車アセンブリは、太陽歯車と、回転内歯リングと、前記太陽歯車と前記回転内歯リングとの間に噛み合う遊星歯車とを含み、前記デュアル動力源は、前記太陽歯車に接続される入力軸を含み、前記入力軸によって前記太陽歯車をその自体の回転軸線に対して第1方向において回転するように駆動し、前記デュアル動力源は、前記回転内歯リングに接続されるとともに、前記回転内歯リングをその自体の回転軸線に対して前記第1方向と反対になる第2方向において回転するように駆動し、この際に、前記遊星歯車はその自体の回転軸線に対して前記第2方向において回転し(例えばシンクロナイザーによって前記デュアル動力源の駆動で回転し、回転内歯リングと遊星歯車の自転方向が同じであることを保証する)、前記遊星歯車が前記入力軸周りの回転運動方向は前記回転内歯リングのピッチ運動の線速度V1と前記太陽歯車のピッチ運動の線速度V2によって決められる、トランスミッション装置を提供する。 The present disclosure is made to solve the deficiencies in the prior art, and provides a transmission device with dual power sources, comprising a planetary gear assembly driven by the dual power sources, the planetary gear assembly comprising: the dual power source includes an input shaft connected to the sun gear, the dual power source includes an input shaft connected to the sun gear; a shaft drives the sun gear to rotate in a first direction relative to its own axis of rotation; the dual power source is connected to the rotating internal gear ring; driven to rotate in a second direction opposite to the first direction relative to an axis of rotation of the planetary gear, wherein the planetary gear rotates in the second direction relative to its own axis of rotation (e.g. The rotating internal tooth ring and the planetary gear are rotated by the drive of the dual power source by a synchronizer (ensuring that the rotation direction of the rotating internal tooth ring and the planetary gear are the same), and the rotational movement direction of the planetary gear around the input shaft is the same as that of the rotating internal tooth ring. A transmission device is provided in which the linear velocity V1 of the pitch motion of a ring and the linear velocity V2 of the pitch motion of the sun gear are determined.
本開示内容の一局面によれば、前記デュアル動力源は、前記入力軸によって前記太陽歯車を駆動するように配置される第1動力源と、前記回転内歯リングを駆動するように配置される第2動力源とを含む。 According to one aspect of the present disclosure, the dual power sources include a first power source arranged to drive the sun gear by the input shaft and a first power source arranged to drive the rotating internal gear ring. and a second power source.
本開示内容の上記各局面によれば、前記遊星歯車は、出力軸が設置された遊星歯車ケージに取り付けられ、前記太陽歯車は前記回転内歯リングに同軸設置され、前記出力軸は前記入力軸に同軸設置される。 According to each of the above aspects of the present disclosure, the planetary gear is attached to a planetary gear cage in which an output shaft is installed, the sun gear is installed coaxially with the rotating internal gear ring, and the output shaft is connected to the input shaft. coaxially installed.
本開示内容の上記各局面によれば、前記第1方向が時計回り方向である場合に、前記第2方向が反時計周り方向であり、前記第1方向が反時計回り方向である場合に、前記第2方向が時計周り方向である。 According to each of the above aspects of the present disclosure, when the first direction is a clockwise direction, when the second direction is a counterclockwise direction, and when the first direction is a counterclockwise direction, The second direction is a clockwise direction.
本開示内容の上記各局面によれば、V1>V2の場合に、前記遊星歯車と前記遊星歯車ケージが当該入力軸周りの回転運動方向は当該入力軸の回転方向と反対になり、前記出力軸自体の回転方向は当該入力軸の回転方向と反対になり、前記遊星歯車の歯面とそれに噛み合う前記回転内歯リングの歯面との間の歯面の隙間は前記遊星歯車の歯の一方側のみに位置する。 According to each of the above aspects of the present disclosure, when V1>V2, the rotational direction of the planetary gear and the planetary gear cage around the input shaft is opposite to the rotational direction of the input shaft, and The direction of rotation of the planet gear is opposite to the direction of rotation of the input shaft, and the gap between the tooth surfaces of the planetary gear and the tooth surface of the rotary internal tooth ring that meshes with the planetary gear is on one side of the teeth of the planetary gear. Located only in
V1<V2の場合に、前記遊星歯車と前記遊星歯車ケージが当該入力軸周りの回転運動方向は当該入力軸の回転方向と同じであり、前記出力軸自体の回転方向は当該入力軸の回転方向と同じであり、前記遊星歯車の歯面とそれに噛み合う前記回転内歯リングの歯面との間の歯面の隙間は前記遊星歯車の歯の前記一方側に保持される。 When V1<V2, the rotation direction of the planetary gear and the planetary gear cage around the input shaft is the same as the rotation direction of the input shaft, and the rotation direction of the output shaft itself is the same as the rotation direction of the input shaft. The gap between the tooth surface of the planetary gear and the tooth surface of the rotary internal tooth ring that meshes therewith is maintained on the one side of the tooth of the planetary gear.
V1=V2の場合に、前記遊星歯車と前記遊星歯車ケージが当該入力軸周りの回転速度がゼロであり、前記出力軸自体の回転速度がゼロである。 When V1=V2, the rotational speed of the planetary gear and the planetary gear cage around the input shaft is zero, and the rotational speed of the output shaft itself is zero.
本開示内容の上記各局面によれば、前記回転内歯リングに平行歯車が設置され、前記第2動力源によって駆動される内歯リング駆動歯車が前記平行歯車に噛み合うことよって、前記回転内歯リングが駆動される。 According to each of the above aspects of the present disclosure, a parallel gear is installed on the rotary internal tooth ring, and the internal ring drive gear driven by the second power source meshes with the parallel gear, so that the rotary internal tooth The ring is driven.
本開示内容の上記各局面によれば、前記入力軸に太陽歯車前歯車が設置され、前記第1動力源によって駆動される太陽歯車駆動歯車が前記太陽歯車前歯車に噛み合うことよって、前記太陽歯車が駆動される。 According to each of the above aspects of the present disclosure, a sun gear front gear is installed on the input shaft, and a sun gear drive gear driven by the first power source meshes with the sun gear front gear, so that the sun gear is driven.
本開示内容の上記各局面によれば、前記第1動力源は一定動力出力であり、前記第2動力源は速度調整可能な動力出力であり、電子制御装置は入力制御線路によって前記第1動力源に接続されるとともに、前記第1動力源が異なる電力の時の回転数低下または不安定の誤差を処理する。 According to each of the above aspects of the present disclosure, the first power source has a constant power output, the second power source has a speed adjustable power output, and the electronic control device is connected to the first power source by an input control line. the first power source is connected to a power source, and handles the error of rotation speed drop or instability when the first power source has different power.
本開示内容の上記各局面によれば、前記第2動力源が前記回転内歯リングを連れて転動する時に、前記第2動力源に接続されたリアルタイムデータ採集線路によって前記回転内歯リングの運動データが前記電子制御装置に送信され、前記電子制御装置が内部プログラムまたは外部命令の処理で、前記リアルタイムデータ採集線路によって前記第2動力源電源の動力出力を制御して調整し、前記出力軸を作業状況で必要なさまざまな速度に達せる。 According to each of the above aspects of the present disclosure, when the second power source rolls with the rotating internal toothed ring, the real-time data collection line connected to the second power source causes the rotational internal toothed ring to rotate. Motion data is transmitted to the electronic control device, and the electronic control device controls and adjusts the power output of the second power source power source through the real-time data acquisition line by processing an internal program or an external command, and controls and adjusts the power output of the second power source power source through the real-time data acquisition line. Able to reach different speeds required by the working situation.
本開示内容の上記各局面によれば、前記第1動力源は速度調整可能な動力出力であり、前記電子制御装置は入力制御線路によって前記第1動力源の動力出力を制御する。 According to each of the above aspects of the present disclosure, the first power source is a speed-adjustable power output, and the electronic control device controls the power output of the first power source through an input control line.
本開示内容の上記各局面によれば、前記第1動力源と前記第2動力源は制御可能で、速度調整可能な動力機械である。 According to the above aspects of the present disclosure, the first power source and the second power source are controllable and speed adjustable power machines.
本開示内容の上記各局面によれば、前記制御可能で、速度調整可能な動力機械は電動機または内燃機関である。 According to the above aspects of the present disclosure, the controllable, speed adjustable power machine is an electric motor or an internal combustion engine.
本開示内容によれば、前記各局面に記載のデュアル動力源を有するトランスミッション装置を含む電気自動車をさらに提供する。 According to the present disclosure, there is further provided an electric vehicle including the transmission device having the dual power source according to each of the above aspects.
本開示内容は、上記に記載のトランスミッション装置を駆動する駆動方法であって、前記トランスミッション装置は、遊星歯車アセンブリを駆動するデュアル動力源を含み、前記遊星歯車アセンブリは、太陽歯車と、回転内歯リングと、前記太陽歯車と前記回転内歯リングとの間に噛み合う遊星歯車とを含み、前記デュアル動力源は、前記太陽歯車に接続される入力軸を含み、前記入力軸によって前記太陽歯車をその自体の回転軸線に対して第1方向において回転するように駆動するように配置され、前記デュアル動力源は、前記回転内歯リングに接続されるとともに、前記回転内歯リングをその自体の回転軸線に対して前記第1方向と反対になる第2方向において回転するように駆動し、この際に、前記遊星歯車はその自体の回転軸線に対して前記第2方向において回転し、前記遊星歯車が前記入力軸周りの回転運動方向は前記回転内歯リングのピッチ運動の線速度V1と前記太陽歯車のピッチ運動の線速度V2によって決められる、駆動方法をさらに提供する。 The present disclosure provides a driving method for driving the transmission device described above, wherein the transmission device includes a dual power source driving a planetary gear assembly, the planetary gear assembly including a sun gear and a rotating internal gear. a planetary gear meshing between the sun gear and the rotating internal gear ring, the dual power source includes an input shaft connected to the sun gear, and the input shaft drives the sun gear. the dual power source is arranged to drive the rotating internal toothed ring to rotate in a first direction relative to its own axis of rotation; driven to rotate in a second direction opposite to the first direction, wherein the planetary gear rotates in the second direction relative to its own axis of rotation, and the planetary gear rotates in the second direction relative to its own axis of rotation; The driving method is further provided, wherein the rotational movement direction around the input shaft is determined by a linear velocity V1 of the pitch motion of the rotary internal gear ring and a linear velocity V2 of the pitch motion of the sun gear.
上記記載の駆動方法の一局面によれば、前記デュアル動力源は、第1動力源と第2動力源を含み、前記第1動力源は、前記入力軸によって前記太陽歯車を駆動するように配置され、前記第2動力源は、前記回転内歯リングを駆動するように配置される。 According to one aspect of the driving method described above, the dual power source includes a first power source and a second power source, and the first power source is arranged to drive the sun gear by the input shaft. and the second power source is arranged to drive the rotating internal tooth ring.
上記記載の駆動方法の各局面によれば、前記遊星歯車を遊星歯車ケージに取り付け、出力軸を前記遊星歯車ケージに設置し、前記太陽歯車を前記回転内歯リングに同軸設置し、前記出力軸を前記入力軸に同軸設置する。 According to each aspect of the driving method described above, the planetary gear is attached to a planetary gear cage, the output shaft is installed in the planetary gear cage, the sun gear is installed coaxially with the rotating internal gear ring, and the output shaft is installed coaxially with the input shaft.
上記記載の駆動方法の各局面によれば、前記第1方向が時計回り方向である場合に、前記第2方向が反時計周り方向であり、前記第1方向が反時計回り方向である場合に、前記第2方向が時計周り方向である。 According to each aspect of the driving method described above, when the first direction is a clockwise direction, the second direction is a counterclockwise direction, and the first direction is a counterclockwise direction, , the second direction is a clockwise direction.
上記記載の駆動方法の各局面によれば、V1>V2の場合に、前記遊星歯車と前記遊星歯車ケージが当該入力軸周りの回転運動方向は当該入力軸の回転方向と反対になり、前記出力軸自体の回転方向は当該入力軸の回転方向と反対になり、前記遊星歯車の歯面とそれに噛み合う前記回転内歯リングの歯面との間の歯面の隙間は前記遊星歯車の歯の一方側のみに位置する。 According to each aspect of the driving method described above, when V1>V2, the rotational direction of the planetary gear and the planetary gear cage around the input shaft is opposite to the rotational direction of the input shaft, and the output The direction of rotation of the shaft itself is opposite to the direction of rotation of the input shaft, and the gap between the tooth surface of the planetary gear and the tooth surface of the rotary internal tooth ring that meshes with it is one of the teeth of the planetary gear. Located only on the side.
V1<V2の場合に、前記遊星歯車と前記遊星歯車ケージが当該入力軸周りの回転運動方向は当該入力軸の回転方向と同じであり、前記出力軸自体の回転方向は当該入力軸の回転方向と同じであり、前記遊星歯車の歯面とそれに噛み合う前記回転内歯リングの歯面との間の歯面の隙間は前記遊星歯車の歯の前記一方側に保持される。 When V1<V2, the rotation direction of the planetary gear and the planetary gear cage around the input shaft is the same as the rotation direction of the input shaft, and the rotation direction of the output shaft itself is the same as the rotation direction of the input shaft. The gap between the tooth surface of the planetary gear and the tooth surface of the rotary internal tooth ring that meshes therewith is maintained on the one side of the tooth of the planetary gear.
V1=V2の場合に、前記遊星歯車と前記遊星歯車ケージが当該入力軸周りの回転速度がゼロであり、前記出力軸自体の回転速度がゼロである。 When V1=V2, the rotational speed of the planetary gear and the planetary gear cage around the input shaft is zero, and the rotational speed of the output shaft itself is zero.
上記記載の駆動方法の各局面によれば、前記第1動力源を一定動力出力のように設置し、前記第2動力源を速度調整可能な動力出力のように設置し、入力制御線路によって前記第1動力源が異なる電力の時の回転数低下または不安定の誤差を処理する電子制御装置を設置する。 According to each aspect of the driving method described above, the first power source is installed as a constant power output, the second power source is installed as a speed adjustable power output, and the input control line is connected to the An electronic control device is installed to handle errors of rotational speed drop or instability when the first power source has different power.
上記記載の駆動方法の各局面によれば、前記第2動力源が前記回転内歯リングを連れて転動し、前記第2動力源に接続されたリアルタイムデータ採集線路によって前記回転内歯リングの運動データが前記電子制御装置に送信され、前記電子制御装置が内部プログラムまたは外部命令の処理で、前記リアルタイムデータ採集線路によって前記第2動力源電源の動力出力を制御して調整し、前記出力軸を作業状況で必要なさまざまな速度に達せる。 According to each aspect of the driving method described above, the second power source rolls with the rotating internal toothed ring, and the real-time data collection line connected to the second power source causes the rotating internal toothed ring to rotate. Motion data is transmitted to the electronic control device, and the electronic control device controls and adjusts the power output of the second power source power source through the real-time data acquisition line by processing an internal program or an external command, and controls and adjusts the power output of the second power source power source through the real-time data acquisition line. Able to reach different speeds required by the working situation.
上記記載の駆動方法の各局面によれば、前記第1動力源を速度調整可能な動力出力のように設置し、前記電子制御装置は入力制御線路によって前記第1動力源の動力出力を制御する。 According to each aspect of the driving method described above, the first power source is installed as a speed-adjustable power output, and the electronic control device controls the power output of the first power source by an input control line. .
上記記載の駆動方法の各局面によれば、前記第1動力源と前記第2動力源を制御可能で、速度調整可能な動力機械のように設置する。 According to each aspect of the driving method described above, the first power source and the second power source are installed like controllable and speed adjustable power machines.
上記記載の駆動方法の各局面によれば、前記制御可能で、速度調整可能な動力機械は電動機または内燃機関である。 According to aspects of the drive method described above, the controllable, adjustable speed power machine is an electric motor or an internal combustion engine.
上記記載の駆動方法の各局面によれば、平行歯車を前記回転内歯リングに設置し、前記第2動力源によって駆動される内歯リング駆動歯車が前記平行歯車に噛み合うことよって、前記回転内歯リングが駆動される。 According to each aspect of the driving method described above, a parallel gear is installed in the rotating inner toothed ring, and the inner toothed ring driving gear driven by the second power source meshes with the parallel gear, so that the rotating inner ring is engaged with the parallel gear. The tooth ring is driven.
上記記載の駆動方法の各局面によれば、太陽歯車前歯車を前記入力軸に設置し、前記第1動力源によって駆動される太陽歯車駆動歯車が前記太陽歯車前歯車に噛み合うことよって、前記太陽歯車が駆動される。 According to each aspect of the driving method described above, a sun gear front gear is installed on the input shaft, and a sun gear drive gear driven by the first power source meshes with the sun gear front gear, so that the sun gear Gears are driven.
本開示内容に係るデュアル動力源を有するトランスミッション装置の特徴の1つは、メカトロニクス複合構造を応用し、遊星歯車トランスミッションの運転中に遊星歯車の歯と内歯リングの歯が噛み合うときに発生する歯面の隙間(バックラッシュとも称される)が除去できないというキー課題は、元から解消する。特に、歯車は運動方向が頻繁に変更される時に、バックラッシュによる歯同士の間の衝撃が発生する振動、騒音、摩損などの欠陥を解決し、トランスミッションの使用寿命を延長するとともに、運行精度を保証する。 One of the features of the transmission device with dual power sources according to the present disclosure is that it applies a mechatronic composite structure, and generates teeth when the teeth of the planetary gear and the teeth of the internal tooth ring mesh during operation of the planetary gear transmission. The key problem of not being able to remove gaps between surfaces (also called backlash) is solved from the beginning. In particular, gears solve defects such as vibration, noise, wear and tear caused by backlash and impact between teeth when the direction of movement is frequently changed, extending the service life of the transmission and improving operating accuracy. Guarantee.
本開示内容に係るデュアル動力源を有するトランスミッション装置は、高精度、小型化、大トルク、出力方向が頻繁に変更される高度な製品、例えば各運動関節の箇所のRV減速機が設置された工業ロボット構造に適用してもよい。本開示内容はRV減速機の高い位置決め精度と非常に長い使用寿命を実現している。特に、遊星歯車は運動方向が頻繁に変更される時に、回転内歯リングの歯面上に異なる方向の2つの力の衝撃を頻繁に受けず、歯と歯の間のバックラッシュも頻繁に変換されることがない。また、歯車が摩損されても、電子制御装置の速度調整制御で、歯と歯の間のバックラッシュも加速して拡大されず、よって、RV減速機の無効が避けられる。 The transmission device with dual power sources according to the present disclosure is suitable for high precision, small size, large torque, and advanced products where the output direction is frequently changed, such as in industries where RV reducers are installed at each motion joint. It may also be applied to robot structures. The present disclosure provides high positioning accuracy and a very long service life for RV reducers. In particular, when the movement direction of the planetary gear is frequently changed, the tooth surface of the rotating internal tooth ring is not often subjected to the impact of two forces in different directions, and the backlash between the teeth is also frequently changed. never be done. Furthermore, even if the gears are worn out, the speed adjustment control of the electronic control device prevents the backlash between the teeth from accelerating and increasing, thereby avoiding ineffectiveness of the RV speed reducer.
本開示内容のデュアル動力トランスミッション装置において、太陽歯車と、遊星歯車と、回転内歯リングとが自体の回転方向が変わらないままの場合に、出力軸は便利に正回転または逆回転できる(図2に示す)が、歯と歯の間のバックラッシュは一方側のみに残され、歯と歯の間の力を受ける方向も変わらないため、出力軸の方向が頻繁に変換されることによって歯と歯の間のバックラッシュが変化されることはない。歯と歯の運転時に一方側のみ緊密に噛み合うため、バックラッシュの変換による衝撃力が発生されることはない。 そのため、本開示内容のトランスミッション装置の位置決め精度がより高く、使用寿命がより長くなる。それに、歯と歯の間に大きな摩損が存在し、歯と歯のバックラッシュが増大されても、歯と歯の他面が緊密に噛み合っているため、電子制御装置の補正制御によって、完璧な位置決め精度と使用効果に達することができる。 In the dual power transmission device of the present disclosure, the output shaft can conveniently rotate forward or backward when the sun gear, the planetary gear, and the rotary internal gear ring remain unchanged in their rotation direction (Fig. 2 ), but the backlash between the teeth remains only on one side, and the direction in which the force is received between the teeth does not change, so the direction of the output shaft changes frequently, causing The backlash between the teeth is not changed. Since the teeth mesh tightly on only one side during operation, no impact force is generated due to backlash conversion. Therefore, the positioning accuracy of the transmission device according to the present disclosure is higher, and the service life thereof is longer. In addition, even if there is large wear between the teeth and the backlash between the teeth increases, the other surfaces of the teeth are tightly meshed, so the correction control of the electronic control device ensures perfect The positioning accuracy and usage effect can be reached.
本開示内容によるデュアル動力源を有するトランスミッション装置はバッテリ電気自動車の変速装置にも適用され、その2つの電気モーターが周波数変換時に周波数変換モーターの最高効率の速度範囲内で完全に運行可能である。それに、出力軸はゼロ回転速度または正逆無段変速であってもよい。また、従来のバッテリ電気自動車より数十倍の必要なトルクを生成可能である。従来のEVB320-140-180周波数変換モーターを採用すれば、その定格電力は30KWであり、ピーク電力は60KWであるが、ピークトルクは180N・Mのみである。バッテリ電気自動車が走行する時に、道路状況によって速度が頻繁に変更され、バッテリ電気自動車が静的から動的に繰り返して加速し、また、異なる坂を上り、異なる負荷を負う必要があるため、従来のバッテリ電気自動車が採用する周波数変換モーターには、大きな予備電力と、モーターが長時間で70%未満で運行される低効率領域とが必要である。 The transmission device with dual power sources according to the present disclosure is also applied to the transmission of a battery electric vehicle, the two electric motors of which can operate completely within the maximum efficiency speed range of the frequency conversion motor during frequency conversion. Additionally, the output shaft may have zero rotational speed or continuously variable speed in forward and reverse directions. It can also generate the required torque, which is several tens of times more powerful than conventional battery electric vehicles. If the conventional EVB320-140-180 frequency conversion motor is adopted, its rated power is 30KW, the peak power is 60KW, but the peak torque is only 180N·M. When a battery electric vehicle drives, its speed changes frequently depending on the road conditions, and the battery electric vehicle has to repeatedly accelerate from static to dynamic, climb different slopes, and carry different loads, so conventional The frequency converting motors employed by battery electric vehicles require large reserve power and low efficiency regions where the motors operate at less than 70% for long periods of time.
しかしながら、同じ道路状況で走行する条件において、本開示内容によれば、それぞれ10KWである2つのデュアル動力トランミッション装置を採用してもよく、総電力は僅か20KWであり、最大トルクは9000N・Mから10000N・M(図5に示す)であり、それに2つのモーターは95%の高効率領域で運行し続ける。9000N・M以上である大きいトルクはあらゆる道路状況でのバッテリ電気自動車の走行を完全に満たすことができる。 However, under the same road condition driving condition, according to the present disclosure, two dual power transmission devices of 10KW each may be adopted, the total power is only 20KW, and the maximum torque is 9000N・M to 10,000 N·M (as shown in FIG. 5), and the two motors continue to operate in the high efficiency region of 95%. The large torque, which is more than 9000 N·M, can fully satisfy the driving of battery electric vehicles in all road conditions.
従来のピーク電力が60KWであり、ピークトルクが180N・Mである周波数変換モーターを、本開示内容の電力が20KWであり、トルクが最大9000N・M以上であるデュアル動力トランスミッション装置に比べれば、同等な運行道路状況に基づくバッテリ電気自動車について、本開示内容のトランスミッション装置を採用すれば、モーターが高効率運転速度範囲内で運行し続け、周波数変換の低速運行の低効率領域を避けることが可能であるため、同等な道路状況で走行する場合に、電力の小さいモーターを選択して配置してもよいという結論が得られる。そのため、従来のバッテリ電気自動車について、本開示内容のデュアル動力遊星歯車トランスミッション装置を採用すれば、その走行の運行状況に非常に大きく適合し、その走行距離を大きく延ばすことができる。本開示内容におけるデュアル動力源は、大きい電力と大きいトルクの出力のトランスミッション装置が必要な場合に、制御可能で、速度調整可能な電力の大きい内燃機関またはその他の動力機械を選択してもよい。本開示内容はその他の正逆回転変速が必要なその他の機械製品に適用されてもよい。 Comparing a conventional frequency conversion motor with a peak power of 60KW and a peak torque of 180N・M to the dual power transmission device of the present disclosure with a power of 20KW and a maximum torque of 9000N・M or more, it is equivalent. For a battery electric vehicle based on operating road conditions, if the transmission device of the present disclosure is adopted, the motor can continue to operate within the high efficiency operating speed range and avoid the low efficiency region of low speed operation due to frequency conversion. Therefore, the conclusion can be drawn that when driving under comparable road conditions, a motor with lower power may be selected and placed. Therefore, if the dual power planetary gear transmission device of the present disclosure is adopted for the conventional battery electric vehicle, it can greatly adapt to the driving conditions of the vehicle and greatly extend its mileage. Dual power sources in the present disclosure may select a controllable, adjustable speed high power internal combustion engine or other power machine when a high power and high torque output transmission device is required. The content of the present disclosure may be applied to other mechanical products that require forward/reverse rotational speed change.
以下では、図面を参照して本開示内容の実施形態を詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.
図1は本開示内容に係るデュアル動力源を有するトランスミッション装置の模式図を示し、本開示内容の1つの実施例によれば、当該デュアル動力源を有するトランスミッション装置は前記デュアル動力源によって駆動される遊星歯車アセンブリを含む。 FIG. 1 shows a schematic diagram of a transmission device with dual power sources according to the present disclosure, and according to one embodiment of the present disclosure, the transmission device with dual power sources is driven by the dual power sources. Includes planetary gear assembly.
前記遊星歯車アセンブリは太陽歯車3と、回転内歯リング4と、前記太陽歯車3と前記回転内歯リング4との間に噛み合う遊星歯車5と、を含む。 The planetary gear assembly includes a sun gear 3, a rotating internal toothed ring 4, and a planetary gear 5 meshing between the sun gear 3 and the rotating internal toothed ring 4.
前記デュアル動力源は、前記太陽歯車3に接続される入力軸14と、第1動力源1と、第2動力源2とを含み、前記入力軸14によって前記太陽歯車3をその自体の回転軸線に対して第1方向において回転するように駆動するように配置され、前記デュアル動力源は、前記回転内歯リング4に接続されるとともに、前記回転内歯リング4をその自体の回転軸線に対して前記第1方向と反対になる第2方向において回転するように駆動し、この際に、前記遊星歯車5はその自体の回転軸線に対して前記第2方向において回転し、前記遊星歯車5が前記入力軸14周りの回転運動方向は前記回転内歯リング4のピッチ運動の線速度V1と前記太陽歯車3のピッチ運動の線速度V2によって決められる。 The dual power source includes an input shaft 14 connected to the sun gear 3, a first power source 1, and a second power source 2, the input shaft 14 directs the sun gear 3 to its own rotation axis. said dual power source is connected to said rotating internal toothed ring 4 and configured to drive said rotating internal toothed ring 4 relative to its own axis of rotation. and is driven to rotate in a second direction opposite to the first direction, wherein the planetary gear 5 rotates in the second direction relative to its own axis of rotation, and the planetary gear 5 rotates in the second direction with respect to its own axis of rotation. The direction of rotation around the input shaft 14 is determined by the linear velocity V1 of the pitch motion of the rotary internal gear ring 4 and the linear velocity V2 of the pitch motion of the sun gear 3.
本開示内容の1つの実施例によれば、前記第1動力源1は、前記入力軸14によって前記太陽歯車3を駆動するように配置される、前記第2動力源2は、前記回転内歯リング4を駆動するように配置される。 According to one embodiment of the present disclosure, the first power source 1 is arranged to drive the sun gear 3 by the input shaft 14, and the second power source 2 is arranged to drive the sun gear 3 by means of the input shaft 14. It is arranged to drive the ring 4.
本開示内容の上記各実施例によれば、前記遊星歯車5は、出力軸7が設置された遊星歯車ケージ6に取り付けられ、前記太陽歯車3は前記回転内歯リング4に同軸設置され、前記出力軸7は前記入力軸14に同軸設置される。 According to the above-mentioned embodiments of the present disclosure, the planetary gear 5 is attached to a planetary gear cage 6 on which an output shaft 7 is installed, the sun gear 3 is coaxially installed on the rotating internal gear ring 4, and the The output shaft 7 is installed coaxially with the input shaft 14 .
本開示内容の上記各実施例によれば、前記第1方向が時計回り方向である場合に、前記第2方向が反時計周り方向であり、前記第1方向が反時計回り方向である場合に、前記第2方向が時計周り方向である。 According to each of the above embodiments of the present disclosure, when the first direction is a clockwise direction, the second direction is a counterclockwise direction, and the first direction is a counterclockwise direction, , the second direction is a clockwise direction.
本開示内容の上記各実施例によれば、V1>V2の場合に、前記遊星歯車5と前記遊星歯車ケージ6が当該入力軸14周りの回転運動方向は当該入力軸14の回転方向と反対になり、前記出力軸7自体の回転方向は当該入力軸14の回転方向と反対になり、前記遊星歯車5の歯面とそれに噛み合う前記回転内歯リング4の歯面16との間の歯面の隙間(バックラッシュとも称される)は前記遊星歯車5の歯の一方側のみに位置する。例えば、図2に示すように、前記入力軸14が前記太陽歯車3をその自体の回転軸線に対して時計回り方向において回転するように駆動する時に、前記出力軸7自体が反時計回り方向において回転し、前記歯面の隙間は前記遊星歯車5の歯の右側のみに位置するが、前記遊星歯車5の歯の左側は前記回転内歯リング4の歯面に接触される。前記入力軸14が前記太陽歯車3をその自体の回転軸線に対して反時計回り方向において回転するように駆動する時に(図示せず)、前記出力軸7自体が時計回り方向において回転し、前記歯面の隙間が前記遊星歯車5の歯の左側のみに位置するが、前記遊星歯車5の歯の右側が前記回転内歯リング4の歯面に接触されることは、当業者が理解できる。 According to each of the above embodiments of the present disclosure, when V1>V2, the rotational direction of the planetary gear 5 and the planetary gear cage 6 around the input shaft 14 is opposite to the rotational direction of the input shaft 14. Therefore, the rotational direction of the output shaft 7 itself is opposite to the rotational direction of the input shaft 14, and the tooth surface between the tooth surface of the planetary gear 5 and the tooth surface 16 of the rotary internal gear ring 4 that meshes therewith. The gap (also called backlash) is located only on one side of the teeth of the planetary gear 5. For example, as shown in FIG. 2, when the input shaft 14 drives the sun gear 3 to rotate in a clockwise direction relative to its own axis of rotation, the output shaft 7 itself rotates in a counterclockwise direction. During rotation, the gap between the tooth surfaces is located only on the right side of the teeth of the planetary gear 5, but the left side of the teeth of the planetary gear 5 is in contact with the tooth surface of the rotating internal gear ring 4. When the input shaft 14 drives the sun gear 3 to rotate in a counterclockwise direction relative to its own axis of rotation (not shown), the output shaft 7 itself rotates in a clockwise direction and the Those skilled in the art will understand that the tooth flank gap is located only on the left side of the teeth of the planetary gear 5, but the right side of the teeth of the planetary gear 5 is in contact with the tooth flank of the rotary internal gear ring 4.
V1<V2の場合に、前記遊星歯車5と前記遊星歯車ケージ6が当該入力軸14周りの回転運動方向は当該入力軸14の回転方向と同じであり、前記出力軸7自体の回転方向は当該入力軸14の回転方向と同じであり、前記遊星歯車5の歯面とそれに噛み合う前記回転内歯リング4の歯面との間の歯面の隙間は前記遊星歯車5の歯の前記一方側に保持される。例えば、図2に示すように、前記入力軸14が前記太陽歯車3をその自体の回転軸線に対して時計回り方向において回転するように駆動する時に、前記出力軸7自体が時計回り方向において回転し、前記歯面の隙間は依然として前記遊星歯車5の歯の右側のみに位置し、前記遊星歯車5の歯の左側は依然として前記回転内歯リング4の歯面に接触される。前記入力軸14が前記太陽歯車3をその自体の回転軸線に対して反時計回り方向において回転するように駆動する時に(図示せず)、前記出力軸7自体が反時計回り方向において回転し、前記歯面の隙間が依然として前記遊星歯車5の歯の左側のみに位置するが、前記遊星歯車5の歯の右側が依然として前記回転内歯リング4の歯面に接触されることは、当業者が理解できる。 When V1<V2, the rotation direction of the planetary gear 5 and the planetary gear cage 6 around the input shaft 14 is the same as the rotation direction of the input shaft 14, and the rotation direction of the output shaft 7 itself is the same as the rotation direction of the output shaft 7 itself. The direction of rotation is the same as the rotation direction of the input shaft 14, and the gap between the tooth surfaces of the planetary gear 5 and the tooth surface of the rotary internal tooth ring 4 that meshes therewith is on the one side of the teeth of the planetary gear 5. Retained. For example, as shown in FIG. 2, when the input shaft 14 drives the sun gear 3 to rotate in a clockwise direction relative to its own axis of rotation, the output shaft 7 itself rotates in a clockwise direction. However, the gap between the tooth surfaces is still located only on the right side of the teeth of the planetary gear 5, and the left side of the teeth of the planetary gear 5 is still in contact with the tooth surface of the rotating internal gear ring 4. When the input shaft 14 drives the sun gear 3 to rotate in a counterclockwise direction relative to its own axis of rotation (not shown), the output shaft 7 itself rotates in a counterclockwise direction; It will be understood by those skilled in the art that the tooth flank gap is still located only on the left side of the teeth of the planetary gear 5, but the right side of the teeth of the planetary gear 5 is still in contact with the tooth flank of the rotating internal gear ring 4. It can be understood.
V1=V2の場合に、前記遊星歯車5と前記遊星歯車ケージ6が当該入力軸14周りの回転速度がゼロであり、前記出力軸7自体の回転速度がゼロである。 When V1=V2, the rotational speed of the planetary gear 5 and the planetary gear cage 6 around the input shaft 14 is zero, and the rotational speed of the output shaft 7 itself is zero.
本開示内容の上記各局面によれば、前記回転内歯リング4に平行歯車8が設置され、前記第2動力源2によって駆動される内歯リング駆動歯車9が前記平行歯車8に噛み合うことよって、前記回転内歯リング4が駆動される。 According to each of the above aspects of the present disclosure, the parallel gear 8 is installed on the rotary internal ring 4, and the internal ring drive gear 9 driven by the second power source 2 meshes with the parallel gear 8. , the rotary internal gear ring 4 is driven.
本開示内容の上記各実施例によれば、前記入力軸14に太陽歯車前歯車10が設置され、前記第1動力源1によって駆動される太陽歯車駆動歯車15が前記太陽歯車前歯車10に噛み合うことよって、前記太陽歯車3が駆動される。 According to each of the embodiments of the present disclosure, the sun gear front gear 10 is installed on the input shaft 14, and the sun gear drive gear 15 driven by the first power source 1 meshes with the sun gear front gear 10. Accordingly, the sun gear 3 is driven.
内歯リング駆動歯車9と平行歯車8を噛み合うように設置し、且つ太陽歯車駆動歯車15と太陽歯車前歯車10を噛み合うように設置することによって、特に体積の大きい大電力動力源が必要である時に、前記第1、第2動力源の収容により多くのスペースを提供することができる。 By installing the internal ring drive gear 9 and the parallel gear 8 to mesh with each other, and by installing the sun gear drive gear 15 and the sun gear front gear 10 to mesh with each other, a particularly large volume and high power power source is required. At times, more space can be provided for accommodating the first and second power sources.
本開示内容の上記各実施例によれば、前記第1動力源1は一定動力出力であり、前記第2動力源2は速度調整可能な動力出力であり、電子制御装置11は入力制御線路13によって、前記第1動力源1が異なる電力の時の回転数低下または不安定の誤差を処理する。 According to the above embodiments of the present disclosure, the first power source 1 has a constant power output, the second power source 2 has a speed adjustable power output, and the electronic control device 11 has an input control line 13. In this way, the error of rotational speed drop or instability when the first power source 1 has different electric power is handled.
本開示内容の上記各実施例によれば、前記第2動力源2が前記回転内歯リング4を連れて転動する時に、前記第2動力源2に接続されたリアルタイムデータ採集線路12によって前記回転内歯リング4の運動データが前記電子制御装置11に送信され、前記電子制御装置11が内部プログラムまたは外部命令の処理で、前記リアルタイムデータ採集線路12によって前記第2動力源電源2の動力出力を制御して調整し、前記出力軸7を作業状況で必要なさまざまな速度に達せる。 According to each of the above embodiments of the present disclosure, when the second power source 2 rolls with the rotating internal tooth ring 4, the real-time data acquisition line 12 connected to the second power source 2 The motion data of the rotary internal gear ring 4 is transmitted to the electronic control device 11, and the electronic control device 11 controls the power output of the second power source 2 through the real-time data acquisition line 12 by processing an internal program or an external command. can be controlled and adjusted to reach various speeds of the output shaft 7 as required by the working situation.
本開示内容の上記各実施例によれば、前記第1動力源1は速度調整可能な動力出力であり、前記電子制御装置11は入力制御線路13によって前記第1動力源1の動力出力を制御する。 According to each of the above embodiments of the present disclosure, the first power source 1 has a speed adjustable power output, and the electronic control device 11 controls the power output of the first power source 1 through the input control line 13. do.
電子制御装置11の補正制御によって、前記遊星歯車5の歯面とそれに噛み合う前記回転内歯リング4の歯面との間の歯面の隙間が前記遊星歯車5の歯の一方側のみに位置するように保持することに役立つ。 Due to the correction control of the electronic control device 11, the tooth flank gap between the tooth flank of the planetary gear 5 and the tooth flank of the rotary internal tooth ring 4 that meshes therewith is located only on one side of the teeth of the planetary gear 5. It helps to keep it like that.
本開示内容の上記各実施例によれば、前記第1動力源と前記第2動力源は制御可能で、速度調整可能な動力機械である。 According to the above embodiments of the present disclosure, the first power source and the second power source are controllable and speed adjustable power machines.
本開示内容の上記各実施例によれば、前記制御可能で、速度調整可能な動力機械は電動機または内燃機関である。 According to the above embodiments of the present disclosure, the controllable, adjustable speed power machine is an electric motor or an internal combustion engine.
本開示内容のデュアル動力トランスミッション装置において、太陽歯車3と、遊星歯車5と、回転内歯リング4とが自体の回転方向が変わらないままの場合に、出力軸7は便利に正回転または逆回転できる(図2に示す)が、歯と歯の間のバックラッシュは一方側のみに残され、歯と歯の間の力を受ける方向も変わらないため、出力軸7の方向が頻繁に変換されることによって歯と歯の間のバックラッシュが変化されることはない。歯と歯の運転時に一方側のみ緊密に噛み合うため、バックラッシュの変換による衝撃力が発生されることはない。そのため、本開示内容のトランスミッション装置の位置決め精度がより高く、使用寿命がより長くなる。それに、歯と歯の間に大きな摩損が存在し、歯と歯のバックラッシュが増大されても、歯と歯の他面が緊密に噛み合っているため、電子制御装置11の補正制御によって、完璧な位置決め精度と使用効果に達することができる。 In the dual power transmission device of the present disclosure, when the sun gear 3, the planetary gear 5, and the rotary internal gear ring 4 remain in their own rotational directions, the output shaft 7 can conveniently rotate in the forward or reverse direction. However, the backlash between the teeth remains on only one side, and the direction in which the force between the teeth is received does not change, so the direction of the output shaft 7 changes frequently. This does not change the backlash between the teeth. Since the teeth mesh tightly on only one side during operation, no impact force is generated due to backlash conversion. Therefore, the positioning accuracy of the transmission device according to the present disclosure is higher, and the service life thereof is longer. In addition, even if there is large wear between the teeth and the backlash between the teeth increases, the other surfaces of the teeth are tightly meshed, so the correction control of the electronic control unit 11 ensures a perfect fit. Good positioning accuracy and usage effect can be reached.
本開示内容によれば、前記各実施例に記載のデュアル動力源を有するトランスミッション装置を含む電気自動車をさらに提供する。 According to the content of the present disclosure, there is further provided an electric vehicle including the transmission device having the dual power sources described in each of the embodiments.
本開示内容によるデュアル動力源を有するトランスミッション装置はバッテリ電気自動車の変速装置に適用され、その2つの電気モーターが周波数変換時に周波数変換モーターの最高効率の速度範囲内で完全に運行可能である。それに、出力軸7はゼロ回転速度または正逆無段変速であってもよい。また、従来のバッテリ電気自動車より数十倍の必要なトルクを生成可能である。 The transmission device with dual power sources according to the present disclosure is applied to the transmission of a battery electric vehicle, the two electric motors of which can operate completely within the maximum efficiency speed range of the frequency conversion motor during frequency conversion. Additionally, the output shaft 7 may have zero rotational speed or continuously variable speed in forward and reverse directions. It can also generate the required torque, which is several tens of times more powerful than conventional battery electric vehicles.
従来のEVB320-140-180周波数変換モーターを採用すれば、その定格電力は30KWであり、ピーク電力は60KWであるが、ピークトルクは180N・Mのみである。バッテリ電気自動車が走行する時に、道路状況によって速度が頻繁に変更され、バッテリ電気自動車が静的から動的に繰り返して加速し、また、異なる坂を上り、異なる負荷を負う必要があるため、従来のバッテリ電気自動車が採用する周波数変換モーターには、大きな予備電力と、モーターが長時間で70%未満で運行される低効率領域とが必要である。 If the conventional EVB320-140-180 frequency conversion motor is adopted, its rated power is 30KW, the peak power is 60KW, but the peak torque is only 180N·M. When a battery electric vehicle drives, its speed changes frequently depending on the road conditions, and the battery electric vehicle has to repeatedly accelerate from static to dynamic, climb different slopes, and carry different loads, so conventional The frequency converting motors employed by battery electric vehicles require large reserve power and low efficiency regions where the motors operate at less than 70% for long periods of time.
しかしながら、同じ道路状況で走行する条件において、本開示内容によれば、それぞれ10KWである2つのデュアル動力トランミッション装置を採用してもよく、総電力は僅か20KWであり、最大トルクは9000N・Mから10000N・M(図5に示す)であり、それに2つのモーターは95%の高効率領域で運行し続ける。9000N・M以上である大きいトルクはあらゆる道路状況でのバッテリ電気自動車の走行を完全に満たすことができる。 However, under the same road condition driving condition, according to the present disclosure, two dual power transmission devices of 10KW each may be adopted, the total power is only 20KW, and the maximum torque is 9000N・M to 10,000 N·M (as shown in FIG. 5), and the two motors continue to operate in the high efficiency region of 95%. The large torque, which is more than 9000 N·M, can fully satisfy the driving of battery electric vehicles in all road conditions.
従来のピーク電力が60KWであり、ピークトルクが180N・Mである周波数変換モーターを、本開示内容の電力が20KWであり、トルクが最大9000N・M以上であるデュアル動力トランスミッション装置に比べれば、同等な運行道路状況に基づくバッテリ電気自動車について、本開示内容のトランスミッション装置を採用すれば、モーターが高効率運転速度範囲内で運行し続け、周波数変換の低速運行の低効率領域を避けることが可能であるため、同等な道路状況で走行する場合に、電力の小さいモーターを選択して配置してもよいという結論が得られる。そのため、従来のバッテリ電気自動車について、本開示内容のデュアル動力遊星歯車トランスミッション装置を採用すれば、その走行の運行状況に非常に大きく適合し、その走行距離を大きく延ばすことができる。本開示内容におけるデュアル動力源は、大きい電力と大きいトルクの出力のトランスミッション装置が必要な場合に、制御可能で、速度調整可能な電力の大きい内燃機関またはその他の動力機械を選択してもよい。本開示内容はその他の正逆回転変速が必要なその他の機械製品に適用されてもよい。 Comparing a conventional frequency conversion motor with a peak power of 60KW and a peak torque of 180N・M to the dual power transmission device of the present disclosure with a power of 20KW and a maximum torque of 9000N・M or more, it is equivalent. For a battery electric vehicle based on operating road conditions, if the transmission device of the present disclosure is adopted, the motor can continue to operate within the high efficiency operating speed range and avoid the low efficiency region of low speed operation due to frequency conversion. Therefore, the conclusion can be drawn that when driving under comparable road conditions, a motor with lower power may be selected and placed. Therefore, if the dual power planetary gear transmission device of the present disclosure is adopted for the conventional battery electric vehicle, it can greatly adapt to the driving conditions of the vehicle and greatly extend its mileage. Dual power sources in the present disclosure may select a controllable, adjustable speed high power internal combustion engine or other power machine when a high power and high torque output transmission device is required. The content of the present disclosure may be applied to other mechanical products that require forward/reverse rotational speed change.
本開示内容は、上記に記載のトランスミッション装置を駆動する駆動方法であって、前記トランスミッション装置は、遊星歯車アセンブリを駆動するデュアル動力源を含み、 前記遊星歯車アセンブリは、太陽歯車3と、回転内歯リング4と、前記太陽歯車3と前記回転内歯リング4との間に噛み合う遊星歯車5とを含み、前記デュアル動力源は、前記太陽歯車3に接続される入力軸14を含み、前記入力軸14によって前記太陽歯車3をその自体の回転軸線に対して第1方向において回転するように駆動するように配置され、前記デュアル動力源は、前記回転内歯リング4に接続されるとともに、前記回転内歯リング4をその自体の回転軸線に対して前記第1方向と反対になる第2方向において回転するように駆動し、この際に、前記遊星歯車5はその自体の回転軸線に対して前記第2方向において回転し、前記遊星歯車5が前記入力軸14周りの回転運動方向は前記回転内歯リング4のピッチ運動の線速度V1と前記太陽歯車3のピッチ運動の線速度V2によって決められる、駆動方法をさらに提供する。 The present disclosure provides a driving method for driving a transmission device as described above, wherein the transmission device includes a dual power source driving a planetary gear assembly, the planetary gear assembly including a sun gear 3 and a rotational gear. The dual power source includes an input shaft 14 connected to the sun gear 3 and a planetary gear 5 meshing between the sun gear 3 and the rotating internal tooth ring 4, the dual power source including an input shaft 14 connected to the sun gear 3, The dual power source is arranged to drive the sun gear 3 to rotate in a first direction relative to its own axis of rotation by a shaft 14, the dual power source being connected to the rotating internal gear ring 4 and The rotating internal toothed ring 4 is driven to rotate in a second direction opposite to the first direction with respect to its own axis of rotation, with the planetary gear 5 being driven to rotate with respect to its own axis of rotation. The planetary gear 5 rotates in the second direction, and the rotational direction of the planetary gear 5 around the input shaft 14 is determined by the linear velocity V1 of the pitch motion of the rotary internal gear ring 4 and the linear velocity V2 of the pitch motion of the sun gear 3. The present invention further provides a driving method.
上記記載の駆動方法の1つの実施例によれば、前記デュアル動力源は、第1動力源1と第2動力源2を含み、前記第1動力源1は、前記入力軸14によって前記太陽歯車3を駆動するように配置され、前記第2動力源2は、前記回転内歯リング4を駆動するように配置される。 According to one embodiment of the driving method described above, the dual power source includes a first power source 1 and a second power source 2, and the first power source 1 is connected to the sun gear by the input shaft 14. 3, and the second power source 2 is arranged to drive the rotary internal gear ring 4.
上記記載の駆動方法の各実施例によれば、前記遊星歯車5を遊星歯車ケージ6に取り付け、出力軸7を前記遊星歯車ケージ6に設置し、前記太陽歯車3を前記回転内歯リング4に同軸設置し、前記出力軸7を前記入力軸14に同軸設置する。 According to each embodiment of the driving method described above, the planetary gear 5 is attached to the planetary gear cage 6, the output shaft 7 is installed in the planetary gear cage 6, and the sun gear 3 is attached to the rotating inner gear ring 4. The output shaft 7 is coaxially installed with the input shaft 14.
上記記載の駆動方法の各実施例によれば、前記第1方向が時計回り方向である場合に、前記第2方向が反時計周り方向であり、前記第1方向が反時計回り方向である場合に、前記第2方向が時計周り方向である。 According to each embodiment of the driving method described above, when the first direction is a clockwise direction, the second direction is a counterclockwise direction, and the first direction is a counterclockwise direction. In this case, the second direction is a clockwise direction.
上記記載の駆動方法の各実施例によれば、V1>V2の場合に、前記遊星歯車5と前記遊星歯車ケージ6が当該入力軸14周りの回転運動方向は当該入力軸14の回転方向と反対になり、前記出力軸7自体の回転方向は当該入力軸14の回転方向と反対になり、前記遊星歯車5の歯面とそれに噛み合う前記回転内歯リング4の歯面との間の歯面の隙間は前記遊星歯車5の歯の一方側のみに位置する。前記入力軸14が前記太陽歯車3をその自体の回転軸線に対して反時計回り方向において回転するように駆動する時に(図示せず)、前記出力軸7自体が時計回り方向において回転し、前記歯面の隙間が前記遊星歯車5の歯の左側のみに位置するが、前記遊星歯車5の歯の右側が前記回転内歯リング4の歯面に接触されることは、当業者が理解できる。 According to each embodiment of the driving method described above, when V1>V2, the rotational direction of the planetary gear 5 and the planetary gear cage 6 around the input shaft 14 is opposite to the rotational direction of the input shaft 14. The direction of rotation of the output shaft 7 itself is opposite to the direction of rotation of the input shaft 14, and the tooth surface between the tooth surface of the planetary gear 5 and the tooth surface of the rotary internal gear ring 4 that meshes therewith. The gap is located only on one side of the teeth of the planetary gear 5. When the input shaft 14 drives the sun gear 3 to rotate in a counterclockwise direction relative to its own axis of rotation (not shown), the output shaft 7 itself rotates in a clockwise direction and the Those skilled in the art will understand that the tooth flank gap is located only on the left side of the teeth of the planetary gear 5, but the right side of the teeth of the planetary gear 5 is in contact with the tooth flank of the rotary internal gear ring 4.
V1<V2の場合に、前記遊星歯車5と前記遊星歯車ケージ6が当該入力軸14周りの回転運動方向は当該入力軸14の回転方向と同じであり、前記出力軸7自体の回転方向は当該入力軸14の回転方向と同じであり、前記遊星歯車5の歯面とそれに噛み合う前記回転内歯リング4の歯面との間の歯面の隙間は前記遊星歯車5の歯の前記一方側に保持される。前記入力軸14が前記太陽歯車3をその自体の回転軸線に対して反時計回り方向において回転するように駆動する時に(図示せず)、前記出力軸7自体が反時計回り方向において回転し、前記歯面の隙間が依然として前記遊星歯車5の歯の左側のみに位置するが、前記遊星歯車5の歯の右側が依然として前記回転内歯リング4の歯面に接触されることは、当業者が理解できる。 When V1<V2, the rotation direction of the planetary gear 5 and the planetary gear cage 6 around the input shaft 14 is the same as the rotation direction of the input shaft 14, and the rotation direction of the output shaft 7 itself is the same as the rotation direction of the output shaft 7 itself. The direction of rotation is the same as the rotation direction of the input shaft 14, and the gap between the tooth surfaces of the planetary gear 5 and the tooth surface of the rotary internal tooth ring 4 that meshes therewith is on the one side of the teeth of the planetary gear 5. Retained. When the input shaft 14 drives the sun gear 3 to rotate in a counterclockwise direction relative to its own axis of rotation (not shown), the output shaft 7 itself rotates in a counterclockwise direction; It will be understood by those skilled in the art that the tooth flank gap is still located only on the left side of the teeth of the planetary gear 5, but the right side of the teeth of the planetary gear 5 is still in contact with the tooth flank of the rotating internal gear ring 4. It can be understood.
V1=V2の場合に、前記遊星歯車5と前記遊星歯車ケージ6が当該入力軸14周りの回転速度がゼロであり、前記出力軸7自体の回転速度がゼロである。 When V1=V2, the rotational speed of the planetary gear 5 and the planetary gear cage 6 around the input shaft 14 is zero, and the rotational speed of the output shaft 7 itself is zero.
上記記載の駆動方法の各実施例によれば、前記第1動力源1を一定動力出力のように設置し、前記第2動力源2を速度調整可能な動力出力のように設置し、入力制御線路13によって前記第1動力源1が異なる電力の時の回転数低下または不安定の誤差を処理する電子制御装置11を設置する。 According to each embodiment of the driving method described above, the first power source 1 is installed to have a constant power output, the second power source 2 is installed to have a speed adjustable power output, and the input control An electronic control device 11 is installed to handle errors in rotational speed drop or instability when the first power source 1 has different power depending on the line 13.
上記記載の駆動方法の各実施例によれば、前記第2動力源2が前記回転内歯リング4を連れて転動する時に、前記第2動力源2に接続されたリアルタイムデータ採集線路12によって前記回転内歯リング4の運動データが前記電子制御装置11に送信され、前記電子制御装置11が内部プログラムまたは外部命令の処理で、前記リアルタイムデータ採集線路12によって前記第2動力源電源2の動力出力を制御して調整し、前記出力軸7を作業状況で必要なさまざまな速度に達せる。 According to each embodiment of the driving method described above, when the second power source 2 rolls with the rotating internal tooth ring 4, the real-time data collection line 12 connected to the second power source 2 The motion data of the rotary internal tooth ring 4 is transmitted to the electronic control device 11, and the electronic control device 11 controls the power of the second power source 2 through the real-time data acquisition line 12 by processing an internal program or an external command. The output can be controlled and adjusted to allow said output shaft 7 to reach different speeds as required by the working situation.
上記記載の駆動方法の各実施例によれば、前記第1動力源1を速度調整可能な動力出力のように設置し、前記電子制御装置11は入力制御線路13によって前記第1動力源1の動力出力を制御する。 According to each embodiment of the driving method described above, the first power source 1 is installed as a speed-adjustable power output, and the electronic control device 11 is connected to the first power source 1 by an input control line 13. Control power output.
上記記載の駆動方法の各実施例によれば、平行歯車8を前記回転内歯リング5に設置し、前記第2動力源2によって駆動される内歯リング駆動歯車9が前記平行歯車8に噛み合うことよって、前記回転内歯リング4が駆動される。 According to each embodiment of the driving method described above, a parallel gear 8 is installed on the rotating internal gear ring 5, and an internal ring drive gear 9 driven by the second power source 2 meshes with the parallel gear 8. As a result, the rotary internal gear ring 4 is driven.
上記記載の駆動方法の各実施例によれば、太陽歯車前歯車10を前記入力軸14に設置し、前記第1動力源1によって駆動される太陽歯車駆動歯車15が前記太陽歯車前歯車10に噛み合うことよって、前記太陽歯車3が駆動される。 According to each embodiment of the driving method described above, the sun gear front gear 10 is installed on the input shaft 14, and the sun gear drive gear 15 driven by the first power source 1 is attached to the sun gear front gear 10. By meshing, the sun gear 3 is driven.
上記記載の駆動方法の各実施例によれば、前記第1動力源と前記第2動力源を制御可能で、速度調整可能な動力機械のように設置する。 According to each embodiment of the driving method described above, the first power source and the second power source are installed like a controllable and speed adjustable power machine.
上記記載の駆動方法の各実施例によれば、前記制御可能で、速度調整可能な動力機械は電動機または内燃機関である。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[1] デュアル動力源を有するトランスミッション装置であって、前記デュアル動力源によって駆動される遊星歯車アセンブリを含み、前記遊星歯車アセンブリは太陽歯車(3)と、回転内歯リング(4)と、前記太陽歯車(3)と前記回転内歯リング(4)との間に噛み合う遊星歯車(5)と、を含み、
前記デュアル動力源は、前記太陽歯車(3)に接続される入力軸(14)を含み、前記入力軸(14)によって前記太陽歯車(3)をその自体の回転軸線に対して第1方向において回転するように駆動するように配置され、
前記デュアル動力源は、前記回転内歯リング(4)に接続されるとともに、前記回転内歯リング(4)をその自体の回転軸線に対して前記第1方向と反対になる第2方向において回転するように駆動し、この際に、前記遊星歯車(5)はその自体の回転軸線に対して前記第2方向において回転し、
前記遊星歯車(5)が前記入力軸(14)周りの回転運動方向は前記回転内歯リング(4)のピッチ運動の線速度V1と前記太陽歯車(3)のピッチ運動の線速度V2によって決められる、デュアル動力源を有するトランスミッション装置。
[2] 前記デュアル動力源は、第1動力源(1)と第2動力源(2)を含み、
前記第1動力源(1)は、前記入力軸(14)によって前記太陽歯車(3)を駆動するように配置され、
前記第2動力源(2)は、前記回転内歯リング(4)を駆動するように配置される、[1]に記載のデュアル動力源を有するトランスミッション装置。
[3] 前記遊星歯車(5)は、出力軸(7)が設置された遊星歯車ケージ(6)に取り付けられ、
前記太陽歯車(3)は前記回転内歯リング(4)に同軸設置され、
前記出力軸(7)は前記入力軸(14)に同軸設置される、[1]に記載のデュアル動力源を有するトランスミッション装置。
[4] 前記第1方向が時計回り方向である場合に、前記第2方向が反時計周り方向であり、 前記第1方向が反時計回り方向である場合に、前記第2方向が時計周り方向である、[3]に記載のデュアル動力源を有するトランスミッション装置。
[5] V1>V2の場合に、前記遊星歯車(5)と前記遊星歯車ケージ(6)が当該入力軸(14)周りの回転運動方向は当該入力軸(14)の回転方向と反対になり、前記出力軸(7)自体の回転方向は当該入力軸(14)の回転方向と反対になり、前記遊星歯車(5)の歯面とそれに噛み合う前記回転内歯リング(4)の歯面との間の歯面の隙間は前記遊星歯車(5)の歯の一方側のみに位置し、
V1<V2の場合に、前記遊星歯車(5)と前記遊星歯車ケージ(6)が当該入力軸(14)周りの回転運動方向は当該入力軸(14)の回転方向と同じであり、前記出力軸(7)自体の回転方向は当該入力軸(14)の回転方向と同じであり、前記遊星歯車(5)の歯面とそれに噛み合う前記回転内歯リング(4)の歯面との間の歯面の隙間は前記遊星歯車(5)の歯の前記一方側に保持され、
V1=V2の場合に、前記遊星歯車(5)と前記遊星歯車ケージ(6)が当該入力軸(14)周りの回転速度がゼロであり、前記出力軸(7)自体の回転速度がゼロである、[3]または[4]に記載のデュアル動力源を有するトランスミッション装置。
[6] 前記回転内歯リング(4)に平行歯車(8)が設置され、
前記第2動力源(2)によって駆動される内歯リング歯車(9)が前記平行歯車(8)に噛み合うことよって、前記回転内歯リング(4)が駆動される、[5]に記載のデュアル動力源を有するトランスミッション装置。
[7] 前記入力軸(14)に太陽歯車前歯車(10)が設置され、
前記第1動力源(1)によって駆動される入力軸歯車(15)が前記太陽歯車前歯車(10)に噛み合うことよって、前記太陽歯車(3)が駆動される、[5]に記載のデュアル動力源を有するトランスミッション装置。
[8] 前記第1動力源(1)は一定動力出力であり、前記第2動力源(2)は速度調整可能な動力出力であり、
電子制御装置(11)は入力制御線路(13)によって、前記第1動力源(1)が異なる電力の時の回転数低下または不安定の誤差を処理する、[5]に記載のデュアル動力源を有するトランスミッション装置。
[9] 前記第2動力源(2)が前記回転内歯リング(4)を連れて転動する時に、前記第2動力源(2)に接続されたリアルタイムデータ採集線路(12)によって前記回転内歯リング(4)の運動データが前記電子制御装置(11)に送信され、
前記電子制御装置(11)が内部プログラムまたは外部命令の処理で、前記リアルタイムデータ採集線路(12)によって前記第2動力源電源(2)の動力出力を制御して調整し、前記出力軸(7)を作業状況で必要なさまざまな速度に達せる、[8]に記載のデュアル動力源を有するトランスミッション装置。
[10] 前記第1動力源(1)は速度調整可能な動力出力であり、前記電子制御装置(11)は入力制御線路(13)によって前記第1動力源(1)の動力出力を制御する、[5]に記載のデュアル動力源を有するトランスミッション装置。
[11] 前記第1動力源と前記第2動力源は制御可能で、速度調整可能な動力機械である、[1]に記載のデュアル動力源を有するトランスミッション装置。
[12] 前記制御可能で、速度調整可能な動力機械は電動機または内燃機関である、[10]に記載のデュアル動力源を有するトランスミッション装置。
[13] [1]~[12]のいずれかに記載のデュアル動力源を有するトランスミッション装置を含む、電気自動車。
[14] [1]~[12]のいずれかに記載のトランスミッション装置を駆動する駆動方法であって、前記トランスミッション装置は、遊星歯車アセンブリを駆動するデュアル動力源を含み、前記遊星歯車アセンブリは、太陽歯車(3)と、回転内歯リング(4)と、前記太陽歯車(3)と前記回転内歯リング(4)との間に噛み合う遊星歯車(5)とを含み、
前記デュアル動力源は、前記太陽歯車(3)に接続される入力軸(14)を含み、前記入力軸(14)によって前記太陽歯車(3)をその自体の回転軸線に対して第1方向において回転するように駆動するように配置され、
前記デュアル動力源は、前記回転内歯リング(4)に接続されるとともに、前記回転内歯リング(4)をその自体の回転軸線に対して前記第1方向と反対になる第2方向において回転するように駆動し、この際に、前記遊星歯車(5)はその自体の回転軸線に対して前記第2方向において回転し、
前記遊星歯車(5)が前記入力軸(14)周りの回転運動方向は前記回転内歯リング(4)のピッチ運動の線速度V1と前記太陽歯車(3)のピッチ運動の線速度V2によって決められる、駆動方法。
[15] 前記デュアル動力源は、第1動力源(1)と第2動力源(2)を含み、
前記第1動力源(1)は、前記入力軸(14)によって前記太陽歯車(3)を駆動するように配置され、
前記第2動力源(2)は、前記回転内歯リング(4)を駆動するように配置される、[14]に記載の駆動方法。
[16] 前記遊星歯車(5)を遊星歯車ケージ(6)に取り付け、出力軸(7)を前記遊星歯車ケージ(6)に設置し、
前記太陽歯車(3)を前記回転内歯リング(4)に同軸設置し、
前記出力軸(7)を前記入力軸(14)に同軸設置する、[14]に記載の駆動方法。
[17] 前記第1方向が時計回り方向である場合に、前記第2方向が反時計周り方向であり、 前記第1方向が反時計回り方向である場合に、前記第2方向が時計周り方向である、[16]に記載の駆動方法。
[18] V1>V2の場合に、前記遊星歯車(5)と前記遊星歯車ケージ(6)が当該入力軸(14)周りの回転運動方向は当該入力軸(14)の回転方向と反対になり、前記出力軸(7)自体の回転方向は当該入力軸(14)の回転方向と反対になり、前記遊星歯車(5)の歯面とそれに噛み合う前記回転内歯リング(4)の歯面との間の歯面の隙間は前記遊星歯車(5)の歯の一方側のみに位置し、
V1<V2の場合に、前記遊星歯車(5)と前記遊星歯車ケージ(6)が当該入力軸(14)周りの回転運動方向は当該入力軸(14)の回転方向と同じであり、前記出力軸(7)自体の回転方向は当該入力軸(14)の回転方向と同じであり、前記遊星歯車(5)の歯面とそれに噛み合う前記回転内歯リング(4)の歯面との間の歯面の隙間は前記遊星歯車(5)の歯の前記一方側に保持され、
V1=V2の場合に、前記遊星歯車(5)と前記遊星歯車ケージ(6)が当該入力軸(14)周りの回転速度がゼロであり、前記出力軸(7)自体の回転速度がゼロである、[17]に記載の駆動方法。
[19] 前記第1動力源(1)を一定動力出力のように設置し、前記第2動力源(2)を速度調整可能な動力出力のように設置し、
入力制御線路(13)によって前記第1動力源(1)が異なる電力の時の回転数低下または不安定の誤差を処理する電子制御装置(11)を設置する、[18]に記載の駆動方法。
[20] 前記第2動力源(2)が前記回転内歯リング(4)を連れて転動し、前記第2動力源(2)に接続されたリアルタイムデータ採集線路(12)によって前記回転内歯リング(4)の運動データが前記電子制御装置(11)に送信され、
前記電子制御装置(11)が内部プログラムまたは外部命令の処理で、前記リアルタイムデータ採集線路(12)によって前記第2動力源電源(2)の動力出力を制御して調整し、前記出力軸(7)を作業状況で必要なさまざまな速度に達せる、[19]に記載の駆動方法。
[21] 前記第1動力源(1)を速度調整可能な動力出力のように設置し、前記電子制御装置(11)は入力制御線路(13)によって前記第1動力源(1)の動力出力を制御する、[18]に記載の駆動方法。
[22] 前記第1動力源と前記第2動力源を制御可能で、速度調整可能な動力機械のように設置する、[14]に記載の駆動方法。
[23] 前記制御可能で、速度調整可能な動力機械は電動機または内燃機関である、[22]に記載の駆動方法。
[24] 平行歯車(8)を前記回転内歯リング(5)に設置し、前記第2動力源(2)によって駆動される内歯リング歯車(9)が前記平行歯車(8)に噛み合うことよって、前記回転内歯リング(4)が駆動される、[18]に記載の駆動方法。
[25] 太陽歯車前歯車(10)を前記入力軸(14)に設置し、前記第1動力源(1)によって駆動される入力軸歯車(15)が前記太陽歯車前歯車(10)に噛み合うことよって、前記太陽歯車(3)が駆動される、[18]に記載の駆動方法。
According to each embodiment of the drive method described above, the controllable, speed adjustable power machine is an electric motor or an internal combustion engine.
Below, the invention described in the original claims of the present application will be added.
[1] A transmission device having a dual power source, comprising a planetary gear assembly driven by the dual power source, the planetary gear assembly including a sun gear (3), a rotating internal gear ring (4), and a planetary gear assembly driven by the dual power source. a planetary gear (5) meshing between the sun gear (3) and the rotating internal gear ring (4);
Said dual power source includes an input shaft (14) connected to said sun gear (3), by said input shaft (14) said sun gear (3) in a first direction relative to its own axis of rotation. arranged to be driven to rotate;
The dual power source is connected to the rotating internal toothed ring (4) and rotates the rotating internal toothed ring (4) about its own axis of rotation in a second direction opposite to the first direction. the planetary gear (5) rotates in the second direction relative to its own axis of rotation;
The rotational direction of the planetary gear (5) around the input shaft (14) is determined by the linear velocity V1 of the pitch motion of the rotating internal gear ring (4) and the linear velocity V2 of the pitch motion of the sun gear (3). A transmission device with dual power sources.
[2] The dual power source includes a first power source (1) and a second power source (2),
the first power source (1) is arranged to drive the sun gear (3) by the input shaft (14);
The transmission device having dual power sources according to [1], wherein the second power source (2) is arranged to drive the rotating internal toothed ring (4).
[3] The planetary gear (5) is attached to a planetary gear cage (6) in which an output shaft (7) is installed,
the sun gear (3) is coaxially installed on the rotating internal gear ring (4);
The transmission device having a dual power source according to [1], wherein the output shaft (7) is installed coaxially with the input shaft (14).
[4] When the first direction is a clockwise direction, the second direction is a counterclockwise direction, and when the first direction is a counterclockwise direction, the second direction is a clockwise direction. The transmission device having a dual power source according to [3].
[5] When V1>V2, the direction of rotation of the planetary gear (5) and the planetary gear cage (6) around the input shaft (14) is opposite to the rotation direction of the input shaft (14). , the rotational direction of the output shaft (7) itself is opposite to the rotational direction of the input shaft (14), and the tooth surface of the planetary gear (5) and the tooth surface of the rotating internal gear ring (4) meshing therewith. The gap between the tooth surfaces is located only on one side of the teeth of the planetary gear (5),
When V1<V2, the rotational direction of the planetary gear (5) and the planetary gear cage (6) around the input shaft (14) is the same as the rotational direction of the input shaft (14), and the output The rotational direction of the shaft (7) itself is the same as the rotational direction of the input shaft (14), and the rotational direction between the tooth surface of the planetary gear (5) and the tooth surface of the rotary internal gear ring (4) meshing therewith is the same as the rotation direction of the input shaft (14). A tooth surface gap is maintained on the one side of the teeth of the planetary gear (5),
When V1=V2, the rotational speed of the planetary gear (5) and the planetary gear cage (6) around the input shaft (14) is zero, and the rotational speed of the output shaft (7) itself is zero. A transmission device having a dual power source according to [3] or [4].
[6] A parallel gear (8) is installed on the rotating internal gear ring (4),
The rotating internal ring (4) is driven by the internal ring gear (9) driven by the second power source (2) meshing with the parallel gear (8). Transmission device with dual power sources.
[7] A sun gear front gear (10) is installed on the input shaft (14),
The dual drive according to [5], wherein the sun gear (3) is driven by the input shaft gear (15) driven by the first power source (1) meshing with the sun gear front gear (10). A transmission device with a power source.
[8] The first power source (1) has a constant power output, and the second power source (2) has a speed adjustable power output,
The dual power source according to [5], wherein the electronic control device (11) uses the input control line (13) to process errors in rotational speed reduction or instability when the first power source (1) has different electric power. A transmission device having a
[9] When the second power source (2) rolls with the rotating internal tooth ring (4), the rotation is controlled by a real-time data acquisition line (12) connected to the second power source (2). motion data of the internal tooth ring (4) is transmitted to the electronic control device (11);
The electronic control unit (11) controls and adjusts the power output of the second power source (2) through the real-time data acquisition line (12) by processing an internal program or an external command, and controls the power output of the second power source (2) by processing the output shaft (7). ) can reach various speeds required in the working situation.
[10] The first power source (1) is a speed-adjustable power output, and the electronic control device (11) controls the power output of the first power source (1) by an input control line (13). , a transmission device having dual power sources according to [5].
[11] The transmission device having dual power sources according to [1], wherein the first power source and the second power source are controllable and speed adjustable power machines.
[12] The transmission device with dual power sources according to [10], wherein the controllable and speed adjustable power machine is an electric motor or an internal combustion engine.
[13] An electric vehicle comprising the transmission device having a dual power source according to any one of [1] to [12].
[14] A driving method for driving the transmission device according to any one of [1] to [12], wherein the transmission device includes a dual power source that drives a planetary gear assembly, and the planetary gear assembly includes: comprising a sun gear (3), a rotating internal toothed ring (4), and a planetary gear (5) meshing between the sun gear (3) and the rotating internal toothed ring (4);
Said dual power source includes an input shaft (14) connected to said sun gear (3), by said input shaft (14) said sun gear (3) in a first direction relative to its own axis of rotation. arranged to be driven to rotate;
The dual power source is connected to the rotating internal toothed ring (4) and rotates the rotating internal toothed ring (4) about its own axis of rotation in a second direction opposite to the first direction. the planetary gear (5) rotates in the second direction relative to its own axis of rotation;
The rotational direction of the planetary gear (5) around the input shaft (14) is determined by the linear velocity V1 of the pitch motion of the rotating internal gear ring (4) and the linear velocity V2 of the pitch motion of the sun gear (3). driving method.
[15] The dual power source includes a first power source (1) and a second power source (2),
the first power source (1) is arranged to drive the sun gear (3) by the input shaft (14);
The driving method according to [14], wherein the second power source (2) is arranged to drive the rotating internal toothed ring (4).
[16] The planetary gear (5) is attached to the planetary gear cage (6), the output shaft (7) is installed in the planetary gear cage (6),
the sun gear (3) is coaxially installed on the rotating internal gear ring (4);
The driving method according to [14], wherein the output shaft (7) is installed coaxially with the input shaft (14).
[17] When the first direction is a clockwise direction, the second direction is a counterclockwise direction, and when the first direction is a counterclockwise direction, the second direction is a clockwise direction. The driving method according to [16].
[18] When V1>V2, the direction of rotation of the planetary gear (5) and the planetary gear cage (6) around the input shaft (14) is opposite to the rotation direction of the input shaft (14). , the rotational direction of the output shaft (7) itself is opposite to the rotational direction of the input shaft (14), and the tooth surface of the planetary gear (5) and the tooth surface of the rotating internal gear ring (4) meshing therewith. The gap between the tooth surfaces is located only on one side of the teeth of the planetary gear (5),
When V1<V2, the rotational direction of the planetary gear (5) and the planetary gear cage (6) around the input shaft (14) is the same as the rotational direction of the input shaft (14), and the output The rotational direction of the shaft (7) itself is the same as the rotational direction of the input shaft (14), and the rotational direction between the tooth surface of the planetary gear (5) and the tooth surface of the rotary internal gear ring (4) meshing therewith is the same as the rotation direction of the input shaft (14). A tooth surface gap is maintained on the one side of the teeth of the planetary gear (5),
When V1=V2, the rotational speed of the planetary gear (5) and the planetary gear cage (6) around the input shaft (14) is zero, and the rotational speed of the output shaft (7) itself is zero. The driving method according to [17].
[19] The first power source (1) is installed as a constant power output, and the second power source (2) is installed as a speed adjustable power output,
The driving method according to [18], further comprising installing an electronic control device (11) that processes errors in rotational speed drop or instability when the first power source (1) has different electric power depending on the input control line (13). .
[20] The second power source (2) rolls with the rotating inner toothed ring (4), and the real-time data acquisition line (12) connected to the second power source (2) motion data of the tooth ring (4) are transmitted to said electronic control device (11);
The electronic control unit (11) controls and adjusts the power output of the second power source (2) through the real-time data acquisition line (12) by processing an internal program or an external command, and controls the power output of the second power source (2) by processing the output shaft (7). ) can reach various speeds required in the working situation.
[21] The first power source (1) is installed as a speed adjustable power output, and the electronic control device (11) controls the power output of the first power source (1) by an input control line (13). The driving method according to [18], which controls.
[22] The driving method according to [14], wherein the first power source and the second power source are installed like controllable and speed-adjustable power machines.
[23] The drive method according to [22], wherein the controllable, speed-adjustable power machine is an electric motor or an internal combustion engine.
[24] A parallel gear (8) is installed on the rotating internal toothed ring (5), and an internal ring gear (9) driven by the second power source (2) meshes with the parallel gear (8). Accordingly, the driving method according to [18], wherein the rotating internal tooth ring (4) is driven.
[25] A sun gear front gear (10) is installed on the input shaft (14), and the input shaft gear (15) driven by the first power source (1) meshes with the sun gear front gear (10). The driving method according to [18], wherein the sun gear (3) is driven.
Claims (10)
前記デュアル動力源は、前記太陽歯車(3)に接続される入力軸(14)を含み、前記入力軸(14)によって前記太陽歯車(3)をそれ自体の回転軸線に対して第1方向において回転するように駆動するように配置され、
前記デュアル動力源は、前記回転内歯リング(4)に接続されるとともに、前記回転内歯リング(4)をそれ自体の回転軸線に対して前記第1方向と反対になる第2方向において回転するように駆動し、この際に、前記遊星歯車(5)はそれ自体の回転軸線に対して前記第2方向において回転し、
前記遊星歯車(5)が前記入力軸(14)周りの回転運動方向は前記回転内歯リング(4)のピッチ運動の線速度V1と前記太陽歯車(3)のピッチ運動の線速度V2によって決められ、
前記デュアル動力源は、第1動力源(1)と第2動力源(2)を含み、
前記第1動力源(1)は、前記入力軸(14)によって前記太陽歯車(3)を駆動するように配置され、
前記第2動力源(2)は、前記回転内歯リング(4)を駆動するように配置され、
前記第1動力源(1)と前記第2動力源(2)は、前記遊星歯車アセンブリの同じ側に設置され、
前記回転内歯リング(4)に平行歯車(8)が設置され、前記回転内歯リング(4)の歯面(16)と前記平行歯車(8)とが前記入力軸(14)に沿う軸方向に離れており、
前記第2動力源(2)によって駆動される内歯リング駆動歯車(9)が前記平行歯車(8)に噛み合うことよって、前記回転内歯リング(4)が駆動され、
前記入力軸(14)に太陽歯車前歯車(10)が設置され、
前記第1動力源(1)によって駆動される太陽歯車駆動歯車(15)が前記太陽歯車前歯車(10)に噛み合うことよって、前記太陽歯車(3)が駆動され、前記太陽歯車(3)が前記入力軸(14)のみを介して前記太陽歯車前歯車(10)に接続され、
前記太陽歯車(3)と前記太陽歯車前歯車(10)がぞれぞれ前記入力軸(14)の軸方向に沿って前記平行歯車(8)の両側に配置され、
前記入力軸(14)に沿う軸方向において、前記太陽歯車前歯車(10)は、前記回転内歯リング(4)と前記第1動力源(1)との間に位置し、前記回転内歯リング(4)と前記第2動力源(2)との間に位置する、
デュアル動力源を有するトランスミッション装置。 A transmission device with dual power sources, comprising a planetary gear assembly driven by said dual power sources, said planetary gear assembly including a sun gear (3), a rotating internal gear ring (4), and said sun gear ( 3) and a planetary gear (5) meshing with the rotating internal toothed ring (4),
The dual power source includes an input shaft (14) connected to the sun gear (3), the input shaft (14) driving the sun gear (3) in a first direction relative to its own axis of rotation. arranged to be driven to rotate;
The dual power source is connected to the rotating internal toothed ring (4) and rotates the rotating internal toothed ring (4) about its own axis of rotation in a second direction opposite to the first direction. the planetary gear (5) rotates in the second direction relative to its own axis of rotation;
The rotational direction of the planetary gear (5) around the input shaft (14) is determined by the linear velocity V1 of the pitch motion of the rotating internal gear ring (4) and the linear velocity V2 of the pitch motion of the sun gear (3). is,
The dual power source includes a first power source (1) and a second power source (2),
the first power source (1) is arranged to drive the sun gear (3) by the input shaft (14);
the second power source (2) is arranged to drive the rotating internal toothed ring (4);
the first power source (1) and the second power source (2) are installed on the same side of the planetary gear assembly ;
A parallel gear (8) is installed on the rotating internal toothed ring (4), and the tooth surface (16) of the rotating internal toothed ring (4) and the parallel gear (8) are aligned with an axis along the input shaft (14). away in the direction,
The internal toothed ring drive gear (9) driven by the second power source (2) meshes with the parallel gear (8), thereby driving the rotating internal toothed ring (4),
A sun gear front gear (10) is installed on the input shaft (14),
The sun gear drive gear (15) driven by the first power source (1) meshes with the sun gear front gear (10), thereby driving the sun gear (3). connected to the sun gear front gear (10) only via the input shaft (14);
The sun gear (3) and the sun gear front gear (10) are each arranged on both sides of the parallel gear (8) along the axial direction of the input shaft (14),
In the axial direction along the input shaft (14), the sun gear front gear (10) is located between the rotating internal gear ring (4) and the first power source (1), and the rotating internal gear located between the ring (4) and the second power source (2);
Transmission device with dual power sources.
前記太陽歯車(3)は前記回転内歯リング(4)に同軸設置され、
前記出力軸(7)は前記入力軸(14)に同軸設置される、請求項1に記載のデュアル動力源を有するトランスミッション装置。 The planetary gear (5) is attached to a planetary gear cage (6) in which an output shaft (7) is installed,
the sun gear (3) is coaxially installed on the rotating internal gear ring (4);
The transmission device with dual power sources according to claim 1, wherein the output shaft (7) is coaxially installed with the input shaft (14).
前記第1方向が反時計回り方向である場合に、前記第2方向が時計周り方向である、請求項2に記載のデュアル動力源を有するトランスミッション装置。 when the first direction is a clockwise direction, the second direction is a counterclockwise direction,
The transmission device with dual power sources according to claim 2, wherein when the first direction is a counterclockwise direction, the second direction is a clockwise direction.
V1<V2の場合に、前記遊星歯車(5)と前記遊星歯車ケージ(6)が当該入力軸(14)周りの回転運動方向は当該入力軸(14)の回転方向と同じであり、前記出力軸(7)自体の回転方向は当該入力軸(14)の回転方向と同じであり、前記遊星歯車(5)の歯面とそれに噛み合う前記回転内歯リング(4)の歯面との間の歯面の隙間は前記遊星歯車(5)の歯の前記一方側に保持され、
V1=V2の場合に、前記遊星歯車(5)と前記遊星歯車ケージ(6)が当該入力軸(14)周りの回転速度がゼロであり、前記出力軸(7)自体の回転速度がゼロである、請求項2または3に記載のデュアル動力源を有するトランスミッション装置。 When V1>V2, the rotational direction of the planetary gear (5) and the planetary gear cage (6) around the input shaft (14) is opposite to the rotational direction of the input shaft (14), and the output The direction of rotation of the shaft (7) itself is opposite to the direction of rotation of the input shaft (14), and the rotation direction between the tooth surface of the planetary gear (5) and the tooth surface of the rotary internal gear ring (4) that meshes with it is The gap between the tooth surfaces is located only on one side of the teeth of the planetary gear (5),
When V1<V2, the rotational direction of the planetary gear (5) and the planetary gear cage (6) around the input shaft (14) is the same as the rotational direction of the input shaft (14), and the output The rotational direction of the shaft (7) itself is the same as the rotational direction of the input shaft (14), and the rotational direction between the tooth surface of the planetary gear (5) and the tooth surface of the rotary internal gear ring (4) meshing therewith is the same as the rotation direction of the input shaft (14). A tooth surface gap is maintained on the one side of the teeth of the planetary gear (5),
When V1=V2, the rotational speed of the planetary gear (5) and the planetary gear cage (6) around the input shaft (14) is zero, and the rotational speed of the output shaft (7) itself is zero. A transmission device having a dual power source according to claim 2 or 3.
電子制御装置(11)は入力制御線路(13)によって、前記第1動力源(1)が異なる電力の時の回転数低下または不安定の誤差を処理する、請求項4に記載のデュアル動力源を有するトランスミッション装置。 the first power source (1) is a constant power output; the second power source (2) is a speed adjustable power output;
Dual power source according to claim 4, wherein the electronic control device (11) handles the error of rotational speed drop or instability when the first power source (1) is at different power by means of an input control line (13). A transmission device having a
前記電子制御装置(11)が内部プログラムまたは外部命令の処理で、前記リアルタイムデータ採集線路(12)によって前記第2動力源(2)の動力出力を制御して調整し、前記出力軸(7)を作業状況で必要なさまざまな速度に達せる、請求項5に記載のデュアル動力源を有するトランスミッション装置。 When the second power source (2) rolls with the rotating internal tooth ring (4), the rotating internal tooth ring (4) is controlled by a real-time data acquisition line (12) connected to the second power source (2). (4) the motion data is transmitted to the electronic control device (11);
The electronic control unit (11) controls and adjusts the power output of the second power source (2) through the real-time data acquisition line (12) by processing an internal program or an external command, and controls the power output of the second power source (2) by processing the output shaft (7). 6. The transmission device with dual power sources according to claim 5 , wherein the transmission device is capable of reaching various speeds required in the working situation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023048213A JP7651131B2 (en) | 2017-08-24 | 2023-03-24 | Transmission device, electric vehicle including said device and method for driving said device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/098837 WO2019037030A1 (en) | 2017-08-24 | 2017-08-24 | TRANSMISSION DEVICE, ELECTRIC VEHICLE COMPRISING DEVICE AND DEVICE DRIVING METHOD |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023048213A Division JP7651131B2 (en) | 2017-08-24 | 2023-03-24 | Transmission device, electric vehicle including said device and method for driving said device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020531772A JP2020531772A (en) | 2020-11-05 |
JP7371869B2 true JP7371869B2 (en) | 2023-10-31 |
Family
ID=65438580
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020531800A Active JP7371869B2 (en) | 2017-08-24 | 2017-08-24 | Transmission device, electric vehicle including the device, and method for driving the device |
JP2023048213A Active JP7651131B2 (en) | 2017-08-24 | 2023-03-24 | Transmission device, electric vehicle including said device and method for driving said device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023048213A Active JP7651131B2 (en) | 2017-08-24 | 2023-03-24 | Transmission device, electric vehicle including said device and method for driving said device |
Country Status (5)
Country | Link |
---|---|
US (3) | US20210262551A1 (en) |
EP (1) | EP3666571A4 (en) |
JP (2) | JP7371869B2 (en) |
KR (2) | KR20220003160A (en) |
WO (1) | WO2019037030A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102333212B1 (en) * | 2020-06-01 | 2021-11-30 | 이길석 | Vehicle transmission system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105150819A (en) | 2015-09-10 | 2015-12-16 | 福建万润新能源科技有限公司 | Dual-motor power device for electric vehicle |
JP7135701B2 (en) | 2018-10-16 | 2022-09-13 | 東洋紡株式会社 | Polyester sealant film |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5195600A (en) * | 1991-07-11 | 1993-03-23 | General Electric Company | Electric drive system for track-laying vehicles |
US5295925A (en) * | 1991-11-22 | 1994-03-22 | Harmonic Drive Systems, Inc. | Planetary gear transmission |
JP3291871B2 (en) * | 1993-11-10 | 2002-06-17 | 株式会社エクォス・リサーチ | Hybrid vehicle |
JPH08298748A (en) * | 1995-04-25 | 1996-11-12 | Shigeto Suzuki | Motor apparatus |
US7465251B2 (en) * | 2004-07-10 | 2008-12-16 | Lingling Zhang | Hybrid electric vehicle |
JP2006132595A (en) * | 2004-11-02 | 2006-05-25 | Nissan Motor Co Ltd | Vehicle automatic transmission |
KR20090064220A (en) | 2007-12-15 | 2009-06-18 | 현대자동차주식회사 | Vehicle Reduction Device and Electronic Parking Brake and Electronic Motor Brake |
CN101265961A (en) * | 2008-04-16 | 2008-09-17 | 大连橡胶塑料机械股份有限公司 | Large-sized squeezing granulation units main reducing gear infinite speed-changing device |
US8142318B2 (en) * | 2008-08-13 | 2012-03-27 | Palmer Denis L | Apparatus, system, and method for a variable ratio transmission |
DE102009036992A1 (en) * | 2009-08-12 | 2011-02-17 | Benteler Automobiltechnik Gmbh | Drive for a vehicle and method for driving a vehicle |
US8414438B2 (en) * | 2009-11-12 | 2013-04-09 | Magna Powertrain, Inc. | Variable ratio epicyclic gear drives |
CN102133856A (en) * | 2010-01-25 | 2011-07-27 | 北京理工大学 | Dual-motor rotating speed coupling drive assembly |
JP5212756B2 (en) * | 2010-12-27 | 2013-06-19 | 株式会社デンソー | Vehicle power output device and vehicle |
US9162571B2 (en) | 2010-12-30 | 2015-10-20 | Volvo Trucks AB | Dual drive arrangement for the drive of a vehicle hydraulic pump and method of controlling the same |
FR3005607B1 (en) * | 2013-05-16 | 2016-11-18 | Technoboost | HYDRAULIC HYBRID VEHICLE TRANSMISSION HAVING A PLANETARY TRAIN CONNECTED TO A PUMP BY A SPEED REDUCER |
CN103754099A (en) * | 2014-01-13 | 2014-04-30 | 北京理工大学 | Double-motor multi-mode dynamic coupling driving assembly |
CN105034782B (en) * | 2015-09-10 | 2018-09-14 | 福建万润新能源科技有限公司 | A kind of electric vehicle multi-mode dynamical system |
US20170151875A1 (en) * | 2015-11-30 | 2017-06-01 | Faraday&Future Inc. | Detecting position measurement errors in an electric motor system |
EP3420248A1 (en) | 2015-12-22 | 2019-01-02 | Robert Bosch GmbH | A transmission system for a vehicle |
CN106015499A (en) * | 2016-07-07 | 2016-10-12 | 洛阳天迈传动科技有限公司 | Dual-motor driven infinitely variable transmission |
CN206938435U (en) * | 2017-03-30 | 2018-01-30 | 上海尊阶士工程技术有限公司 | A kind of dynamical system hybrid power, pure electric transmission machanism |
-
2017
- 2017-08-24 JP JP2020531800A patent/JP7371869B2/en active Active
- 2017-08-24 WO PCT/CN2017/098837 patent/WO2019037030A1/en active Search and Examination
- 2017-08-24 KR KR1020217043132A patent/KR20220003160A/en not_active Ceased
- 2017-08-24 KR KR1020207008402A patent/KR20200041369A/en not_active Ceased
- 2017-08-24 US US16/641,627 patent/US20210262551A1/en not_active Abandoned
- 2017-08-24 EP EP17922906.7A patent/EP3666571A4/en active Pending
-
2021
- 2021-04-28 US US17/243,569 patent/US20210246970A1/en not_active Abandoned
- 2021-07-29 US US17/389,328 patent/US11598392B2/en active Active
-
2023
- 2023-03-24 JP JP2023048213A patent/JP7651131B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105150819A (en) | 2015-09-10 | 2015-12-16 | 福建万润新能源科技有限公司 | Dual-motor power device for electric vehicle |
JP7135701B2 (en) | 2018-10-16 | 2022-09-13 | 東洋紡株式会社 | Polyester sealant film |
Also Published As
Publication number | Publication date |
---|---|
KR20200041369A (en) | 2020-04-21 |
EP3666571A1 (en) | 2020-06-17 |
JP2020531772A (en) | 2020-11-05 |
US20210262551A1 (en) | 2021-08-26 |
JP7651131B2 (en) | 2025-03-26 |
KR20220003160A (en) | 2022-01-07 |
US11598392B2 (en) | 2023-03-07 |
JP2023089013A (en) | 2023-06-27 |
EP3666571A4 (en) | 2021-08-18 |
US20210246970A1 (en) | 2021-08-12 |
WO2019037030A1 (en) | 2019-02-28 |
US20210356019A1 (en) | 2021-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2618023A2 (en) | Epicyclic gear system using two input characteristics, gear module including same, and method for controlling same | |
US9447830B2 (en) | Electric brake actuator for vehicles | |
JP2011038637A (en) | Drive unit for vehicle and drive method of vehicle | |
KR101757317B1 (en) | In-wheel working device | |
JP7651131B2 (en) | Transmission device, electric vehicle including said device and method for driving said device | |
JP5979568B1 (en) | Processing equipment | |
KR20150004108A (en) | Second Stage Driving Apparatus For Reducing Speed Of Hybrid And Electricity Car | |
CN101213388A (en) | Transistor type general drive | |
CN109826912B (en) | Transmission device, electric vehicle comprising the device and method for driving the device | |
CN112664637A (en) | Vehicle drive device | |
WO2020122850A1 (en) | Hybrid reducer system | |
JP6170321B2 (en) | Excavator | |
KR20130103982A (en) | Decelerate of worm with control of back-lash | |
DE102008052546A1 (en) | Geared motor, transmission system and method of operating a system | |
JP5728792B2 (en) | Gear mechanism | |
CN210859707U (en) | Novel planetary reducer | |
JP2010174926A (en) | Differential gear device | |
CN207814350U (en) | A kind of intelligent robot reducer structure | |
CN104806705A (en) | Gear reducer | |
JP2009014025A (en) | Device with screw rod slid and moved | |
CN209762153U (en) | Dual-power transmission with CVT (continuously variable transmission) | |
KR101175054B1 (en) | Planetary gear decelerator | |
KR101293294B1 (en) | Power train for hybrid vehicle | |
US11440181B2 (en) | Planetary gear train, gearbox and industrial robot | |
KR20140056361A (en) | Drive with transmission system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200408 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210422 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210518 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210831 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210831 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20211007 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20211012 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20211105 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20211109 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220201 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220628 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20220927 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20221011 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20221227 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20230203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230324 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20230411 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231011 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7371869 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |