JP7364962B2 - 鋼材 - Google Patents
鋼材 Download PDFInfo
- Publication number
- JP7364962B2 JP7364962B2 JP2022511431A JP2022511431A JP7364962B2 JP 7364962 B2 JP7364962 B2 JP 7364962B2 JP 2022511431 A JP2022511431 A JP 2022511431A JP 2022511431 A JP2022511431 A JP 2022511431A JP 7364962 B2 JP7364962 B2 JP 7364962B2
- Authority
- JP
- Japan
- Prior art keywords
- steel material
- content
- steel
- sulfides
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/22—Martempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/25—Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
- C21D1/60—Aqueous agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/085—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
Description
化学組成が、質量%で、
C:0.035%以下、
Si:1.00%以下、
Mn:1.00%以下、
P:0.030%以下、
S:0.0050%以下、
sol.Al:0.005~0.100%、
N:0.001~0.020%、
Ni:5.00~7.00%、
Cr:10.00~14.00%、
Cu:1.50~3.50%、
Mo:1.00~4.00%、
V:0.01~1.00%、
Ti:0.02~0.30%、
Co:0.01~0.50%、
Ca:0.0003~0.0030%、
O:0.0050%以下、
W:0~1.50%、
Nb:0~0.50%、
B:0~0.0050%、
Mg:0~0.0050%、
希土類元素(REM):0~0.020%、及び、
残部がFe及び不純物、からなり、
前記鋼材中の介在物のうち、Mn含有量が10%以上であり、S含有量が10%以上であり、円相当径が1.0μm以上のMn硫化物と、Ca含有量が20%以上であり、S含有量が10%以上であり、円相当径が2.0μm以上のCa硫化物との合計が0.50個/mm2以下である。
鋼材であって、
化学組成が、質量%で、
C:0.035%以下、
Si:1.00%以下、
Mn:1.00%以下、
P:0.030%以下、
S:0.0050%以下、
sol.Al:0.005~0.100%、
N:0.001~0.020%、
Ni:5.00~7.00%、
Cr:10.00~14.00%、
Cu:1.50~3.50%、
Mo:1.00~4.00%、
V:0.01~1.00%、
Ti:0.02~0.30%、
Co:0.01~0.50%、
Ca:0.0003~0.0030%、
O:0.0050%以下、
W:0~1.50%、
Nb:0~0.50%、
B:0~0.0050%、
Mg:0~0.0050%、
希土類元素(REM):0~0.020%、及び、
残部がFe及び不純物、からなり、
前記鋼材中の介在物のうち、Mn含有量が10%以上であり、S含有量が10%以上であり、円相当径が1.0μm以上のMn硫化物と、Ca含有量が20%以上であり、S含有量が10%以上であり、円相当径が2.0μm以上のCa硫化物との合計が0.50個/mm2以下である、
鋼材。
[1]に記載の鋼材であって、
前記化学組成は、
W:0.01~1.50%を含有する、
鋼材。
[1]又は[2]に記載の鋼材であって、
前記化学組成は、
Nb:0.01~0.50%を含有する、
鋼材。
[1]~[3]のいずれか1項に記載の鋼材であって、
前記化学組成は、
B:0.0001~0.0050%、
Mg:0.0001~0.0050%、及び、
希土類元素(REM):0.001~0.020%、からなる群から選択される1種以上を含有する、
鋼材。
[1]~[4]のいずれか1項に記載の鋼材であって、
前記鋼材は、油井管用継目無鋼管である、
鋼材。
本実施形態の鋼材の化学組成は、次の元素を含有する。
炭素(C)は不可避に含有される。つまり、C含有量は0%超である。Cは、焼入れ性を高めて鋼材の強度を高める。しかしながら、C含有量が0.035%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎて鋼材の耐SSC性が低下する。したがって、C含有量は0.035%以下である。C含有量はなるべく低い方が好ましい。しかしながら、C含有量を過剰に低減すれば、製造コストが高くなる。したがって、工業生産を考慮すれば、C含有量の好ましい下限は0.001%である。鋼材の強度の観点から、C含有量の好ましい下限は0.002%であり、さらに好ましくは0.005%であり、さらに好ましくは0.007%である。C含有量の好ましい上限は0.030%であり、さらに好ましくは0.025%であり、さらに好ましくは0.020%であり、さらに好ましくは0.018%であり、さらに好ましくは0.016%であり、さらに好ましくは0.015%である。
シリコン(Si)は不可避に含有される。つまり、Si含有量は0%超である。Siは鋼を脱酸する。しかしながら、Si含有量が1.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、脱酸効果が飽和し、かつ、鋼材の熱間加工性が低下する。したがって、Si含有量は1.00%以下である。Si含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.15%である。Si含有量の好ましい上限は0.70%であり、さらに好ましくは0.60%であり、さらに好ましくは0.50%であり、さらに好ましくは0.45%である。
マンガン(Mn)は不可避に含有される。つまり、Mn含有量は0%超である。Mnは鋼の焼入れ性を高めて鋼材の強度を高める。しかしながら、Mn含有量が高すぎれば、Mnは、粗大なMn硫化物を多数形成する。サワー環境において、鋼材の表層近傍に存在する粗大なMnSは溶解する場合がある。このとき、溶解したMnSの跡である凹みが形成される。この凹みがSSCの起点となり、SSCが発生する場合がある。Mn含有量が1.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、溶解したMnSの跡である凹みが生成し、耐SSC性が低下する。したがって、Mn含有量は1.00%以下である。Mn含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.15%である。Mn含有量の好ましい上限は0.80%であり、さらに好ましくは0.70%であり、さらに好ましくは0.60%であり、さらに好ましくは0.50%である。
燐(P)は、不可避に含有される不純物である。つまり、P含有量は0%超である。Pは、結晶粒界に偏析し、SSCを発生しやすくする。P含有量が0.030%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐SSC性が顕著に低下する。したがって、P含有量は0.030%以下である。P含有量の好ましい上限は0.025%であり、さらに好ましくは0.020%であり、さらに好ましくは0.018%である。P含有量はなるべく低い方が好ましい。しかしながら、P含有量を過剰に低減すれば、製造コストが高くなる。したがって、工業生産を考慮すれば、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
硫黄(S)は、不可避に含有される不純物である。つまり、S含有量は0%超である。SもPと同様に結晶粒界に偏析し、SSCを発生しやすくする。S含有量が0.0050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐SSC性が顕著に低下する。したがって、S含有量は0.0050%以下である。S含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0015%である。S含有量はなるべく低い方が好ましい。しかしながら、S含有量を過剰に低減すれば、製造コストが高くなる。したがって、工業生産を考慮すれば、S含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0003%である。
アルミニウム(Al)は鋼を脱酸する。sol.Al含有量が0.005%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、sol.Al含有量が0.100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物が生成して、鋼材の靭性が低下する。したがって、sol.Al含有量は0.005~0.100%である。sol.Al含有量の好ましい下限は0.010%であり、さらに好ましくは0.013%であり、さらに好ましくは0.015%であり、さらに好ましくは0.018%である。sol.Al含有量の好ましい上限は0.080%であり、さらに好ましくは0.060%であり、さらに好ましくは0.055%であり、さらに好ましくは0.050%である。本明細書でいうsol.Al含有量は、酸可溶Alの含有量を意味する。
窒素(N)は、Tiと結合して微細なTi窒化物を形成する。微細なTiNはピンニング効果により結晶粒の粗大化を抑制する。その結果、鋼材の強度が高まる。N含有量が0.001%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、N含有量が0.020%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な窒化物が形成して鋼材の耐SSC性が低下する。したがって、N含有量は0.001~0.020%である。N含有量の好ましい下限は0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.004%であり、さらに好ましくは0.005%である。N含有量の好ましい上限は0.018%であり、さらに好ましくは0.016%であり、さらに好ましくは0.014%であり、さらに好ましくは0.012%である。
ニッケル(Ni)は、オーステナイト形成元素であり、焼入れ後の組織をマルテンサイト化する。これにより、鋼材の強度が高まる。Niはさらに、サワー環境において不働態皮膜上に硫化物を形成する。Ni硫化物は、塩化物イオン(Cl-)や硫化水素イオン(HS-)が不働態皮膜に接触するのを抑制し、不働態皮膜が塩化物イオンや硫化水素イオンにより破壊されるのを抑制する。そのため、鋼材の耐SSC性が高まる。Ni含有量が5.00%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Ni含有量が7.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の水素拡散係数が低下する。鋼材中の水素拡散係数が低下すれば、鋼材の耐SSC性が低下する。したがって、Ni含有量は5.00~7.00%である。Ni含有量の好ましい下限は5.10%であり、さらに好ましくは5.20%であり、さらに好ましくは5.30%である。Ni含有量の好ましい上限は6.80%であり、さらに好ましくは6.60%であり、さらに好ましくは6.50%であり、さらに好ましくは6.40%である。
クロム(Cr)は、鋼材の表面に不働態皮膜を形成して、鋼材の耐SSC性を高める。Cr含有量が10.00%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Cr含有量が14.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中にδ(デルタ)フェライトが生成しやすくなり、鋼材の靭性が低下する。したがって、Cr含有量は10.00~14.00%である。Cr含有量の好ましい下限は10.50%であり、さらに好ましくは11.00%であり、さらに好ましくは11.50%であり、さらに好ましくは12.00%であり、さらに好ましくは12.20%である。Cr含有量の好ましい上限は13.80%であり、さらに好ましくは13.60%であり、さらに好ましくは13.50%であり、さらに好ましくは13.45%であり、さらに好ましくは13.40%である。
銅(Cu)は鋼材に固溶して鋼材の耐SSC性を高める。Cuはさらに、サワー環境において不働態皮膜上に硫化物を形成する。Cu硫化物は、塩化物イオン(Cl-)や硫化水素イオン(HS-)が不働態皮膜に接触するのを抑制し、不働態皮膜が塩化物イオンや硫化水素イオンにより破壊されるのを抑制する。そのため、鋼材の耐SSC性が高まる。Cu含有量が1.50%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Cu含有量が3.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間加工性が低下する。したがって、Cu含有量は1.50~3.50%である。Cu含有量の好ましい下限は1.60%であり、さらに好ましくは1.70%であり、さらに好ましくは1.75%である。Cu含有量の好ましい上限は3.40%であり、さらに好ましくは3.30%であり、さらに好ましくは3.20%であり、さらに好ましくは3.10%である。
モリブデン(Mo)は、サワー環境において不働態皮膜上に硫化物を形成する。Mo硫化物は、塩化物イオン(Cl-)や硫化水素イオン(HS-)が不働態皮膜に接触するのを抑制し、不働態皮膜が塩化物イオンや硫化水素イオンにより破壊されるのを抑制する。そのため、鋼材の耐SSC性が高まる。Moはさらに、鋼材中に固溶して鋼材の強度を高める。Mo含有量が1.00%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果は十分に得られない。一方、Mo含有量が4.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、オーステナイトが安定化しにくくなる。その結果、マルテンサイトを主体とするミクロ組織が安定的に得られにくくなる。したがって、Mo含有量は1.00~4.00%である。Mo含有量の好ましい下限は1.20%であり、さらに好ましくは1.50%であり、さらに好ましくは1.80%であり、さらに好ましくは2.10%であり、さらに好ましくは2.30%である。Mo含有量の好ましい上限は3.80%であり、さらに好ましくは3.60%であり、さらに好ましくは3.40%であり、さらに好ましくは3.30%であり、さらに好ましくは3.20%である。
バナジウム(V)は、鋼材の焼入れ性を高め、鋼材の強度を高める。V含有量が0.01%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、V含有量が1.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の焼入れ性が過剰に高くなり、鋼材の耐SSC性が低下する。したがって、V含有量は0.01~1.00%である。V含有量の好ましい下限は0.02%であり、さらに好ましくは0.03%である。V含有量の好ましい上限は0.70%であり、さらに好ましくは0.50%であり、さらに好ましくは0.30%であり、さらに好ましくは0.20%であり、さらに好ましくは0.15%であり、さらに好ましくは0.10%である。
チタン(Ti)は、C及び/又はNと結合して炭化物又は窒化物を形成する。この場合、ピンニング効果により結晶粒の粗大化が抑制され、鋼材の強度が高まる。Ti含有量が0.02%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Ti含有量が0.30%を超えれば、他の元素含有量が本実施形態の範囲内であっても、δフェライトが生成しやすくなり、鋼材の靭性が低下する。したがって、Ti含有量は0.02~0.30%である。Ti含有量の好ましい下限は0.05%であり、さらに好ましくは0.07%である。Ti含有量の好ましい上限は0.25%であり、さらに好ましくは0.20%であり、さらに好ましくは0.18%であり、さらに好ましくは0.16%である。
コバルト(Co)は、サワー環境において不働態皮膜上に硫化物を形成する。Co硫化物は、塩化物イオン(Cl-)や硫化水素イオン(HS-)が不働態皮膜に接触するのを抑制し、不働態皮膜が塩化物イオンや硫化水素イオンにより破壊されるのを抑制する。そのため、鋼材の耐SSC性が高まる。Coはさらに、鋼材の焼入性を高め、特に工業生産時において、鋼材の安定した高強度を確保する。具体的には、Coは残留オーステナイトの生成を抑制し、鋼材の強度のばらつきを抑制する。Co含有量が0.01%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Co含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の靭性が低下する。したがって、Co含有量は0.01~0.50%である。Co含有量の好ましい下限は0.02%であり、さらに好ましくは0.04%であり、さらに好ましくは0.08%であり、さらに好ましくは0.10%である。Co含有量の好ましい上限は0.48%であり、さらに好ましくは0.45%であり、さらに好ましくは0.40%であり、さらに好ましくは0.35%である。
カルシウム(Ca)は、鋼材中のSと結合してCa硫化物を生成し、Mn硫化物の生成を抑制する。鋼材の表層に、円相当径が1.0μm以上のMn硫化物が存在する場合、0.03超~0.1barのH2S分圧を含有するサワー環境において表層のMn硫化物が溶解する場合がある。この場合、溶解したMn硫化物の跡には凹みが形成される。鋼材表面に形成されるこの凹みがSSCの発生の起点となりやすい。CaはMn硫化物の生成を抑制し、円相当径が1.0μm以上のMn硫化物の個数密度を低下させる。その結果、鋼材の耐SSC性が高まる。Ca含有量が0.0003%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Ca含有量が0.0030%を超えれば、他の元素含有量が本実施形態の範囲内であっても、円相当径が2.0μm以上のCa硫化物が過剰に生成する。円相当径が2.0μm以上のCa硫化物が鋼材の表層に存在する場合、上述のMn硫化物と同様に、0.03超~0.1barのH2S分圧を含有するサワー環境において溶解して、鋼材の表面に凹みを形成する場合がある。この場合、鋼材の耐SSC性が低下する。したがって、Ca含有量は0.0003~0.0030%である。Ca含有量の好ましい下限は0.0005%であり、さらに好ましくは0.0007%であり、さらに好ましくは0.0009%である。Ca含有量の好ましい上限は0.0029%であり、さらに好ましくは0.0028%であり、さらに好ましくは0.0027%であり、さらに好ましくは0.0026%である。
酸素(O)は不可避に含有される不純物である。つまり、O含有量は0%超である。Oは、酸化物を形成して、鋼材の靭性を低下する。O含有量が0.0050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の靭性が顕著に低下する。したがって、O含有量は0.0050%以下である。O含有量の好ましい上限は0.0045%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0035%であり、さらに好ましくは0.0030%である。O含有量はなるべく低い方が好ましい。しかしながら、O含有量を過剰に低減すれば、製造コストが高くなる。したがって、工業生産を考慮すれば、O含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%である。
本実施形態による鋼材の化学組成はさらに、Feの一部に代えて、Wを含有してもよい。
タングステン(W)は任意元素であり、含有されなくてもよい。つまり、W含有量は0%であってもよい。含有される場合、Wはサワー環境において不働態皮膜を安定化して、不働態皮膜が塩化物イオンや硫化水素イオンにより破壊されるのを抑制する。そのため、鋼材の耐SSC性が高まる。Wが少しでも含有されれば、上記効果がある程度得られる。しかしながら、W含有量が1.50%を超えれば、WはCと結合して、粗大な炭化物を生成する。この場合、他の元素含有量が本実施形態の範囲内であっても、鋼材の靱性が低下する。したがって、W含有量は0~1.50%である。W含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.30%であり、さらに好ましくは0.50%である。W含有量の好ましい上限は1.45%であり、さらに好ましくは1.40%であり、さらに好ましくは1.37%である。
ニオブ(Nb)は任意元素であり、含有されなくてもよい。つまり、Nb含有量は0%であってもよい。含有される場合、NbはC及び/又はNと結合してNb炭化物、Nb炭窒化物を形成する。この場合、ピンニング効果により結晶粒の粗大化が抑制され、鋼材の強度が高まる。Nbが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Nb含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Nb炭化物及び/又はNb炭窒化物が過剰に生成して鋼材の靭性が低下する。したがって、Nb含有量は0~0.50%である。Nb含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.15%である。Nb含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%であり、さらに好ましくは0.35%である。
ボロン(B)は任意元素であり、含有されなくてもよい。つまり、B含有量は0%であってもよい。Bが含有される場合、Bは鋼材に固溶して鋼材の熱間加工性を高める。Bが少しでも含有されれば、上記効果がある程度得られる。しかしながら、B含有量が0.0050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大なB窒化物が生成して、鋼材の靭性が低下する。したがって、B含有量は0~0.0050%である。B含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0004%である。B含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0020%である。
マグネシウム(Mg)は任意元素であり、含有されなくてもよい。つまり、Mg含有量は0%であってもよい。含有される場合、Mgは、介在物の形態を制御して、鋼材の熱間加工性を高める。Mgが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Mg含有量が0.0050%を超えれば、粗大な酸化物が生成する。この場合、他の元素含有量が本実施形態の範囲内であっても、鋼材の靱性が低下する。したがって、Mg含有量は0~0.0050%である。Mg含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0003%である。Mg含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0035%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0025%である。
希土類元素(REM)は任意元素であり、含有されなくてもよい。つまり、REM含有量は0%であってもよい。含有される場合、REMはMgと同様に、介在物の形態を制御して、鋼材の熱間加工性を高める。REMが少しでも含有されれば、上記効果がある程度得られる。しかしながら、REM含有量が0.020%を超えれば、粗大な酸化物が生成する。この場合、他の元素含有量が本実施形態の範囲内であっても、鋼材の靱性が低下する。したがって、REM含有量は0~0.020%である。REM含有量の好ましい下限は0.001%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%である。REM含有量の好ましい上限は0.019%であり、さらに好ましくは0.018%であり、さらに好ましくは0.017%である。
本実施形態の鋼材において、鋼材中の介在物のうち、Mn硫化物、及びCa硫化物を次のとおり定義する。
Mn硫化物:介在物の質量%を100%とした場合に、質量%でMn含有量が10%以上であり、S含有量が10%以上である介在物
Ca硫化物:介在物の質量%を100%とした場合に、質量%でCa含有量が20%以上であり、S含有量が10%以上である介在物
円相当径が1.0μm以上のMn硫化物及び円相当径が2.0μm以上のCa硫化物の総個数密度NDは次の方法により測定できる。具体的には、鋼材の任意の位置から試験片を採取する。鋼材が鋼管である場合、肉厚中央位置から試験片を採取する。鋼材が棒鋼である場合、R/2位置から試験片を採取する。ここで、R/2位置とは、棒鋼の長手方向に垂直な断面において、半径Rの中心位置を意味する。鋼材が鋼板である場合、板厚中央位置から試験片を採取する。
本実施形態による鋼材のミクロ組織は、マルテンサイトを主体とする。本明細書において、マルテンサイトとは、フレッシュマルテンサイトだけでなく、焼戻しマルテンサイトも含む。また、本明細書において、マルテンサイトが主体とは、ミクロ組織において、マルテンサイトの体積率が80%以上であることを意味する。ミクロ組織の残部は、残留オーステナイトである。つまり、本実施形態の鋼材において、残留オーステナイトの体積率は0~20%である。残留オーステナイトの体積率はなるべく低い方が好ましい。本実施形態の鋼材のミクロ組織中のマルテンサイトの体積率の好ましい下限は85%であり、さらに好ましくは90%である。さらに好ましくは、鋼材のミクロ組織は、マルテンサイト単相である。
本実施形態の鋼材のミクロ組織におけるマルテンサイトの体積率(vol.%)は、以下に示す方法で求めた残留オーステナイトの体積率(vol.%)を、100%から差し引いて求める。
Vγ=100/{1+(Iα×Rγ)/(Iγ×Rα)} (I)
ここで、Iαはα相の積分強度である。Rαはα相の結晶学的理論計算値である。Iγはγ相の積分強度である。Rγはγ相の結晶学的理論計算値である。なお、本明細書において、α相の(200)面でのRαを15.9、α相の(211)面でのRαを29.2、γ相の(200)面でのRγを35.5、γ相の(220)面でのRγを20.8、γ相の(311)面でのRγを21.8とする。なお、残留オーステナイトの体積率は、得られた数値の小数第一位を四捨五入する。
マルテンサイトの体積率=100-残留オーステナイトの体積率(%)
本実施形態の鋼材の降伏強度は、特に限定されない。鋼材の好ましい降伏強度は758MPa以上(110ksi以上)であり、さらに好ましくは862MPa以上(125ksi以上)である。降伏強度の上限は特に限定されないが、本実施形態の鋼材の降伏強度の上限は、例えば、1069MPa未満(155ksi未満)である。鋼材のさらに好ましい降伏強度の上限は1000MPaであり、さらに好ましくは965MPa未満(140ksi未満)である。
本実施形態の鋼材は、得ようとする降伏強度に応じて、優れた耐SSC性を有する。本実施形態による鋼材の耐SSC性は、いずれの降伏強度においても、常温の耐SSC性評価試験により評価できる。耐SSC性評価試験は、NACE TM0177-2005 Method Aに準拠した方法で実施する。
本実施形態の鋼材の降伏強度が110ksi級(758~862MPa未満)である場合、鋼材の耐SSC性は次の方法で評価できる。
鋼材の降伏強度が125ksi以上(862MPa以上)の場合、鋼材の耐SSC性は、次の方法で評価できる。試験溶液は、pHが4.3である20質量%塩化ナトリウム水溶液とする。試験溶液は、20質量%の塩化ナトリウムと0.41g/Lの酢酸ナトリウムとを含有する水溶液に酢酸を添加してpHを4.3に調整する。丸棒試験片に対して、実降伏応力の90%に相当する応力を負荷する。試験容器に24℃の試験溶液を、応力を負荷された丸棒試験片が浸漬するように注入し、試験浴とする。試験浴を脱気した後、0.07barのH2Sガス及び0.93barのCO2ガスを試験浴に吹き込み、試験浴にH2Sガスを飽和させる。H2Sガスが飽和した試験浴を、24℃で720時間保持する。その他の条件は、110ksi級の場合の耐SSC性評価試験と同じである。
本実施形態による鋼材は、鋼管、丸棒(中実材)、又は鋼板である。鋼管は継目無鋼管であってもよいし、溶接鋼管であってもよい。鋼管は、例えば、油井管用鋼管である。油井管用鋼管は、油井管用途の鋼管を意味する。油井管は例えば、油井又はガス井の掘削、原油又は天然ガスの採取等に用いられるケーシング、チュービング、ドリルパイプ等である。好ましくは、本実施形態の鋼材は、油井管用継目無鋼管である。
本実施形態の鋼材の製造方法の一例を説明する。なお、以下に説明する製造方法は一例であって、本実施形態の鋼材の製造方法はこれに限定されない。つまり、上述の構成を有する本実施形態の鋼材が製造できれば、以下に説明する製造方法に限定されない。ただし、以下に説明する製造方法は、本実施形態の鋼材を製造する好適な製造方法である。
製鋼工程では、溶鋼を製造する工程(精錬工程)と、溶鋼を用いて鋳造法により素材を製造するする工程(素材製造工程)とを含む。
精錬工程では初めに、Crを含有する溶鋼を取鍋に収納して、取鍋内の溶鋼に対して、大気圧下で脱炭処理を実施する(粗脱炭精錬工程)。粗脱炭精錬工程での脱炭処理により、スラグが生成する。粗脱炭精錬工程後の溶鋼の液面には、脱炭処理により生成したスラグが浮上している。粗脱炭精錬工程において、溶鋼中のCrが酸化してCr2O3が生成する。Cr2O3はスラグ中に吸収される。そこで、取鍋に脱酸剤を添加して、スラグ中のCr2O3を還元し、Crを溶鋼中に回収する(Cr還元処理工程)。粗脱炭精錬工程及びCr還元処理工程は例えば、電気炉法、転炉法、又は、AOD(Argon Oxygen Decarburization)法により実施する。Cr還元処理工程後、溶鋼からスラグを除滓する(除滓処理工程)。
τ=800×ε-0.4 (A)
ここで、εはLTにおける溶鋼の撹拌動力密度であり、式(B)により定義される。
ε=28.5(Q/W)×T×log(1+H/1.48) (B)
ここで、Qは上吹きガス流量(Nm3/min)である。Wは溶鋼質量(t)である。Tは溶鋼温度(K)である。Hは取鍋内の溶鋼の深さ(鋼浴深さ)(m)である。
上述の精錬工程により製造された溶鋼を用いて、素材(鋳片又はインゴット)を製造する。具体的には、溶鋼を用いて連続鋳造法により鋳片を製造する。鋳片はスラブでもよいし、ブルームでもよいし、ビレットでもよい。又は、溶鋼を用いて造塊法によりインゴットとしてもよい。鋳片又はインゴットに対してさらに、分塊圧延等を実施して、ビレットを製造してもよい。以上の工程により、素材を製造する。
熱間加工工程では、素材を熱間加工して中間鋼材を製造する。鋼材が鋼管である場合、中間鋼材は素管に相当する。初めに、素材を加熱炉で加熱する。加熱温度は特に限定されないが、例えば、1100~1300℃である。加熱炉から抽出されたビレットに対して熱間加工を実施して、中間鋼材である素管(継目無鋼管)を製造する。熱間加工の方法は、特に限定されず、周知の方法でよい。例えば、熱間加工としてマンネスマン法を実施し、素管を製造する。この場合、穿孔機により丸ビレットを穿孔圧延する。穿孔圧延する場合、穿孔比は特に限定されないが、例えば、1.0~4.0である。穿孔圧延された丸ビレットをさらに、マンドレルミル、レデューサ、サイジングミル等により熱間圧延して素管にする。熱間加工工程での累積の減面率は例えば、20~70%である。
熱処理工程は、焼入れ工程及び焼戻し工程を含む。
熱処理工程では、初めに、熱間加工工程で製造された中間鋼材に対して、焼入れを実施する(焼入れ工程)。焼入れは周知の方法で実施する。具体的には、熱間加工工程後の鋼材を熱処理炉に装入し、焼入れ温度で保持する。焼入れ温度はAC3変態点以上であり、たとえば、900~1000℃である。鋼材を焼入れ温度で保持した後、急冷(焼入れ)する。焼入れ温度での保持時間は特に限定されないが、たとえば、10~60分である。焼入れ方法はたとえば、水冷である。焼入れ方法は特に制限されない。中間鋼材が素管である場合、例えば、水槽又は油槽に浸漬して素管を急冷してもよいし、シャワー冷却又はミスト冷却により、素管の外面及び/又は内面に対して冷却水を注いだり、噴射したりして、素管を急冷してもよい。
焼入れ後の中間鋼材に対してさらに、焼戻し工程を実施する。焼戻し工程では、鋼材の降伏強度を調整する。本実施形態では、焼戻し温度を540~620℃とする。焼戻し温度での保持時間は特に限定されないが、たとえば、10~180分である。化学組成に応じて焼戻し温度を適宜調整することにより、鋼材の降伏強度を調整することができることは当業者に周知である。好ましくは、鋼材の降伏強度が758MPa以上(110ksi以上)となるように焼戻し条件を調整する。
上記の焼戻し後の各試験番号の鋼材に対して、ミクロ組織観察試験、総個数密度ND測定試験、引張試験、及び、耐SSC性評価試験を実施した。
鋼材のミクロ組織におけるマルテンサイト体積率を、次の方法により求めた。初めに、各試験番号の鋼材のミクロ組織中の残留オーステナイトの体積率を、X線回折法により求めた。具体的には、各試験番号の鋼材(継目無鋼管)の肉厚中央位置から試験片を採取した。試験片の大きさは、15mm×15mm×厚さ2mmであった。試験片の厚さ方向を、管径方向とした。得られた試験片を用いて、α相の(200)面、α相の(211)面、γ相の(200)面、γ相の(220)面、γ相の(311)面の各々のX線回折強度を測定し、各面の積分強度を算出した。X線回折強度の測定において、X線回折装置のターゲットをMoとし(MoKα線)、出力を50kV-40mAとした。算出後、α相の各面と、γ相の各面との組合せ(2×3=6組)ごとに式(I)を用いて残留オーステナイトの体積率Vγ(%)を算出した。そして、6組の残留オーステナイトの体積率Vγの平均値を、残留オーステナイトの体積率(%)と定義した。
Vγ=100/{1+(Iα×Rγ)/(Iγ×Rα)} (I)
ここで、Iαはα相の積分強度である。Rαはα相の結晶学的理論計算値である。Iγはγ相の積分強度である。Rγはγ相の結晶学的理論計算値である。なお、本明細書において、α相の(200)面でのRαを15.9、α相の(211)面でのRαを29.2、γ相の(200)面でのRγを35.5、γ相の(220)面でのRγを20.8、γ相の(311)面でのRγを21.8とした。なお、残留オーステナイトの体積率は、得られた数値の小数第一位を四捨五入した。
マルテンサイトの体積率=100-残留オーステナイトの体積率(%)
得られたマルテンサイトの体積率を、表2の「マルテンサイト体積率(%)」欄に示す。
鋼材中における、円相当径が1.0μm以上のMn硫化物及び円相当径が2.0μm以上のCa硫化物の総個数密度NDは次の方法により測定した。各試験番号の鋼材(継目無鋼管)の肉厚中央位置から試験片を採取した。採取した試験片を樹脂埋めした。試験片の表面のうち、管軸方向及び肉厚方向を含む面を観察面とした。樹脂埋めされた鋼材の観察面を研磨した。研磨後の観察面のうち、任意の10視野を観察した。各視野において、介在物の個数を求めた。各視野の面積は36mm2(6mm×6mm)とした。
ASTM E8(2013)に準拠して、引張試験を実施した。具体的には、各試験番号の鋼材(継目無鋼管)の肉厚中央位置から、丸棒引張試験片を採取した。丸棒引張試験片の平行部の直径は8.9mmであり、平行部の長さは35.6mmであった。丸棒引張試験片の長手方向は、鋼材の長手方向(圧延方向)と平行であった。各試験番号の丸棒引張試験片を用いて、常温(25℃)、大気中にて引張試験を実施して、0.2%オフセット耐力(MPa)を求めた。求めた0.2%オフセット耐力を降伏強度(MPa)と定義した。得られた降伏強度を、表2の「YS(MPa)」欄に示す。
鋼材の耐SSC性評価試験を次の方法で実施した。各試験番号の鋼材の肉厚中央位置から、丸棒試験片を採取した。丸棒試験片の平行部の直径は6.35mmであり、平行部の長さは25.4mmであった。丸棒試験片の長手方向は、鋼材の長手方向(管軸方向)と平行であった。
表2を参照して、試験番号1~14の化学組成は適切であった。さらに、ミクロ組織中のマルテンサイト体積率は80%以上であり、降伏強度は862MPa以上(125ksi以上)であった。さらに、円相当径が1.0μm以上のMn硫化物及び円相当径が2.0μm以上のCa硫化物の総個数密度NDが0.50個/mm2以下であった。そのため、優れた耐SSC性が得られた。
上記の焼戻し後の各試験番号の鋼材に対して、実施例1と同じ方法により、ミクロ組織観察試験、総個数密度ND測定試験、及び、引張試験を実施した。さらに、次の耐SSC性評価試験を実施した。
鋼材の耐SSC性評価試験を次の方法で実施した。各試験番号の鋼材の肉厚中央位置から、丸棒試験片を採取した。丸棒試験片の平行部の直径は6.35mmであり、平行部の長さは25.4mmであった。丸棒試験片の長手方向は、鋼材の長手方向(管軸方向)と平行であった。
表3を参照して、試験番号21~28の化学組成は適切であった。さらに、ミクロ組織中のマルテンサイト体積率は80%以上であり、降伏強度は758~862MPa未満(110ksi級)であった。さらに、円相当径が1.0μm以上のMn硫化物及び円相当径が2.0μm以上のCa硫化物の総個数密度NDが0.50個/mm2以下であった。そのため、優れた耐SSC性が得られた。
Claims (5)
- 鋼材であって、
化学組成が、質量%で、
C:0.035%以下、
Si:1.00%以下、
Mn:1.00%以下、
P:0.030%以下、
S:0.0050%以下、
sol.Al:0.005~0.100%、
N:0.001~0.020%、
Ni:5.00~7.00%、
Cr:10.00~14.00%、
Cu:1.50~3.50%、
Mo:1.00~4.00%、
V:0.01~1.00%、
Ti:0.02~0.30%、
Co:0.01~0.50%、
Ca:0.0003~0.0030%、
O:0.0050%以下、
W:0~1.50%、
Nb:0~0.50%、
B:0~0.0050%、
Mg:0~0.0050%、
希土類元素(REM):0~0.020%、及び、
残部がFe及び不純物、からなり、
前記鋼材のミクロ組織において、マルテンサイトの体積率が80%以上であり、残留オーステナイトの体積率が0~20%であり、
前記鋼材中の介在物のうち、Mn含有量が10%以上であり、S含有量が10%以上であり、円相当径が1.0μm以上のMn硫化物と、Ca含有量が20%以上であり、S含有量が10%以上であり、円相当径が2.0μm以上のCa硫化物との合計が0.50個/mm2以下である、
鋼材。 - 請求項1に記載の鋼材であって、
前記化学組成は、
W:0.01~1.50%を含有する、
鋼材。 - 請求項1又は請求項2に記載の鋼材であって、
前記化学組成は、
Nb:0.01~0.50%を含有する、
鋼材。 - 請求項1~請求項3のいずれか1項に記載の鋼材であって、
前記化学組成は、
B:0.0001~0.0050%、
Mg:0.0001~0.0050%、及び、
希土類元素(REM):0.001~0.020%、からなる群から選択される1種以上を含有する、
鋼材。 - 請求項1~請求項4のいずれか1項に記載の鋼材であって、
前記鋼材は、油井管用継目無鋼管である、
鋼材。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/014975 WO2021199368A1 (ja) | 2020-04-01 | 2020-04-01 | 鋼材 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2021199368A1 JPWO2021199368A1 (ja) | 2021-10-07 |
JP7364962B2 true JP7364962B2 (ja) | 2023-10-19 |
Family
ID=77929911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022511431A Active JP7364962B2 (ja) | 2020-04-01 | 2020-04-01 | 鋼材 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230175107A1 (ja) |
EP (1) | EP4130317A4 (ja) |
JP (1) | JP7364962B2 (ja) |
CN (1) | CN115698358B (ja) |
BR (1) | BR112022019162A2 (ja) |
MX (1) | MX2022012281A (ja) |
WO (1) | WO2021199368A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240018636A1 (en) * | 2021-01-28 | 2024-01-18 | Nippon Steel Corporation | Steel material |
US20240401722A1 (en) * | 2021-10-01 | 2024-12-05 | Nippon Steel Corporation | Martensitic stainless steel pipe |
WO2023054586A1 (ja) * | 2021-10-01 | 2023-04-06 | 日本製鉄株式会社 | マルテンサイト系ステンレス鋼管 |
US20240401178A1 (en) * | 2021-10-26 | 2024-12-05 | Nippon Steel Corporation | Martensitic stainless steel round bar |
EP4431621A4 (en) * | 2021-11-09 | 2025-02-19 | Nippon Steel Corp | SEAMLESS MARTENSITIC STAINLESS STEEL PIPE AND PROCESS FOR PRODUCING SEAMLESS MARTENSITIC STAINLESS STEEL PIPE |
JP7488503B1 (ja) | 2022-09-21 | 2024-05-22 | 日本製鉄株式会社 | マルテンサイト系ステンレス鋼材 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002161312A (ja) | 2000-11-21 | 2002-06-04 | Nkk Corp | 高靭性高クロム鋼板の製造方法 |
JP2015132014A (ja) | 2013-12-11 | 2015-07-23 | 株式会社神戸製鋼所 | 耐サワー性、haz靭性及びhaz硬さに優れた鋼板およびラインパイプ用鋼管 |
JP2016094649A (ja) | 2014-11-14 | 2016-05-26 | Jfeスチール株式会社 | 継目無鋼管およびその製造方法 |
JP2017002369A (ja) | 2015-06-12 | 2017-01-05 | 新日鐵住金株式会社 | 継目無鋼管及びその製造方法 |
WO2019225281A1 (ja) | 2018-05-25 | 2019-11-28 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5496421A (en) * | 1993-10-22 | 1996-03-05 | Nkk Corporation | High-strength martensitic stainless steel and method for making the same |
JP3444008B2 (ja) | 1995-03-10 | 2003-09-08 | 住友金属工業株式会社 | 耐炭酸ガス腐食性及び耐硫化物応力腐食割れ性の優れたマルテンサイトステンレス鋼 |
JP3598771B2 (ja) * | 1996-12-19 | 2004-12-08 | 住友金属工業株式会社 | 熱間加工性及び耐硫化物応力割れ性に優れたマルテンサイト系ステンレス鋼及びその分塊圧延方法並びにこれらを用いた継目無鋼管及びその製造方法 |
JP2000192196A (ja) | 1998-12-22 | 2000-07-11 | Sumitomo Metal Ind Ltd | 油井用マルテンサイト系ステンレス鋼 |
JP4035919B2 (ja) * | 1999-04-27 | 2008-01-23 | 住友金属工業株式会社 | 表面品質に優れたマルテンサイト系ステンレス鋼継目無鋼管 |
JP2003003243A (ja) * | 2001-06-22 | 2003-01-08 | Sumitomo Metal Ind Ltd | 耐炭酸ガス腐食性および耐硫化物応力腐食割れ性に優れた高強度マルテンサイトステンレス鋼 |
AR042494A1 (es) * | 2002-12-20 | 2005-06-22 | Sumitomo Chemical Co | Acero inoxidable martensitico de alta resistencia con excelentes propiedades de resistencia a la corrosion por dioxido de carbono y resistencia a la corrosion por fisuras por tensiones de sulfuro |
JP5582307B2 (ja) | 2010-12-27 | 2014-09-03 | Jfeスチール株式会社 | 油井用高強度マルテンサイト系ステンレス継目無鋼管 |
JP5522322B1 (ja) * | 2012-06-20 | 2014-06-18 | 新日鐵住金株式会社 | 油井管用鋼及びその製造方法 |
JP5861786B2 (ja) * | 2013-01-16 | 2016-02-16 | Jfeスチール株式会社 | 油井用ステンレス継目無鋼管およびその製造方法 |
MX2016015099A (es) * | 2014-05-21 | 2017-02-22 | Jfe Steel Corp | Tuberia de acero inoxidable sin costura de alta resistencia para productos tubulares de region petrolifera y metodo para la fabricacion de la misma. |
EP3460087B1 (en) * | 2016-05-20 | 2020-12-23 | Nippon Steel Corporation | Steel bar for downhole member and downhole member |
JP6787483B2 (ja) * | 2017-03-28 | 2020-11-18 | 日本製鉄株式会社 | マルテンサイトステンレス鋼材 |
JP7264596B2 (ja) * | 2018-03-19 | 2023-04-25 | 日本製鉄株式会社 | 鋼材 |
-
2020
- 2020-04-01 CN CN202080101344.5A patent/CN115698358B/zh active Active
- 2020-04-01 JP JP2022511431A patent/JP7364962B2/ja active Active
- 2020-04-01 WO PCT/JP2020/014975 patent/WO2021199368A1/ja unknown
- 2020-04-01 BR BR112022019162A patent/BR112022019162A2/pt active Search and Examination
- 2020-04-01 EP EP20928920.6A patent/EP4130317A4/en active Pending
- 2020-04-01 US US17/906,664 patent/US20230175107A1/en active Pending
- 2020-04-01 MX MX2022012281A patent/MX2022012281A/es unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002161312A (ja) | 2000-11-21 | 2002-06-04 | Nkk Corp | 高靭性高クロム鋼板の製造方法 |
JP2015132014A (ja) | 2013-12-11 | 2015-07-23 | 株式会社神戸製鋼所 | 耐サワー性、haz靭性及びhaz硬さに優れた鋼板およびラインパイプ用鋼管 |
JP2016094649A (ja) | 2014-11-14 | 2016-05-26 | Jfeスチール株式会社 | 継目無鋼管およびその製造方法 |
JP2017002369A (ja) | 2015-06-12 | 2017-01-05 | 新日鐵住金株式会社 | 継目無鋼管及びその製造方法 |
WO2019225281A1 (ja) | 2018-05-25 | 2019-11-28 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20230175107A1 (en) | 2023-06-08 |
JPWO2021199368A1 (ja) | 2021-10-07 |
CN115698358A (zh) | 2023-02-03 |
MX2022012281A (es) | 2022-10-27 |
EP4130317A1 (en) | 2023-02-08 |
CN115698358B (zh) | 2023-08-29 |
EP4130317A4 (en) | 2023-05-17 |
WO2021199368A1 (ja) | 2021-10-07 |
BR112022019162A2 (pt) | 2022-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7364962B2 (ja) | 鋼材 | |
JP6787483B2 (ja) | マルテンサイトステンレス鋼材 | |
EP2728030B1 (en) | Thick-walled high-strength seamless steel pipe with excellent sour resistance for pipe for pipeline, and process for producing same | |
JP6966006B2 (ja) | マルテンサイトステンレス鋼材 | |
JP4911266B2 (ja) | 高強度油井用ステンレス鋼及び高強度油井用ステンレス鋼管 | |
JPWO2018043570A1 (ja) | 鋼材及び油井用鋼管 | |
WO2023157897A1 (ja) | サワー環境での使用に適した鋼材 | |
MX2007006789A (es) | Articulo tubular de acero inoxidable martensitico para campos petroleros. | |
JP2023139306A (ja) | マルテンサイト系ステンレス継目無鋼管 | |
JP7239086B1 (ja) | マルテンサイト系ステンレス鋼管 | |
JP7534676B2 (ja) | 鋼材 | |
RU2797277C1 (ru) | Стальной материал | |
JP7564499B1 (ja) | 鋼材 | |
JP7428953B1 (ja) | マルテンサイト系ステンレス鋼材 | |
JP7633586B1 (ja) | 鋼材 | |
JP7428954B1 (ja) | マルテンサイト系ステンレス鋼材 | |
JP7364993B1 (ja) | 鋼材 | |
JP7445173B2 (ja) | 鋼材 | |
WO2023054586A1 (ja) | マルテンサイト系ステンレス鋼管 | |
WO2025033003A1 (ja) | 鋼材 | |
WO2024214486A1 (ja) | 鋼材 | |
WO2025033002A1 (ja) | 鋼材 | |
JP2024148631A (ja) | 鋼材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230404 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230601 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230918 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7364962 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |