[go: up one dir, main page]

JP7365120B2 - stationary induction equipment - Google Patents

stationary induction equipment Download PDF

Info

Publication number
JP7365120B2
JP7365120B2 JP2019006330A JP2019006330A JP7365120B2 JP 7365120 B2 JP7365120 B2 JP 7365120B2 JP 2019006330 A JP2019006330 A JP 2019006330A JP 2019006330 A JP2019006330 A JP 2019006330A JP 7365120 B2 JP7365120 B2 JP 7365120B2
Authority
JP
Japan
Prior art keywords
core
iron core
induction device
stationary induction
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019006330A
Other languages
Japanese (ja)
Other versions
JP2020115518A (en
Inventor
直幸 栗田
純一 五百川
諒介 御子柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2019006330A priority Critical patent/JP7365120B2/en
Priority to PCT/JP2019/037214 priority patent/WO2020148942A1/en
Publication of JP2020115518A publication Critical patent/JP2020115518A/en
Application granted granted Critical
Publication of JP7365120B2 publication Critical patent/JP7365120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulating Of Coils (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

本発明は、変圧器、およびリアクトル等の静止誘導機器に関する。 The present invention relates to stationary induction equipment such as transformers and reactors.

鉄損を低減する静止誘導機器については、特許文献1が知られている。特許文献1には、「長さの異なる電磁鋼板を積層した磁性材6を三相巻鉄心1の継鉄部に配しているので、三相巻鉄心1の脚部から継鉄部に流れた磁束は三相巻鉄心1だけではなく磁性材6にも流れ、継鉄部において磁束密度が低減され、磁性材6が無い場合と比べて鉄損および騒音が低減される。」ことが記載されている。 Regarding stationary induction equipment that reduces iron loss, Patent Document 1 is known. Patent Document 1 states, ``Since the magnetic material 6 made of laminated electromagnetic steel plates of different lengths is arranged in the yoke part of the three-phase wound core 1, the flow from the leg part of the three-phase wound core 1 to the yoke part is prevented. The magnetic flux flows not only through the three-phase wound core 1 but also through the magnetic material 6, reducing the magnetic flux density at the yoke and reducing iron loss and noise compared to the case without the magnetic material 6.'' has been done.

特開2002-208518号公報Japanese Patent Application Publication No. 2002-208518

特許文献1で開示されているように、三相三脚型巻鉄心を持つ静止誘導機器のヨーク鉄心部分に薄帯状磁性材料を追加することでヨーク鉄心の断面積が増加するので、磁束密度が低減され、静止誘導機器の鉄損を低減させることができる。 As disclosed in Patent Document 1, adding a ribbon-like magnetic material to the yoke core of a stationary induction device with a three-phase tripod wound core increases the cross-sectional area of the yoke core, thereby reducing magnetic flux density. This allows the iron loss of stationary induction equipment to be reduced.

しかしながら、巻鉄心と追加する薄帯状磁性材料間の磁気抵抗が大きいため、巻鉄心から薄帯状磁性材料間に流れる磁束量が小さく、ヨーク鉄心の断面積の増加の効果が限定的であり、鉄損の低減が不十分となる課題がある。 However, because the magnetic resistance between the wound core and the added ribbon-shaped magnetic material is large, the amount of magnetic flux flowing between the wound core and the ribbon-shaped magnetic material is small, and the effect of increasing the cross-sectional area of the yoke core is limited. There is an issue where loss reduction is insufficient.

本発明の目的は、鉄損を低減する鉄心を備えた静止誘導機器を提供することにある。 An object of the present invention is to provide a stationary induction device with an iron core that reduces iron loss.

本発明の好ましい一例としては、薄帯状磁性材料を巻回して成形した2つの内側巻鉄心と前記内側巻鉄心を覆うように外周に配置される1つの外側巻鉄心を含む三相三脚型巻鉄心である第一の鉄心と、前記第一の鉄心の3本の磁脚に巻回されたコイルと、板状磁性体部材が積層された前記第一の鉄心と対向する第一の面と、前記コイルの上面と対向する第二の面とを有するコイルが巻かれていない第二の鉄心と、を有し、前記板状磁性体部材は、前記内側巻鉄心と外側巻鉄心の周方向に向かって積層されることを特徴とする静止誘導機器である。
As a preferred example of the present invention, a three-phase three-legged wound core includes two inner wound cores formed by winding a ribbon-shaped magnetic material and one outer wound core disposed on the outer periphery so as to cover the inner wound core. a first iron core, a coil wound around three magnetic legs of the first iron core, and a first surface facing the first iron core on which plate-shaped magnetic members are laminated; a second core on which no coil is wound and has a second surface opposite to the upper surface of the coil, and the plate-shaped magnetic member extends in the circumferential direction of the inner-wound core and the outer-wound core. This is a stationary guidance device characterized by being stacked toward each other .

本発明により、鉄損を低減した静止誘導機器を実現できる。 According to the present invention, a stationary induction device with reduced iron loss can be realized.

実施例1の三相三脚型変圧器の全体図と縦断面図。1 is an overall view and a vertical cross-sectional view of a three-phase tripod type transformer of Example 1. FIG. 実施例1の三相三脚型変圧器の鉄心と補助鉄心の構造図。1 is a structural diagram of an iron core and an auxiliary iron core of a three-phase tripod type transformer of Example 1. FIG. 実施例1の補助鉄心と巻鉄心の接続部の断面図。FIG. 3 is a cross-sectional view of a connecting portion between an auxiliary core and a wound core in Example 1. 三相三脚型変圧器の鉄心の正面図と側面図。Front and side views of the core of a three-phase tripod transformer. 2種類の補助鉄心の構造の比較図。A comparison diagram of the structures of two types of auxiliary cores. 2種類の補助鉄心表面の磁束密度振幅の分布の比較。Comparison of the distribution of magnetic flux density amplitude on the surface of two types of auxiliary cores. 三相三脚型変圧器の鉄損値の相対比較。Relative comparison of iron loss values of three-phase tripod transformers. 実施例2を説明するための三相三脚型変圧器の縦断面図。FIG. 7 is a vertical cross-sectional view of a three-phase tripod transformer for explaining Example 2. 実施例3の全体図と縦断面図。An overall view and a vertical cross-sectional view of Example 3. 実施例3の鉄心と補助鉄心の構造図。FIG. 3 is a structural diagram of an iron core and an auxiliary iron core in Example 3. 実施例4の補助鉄心の構造図と三相三脚型鉄心ヨーク部の正面図。FIG. 4 is a structural diagram of an auxiliary core and a front view of a three-phase three-legged core yoke portion of Example 4. 実施例5における三相三脚型変圧器の上部ヨーク部の正面図と背面図。FIG. 7 is a front view and a rear view of an upper yoke portion of a three-phase tripod type transformer in Example 5. 比較例としての三相三脚型変圧器の全体図。An overall diagram of a three-phase tripod type transformer as a comparative example. 実施例1の鉄心各部の寸法を記載した表1を示す図。FIG. 2 is a diagram showing Table 1 listing dimensions of each part of the iron core in Example 1.

以下、本発明の複数の実施例を、図面を用いて詳細に説明する。 Hereinafter, a plurality of embodiments of the present invention will be described in detail using the drawings.

図1から図7は、実施例1を説明するための図である。まず、本実施例の構成とその作用について、図13に示した比較例と比較しながら説明する。図13は、本発明の補助鉄心10を有さない比較例としての三相三脚型変圧器を示す図である。 1 to 7 are diagrams for explaining the first embodiment. First, the configuration and operation of this embodiment will be explained while comparing it with the comparative example shown in FIG. 13. FIG. 13 is a diagram showing a three-phase tripod type transformer as a comparative example that does not have the auxiliary core 10 of the present invention.

図1は、本実施例であり、変圧器やリアクトル等の静止誘導機器の一例である三相三脚型変圧器の全体図、ならびに図1のAで示した面における縦断面図である。変圧器の幅をX軸方向、奥行きをY軸方向、高さをZ軸方向に示す。 FIG. 1 is an overall view of a three-phase tripod type transformer according to the present embodiment, which is an example of stationary induction equipment such as a transformer or a reactor, and a longitudinal sectional view taken along the plane indicated by A in FIG. 1. The width of the transformer is shown in the X-axis direction, the depth in the Y-axis direction, and the height in the Z-axis direction.

珪素鋼板やアモルファス金属薄帯に代表される薄帯状磁性材料を巻回して成形した2個の内側巻鉄心1aと、2個の内側巻鉄心1aを覆うように外周に配置される1個の外側巻鉄心1bを示す。これらの内側巻鉄心1aと外側巻鉄心1bをまとめて第一の鉄心と呼ぶ。 Two inner-wound cores 1a formed by winding ribbon-shaped magnetic materials such as silicon steel plates or amorphous metal ribbons, and one outer core arranged around the outer periphery so as to cover the two inner-wound cores 1a. A wound core 1b is shown. These inner-wound core 1a and outer-wound core 1b are collectively referred to as a first core.

また、三相三脚型巻鉄心と、鉄心の3本の磁脚に巻回した、3個の低圧側のコイルを構成する低圧巻線2aと、3個の高圧側のコイルを構成する高圧巻線2bとが示される。 In addition, a three-phase tripod-type wound core, a low voltage winding 2a that constitutes three low voltage side coils, which are wound around the three magnetic legs of the iron core, and a high voltage winding that constitutes three high voltage side coils. line 2b is shown.

これに対して本実施例では、三相三脚型変圧器の上下の、コイルを巻かれていない鉄心の一部であるヨーク部の側面に、4個の直方体状に示す第二の鉄心10(補助鉄心10)を密着させて固定させる。以降、本明細書においては、第二の鉄心を単に補助鉄心10と称して説明する。 In contrast, in this embodiment, four rectangular parallelepiped-shaped second cores 10 ( The auxiliary core 10) is brought into close contact and fixed. Hereinafter, in this specification, the second core will be simply referred to as the auxiliary core 10.

三相三脚型変圧器の鉄心と巻線は、上下に備えた上部側の固定金具3a、および下部側の固定金具3bを、スタッドボルト等(図示せず)で連結して、固定力6aを発生させて各部材を把持する。 The iron core and winding of a three-phase tripod transformer are connected to upper and lower fixing fittings 3a and lower fixing fittings 3b using stud bolts or the like (not shown) to provide a fixing force 6a. generate and grasp each member.

固定金具3a、3bの断面はコの字型となっており、側面の一部に窓31を備える。この窓31から、板状に成形された絶縁部材である絶縁紙、プレスボード等の板状絶縁部材51を挿入し、補助鉄心10を三相三脚型巻鉄心のヨーク部に押し付ける力を発生させて、窓31側から補助鉄心10を固定する。固定金具3aのZ軸方向に延びる面は、固定金具3aのY軸方向に延びる面に接続される根元部分よりも先端部分が外側巻鉄心1bに近づくように傾斜させるとよい。 The fixing fittings 3a, 3b have a U-shaped cross section and are provided with a window 31 in a part of the side surface. A plate-shaped insulating member 51 such as insulating paper or press board, which is a plate-shaped insulating member, is inserted through this window 31 to generate a force that presses the auxiliary core 10 against the yoke portion of the three-phase tripod-type wound core. Then, fix the auxiliary core 10 from the window 31 side. The surface of the fixture 3a extending in the Z-axis direction may be inclined so that the tip portion thereof is closer to the outer wound core 1b than the root portion connected to the surface of the fixture 3a extending in the Y-axis direction.

つまり、根元部分と先端部同士の奥行き方向の距離の関係は、根元部分の奥行き方向の距離≧外側巻鉄心1bの奥行きの距離と2つの板状絶縁部材51の奥行きの距離の総和>先端部同士の距離とするとよい。この関係により根元部分は絶縁部材5を挟み込むことができ、先端部は補助鉄心10と板状絶縁部材51の保持力を向上させることができる。なお、固定金具3a、3bに窓31を設けない場合は板状絶縁部材51を挿入した後に固定金具3a、3bを取り付けるとよい。 In other words, the relationship in the depth direction between the root portion and the tip portion is that the distance in the depth direction of the root portion≧the sum of the depth distance of the outer wound core 1b and the depth distance of the two plate-shaped insulating members 51>the tip portion It is best to set the distance between them. Due to this relationship, the base portion can sandwich the insulating member 5, and the tip portion can improve the holding force between the auxiliary core 10 and the plate-shaped insulating member 51. In addition, when the window 31 is not provided in the fixing metal fittings 3a, 3b, it is preferable to attach the fixing metal fittings 3a, 3b after inserting the plate-shaped insulating member 51.

絶縁部材5の配置について説明する。補助鉄心10の固定金具3a側の面である上面側の面に接触するよう1つ目の絶縁部材5を、固定金具3b側のである下面側の面に接触するよう2つ目の絶縁部材5を配置する。すなわち、2つ目の絶縁部材5は、低圧巻線2aの上端部の面に接触し、補助鉄心10の底面に接触するよう絶縁部材5を配置することで、補助鉄心10の上下方向の位置を固定できる。また、補助鉄心10の側面部は板状絶縁部材51と固定金具3aの窓31よりも低い位置の金具部分によって押さえつけられるため、振動が生じても補助鉄心10は脱落しにくくなる。 The arrangement of the insulating member 5 will be explained. The first insulating member 5 is placed in contact with the upper surface of the auxiliary iron core 10, which is the surface on the fixture 3a side, and the second insulating member 5 is brought into contact with the bottom surface, which is the fixture 3b side. Place. That is, by arranging the second insulating member 5 so as to contact the upper end surface of the low-voltage winding 2a and to contact the bottom surface of the auxiliary core 10, the position of the auxiliary core 10 in the vertical direction can be adjusted. can be fixed. Further, since the side surface of the auxiliary core 10 is pressed down by the plate-shaped insulating member 51 and the metal part of the fixture 3a located lower than the window 31, the auxiliary core 10 is difficult to fall off even if vibration occurs.

図2は、本実施例における三相三脚型変圧器の巻鉄心のみを示した全体図と、補助鉄心10の構造図である。図1同様に、変圧器の幅をX軸方向、奥行きをY軸方向、高さをZ軸方向に示す。X軸方向に2つ並べられた内側巻鉄心1aの外周を覆うように外側巻鉄心1bが配置されており、ヨーク部に補助鉄心10が配置されている。 FIG. 2 is an overall view showing only the wound core of the three-phase tripod type transformer in this embodiment, and a structural diagram of the auxiliary core 10. Similarly to FIG. 1, the width of the transformer is shown in the X-axis direction, the depth in the Y-axis direction, and the height in the Z-axis direction. An outer wound core 1b is arranged to cover the outer periphery of two inner wound cores 1a arranged in the X-axis direction, and an auxiliary iron core 10 is arranged in the yoke portion.

第二の鉄心である補助鉄心10は、矩形に切り出した板状磁性体部材11が積層されている。矢印10aは補助鉄心10の板状磁性体部材11を積層する方向を示す。変圧器の幅であるX軸方向に積層されている。すなわち、窓部を挟み込むように巻鉄心の磁脚の長手方向に対して略直交する方向(直交方向を含む)に積層し、固定テープ12を巻回して直方体状に固定する。また、補助鉄心10は、三相三脚型巻鉄心のヨーク部において、内側巻鉄心1aと、外側巻鉄心1bの双方の側面に接して固定する。 The auxiliary core 10, which is the second core, has plate-shaped magnetic members 11 cut out into rectangular shapes stacked together. The arrow 10a indicates the direction in which the plate-shaped magnetic members 11 of the auxiliary core 10 are laminated. They are stacked in the X-axis direction, which is the width of the transformer. That is, they are laminated in a direction substantially perpendicular (including the orthogonal direction) to the longitudinal direction of the magnetic legs of the wound core so as to sandwich the window portion, and fixed in a rectangular parallelepiped shape by winding the fixing tape 12. Further, the auxiliary core 10 is fixed in the yoke part of the three-phase three-legged core in contact with both side surfaces of the inner core 1a and the outer core 1b.

図3は、本実施例における三相三脚型変圧器の内側巻鉄心1a、および外側巻鉄心1bと、補助鉄心10との接続部の詳細を示す断面図である。補助鉄心10の外周は固定テープ12が巻回されているので、内側巻鉄心1aと外側巻鉄心1bの薄帯状磁性材料の積層面との間には、絶縁部材で構成された固定テープ12の厚さGに相当する間隙が設けられる。Gは、補助鉄心10と内側巻鉄心1aと外側巻鉄心1bとの間の間隙であり、間隙は無いと、内側巻鉄心1aと外側巻鉄心1bとので渦電流が生じるので、所定の間隙が必要である。 FIG. 3 is a cross-sectional view showing details of the connection portion between the inner-wound core 1a and the outer-wound core 1b and the auxiliary core 10 of the three-phase tripod type transformer in this embodiment. Since the fixing tape 12 is wound around the outer circumference of the auxiliary core 10, the fixing tape 12 made of an insulating material is placed between the laminated surfaces of the thin strip magnetic material of the inner wound core 1a and the outer wound core 1b. A gap corresponding to the thickness G is provided. G is a gap between the auxiliary core 10, the inner-wound core 1a, and the outer-wound core 1b; if there is no gap, an eddy current will be generated between the inner-wound core 1a and the outer-wound core 1b, so if the predetermined gap is is necessary.

補助鉄心10は、固定金具3aの内側に配置される。固定金具3aのY軸方向に延び外側巻鉄心1bと対向する面と絶縁部材5の上面とは接触し、1つ目の絶縁部材5の下面と補助鉄心10の上面が接触することで、補助鉄心10の上部側が固定される。補助鉄心10の下面は、コイルを構成する低圧巻線2aの上に配置された絶縁部材5の上部の面と接触することで、補助鉄心10の下方側が固定される。よって、補助鉄心10全体が保持される。 The auxiliary core 10 is arranged inside the fixture 3a. The surface of the fixture 3a that extends in the Y-axis direction and faces the outer wound core 1b is in contact with the top surface of the insulating member 5, and the bottom surface of the first insulating member 5 is in contact with the top surface of the auxiliary core 10. The upper side of the iron core 10 is fixed. The lower side of the auxiliary core 10 is fixed by contacting the upper surface of the insulating member 5 disposed on the low-voltage winding 2a constituting the coil. Therefore, the entire auxiliary core 10 is held.

図1に示す6bは、図1に示した板状絶縁部材51により発生させた固定力を模擬した矢印であり、補助鉄心10は、変圧器の奥行き方向(図1に示すY軸方向)に固定されるとともに、補助鉄心10を高さ方向(Z軸方向)に挟み込む2つの絶縁部材5により、高さ方向にも固定される。 6b shown in FIG. 1 is an arrow simulating the fixing force generated by the plate-shaped insulating member 51 shown in FIG. It is fixed and also fixed in the height direction by the two insulating members 5 that sandwich the auxiliary core 10 in the height direction (Z-axis direction).

補助鉄心10は、固定金具3aの側面に設けた窓31の位置に対応する位置に配置されている。つまり、補助鉄心10は、内側巻鉄心1aのヨークと外側巻鉄心1bのヨークとの境界を越えるように配置されており、また、窓31から見て、内側巻鉄心1aのヨークと外側巻鉄心1bのヨークを跨ぐような位置に配置される。このように補助鉄心10を配置することで、磁路から漏れる磁束を留めることができる。 The auxiliary core 10 is arranged at a position corresponding to the position of the window 31 provided on the side surface of the fixture 3a. That is, the auxiliary core 10 is arranged so as to cross the boundary between the yoke of the inner-wound core 1a and the yoke of the outer-wound core 1b, and when viewed from the window 31, the yoke of the inner-wound core 1a and the outer-wound core It is placed at a position that straddles the yoke of 1b. By arranging the auxiliary core 10 in this manner, magnetic flux leaking from the magnetic path can be stopped.

次に、図4から図7を用いて、本実施例による三相三脚型変圧器の鉄損の低減効果を、三次元有限要素法による電磁界解析の計算結果を用いて説明する。 Next, with reference to FIGS. 4 to 7, the effect of reducing iron loss in the three-phase tripod type transformer according to this embodiment will be explained using calculation results of electromagnetic field analysis using the three-dimensional finite element method.

図4は、方向性珪素鋼板により構成した内側巻鉄心1a、外側巻鉄心1bと、補助鉄心10を有する三相三脚型変圧器用鉄心の寸法図である。左側は、正面図をXZ軸で示しで、右側は、側面図をYZ軸で示す。 FIG. 4 is a dimensional drawing of a three-phase three-legged transformer core having an inner-wound core 1a, an outer-wound core 1b, and an auxiliary core 10, which are made of grain-oriented silicon steel plates. The left side shows the front view along the XZ axis, and the right side shows the side view along the YZ axis.

巻鉄心の積層方向の厚さaを基準としたとき、鉄心各部の寸法は、図14の表1に示す通りである。表1の各部の定義は、次のとおりである。 When the thickness a of the wound core in the stacking direction is taken as a reference, the dimensions of each part of the core are as shown in Table 1 of FIG. 14. The definitions of each part in Table 1 are as follows.

巻鉄心の積層方向の厚さaは、内側巻鉄心1aと外側巻鉄心1bの薄帯状磁性材料を積層した方向の厚さ、W1は外側巻鉄心1bの外側の幅、W2は内側巻鉄心1aの内側の幅、W3は内側巻鉄心1aおよび外側巻鉄心1bの厚さ、H1は外側巻鉄心1bの外側の高さ、H2は内側巻鉄心1aの内側の高さ、Sは巻鉄心外周部の段差、Wは補助鉄心10の水平方向の長さ、Hは補助鉄心10の鉛直方向の長さ、Dは補助鉄心10を構成する板状磁性体部材の短い方の辺の長さ、Gは補助鉄心10と内側巻鉄心1aと外側巻鉄心1bとの間の間隙を示す。 The thickness a in the lamination direction of the wound core is the thickness in the direction in which the thin strip magnetic materials of the inner wound core 1a and the outer wound core 1b are laminated, W1 is the outer width of the outer wound core 1b, and W2 is the thickness of the inner wound core 1a. , W3 is the thickness of the inner-wound core 1a and the outer-wound core 1b, H1 is the outer height of the outer-wound core 1b, H2 is the inner height of the inner-wound core 1a, and S is the outer periphery of the wound core. , W is the horizontal length of the auxiliary core 10 , H is the vertical length of the auxiliary core 10 , D is the length of the shorter side of the plate-shaped magnetic member that constitutes the auxiliary core 10 , and G indicates a gap between the auxiliary core 10, the inner core 1a, and the outer core 1b.

電磁界解析においては、厚さ0.23mmの方向性珪素鋼板((株)新日鐵住金製23ZH85)の磁化曲線と鉄損特性を定義し、鉄心の占積率は0.97とした。三相の磁脚に所望の磁束密度を発生させるための巻線モデルを追加して、ここに50Hzの正弦波電圧を印加し、鉄心の磁束密度振幅を1.70Tとした際に、巻鉄心、および補助鉄心内の磁束密度分布と、鉄損の合計値を計算した。 In the electromagnetic field analysis, the magnetization curve and iron loss characteristics of a grain-oriented silicon steel plate (23ZH85, manufactured by Nippon Steel & Sumitomo Metal Corporation) with a thickness of 0.23 mm were defined, and the space factor of the iron core was assumed to be 0.97. Adding a winding model to generate the desired magnetic flux density in the three-phase magnetic legs, applying a 50 Hz sine wave voltage thereto and setting the magnetic flux density amplitude of the core to 1.70 T, the winding core , the magnetic flux density distribution in the auxiliary core, and the total iron loss were calculated.

図5に示すように、本解析では補助鉄心10を構成する方向性珪素鋼板の積層方向10aを、(a)に示す実施例1で説明したと同様に変圧器の幅方向であるY軸方向に積層した場合の補助鉄心10と、特許文献1にて開示されている、(b)に示す鉛直方向であるZ軸方向に積層した場合の補助鉄心10nとの鉄損値を比較した。 As shown in FIG. 5, in this analysis, the lamination direction 10a of grain-oriented silicon steel plates constituting the auxiliary core 10 is set in the Y-axis direction, which is the width direction of the transformer, in the same way as described in Example 1 shown in (a). The iron loss value was compared between the auxiliary core 10 when stacked in the auxiliary core 10 and the auxiliary core 10n disclosed in Patent Document 1 when stacked in the Z-axis direction, which is the vertical direction shown in (b).

実施例1は、補助鉄心10を構成する板状磁性体は、内側巻鉄心1aと外側巻鉄心1bのヨーク部と対向する第一の面と、コイルの上面と対向する第二の面と、第一の面と前記第二の面との間に、第三の面および、第一の鉄心である内側巻鉄心1aと外側巻鉄心1bの上部側に第四の面とを有する。また、板状磁性体は、内側巻鉄心1aと外側巻鉄心1bの周方向に向かって積層されることで補助鉄心10を構成する。補助鉄心10は、他の部材を有してもよいが、主要部材は板状磁性体であることを意味する。ここで、周方向は、内側巻鉄心1aと外側巻鉄心1bの外周もしくは内周の方向である。 In the first embodiment, the plate-shaped magnetic body constituting the auxiliary core 10 has a first surface facing the yoke parts of the inner-wound core 1a and the outer-wound core 1b, and a second surface facing the upper surface of the coil. A third surface is provided between the first surface and the second surface, and a fourth surface is provided on the upper side of the inner-wound core 1a and the outer-wound core 1b, which are the first cores. Further, the plate-shaped magnetic body constitutes the auxiliary core 10 by being laminated toward the circumferential direction of the inner-wound core 1a and the outer-wound core 1b. Although the auxiliary core 10 may include other members, it means that the main member is a plate-shaped magnetic body. Here, the circumferential direction is the direction of the outer periphery or inner periphery of the inner wound core 1a and the outer wound core 1b.

図6は、巻鉄心に備えた補助鉄心10の表面の磁束密度振幅の分布の計算結果を示す。(a)は補助鉄心10の板状磁性体部材11の積層方向10aを水平方向(X軸方向)とした場合、(b)は鉛直方向とした場合である。(a)積層方向10aが水平方向(X軸方向)の場合、内側巻鉄心1aと外側巻鉄心1bの間の磁束が補助鉄心10を経由して流れる。これに対して、(b)積層方向10aが鉛直方向(Z軸方向)の場合は、内側巻鉄心1aと外側巻鉄心1bの間に磁束はほとんど流れず、ヨーク部で隣接する2つの内側巻鉄心1a同士の間にのみ、磁束が流れる特徴が現れることがわかる。 FIG. 6 shows calculation results of the distribution of magnetic flux density amplitude on the surface of the auxiliary core 10 provided in the wound core. (a) shows the case where the stacking direction 10a of the plate-shaped magnetic material members 11 of the auxiliary core 10 is set to the horizontal direction (X-axis direction), and (b) shows the case where the stacking direction 10a is set to the vertical direction. (a) When the stacking direction 10a is the horizontal direction (X-axis direction), the magnetic flux between the inner-wound core 1a and the outer-wound core 1b flows via the auxiliary core 10. On the other hand, (b) when the stacking direction 10a is the vertical direction (Z-axis direction), almost no magnetic flux flows between the inner-wound core 1a and the outer-wound core 1b, and the two inner-wound cores adjacent to each other at the yoke part It can be seen that the magnetic flux flows only between the iron cores 1a.

つまり、本実施例の補助鉄心10は、(a)に示す積層方向10aが水平方向(X軸方向)の場合は、補助鉄心10における渦電流による鉄損を低減できる構成である。 That is, the auxiliary core 10 of this embodiment has a configuration that can reduce iron loss due to eddy current in the auxiliary core 10 when the lamination direction 10a shown in (a) is horizontal (X-axis direction).

以上の電磁界解析の結果より、内側巻鉄心1a、外側巻鉄心1bと補助鉄心10の内部で発生する鉄損の合計値の比較を図7に示す。図7では、補助鉄心10を備えていない場合に計算した巻鉄心の鉄損値を100%とし、その相対値を示している。 Based on the results of the above electromagnetic field analysis, FIG. 7 shows a comparison of the total values of iron losses occurring inside the inner-wound core 1a, the outer-wound core 1b, and the auxiliary core 10. In FIG. 7, the iron loss value of the wound core calculated when the auxiliary core 10 is not provided is set to 100%, and its relative value is shown.

図5および図6では、補助鉄心10を構成する板状磁性体部材は、長方形の主面を備え、その主面の長手方向を内側巻鉄心1aと外側巻鉄心1bに対向させた例で説明したが、板状磁性体部材11は長方形であって、短手方向を内側巻鉄心1aと外側巻鉄心1bの両鉄心に対向させた構成であってもよい。つまり、この補助鉄心は、各辺の大きさは、Y軸>Z軸、Y軸>X軸、X軸≧Z軸の関係である。また、主面は、正方形であってもよい。 In FIGS. 5 and 6, the plate-shaped magnetic member constituting the auxiliary core 10 has a rectangular main surface, and the longitudinal direction of the main surface faces the inner-wound core 1a and the outer-wound core 1b. However, the plate-shaped magnetic member 11 may have a rectangular shape, and may have a structure in which the transverse direction faces both the inner-wound core 1a and the outer-wound core 1b. That is, the size of each side of this auxiliary core is such that Y axis>Z axis, Y axis>X axis, and X axis≧Z axis. Further, the main surface may be square.

また、図5および図6では、補助鉄心10を構成する個々の板状磁性体部材11の圧延方向を、略鉛直方向に配置した例で説明したが、板状磁性体部材11の圧延方向は、略水平方向としてもよい。 Furthermore, in FIGS. 5 and 6, the rolling direction of the individual plate-shaped magnetic members 11 constituting the auxiliary core 10 was explained as being arranged in the substantially vertical direction, but the rolling direction of the plate-shaped magnetic members 11 is , it may be in a substantially horizontal direction.

実施例1の構成では、補助鉄心10の積層方向は、外側巻鉄心1bおよび内側巻鉄心1aの積層方向と直交する方向(X軸方向)である。補助鉄心10の板状磁性体部材11の積層方向を、水平方向(X軸方向)とした場合の鉄損値が、鉛直方向(Z軸方向)とした場合より小さくなり、三相三脚巻鉄心の鉄損を、より低減する効果があることがわかる。補助鉄心10の積層方向は、三相三脚型変圧器用鉄心の磁脚の長手方向に対して略直交する方向に積層する場合も、鉄損の低減効果がある。 In the configuration of Example 1, the lamination direction of the auxiliary core 10 is a direction (X-axis direction) orthogonal to the lamination direction of the outer-wound core 1b and the inner-wound core 1a. The iron loss value when the lamination direction of the plate-shaped magnetic material members 11 of the auxiliary core 10 is set in the horizontal direction (X-axis direction) is smaller than when it is set in the vertical direction (Z-axis direction), and the three-phase tripod-wound core It can be seen that this has the effect of further reducing iron loss. Even when the auxiliary core 10 is laminated in a direction substantially perpendicular to the longitudinal direction of the magnetic legs of the three-phase three-legged transformer core, iron loss can be reduced.

実施例1によれば、三相三脚型巻鉄心より構成される静止誘導機器の巻線を構成する導体の長さと筐体体積を変えずに、鉄損を低減することができ、静止誘導機器の電力効率を向上させることができる。また、三相三脚型巻鉄心のヨーク側面に備えられる補助鉄心10を固定する際、締結バンドや接着剤等が不要になるので、静止誘導機器の部品数が減少するため部品が削減できる。ひいては、当該補助鉄心10を有する変圧器の製造を通して様々な部材の使用量を減少できることにより省エネに貢献できる。 According to Example 1, it is possible to reduce iron loss without changing the length of the conductor and the volume of the casing that constitute the winding of a stationary induction device composed of a three-phase tripod-type wound core, and the stationary induction device power efficiency can be improved. Further, when fixing the auxiliary core 10 provided on the side surface of the yoke of the three-phase tripod type wound core, no fastening bands, adhesives, etc. are required, so the number of components of the stationary induction device is reduced, so the number of components can be reduced. Furthermore, by manufacturing a transformer having the auxiliary core 10, the amount of various components used can be reduced, thereby contributing to energy saving.

図2に示す例では、補助鉄心10を三相三脚型巻鉄心のヨーク部であって、正面、背面、上部、下部の4箇所に配置しているが、少なくとも1箇所に配置すれば、鉄損低減の効果を達成することができる。また、補助鉄心10の配置数を増やすことで鉄損低減の効果を高めることができる。 In the example shown in FIG. 2, the auxiliary core 10 is placed in the yoke part of the three-phase tripod-type wound core at four locations: front, back, top, and bottom. The effect of loss reduction can be achieved. Moreover, by increasing the number of auxiliary cores 10 arranged, the effect of reducing iron loss can be enhanced.

三相三脚型の静止電磁機器(静止誘導機器)は、鉄心の製作性も良好なため、現在広く用いられている。しかし、2個の内側巻鉄心1aと1個の外側巻鉄心1b内を流れる磁束が、互いに他の巻鉄心に伝搬しにくい特性があるため、三相静止電磁機器の設計磁束密度の振幅に対して、各巻鉄心内の磁束密度振幅が2/√3倍になる。 Three-phase tripod type static electromagnetic equipment (static induction equipment) is currently widely used because its iron core is easy to manufacture. However, because the magnetic flux flowing in the two inner-wound cores 1a and one outer-wound core 1b has a characteristic that it is difficult for them to propagate to other wound cores, the amplitude of the designed magnetic flux density of three-phase stationary electromagnetic equipment As a result, the magnetic flux density amplitude in each core is multiplied by 2/√3.

そのため、板状の磁性材料を積層し、鉄心内の磁路が単一の磁性材料で構成される積層鉄心に比べて、鉄心の断面積を約15%大きく設計する必要があり、巻鉄心全体で発生する鉄損が増加する。 Therefore, compared to a laminated core in which plate-shaped magnetic materials are laminated and the magnetic path within the core is made of a single magnetic material, it is necessary to design the core to have a cross-sectional area approximately 15% larger, and the entire wound core The iron loss that occurs in this case increases.

特許文献1においては、巻鉄心内の薄帯状磁性材料と、追加する薄帯状磁性材料の積層方向は同一であるため、三相三脚型鉄心の各巻鉄心内の磁束を互いに伝搬させる効果は想定しておらず、各巻鉄心内の磁束密度振幅は従来と同様、設計磁束密度振幅の2/√3倍となる。 In Patent Document 1, since the lamination direction of the ribbon-shaped magnetic material in the wound core and the added ribbon-shaped magnetic material is the same, the effect of mutually propagating the magnetic flux in each core of the three-phase tripod core is not assumed. The magnetic flux density amplitude in each core is 2/√3 times the design magnetic flux density amplitude, as in the conventional case.

一方、本実施例の補助鉄心の積層方向は、外側巻鉄心1bおよび内側巻鉄心1aの積層方向(Z軸)と略直交する水平方向(X軸方向)に配置することによって、従来の変圧器に比べて鉄損を低下させることができる。ひいては、従来と同一の鉄損値の鉄心を製造する場合には断面積を従来に比べて小さくすることが可能である。 On the other hand, the stacking direction of the auxiliary core of this embodiment is arranged in the horizontal direction (X-axis direction) that is substantially orthogonal to the stacking direction (Z-axis) of the outer-wound core 1b and the inner-wound core 1a, which makes it possible to It is possible to reduce iron loss compared to . Furthermore, when manufacturing an iron core with the same iron loss value as the conventional one, it is possible to make the cross-sectional area smaller than the conventional one.

実施例2を図8を用いて説明する。図8は、図1に示した三相三脚型変圧器の全体図に示した面Aと同様の縦断面図である。実施例1と異なる点は、固定金具3mの形状が異なり、固定金具3mの側面部と補助鉄心10との間に絶縁部材52を配置する点である。また、固定金具3mには、窓31を設けない点が異なる。 Example 2 will be described using FIG. 8. FIG. 8 is a longitudinal sectional view similar to plane A shown in the overall view of the three-phase tripod type transformer shown in FIG. The difference from the first embodiment is that the shape of the fixture 3m is different, and that an insulating member 52 is disposed between the side surface of the fixture 3m and the auxiliary iron core 10. Another difference is that the fixture 3m is not provided with a window 31.

実施例1と同様、三相三脚型変圧器の鉄心と巻線は、固定金具3mをスタッドボルト等(図示せず)で連結して、固定力6aを鉛直方向に発生させて固定される。ここで固定金具3mの側面はZY軸方向に向かって延びる面になっている。 As in Example 1, the core and winding of the three-phase tripod transformer are fixed by connecting fixing fittings 3m with stud bolts or the like (not shown) to generate a fixing force 6a in the vertical direction. Here, the side surface of the fixture 3m is a surface extending in the ZY-axis direction.

補助鉄心10を固定した後の固定金具3mの側面部と上面部の内側の角度は、補助鉄心10を固定する前の固定金具3mの側面部と上面部の内側の角度より大きくなる。そのような構成で、固定金具3mから、固定金具3mの内側の絶縁部材52と補助鉄心10を、内側巻鉄心1aと外側巻鉄心1bの方向に、押えつける固定力6bが働く。 After fixing the auxiliary iron core 10, the angle between the side surface and the top surface of the fixture 3m is larger than the angle between the side surface and the top surface of the fixture 3m before the auxiliary core 10 is fixed. With such a configuration, a fixing force 6b acts from the fixing metal fitting 3m to press down the insulating member 52 and the auxiliary core 10 inside the fixing metal fitting 3m in the direction of the inner wound iron core 1a and the outer wound iron core 1b.

補助鉄心10の外側には、断面がくさび形の絶縁部材52を配置する。くさび形の絶縁部材52を補助鉄心10に当て、上記したように、固定金具3mから補助鉄心10に、三相三脚型巻鉄心の側面への固定力6bを発生させる。また、実施例1の固定金具3aと同様に、固定金具3mの内部、および低圧巻線2aの端部に絶縁部材5を備えて、補助鉄心10を、内側巻鉄心1aの上部である上方向と、コイルのある下方向を固定する。 An insulating member 52 having a wedge-shaped cross section is arranged outside the auxiliary core 10. The wedge-shaped insulating member 52 is applied to the auxiliary core 10, and as described above, the fixing force 6b is generated from the fixture 3m to the auxiliary core 10 to the side surface of the three-phase three-legged wound core. Further, similarly to the fixing fitting 3a of the first embodiment, an insulating member 5 is provided inside the fixing fitting 3m and at the end of the low-voltage winding 2a, and the auxiliary core 10 is connected to the upper part of the inner wound core 1a. and fix the lower part where the coil is.

実施例2によれば、実施例1と比べて固定金具を小さく、簡単化することができる。また、板状磁性体部材11の使用量を削減できることから変圧器の運用のみならず製造全体を通して省エネに貢献できる。 According to the second embodiment, the fixture can be made smaller and simpler than the first embodiment. Moreover, since the amount of plate-shaped magnetic material member 11 used can be reduced, it is possible to contribute to energy saving not only in the operation of the transformer but also in the entire manufacturing process.

実施例3を図9および図10を用いて説明する。図9は、本実施例の三相三脚型変圧器の全体図と、同図中にAで示した面における縦断面図である。実施例2と異なる点は、補助鉄心10mの断面が台形であり、図8に示す1つ目の絶縁部材5と補助鉄心10の側面に配置される絶縁部材52を用いない点である。 Example 3 will be described using FIGS. 9 and 10. FIG. 9 is an overall view of the three-phase tripod type transformer of this embodiment, and a longitudinal sectional view taken along the plane indicated by A in the figure. The difference from the second embodiment is that the cross section of the auxiliary core 10m is trapezoidal, and the first insulating member 5 shown in FIG. 8 and the insulating member 52 disposed on the side surface of the auxiliary core 10 are not used.

実施例3では、補助鉄心10を構成する板状磁性体部材11は、内側巻鉄心1aと外側巻鉄心1bのヨーク部と対向する第一の面と、コイルの上面と対向する第二の面と、第一の面と前記第二の面との間に、傾斜した第三の面を少なくとも有する。 In the third embodiment, the plate-shaped magnetic member 11 constituting the auxiliary core 10 has a first surface facing the yoke portions of the inner-wound core 1a and the outer-wound core 1b, and a second surface facing the upper surface of the coil. and at least an inclined third surface between the first surface and the second surface.

三相三脚型変圧器の鉄心と巻線は、上下に備えた固定金具3mをスタッドボルト等(図示せず)で連結して、固定力6aを発生させて固定される。 The core and winding of the three-phase tripod type transformer are fixed by connecting fixing fittings 3m provided above and below with stud bolts or the like (not shown) to generate a fixing force 6a.

図9に示すように、固定部である固定金具3mは、側面部と上面部を有し、補助鉄心10を固定した後の側面部と上面部の内側の角度は、補助鉄心10を固定する前の側面部と上面部の内側の角度より大きくなる。実施例2と同様に、固定金具3mから、内部にある板状絶縁部材53と補助鉄心10を押えつける固定力6bが働く。 As shown in FIG. 9, the fixing fitting 3m, which is a fixing part, has a side surface and a top surface, and the inner angle of the side surface and top surface after fixing the auxiliary core 10 is such that the auxiliary core 10 is fixed. It is larger than the inside angle of the front side and top parts. As in the second embodiment, a fixing force 6b that presses down the plate-shaped insulating member 53 and the auxiliary core 10 inside is exerted from the fixing fitting 3m.

上側の固定金具3mの側面は斜めになっており、補助鉄心10の外側に、板状絶縁部材53を当てて、補助鉄心10に三相三脚型巻鉄心の側面への固定力6bを発生させる。また、コイルを構成する低圧巻線2aの上部側の端部に絶縁部材5を備えて、コイル側である、補助鉄心10mの下方向を固定する。さらに、固定金具3mからの板状絶縁部材53を介した固定力6bにより、内側巻鉄心1aと外側巻鉄心1bの上部である、補助鉄心10の上方向および、三相三脚型変圧器の側面方向も固定される。従って、補助鉄心10mの上下、側面方向は固定される。 The side surface of the upper fixing fitting 3m is slanted, and a plate-shaped insulating member 53 is applied to the outside of the auxiliary core 10 to generate a force 6b for fixing the auxiliary core 10 to the side surface of the three-phase three-legged wound core. . Further, an insulating member 5 is provided at the upper end of the low-voltage winding 2a constituting the coil to fix the lower side of the auxiliary iron core 10m, which is the coil side. Furthermore, the fixing force 6b from the fixing fitting 3m via the plate-shaped insulating member 53 is applied to the upper part of the auxiliary core 10, which is the upper part of the inner-wound core 1a and the outer-wound core 1b, and the side surface of the three-phase tripod transformer. The direction is also fixed. Therefore, the auxiliary iron core 10m is fixed in the vertical and lateral directions.

図10は、本実施例における三相三脚型変圧器の鉄心のみを示した全体図と、補助鉄心10mの構造図である。補助鉄心10は、矩形の板状磁性体部材11を、切断線13に沿って切り出して、矢印10aに示す水平方向(X軸方向)に積層し、固定テープ12を巻回して、断面が台形の柱体を固定する。本実施例では、加工や作業し易さを考慮して、断面が台形の板状磁性体部材11を例に説明したが、断面が三角形状の板状磁性体部材11を積層した補助鉄心とする場合でも鉄損低減の効果がある。 FIG. 10 is an overall view showing only the core of the three-phase tripod type transformer in this example, and a structural diagram of the auxiliary core 10m. The auxiliary iron core 10 is made by cutting rectangular plate-shaped magnetic material members 11 along the cutting line 13, stacking them in the horizontal direction (X-axis direction) shown by the arrow 10a, and wrapping the fixing tape 12 so that the cross section is trapezoidal. Fix the column. In this embodiment, the plate-shaped magnetic member 11 with a trapezoidal cross section was explained as an example in consideration of ease of processing and work. Even if the iron is used, there is an effect of reducing iron loss.

また、補助鉄心10は、三相三脚型巻鉄心のヨーク部において、内側巻鉄心1aと、外側巻鉄心1bの双方の側面に接して、上記したように上部側の固定金具3mを用いて補助鉄心10mを保持する。鉄心下部側も固定金具3mと同様の構造で補助鉄心10mを保持することができる。 In addition, the auxiliary core 10 is provided in the yoke portion of the three-phase three-legged core, in contact with the side surfaces of both the inner core 1a and the outer core 1b, and is auxiliary using the upper fixing fitting 3m as described above. Hold the iron core 10m. The lower part of the core can also hold 10 m of auxiliary core with the same structure as the fixing metal fitting 3 m.

実施例3によれば、実施例2に比べて、上部の固定金具3m、および下部の固定金具の幅を縮小でき、固定金具を鎖交する巻線からの漏洩磁界が減少するので、固定金具で発生する漂遊損を低減することができる。 According to Example 3, compared to Example 2, the width of the upper fixing bracket 3 m and the lower fixing bracket can be reduced, and the leakage magnetic field from the windings interlinking the fixing bracket is reduced, so that the fixing bracket It is possible to reduce stray losses that occur in

図11は、実施例4の補助鉄心10の構造図と、三相三脚型巻鉄心のヨーク部の正面図である。実施例1と共通する部分の説明は省略する。実施例4では、板状磁性体部材11を矢印10aで示す水平方向(X軸方向)に積層し、固定テープ12を巻回して、直方体状に固定した複数の補助鉄心10を、三相三脚型巻鉄心ヨーク部の、内側巻鉄心1aと、外側巻鉄心1bの双方の側面に接して固定する。補助鉄心10、三相三脚型変圧器の鉄心、巻線は、実施例1乃至実施例3で示した固定金具3a、3mなどを使って、固定する。 FIG. 11 is a structural diagram of the auxiliary core 10 of Example 4 and a front view of the yoke portion of the three-phase three-legged wound core. Description of parts common to Example 1 will be omitted. In Example 4, a plurality of auxiliary iron cores 10 are stacked in the horizontal direction (X-axis direction) as shown by the arrow 10a, and a plurality of auxiliary cores 10 are fixed in a rectangular parallelepiped shape by winding the fixing tape 12. It is fixed in contact with the side surfaces of both the inner-wound core 1a and the outer-wound core 1b of the type-wound core yoke portion. The auxiliary core 10, the core of the three-phase tripod transformer, and the windings are fixed using the fixing fittings 3a, 3m, etc. shown in Examples 1 to 3.

実施例4によれば、複数の補助鉄心10に分かれているため、補助鉄心10の製造が容易となる。 According to the fourth embodiment, since the auxiliary core 10 is divided into a plurality of auxiliary cores 10, the auxiliary core 10 can be manufactured easily.

図12は、実施例5における三相三脚型変圧器の上部ヨーク部の正面図と背面図である。実施例1と共通する部分の説明は省略する。実施例5の(a)は、コイルの低圧電極21が備えられた低圧電極21取り出し側の、固定金具3a、3m内に配置され絶縁部材5と接触して固定された補助鉄心10を2つに分け、低圧電極21に相当する部分に間隙を設けて備える例が示される。一方、反対側の高圧電極取り出し側は、上部側と同様に配置できる。 FIG. 12 is a front view and a rear view of the upper yoke portion of the three-phase tripod type transformer in Example 5. Description of parts common to Example 1 will be omitted. Embodiment 5 (a) shows two auxiliary iron cores 10 arranged in fixing fittings 3a and 3m on the extraction side of the low-voltage electrode 21 provided with the low-voltage electrode 21 of the coil and fixed in contact with the insulating member 5. An example is shown in which a gap is provided in a portion corresponding to the low voltage electrode 21. On the other hand, the high voltage electrode extraction side on the opposite side can be arranged in the same manner as the upper side.

実施例5の(a)の構造によれば、低圧電極21が、補助鉄心10の位置を低圧電極21を避けて補助鉄心10を配置することができる。この場合は、内側巻鉄心1aと外側巻鉄心1bとの境界から磁束が漏れにくくすることができ、従来よりも鉄損を低減させる。 According to the structure of Example 5 (a), the auxiliary iron core 10 can be placed so that the low voltage electrode 21 avoids the position of the auxiliary iron core 10 . In this case, magnetic flux can be made less likely to leak from the boundary between the inner-wound core 1a and the outer-wound core 1b, and iron loss is reduced more than in the past.

図12の(b)に示す高圧電極の取出し側については、放電のパスを作らないように、補助鉄心10や固定金具は配置しない構成としてもよい。 Regarding the extraction side of the high-voltage electrode shown in FIG. 12(b), the configuration may be such that the auxiliary iron core 10 and the fixing fittings are not arranged so as not to create a discharge path.

また、図12では、コイルである巻線と接続した高圧電極や低圧電極21は、静止誘導機器の上部から取り出しているが、下部から電極を取り出す構成にしてもよい。その場合も、高圧電極の取出し側については、放電のパスを作らないように、補助鉄心10や固定金具は配置しない構成としてもよい。 Furthermore, in FIG. 12, the high-voltage electrode and low-voltage electrode 21 connected to the winding, which is a coil, are taken out from the top of the stationary induction device, but the electrodes may be taken out from the bottom. In that case as well, the configuration may be such that the auxiliary iron core 10 and the fixing fittings are not arranged on the extraction side of the high-voltage electrode so as not to create a discharge path.

上記の実施例では、内側巻鉄心1aと、外側巻鉄心1b、補助鉄心10、10m等の材料は、方向性珪素鋼板に代表される方向性電磁鋼板、鉄基アモルファス合金、またはナノ結晶材料等から選択された材料を用いることができる。配置する場所に応じてそれぞれ異なる材料の補助鉄心10、10mを用いることができる。この場合は、配置する場所の磁束漏れ量に適応する異なる材料の補助鉄心10、10mを用いる。また、内側巻鉄心1aと、外側巻鉄心1b、補助鉄心10とは同一の材料でもよいし、互いに異なる材料であってもよい。 In the above embodiment, the materials of the inner core 1a, the outer core 1b, the auxiliary cores 10, 10m, etc. are grain-oriented electrical steel sheets represented by grain-oriented silicon steel sheets, iron-based amorphous alloys, nanocrystalline materials, etc. Materials selected from can be used. The auxiliary cores 10 and 10m may be made of different materials depending on the location where they are placed. In this case, auxiliary iron cores 10 and 10 m made of different materials are used to suit the amount of magnetic flux leakage at the location where they are placed. Furthermore, the inner-wound core 1a, the outer-wound core 1b, and the auxiliary core 10 may be made of the same material, or may be made of different materials.

1a:内側巻鉄心
1b:外側巻鉄心
2a:低圧巻線
2b:高圧巻線
10:補助鉄心
11:板状磁性体部材
1a: Inner winding core 1b: Outer winding core 2a: Low voltage winding 2b: High voltage winding 10: Auxiliary core 11: Plate magnetic material member

Claims (19)

薄帯状磁性材料を巻回して成形した2つの内側巻鉄心と前記内側巻鉄心を覆うように外周に配置される1つの外側巻鉄心を含む三相三脚型巻鉄心である第一の鉄心と、
前記第一の鉄心の3本の磁脚に巻回されたコイルと、
板状磁性体部材が積層された第二の鉄心と、を有し、
前記第二の鉄心は前記第一の鉄心のコイルが巻かれていない部分と対向する第一の面と、前記コイルの上面と対向する第二の面とを有し、前記板状磁性体部材は、前記内側巻鉄心と外側巻鉄心の周方向に向かって積層されることを特徴とする静止誘導機器。
a first core that is a three-phase three-legged core that includes two inner cores formed by winding a thin ribbon-shaped magnetic material and one outer core disposed on the outer periphery so as to cover the inner core;
a coil wound around three magnetic legs of the first iron core;
a second iron core on which plate-shaped magnetic members are laminated;
The second iron core has a first surface that faces a portion of the first iron core where the coil is not wound, and a second surface that faces the upper surface of the coil, and The stationary induction device is characterized in that the inner-wound core and the outer-wound core are laminated in a circumferential direction.
請求項1に記載の静止誘導機器において、
前記第一の鉄心は、正面と背面の両面を有し、
前記正面に、前記第二の鉄心を有することを特徴とする静止誘導機器。
The stationary induction device according to claim 1,
The first iron core has both a front side and a back side,
A stationary induction device comprising the second iron core on the front side.
請求項1に記載の静止誘導機器において、
前記第二の鉄心を固定する固定部を有することを特徴とする静止誘導機器。
The stationary induction device according to claim 1,
A stationary induction device comprising a fixing part for fixing the second iron core.
請求項3に記載の静止誘導機器において、
前記固定部は、側面部と上面部を有し、
前記第二の鉄心を固定した後の前記側面部と前記上面部の内側の角度は、
前記第二の鉄心を固定する前の前記側面部と前記上面部の内側の角度より大きいことを特徴とする静止誘導機器。
The stationary induction device according to claim 3,
The fixing part has a side part and a top part,
After fixing the second iron core, the inner angle between the side surface portion and the top surface portion is:
A stationary induction device characterized in that the angle is larger than the inner angle between the side surface portion and the top surface portion before the second iron core is fixed.
請求項1に記載の静止誘導機器において、
前記第二の鉄心は、複数の板状磁性体部材を積層して構成されており、
前記板状磁性体部材の圧延方向は、略鉛直方向であることを特徴とする静止誘導機器。
The stationary induction device according to claim 1,
The second iron core is configured by laminating a plurality of plate-shaped magnetic members,
A stationary induction device characterized in that the rolling direction of the plate-shaped magnetic member is substantially vertical.
請求項1に記載の静止誘導機器において、
前記コイルは、低圧巻線と高圧巻線を有することを特徴とする静止誘導機器。
The stationary induction device according to claim 1,
A stationary induction device characterized in that the coil has a low voltage winding and a high voltage winding.
請求項1に記載の静止誘導機器において、
前記第二の鉄心は、前記内側巻鉄心と前記外側巻鉄心を跨ぐように配置されたことを特徴とする静止誘導機器。
The stationary induction device according to claim 1,
The stationary induction device is characterized in that the second iron core is arranged so as to straddle the inner-wound iron core and the outer-wound iron core.
請求項7に記載の静止誘導機器において、
前記第二の鉄心を固定し、窓部を備えた固定部を有し、
前記第二の鉄心は、前記窓部から見て、前記内側巻鉄心と前記外側巻鉄心を跨ぐように
配置されたことを特徴とする静止誘導機器。
The stationary induction device according to claim 7,
having a fixing part for fixing the second iron core and having a window part;
The stationary induction device is characterized in that the second core is arranged so as to straddle the inner-wound core and the outer-wound core when viewed from the window.
請求項に記載の静止誘導機器において、
前記固定部と前記第二の鉄心との間に、くさび形の絶縁物を配置したことを特徴とする静止誘導機器。
The stationary induction device according to claim 3 ,
A stationary induction device characterized in that a wedge-shaped insulator is disposed between the fixed part and the second iron core.
請求項1に記載の静止誘導機器において、
前記コイルは、高圧コイルと低圧コイルであって、
高圧の電極取出し側には、前記第二の鉄心を配置していないことを特徴とする静止誘導機器。
The stationary induction device according to claim 1,
The coils are a high voltage coil and a low voltage coil,
A stationary induction device characterized in that the second iron core is not arranged on the high voltage electrode extraction side.
請求項1に記載の静止誘導機器において、
前記第二の鉄心を構成する板状磁性体部材は、
前記第一の鉄心の磁脚の長手方向に対して略直交する方向に積層されていることを特徴とする静止誘導機器。
The stationary induction device according to claim 1,
The plate-shaped magnetic member constituting the second iron core is
A stationary induction device characterized in that the first iron core is laminated in a direction substantially perpendicular to the longitudinal direction of the magnetic legs.
請求項1に記載の静止誘導機器において、
前記第二の鉄心と前記第一の鉄心の間隙部に、絶縁部材を備えたことを特徴とする静止誘導機器。
The stationary induction device according to claim 1,
A stationary induction device characterized in that an insulating member is provided in a gap between the second iron core and the first iron core.
請求項1に記載の静止誘導機器において、
前記第二の鉄心は、矩形の板状磁性体部材を積層して構成され、
前記第一の鉄心に、窓部を備えた固定金具を配置し、
前記窓部から差し込まれた板状絶縁部材により、
前記第二の鉄心を、前記三相三脚型巻鉄心に押し付けて固定したことを特徴とする静止誘導機器。
The stationary induction device according to claim 1,
The second iron core is configured by laminating rectangular plate-shaped magnetic members,
arranging a fixing fitting with a window on the first iron core;
Due to the plate-shaped insulating member inserted through the window,
A stationary induction device characterized in that the second iron core is pressed against and fixed to the three-phase three-legged wound iron core.
請求項1に記載の静止誘導機器において、
前記第二の鉄心は、矩形の板状磁性体部材を積層して構成され、
前記第一の鉄心に、側面を斜めにした固定金具を配置し、
前記固定金具は、
直方体状の前記第二の鉄心の外側にくさび形の絶縁部材を介して、前記第二の鉄心を、前記三相三脚型巻鉄心に押し付けて固定したことを特徴とする静止誘導機器。
The stationary induction device according to claim 1,
The second iron core is configured by laminating rectangular plate-shaped magnetic members,
A fixing fitting with an oblique side surface is arranged on the first iron core,
The fixing metal fittings are
A stationary induction device, characterized in that the second iron core is pressed and fixed to the three-phase tripod-shaped wound iron core via a wedge-shaped insulating member on the outside of the rectangular parallelepiped-shaped second iron core.
請求項1に記載の静止誘導機器において、
前記第二の鉄心は、台形の板状磁性体部材を積層して構成され、
前記第一の鉄心に、側面を斜めにした固定金具を配置し、
前記固定金具が、台形柱状の前記第二の鉄心を、前記三相三脚型巻鉄心に押し付けて固定したことを特徴とする静止誘導機器。
The stationary induction device according to claim 1,
The second iron core is configured by laminating trapezoidal plate-shaped magnetic members,
A fixing fitting with an oblique side surface is arranged on the first iron core,
A stationary induction device characterized in that the fixing fitting presses and fixes the trapezoidal columnar second core against the three-phase three-legged wound core.
請求項1に記載の静止誘導機器において、
前記第一の鉄心に備えられた前記第二の鉄心の周囲に、テープを巻回したことを特徴とする静止誘導機器。
The stationary induction device according to claim 1,
A stationary induction device characterized in that a tape is wound around the second iron core provided in the first iron core.
請求項1に記載の静止誘導機器において、
前記第二の鉄心は、第一の鉄心のヨーク部の薄帯状磁性材料の積層面に対向する位置に、配置されたことを特徴とする静止誘導機器。
The stationary induction device according to claim 1,
A stationary induction device, wherein the second core is disposed at a position facing a laminated surface of the ribbon-shaped magnetic material of the yoke portion of the first core.
請求項1に記載の静止誘導機器において、
前記第二の鉄心は、複数個を横方向に並べ、前記第一の鉄心のヨーク部の薄帯状磁性材料の積層面に対向して配置されたことを特徴とする静止誘導機器。
The stationary induction device according to claim 1,
The stationary induction device is characterized in that a plurality of the second cores are arranged in a horizontal direction and are arranged to face a laminated surface of the ribbon-shaped magnetic material of the yoke portion of the first core.
請求項1に記載の静止誘導機器において、
前記第一の鉄心と前記第二の鉄心は、
方向性珪素鋼板、鉄基アモルファス合金、またはナノ結晶材料から選択された材料で構成され、前記第一の鉄心と前記第二の鉄心とは同一の材料、または互いに異なる材料であることを特徴とする静止誘導機器。
The stationary induction device according to claim 1,
The first iron core and the second iron core are
The first iron core and the second iron core are made of the same material or different materials. stationary induction equipment.
JP2019006330A 2019-01-17 2019-01-17 stationary induction equipment Active JP7365120B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019006330A JP7365120B2 (en) 2019-01-17 2019-01-17 stationary induction equipment
PCT/JP2019/037214 WO2020148942A1 (en) 2019-01-17 2019-09-24 Stationary induction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019006330A JP7365120B2 (en) 2019-01-17 2019-01-17 stationary induction equipment

Publications (2)

Publication Number Publication Date
JP2020115518A JP2020115518A (en) 2020-07-30
JP7365120B2 true JP7365120B2 (en) 2023-10-19

Family

ID=71614499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019006330A Active JP7365120B2 (en) 2019-01-17 2019-01-17 stationary induction equipment

Country Status (2)

Country Link
JP (1) JP7365120B2 (en)
WO (1) WO2020148942A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7149908B2 (en) * 2019-09-06 2022-10-07 株式会社日立産機システム Static induction device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229927A (en) * 1975-09-03 1977-03-07 Hitachi Ltd Induction electric machine
JPS5633137Y2 (en) * 1976-09-09 1981-08-06

Also Published As

Publication number Publication date
WO2020148942A1 (en) 2020-07-23
JP2020115518A (en) 2020-07-30

Similar Documents

Publication Publication Date Title
US9013263B2 (en) Wound iron core for static apparatus, amorphous transformer and coil winding frame for transformer
EP2590187B1 (en) Amorphous core transformer
JP6397349B2 (en) Three-phase five-legged iron core and stationary electromagnetic equipment
KR101407884B1 (en) Transformer
JP2012023090A (en) Reactor
JP6158579B2 (en) Static induction machine
KR101838115B1 (en) Magnetic component
JP7365120B2 (en) stationary induction equipment
JP6075678B2 (en) Composite magnetic core, reactor and power supply
JP5969755B2 (en) Amorphous iron core transformer
JP7149908B2 (en) Static induction device
CN204066967U (en) Shell type reactor
JP6857494B2 (en) Static induction electric device
JP2012023079A (en) Reactor
KR101573813B1 (en) Low loss type hybrid transformer, and manufacturing method thereof
JP5900741B2 (en) Composite magnetic core, reactor and power supply
JP7143235B2 (en) Iron core for stationary induction electric machine
JP6977369B2 (en) Transformer core support structure
JPWO2010098029A1 (en) Transformer and assembly method of transformer
JP2006100513A (en) Reactor
CN206921662U (en) Power transformer with magnetic screen
KR101373689B1 (en) High frequency reactor
KR102555275B1 (en) iron core structure of transformer
JP6890210B2 (en) Static device
JP2011023630A (en) Stationary induction apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231006

R150 Certificate of patent or registration of utility model

Ref document number: 7365120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150