[go: up one dir, main page]

JP7359309B2 - Encipher and its applications in biopower generation - Google Patents

Encipher and its applications in biopower generation Download PDF

Info

Publication number
JP7359309B2
JP7359309B2 JP2022530342A JP2022530342A JP7359309B2 JP 7359309 B2 JP7359309 B2 JP 7359309B2 JP 2022530342 A JP2022530342 A JP 2022530342A JP 2022530342 A JP2022530342 A JP 2022530342A JP 7359309 B2 JP7359309 B2 JP 7359309B2
Authority
JP
Japan
Prior art keywords
culture medium
sesbaniae
ensifer
negative electrode
microbial fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022530342A
Other languages
Japanese (ja)
Other versions
JP2022545580A (en
Inventor
▲メイ▼英 許
建華 宋
永剛 楊
Original Assignee
広東省科学院微生物研究所(広東省微生物分析検測中心)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 広東省科学院微生物研究所(広東省微生物分析検測中心) filed Critical 広東省科学院微生物研究所(広東省微生物分析検測中心)
Publication of JP2022545580A publication Critical patent/JP2022545580A/en
Application granted granted Critical
Publication of JP7359309B2 publication Critical patent/JP7359309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

GDMCC GDMCC GDMCC 60957GDMCC 60957

本発明は、環境微生物およびバイオエネルギーの技術分野に関し、具体的に黒臭水域の堆積物に由来する発電能力を有するエンサイファおよびその生物発電における用途に関する。 TECHNICAL FIELD The present invention relates to the technical field of environmental microorganisms and bioenergy, and specifically relates to an encipher that has the ability to generate electricity derived from the sediment of a black-smelling water body and its use in biopower generation.

発電微生物(「細胞外発電細菌、陽極呼吸細菌」とも呼ばれる)とは、代謝によって生成された電子を細胞外電子受容体に伝達できる細胞外電子伝達機能を有する微生物の一種を指し、主に嫌気性微生物または通性嫌気性微生物である。発電微生物は、土壌、廃水、湖、海洋および川の堆積物などの嫌気性または低酸素環境に広く分布している。 Power-generating microorganisms (also called "extracellular power-generating bacteria, anodic respiration bacteria") are a type of microorganisms that have an extracellular electron transfer function that can transfer electrons generated through metabolism to extracellular electron acceptors. It is a sexual microorganism or a facultative anaerobic microorganism. Power-producing microorganisms are widely distributed in anaerobic or hypoxic environments such as soil, wastewater, lake, ocean and river sediments.

微生物燃料電池は、近年急速に発展している生物電気化学反応装置であり、従来の生物分解と電気化学技術を組み合わせて、微生物の電子伝達により、微生物が利用できる有機物の化学エネルギーを電気エネルギーに変換する。微生物燃料電池は、汚染防止、生物発電およびなどの分野で幅広い用途の見通しがある。その動作原理としては、発電微生物が利用できる有機物を酸化する同時に陽極で電子を生成し、電子が対応する電子伝達メカニズムを介して陰極の電子受容体に伝達され、陰極の電子受容体は一般に酸素およびフェリシアン化カリウムなどである。 A microbial fuel cell is a bioelectrochemical reaction device that has been rapidly developing in recent years.It combines conventional biodegradation and electrochemical technology, and converts the chemical energy of organic matter that can be used by microorganisms into electrical energy through electron transfer by microorganisms. Convert. Microbial fuel cells have broad application prospects in areas such as pollution control, biopower generation, and more. Its working principle is that power-generating microorganisms oxidize available organic matter and at the same time generate electrons at the anode, and the electrons are transferred to the electron acceptors at the cathode through the corresponding electron transfer mechanism, and the electron acceptors at the cathode are generally oxygen and potassium ferricyanide.

発電微生物は、微生物燃料電池の発展および応用に非常に重要であり、これまでの研究で報告されていた発電微生物の種類と数はまだ非常に限られ、現状では、関連する研究も主にジオバクター(Geobacter)とシュワネラ(Shewanella)属などに集中している。これに加えて、大部分の発電微生物の発電効率が低く、微生物燃料電池に応用できる発電微生物は非常に限られ、発電微生物資源の開発と利用はまだ始まったばかりである。そのため、より多く効率的な発電細菌種を選択および分離することが急務である。 Power-generating microorganisms are very important for the development and application of microbial fuel cells, but the types and numbers of power-generating microorganisms that have been reported in previous studies are still very limited, and at present, related research mainly focuses on Geobacter. They are concentrated in the genus Geobacter and Shewanella. In addition, the power generation efficiency of most power-generating microorganisms is low, and the number of power-generating microorganisms that can be applied to microbial fuel cells is very limited, and the development and utilization of power-generating microorganism resources has only just begun. Therefore, there is an urgent need to select and isolate more and more efficient power-generating bacterial species.

エンサイファ(Ensifer)属は、グラム陰性菌で、土壌や川の堆積物などの自然環境で広く発見され得る。しかしながら、これまでエンサイファによる環境汚染物の分解に関する研究はたくさんあるが、その生物発電の分野での研究報告はまだない。 The genus Ensifer is a Gram-negative bacterium that can be widely found in natural environments such as soil and river sediments. However, although there have been many studies on the decomposition of environmental pollutants by Encipher, there have been no research reports in the field of biopower generation.

本発明の目的は、発電微生物菌種の資源が比較的不足しているという現状を考慮して、エンサイファおよびその生物発電における用途を提供することである。 It is an object of the present invention to provide an encipher and its use in biopower generation, taking into account the current situation where resources of power-generating microbial strains are relatively scarce.

本発明の第1の目的は、生物発電機能を有するエンサイファ(Ensifer sesbaniae)Y5を提供することであり、この菌株は2020年1月14日に中国広東省微生物菌種保蔵センター(住所:中国.広州.中国広東省微生物研究所、郵便番号:510070)に保蔵され、保蔵センター登録番号はGDMCC No:60957である。 The first objective of the present invention is to provide Ensifer sesbaniae Y5 with biopower generation function, and this strain was acquired on January 14, 2020 by the Microbial Species Storage Center of Guangdong Province, China (Address: China. Guangzhou, China (Guangdong Provincial Institute of Microbiology, Postal code: 510070), and the storage center registration number is GDMCC No: 60957.

前記エンサイファ(Ensifer sesbaniae)Y5は、中国広東佛山容桂Wenta公園の黒臭川の堆積物に由来する。微生物燃料電池の濃縮および勾配希釈-アゾ還元スクリーニング方法によって分離される。この菌株は通性嫌気性菌で、棒状、長さ約3μm、幅0.8~0.9μmで、鞭毛あり、グラム陰性である。広範囲のpH(5.5~9.5)、温度(4~45℃)の範囲内で増殖することができる。この細菌の際立った特徴は発電活性を有することである。 The Ensifer sesbaniae Y5 originates from the deposits of the Black Smell River in Ronggui Wenta Park, Foshan, Guangdong, China. Microbial fuel cell enrichment and gradient dilution-separated by azo reduction screening method. This strain is a facultative anaerobe, rod-shaped, approximately 3 μm long, 0.8 to 0.9 μm wide, has flagella, and is Gram-negative. It can grow within a wide range of pH (5.5-9.5) and temperature (4-45°C). A distinctive feature of this bacterium is that it has power generating activity.

エンサイファは、グラム陰性で、通性嫌気性細菌である。現在、Ensifer菌属は、体系的に命名された14種の菌種、それぞれ、Ensifer adhaerens(典型的な菌株:LMG 20216)、Ensifer alkalisoli(典型的な菌株:YIC4027)、Ensifer aridi(典型的な菌株:RMT3)、Ensifer collicola(典型的な菌株:Mol 12)、Ensifergaramanticus(典型的な菌株:ORS 1400)、Ensiferglycinis(典型的な菌株:CCBAU 23380)、Ensifermaghrebium(典型的な菌株:ORS 1410)、Ensifermexicanus(典型的な菌株:ITTG~R7)、Ensifer numidicus(典型的な菌株:ORS 1407)、Ensifer psoraleae(典型的な菌株:CCBAU 65732)、Ensifer sesbaniae(典型的な菌株:CCBAU 65729)、Ensifer shofinae(典型的な菌株:CCBAU 251167)、Ensifer sojae(典型的な菌株:CCBAU 05684)、Ensifer xericitae(典型的な菌株:STM 354)を含んでいる。しかしながら、これまでにエンサイファ属の発電に関連する報告はまだない。 Encypha is a Gram-negative, facultative anaerobic bacterium. Currently, the Ensifer genus consists of 14 systematically named bacterial species: Ensifer adhaerens (typical strain: LMG 20216), Ensifer alkalisoli (typical strain: YIC4027), and Ensifer aridi (typical strain: LMG 20216). Strain: RMT3), Ensifer collicola (typical strain: Mol 12), Ensifergaramanticus (typical strain: ORS 1400), Ensiferglycinis (typical strain: CCBAU 23380), Ensifermaghr ebium (typical strain: ORS 1410), Ensifermexicanus (typical strain: ITTG to R7), Ensifer numidicus (typical strain: ORS 1407), Ensifer psoraleae (typical strain: CCBAU 65732), Ensifer sesbaniae (typical strain: CCBAU 65732) Strain: CCBAU 65729), Ensifer shofinae (Typical strain: CCBAU 251167), Ensifer sojae (Typical strain: CCBAU 05684), and Ensifer xericitae (Typical strain: STM 354). However, to date, there have been no reports related to power generation in the genus Encipher.

本発明の第2の目的は、エンサイファ(Ensifer sesbaniae)Y5の生物発電または微生物燃料電池の調製における用途を提供することである。 A second object of the present invention is to provide the use of Ensifer sesbaniae Y5 in the preparation of biopower or microbial fuel cells.

具体的には、
微生物燃料電池の陽極室の培養培地にエンサイファEnsifer sesbaniae Y5を接種し、前記エンサイファEnsifer sesbaniae Y5は、前記培養培地で浮遊状態で増殖し、または陽極の表面に付着するステップ(1)と、
接種後、無菌窒素を注入させて前記陽極室内の酸素を除去し前記陽極室を密閉して、嫌気性培養を行い、前記微生物燃料電池から電気を発生させるステップ(2)と、を含む。
in particular,
(1) inoculating Ensifer sesbaniae Y5 into a culture medium in an anode chamber of a microbial fuel cell, and causing the Ensifer sesbaniae Y5 to grow in suspension in the culture medium or adhere to the surface of the anode;
After inoculation, the step (2) includes injecting sterile nitrogen to remove oxygen in the anode chamber, sealing the anode chamber, performing anaerobic culture, and generating electricity from the microbial fuel cell.

好ましくは、前記陽極室中の前記培養培地の組成は、リン酸水素二ナトリウム17.1~18g/L、リン酸二水素カリウム3~3.6g/L、塩化ナトリウム0.5~0.6g/L、塩化アンモニウム1~1.2g/L、酵母抽出物0.5~0.6g/L、酢酸ナトリウム0.82~1g/Lまたはギ酸ナトリウム1.04~1.2g/Lまたは乳酸ナトリウム1.12~1.5g/Lまたはグルコース1.8~2.0g/Lであり、溶媒は水である。 Preferably, the composition of the culture medium in the anode chamber is 17.1-18 g/L of disodium hydrogen phosphate, 3-3.6 g/L of potassium dihydrogen phosphate, and 0.5-0.6 g of sodium chloride. /L, ammonium chloride 1-1.2g/L, yeast extract 0.5-0.6g/L, sodium acetate 0.82-1g/L or sodium formate 1.04-1.2g/L or sodium lactate. 1.12-1.5 g/L or glucose 1.8-2.0 g/L, and the solvent is water.

好ましくは、前記ステップ(1)では、固形培養培地に前記エンサイファEnsifer sesbaniae Y5を接種し、それを嫌気性ワークステーションに静置して培養し、コロニーを選択して無菌のPBS緩衝溶液中に均一に混合し、均一に混合した後細菌溶液を前記微生物燃料電池の前記陽極室中の前記培養培地に接種し、前記エンサイファEnsifer sesbaniae Y5は培養培地で浮遊状態で増殖し、または陽極の表面に付着する。 Preferably, in said step (1), a solid culture medium is inoculated with said Ensifer sesbaniae Y5, it is left to culture on an anaerobic workstation, and colonies are selected and uniformly distributed in a sterile PBS buffer solution. and after uniform mixing, the bacterial solution is inoculated into the culture medium in the anode chamber of the microbial fuel cell, and the Ensifer sesbaniae Y5 grows in suspension in the culture medium or adheres to the surface of the anode. do.

好ましくは、前記嫌気性ワークステーションの温度は30~37℃である。 Preferably, the temperature of the anaerobic workstation is between 30 and 37°C.

好ましくは、前記固形培養培地は、前記陽極室中の前記培養培地に、アマランス0.15~0.2mMまたはメチルオレンジ染料0.15~0.2mM、および寒天15~18g/Lを添加したものである。 Preferably, the solid culture medium is the culture medium in the anode chamber supplemented with 0.15-0.2mM amaranth or 0.15-0.2mM methyl orange dye, and 15-18g/L agar. It is.

前記PBS緩衝溶液の組成は、リン酸水素二ナトリウム3.6g/L、リン酸二水素カリウム0.27g/L、塩化ナトリウム8g/L、塩化カリウム0.2g/Lであり、溶媒は水であり、pH値は7.3~7.5である。 The composition of the PBS buffer solution is 3.6 g/L of disodium hydrogen phosphate, 0.27 g/L of potassium dihydrogen phosphate, 8 g/L of sodium chloride, and 0.2 g/L of potassium chloride, and the solvent is water. The pH value is 7.3-7.5.

好ましくは、接種後の前記陽極室の培養液のOD600は0.05~0.06である。 Preferably, the OD 600 of the culture solution in the anode chamber after inoculation is 0.05 to 0.06.

好ましくは、前記微生物燃料電池は、プロトン交換膜によって分離されたデュアルチャンバー微生物燃料電池であり、陰極と陽極は両方ともグラファイト板であり、または単一チャンバー微生物燃料電池であり、陽極はグラファイト板であり、陰極は白金担持空気陰極である。 Preferably, the microbial fuel cell is a dual chamber microbial fuel cell separated by a proton exchange membrane, where the cathode and anode are both graphite plates, or a single chamber microbial fuel cell, where the anode is a graphite plate. The cathode is a platinum-supported air cathode.

従来技術と比較すると、本発明は以下の利点を有する。本発明のエンサイファ(Ensifer sesbaniae)Y5は、黒臭水域の堆積物に由来する発電微生物であり、この細菌は比較的高い発電活性を有し、広範囲のpH(5.5~9.5)、温度(4~45℃)の範囲内で増殖でき、さらに、この細菌は様々な炭素源を使用して発電することができる。これらの特徴は、エンサイファ(Ensifer sesbaniae)Y5が強力な環境適応能力を持ち、低温、酸性またはアルカリ性の条件下で有機廃棄物を酸化および分解して電気エネルギーを生成することを示している。この応用は、環境汚染の処理を実現するだけでなく、グリーン電気エネルギーを取得することもでき、幅広い用途が見込まれる。 Compared with the prior art, the present invention has the following advantages: Ensifer sesbaniae Y5 of the present invention is a power-generating microorganism derived from the sediments of black-smelling water bodies. Able to grow within a range of temperatures (4-45° C.), this bacterium can also generate electricity using a variety of carbon sources. These characteristics indicate that Ensifer sesbaniae Y5 has strong environmental adaptation ability and can oxidize and decompose organic wastes to generate electrical energy under low temperature, acidic or alkaline conditions. This application not only realizes the treatment of environmental pollution, but also can obtain green electrical energy, and is expected to have a wide range of applications.

本発明のエンサイファ(Ensifer sesbaniae)Y5は、2020年1月14日に中国広東省微生物菌種保蔵センター(GDMCC)に保蔵され、その住所は、広州市Xianlie Middle Road、100番ヤード、59号館、5階、保蔵番号は、GDMCC No:60957である。 The Ensifer sesbaniae Y5 of the present invention was stored at the Guangdong Provincial Microbial Species Conservation Center (GDMCC), China on January 14, 2020, and its address is Building 59, Yard 100, Xianlie Middle Road, Guangzhou City, 5th floor, storage number is GDMCC No: 60957.

エンサイファ(Ensifer sesbaniae)Y5のコロニー形態の電子顕微鏡画像。Electron microscopy image of colony morphology of Ensifer sesbaniae Y5. エンサイファ(Ensifer sesbaniae)Y5の発電検証図であり、図のY5はエンサイファ(Ensifer sesbaniae)Y5を表す。It is a power generation verification diagram of Ensifer (Ensifer sesbaniae) Y5, and Y5 in the figure represents Ensifer (Ensifer sesbaniae) Y5. エンサイファ(Ensifer sesbaniae)Y5の発電特徴(サイクリックボルタンメトリーチャート)であり、図のY5はエンサイファ(Ensifer sesbaniae)Y5を表す。This is a power generation characteristic (cyclic voltammetry chart) of Ensifer (Ensifer sesbaniae) Y5, and Y5 in the figure represents Ensifer (Ensifer sesbaniae) Y5. 様々な炭素源を使用したエンサイファ(Ensifer sesbaniae)Y5の発電分析を示し、a:ギ酸ナトリウム;b:酢酸ナトリウム;c:乳酸ナトリウム;d:グルコースである。Figure 2 shows power generation analysis of Ensifer sesbaniae Y5 using various carbon sources: a: sodium formate; b: sodium acetate; c: sodium lactate; d: glucose.

以下、実施例を参照して本発明をさらに説明する。実施例は、例を挙げて本発明を説明することを意図し、いかなる形式で本発明を制限するものではない。特に明記されるプロセスパラメータについては、従来の技術を参照して設定することができる。 The present invention will be further described below with reference to Examples. The examples are intended to illustrate the invention by way of example and are not intended to limit it in any way. Especially specified process parameters can be set with reference to conventional techniques.

実施例1
エンサイファ(Ensifer sesbaniae)Y5のスクリーニングおよび分離:
Example 1
Screening and isolation of Ensifer sesbaniae Y5:

(1)接種物の用意:中国広東佛山容桂Wenta公園の黒臭水域から川の堆積物を収集し、冷蔵室(5~8℃)に保管した。適切な量の堆積物サンプルに対してふるい分け(80目)処理を行い、均一に攪拌した後用意する(均一に混合された堆積物)。 (1) Preparation of inoculum: River sediment was collected from the black-smelling water area of Foshan Ronggui Wenta Park, Guangdong, China, and stored in a cold room (5-8°C). An appropriate amount of sediment sample is subjected to sieving (80 meshes), stirred uniformly, and then prepared (uniformly mixed sediment).

(2)堆積物の微生物燃料電池装置の構造および電流収集システム:堆積物の微生物燃料電池の体積は1Lであり、プロトン交換膜のない単一チャンバー微生物燃料電池である。陰極と陽極は両方ともカーボンフェルト(5×5cm)であり、チタンワイヤを介して電極に接続される。陽極がチタンワイヤに接続された後電池の底部に置かれ、均一に混合された600mLの堆積物を加え、その後300mLの水道水を上部水としてゆっくりと滴下する。陰極がチタンワイヤに接続された後上部水に浮かんで、陰極と陽極はチタンワイヤを介して1000Ωの抵抗に接続される。電池の抵抗両端は、電池の発電データ(電圧)を収集するために、Kethley 2700マルチチャンネルデータコレクターに接続される。 (2) Structure and current collection system of the sediment microbial fuel cell device: The volume of the sediment microbial fuel cell is 1L, and it is a single chamber microbial fuel cell without proton exchange membrane. The cathode and anode are both carbon felt (5 x 5 cm) and connected to the electrodes via titanium wire. After the anode is connected to the titanium wire, placed at the bottom of the cell, add 600 mL of uniformly mixed deposit, then slowly drip 300 mL of tap water as top water. After the cathode is connected to the titanium wire, it floats on the upper water, and the cathode and anode are connected to a 1000Ω resistor through the titanium wire. The resistive ends of the battery are connected to a Kethley 2700 multi-channel data collector to collect battery power generation data (voltage).

(3)堆積物の微生物燃料電池の発電微生物の濃縮:一定のラグ期間の後、電池の電圧は時間とともに上昇し続け、最終的に安定する。電池の電圧が安定すると、電池は発電微生物の濃縮を完了する。 (3) Power generation of microbial fuel cells in sediment Concentration of microorganisms: After a certain lag period, the cell voltage continues to increase with time and eventually stabilizes. When the battery voltage stabilizes, the battery completes concentration of the power-generating microorganisms.

(4)発電微生物のスクリーニングおよび分離:濃縮された電池を超クリーンワークベンチに移し、陽極のカーボンフェルトを取り出す。カーボンフェルトを無菌のPBS緩衝液(PBS溶液の組成は、リン酸水素二ナトリウム3.6g/L、リン酸二水素カリウム0.27g/L、塩化ナトリウム8g/L、塩化カリウム0.2g/Lであり、溶媒は水であり、pH値は7.3~7.5であり、その調製方法では、各成分を含有量に応じて均一に混合し、pH値を7.3~7.5に調節し、減菌する)に浸漬し、渦振動により電極表面の微生物を溶液に移動させる。この溶液を接種物として、勾配希釈された後、異なる希釈度の接種液を無菌の固形培養培地に塗布する(培養培地の組成:リン酸水素二ナトリウム17.1g/L、リン酸二水素カリウム3g/L、塩化ナトリウム0.5g/L、塩化アンモニウム1g/L、酵母抽出物0.5g/L、酢酸ナトリウム0.82g/L、アマランス0.15mM、寒天15g/Lであり、溶媒は水であり、調製:培養培地の各成分を混合して水に溶解し、攪拌しながら溶解し、減菌、冷却した後に得られる)。塗布された固形培養培地(プレート)を嫌気性ワークステーションに置いて培養し、培養温度は30~37℃である。一定時間培養した後、培養培地を取り出し、プレート培養培地上の単一コロニーを選択して新しい培養培地に画線して精製した後、新しい培養培地を嫌気性ワークステーションに置いて培養し、培養温度は30~37℃である。画線および精製プロセスを繰り返して、すべてのコロニーの形態、色が一致になるまで、複数回の分離および精製を行う。最後に、純粋な培養物を取得し、この純粋な培養物は高い発電活性を有するエンサイファ(Ensifer sesbaniae)Y5であり、その形態は図1に示される。 (4) Screening and isolation of power-generating microorganisms: Transfer the concentrated battery to an ultra-clean workbench and take out the carbon felt of the anode. Carbon felt was mixed with sterile PBS buffer (the composition of the PBS solution was 3.6 g/L of disodium hydrogen phosphate, 0.27 g/L of potassium dihydrogen phosphate, 8 g/L of sodium chloride, and 0.2 g/L of potassium chloride). The solvent is water, and the pH value is 7.3 to 7.5. In the preparation method, each component is mixed uniformly according to the content, and the pH value is 7.3 to 7.5. Microorganisms on the electrode surface are transferred to the solution by vortex vibration. This solution is used as an inoculum, and after gradient dilution, the inoculum at different dilutions is applied to a sterile solid culture medium (composition of culture medium: disodium hydrogen phosphate 17.1 g/L, potassium dihydrogen phosphate 3g/L, sodium chloride 0.5g/L, ammonium chloride 1g/L, yeast extract 0.5g/L, sodium acetate 0.82g/L, amaranth 0.15mM, agar 15g/L, and the solvent was water. (preparation: obtained after mixing each component of the culture medium, dissolving in water, dissolving with stirring, sterilizing, and cooling). The coated solid culture medium (plate) is placed on an anaerobic workstation and cultured at a culture temperature of 30-37°C. After culturing for a certain period of time, the culture medium is removed, a single colony on the plate culture medium is selected and streaked onto a new culture medium for purification, and then the new culture medium is placed on an anaerobic workstation and cultured. The temperature is 30-37°C. Repeat the streaking and purification process to perform multiple rounds of isolation and purification until all colonies are consistent in morphology, color. Finally, a pure culture was obtained, which is Ensifer sesbaniae Y5 with high power generation activity, and its morphology is shown in FIG. 1.

(5)菌種の同定および発電活性の検証:形態分析の結果から分かるように、このエンサイファ(Ensifer sesbaniae)Y5は棒状で、長さ約3μm、幅0.8~0.9μmで、鞭毛ある。この細菌は通性嫌気性菌で、グラム陰性である。ギ酸ナトリウム、酢酸ナトリウム、乳酸ナトリウムおよびグルコースなどの様々な炭素源を使用して増殖することができる。広範囲のpH(5.5~9.5)、温度(4~45℃)の範囲内で増殖でき、この細菌の高い環境適応能力を反映する。 (5) Identification of bacterial species and verification of power generation activity: As seen from the results of morphological analysis, Ensifer sesbaniae Y5 is rod-shaped, approximately 3 μm long, 0.8 to 0.9 μm wide, and has flagella. . This bacterium is a facultative anaerobe and Gram-negative. A variety of carbon sources can be used for growth, such as sodium formate, sodium acetate, sodium lactate and glucose. It can grow within a wide range of pH (5.5-9.5) and temperature (4-45°C), reflecting the high environmental adaptability of this bacterium.

16SrRNA遺伝子(配列番号がSEQ ID NO.1に示される)の相同性分析から分かるように、この細菌はエンサイファ(Ensifer sesbaniae CCBAU 65729)との類似度が99.97%に達した。しかしながら、これまでに発見されたこの菌属に属するすべての菌種の中で、発電能力のある菌株の関連報告はまだない。したがって、この細菌を一時的にエンサイファ(Ensifer sesbaniae)Y5と命名した。 This bacterium reached 99.97% similarity with Ensifer sesbaniae CCBAU 65729, as shown by the homology analysis of the 16S rRNA gene (SEQ ID NO. 1). However, among all the bacterial species belonging to this genus that have been discovered so far, there have been no reports of any strains capable of generating electricity. Therefore, this bacterium was tentatively named Ensifer sesbaniae Y5.

本発明のエンサイファ(Ensifer sesbaniae)Y5は、2020年1月14日に中国広東省微生物菌種保蔵センター(GDMCC)に保蔵され、住所は、中国広州市Xianlie Middle Road、100番ヤード、59号館、5階であり、保蔵番号はGDMCC No:60957である。 The Ensifer sesbaniae Y5 of the present invention was stored at the Guangdong Provincial Microbial Species Conservation Center (GDMCC) on January 14, 2020, and the address is Building 59, Yard 100, Xianlie Middle Road, Guangzhou, China. It is on the 5th floor and the storage number is GDMCC No: 60957.

エンサイファ(Ensifer sesbaniae)Y5の純粋な培養物を無菌のスパチュラで無菌のPBS緩衝液にこすり落とし、完全に均一に混合して、細菌溶液を得、細菌溶液をデュアルチャンバー微生物燃料電池の陽極室のLM培養培地(陽極液)に接種し、発電試験を実施し、接種後の陽極室の培養液のOD600は0.05~0.06であり、エンサイファ(Ensifer sesbaniae)Y5は培養培地で浮遊状態で増殖し、または陽極の表面に付着し、無菌窒素を注入して陽極室内の酸素を除去した後陽極室を密閉して、嫌気性培養を行う。試験方法:デュアルチャンバー微生物燃料電池について、電池の陰極と陽極は両方とも同じサイズ(2cm×3.3cm×0.2cm)の高純度グラファイト電極である。陰極室の電解液は50mMのフェリシアン化カリウム溶液であり、溶媒はPBS緩衝液である。陽極液はLM培養培地である(培養培地の組成:リン酸水素二ナトリウム18g/L、リン酸二水素カリウム3.6g/L、塩化ナトリウム0.6g/L、塩化アンモニウム1.2g/L、酵母抽出物0.6g/L、酢酸ナトリウム1g/Lであり、溶媒は水である。調製:培養培地の各成分を混合して水に溶解し、攪拌しながら溶解し、減菌、冷却して得られる。)。試験の結果から分かるように、図2に示すように、この菌株は微生物燃料電池で長期間安定して発電できる。 A pure culture of Ensifer sesbaniae Y5 was scraped into sterile PBS buffer with a sterile spatula, mixed thoroughly and homogeneously to obtain a bacterial solution, and the bacterial solution was added to the anode chamber of a dual chamber microbial fuel cell. The LM culture medium (anolyte) was inoculated and a power generation test was performed, and the OD 600 of the culture solution in the anode chamber after inoculation was 0.05 to 0.06, and Ensifer sesbaniae Y5 was suspended in the culture medium. The cells grow in the state or adhere to the surface of the anode, and after removing oxygen in the anode chamber by injecting sterile nitrogen, the anode chamber is sealed to perform anaerobic culture. Test method: For the dual chamber microbial fuel cell, the cathode and anode of the cell are both high purity graphite electrodes with the same size (2 cm x 3.3 cm x 0.2 cm). The electrolyte in the cathode chamber is a 50 mM potassium ferricyanide solution, and the solvent is PBS buffer. The anolyte is LM culture medium (composition of culture medium: disodium hydrogen phosphate 18 g/L, potassium dihydrogen phosphate 3.6 g/L, sodium chloride 0.6 g/L, ammonium chloride 1.2 g/L, Yeast extract 0.6g/L, sodium acetate 1g/L, and the solvent is water.Preparation: Each component of the culture medium is mixed and dissolved in water, dissolved with stirring, sterilized, and cooled. ). As can be seen from the test results, as shown in Figure 2, this strain can stably generate electricity for a long period of time using microbial fuel cells.

実施例2
本実施例は、エンサイファ(Ensifer sesbaniae)Y5の細胞外電子伝達の特徴を開示する。実施例1に示すように、デュアルチャンバー微生物燃料電池の陽極室にエンサイファ(Ensifer sesbaniae)Y5を接種し、電池は電圧がピーク値に達して安定したままになるまで動作する。その後電池の陽極室に対してサイクリックボルタンメトリースキャン分析を行い、ポテンシオスタットはCHI 700Eを採用し、参照電極としてAg/AgCl電極を使用し、陰極を対電極とする。スキャン電圧は-0.6~-0.2Vで、スキャン速度は10mV/sであり、結果が図3に示される。
Example 2
This example discloses the extracellular electron transport characteristics of Ensifer sesbaniae Y5. As shown in Example 1, the anode chamber of a dual chamber microbial fuel cell is inoculated with Ensifer sesbaniae Y5 and the cell is operated until the voltage reaches a peak value and remains stable. A cyclic voltammetry scan analysis is then performed on the anode chamber of the cell, using a CHI 700E potentiostat, an Ag/AgCl electrode as a reference electrode, and a cathode as a counter electrode. The scan voltage was −0.6 to −0.2 V, the scan speed was 10 mV/s, and the results are shown in FIG. 3.

既存の文献報告によると、発電微生物の電子伝達は、主に、外膜チトクロームの細胞外伝達経路、細胞外膜上のナノワイヤの細胞外電子伝達経路、および可溶性酸化還元電子メディエーターを分泌する電子伝達経路という3つの方法がある。図3から分かるように、サイクリックボルタンメトリー曲線には、小さなレドックスピークがあり、これは、エンサイファ(Ensifer sesbaniae)Y5は発電中、可溶性の酸化還元メディエーターを生成および分泌する可能性があることを示す。したがって、エンサイファ(Ensifer sesbaniae)Y5は、可溶性の酸化還元電子メディエーターの自身分泌により電子を伝達する電子伝達の可能性がある。 According to existing literature reports, electron transport in power-generating microorganisms is mainly carried out by the extracellular transport pathway of outer membrane cytochromes, the extracellular electron transport pathway of nanowires on the extracellular membrane, and the electron transport secreting soluble redox electron mediators. There are three methods called routes. As can be seen from Figure 3, there is a small redox peak in the cyclic voltammetry curve, indicating that Ensifer sesbaniae Y5 may produce and secrete soluble redox mediators during power generation. . Therefore, Ensifer sesbaniae Y5 has the potential for electron transfer by self-secretion of soluble redox electron mediators.

実施例3
本実施例は、様々な炭素源を使用したエンサイファ(Ensifer sesbaniae)Y5の発電特徴を開示する。試験方法は、実施例1の前記ステップ5に従う。実験の結果から分かるように、エンサイファ(Ensifer sesbaniae)Y5は、ギ酸ナトリウム、酢酸ナトリウム、乳酸ナトリウムおよびグルコースなどの炭素源を使用して発電することができるが、発電効果は同じではない。その中では、酢酸ナトリウムによる発電の場合に、発電効果が最も好ましい(図4)。本実施例では、エンサイファ(Ensifer sesbaniae)Y5のデュアルチャンバー微生物燃料電池における発電特徴を開示し、この細菌は様々な炭素源を使用して発電することができることを開示することを意図する。使用されるデュアルチャンバー微生物燃料電池およびプロセスは最適ではなく、現在、多くの文献では、電極改善、反応器および反応条件の最適化などの方法によって発電微生物の発電能力を大幅に向上させることができるのは報告されている。
Example 3
This example discloses the power generation characteristics of Ensifer sesbaniae Y5 using various carbon sources. The test method follows step 5 of Example 1 above. As can be seen from the experimental results, Ensifer sesbaniae Y5 can generate electricity using carbon sources such as sodium formate, sodium acetate, sodium lactate and glucose, but the electricity generation effect is not the same. Among them, the power generation effect is the most favorable in the case of power generation using sodium acetate (Figure 4). This example discloses the power generation characteristics in a dual chamber microbial fuel cell of Ensifer sesbaniae Y5 and is intended to disclose that this bacterium is capable of generating power using a variety of carbon sources. The dual-chamber microbial fuel cells and processes used are not optimal, and many publications currently suggest that methods such as electrode improvements, optimization of reactors and reaction conditions can significantly improve the power generation capacity of power-generating microorganisms. has been reported.

以上、本発明の好ましい実施形態を説明したが、上記の好ましい実施形態は本発明を制限するものではなく、本発明の保護範囲は特許請求の範囲に従うべきである。当業者は、本発明の精神および範囲を逸脱することなく加えられたいくつかの変更や改善は、すべて本発明の保護範囲に含まれるのは明らかである。 Although the preferred embodiments of the present invention have been described above, the preferred embodiments described above do not limit the present invention, and the protection scope of the present invention should be in accordance with the claims. It is clear to those skilled in the art that some changes and improvements made without departing from the spirit and scope of the invention will all fall within the protection scope of the invention.

(付記)
(付記1)
保蔵番号がGDMCC No:60957である、エンサイファEnsifer sesbaniae Y5。
(Additional note)
(Additional note 1)
Ensifer sesbaniae Y5 whose storage number is GDMCC No: 60957.

(付記2)
付記1に記載のエンサイファEnsifer sesbaniae Y5の生物発電または微生物燃料電池の調製における用途。
(Additional note 2)
Use of Ensifer sesbaniae Y5 according to appendix 1 in the preparation of biopower or microbial fuel cells.

(付記3)
前記微生物燃料電池の陽極室の培養培地に前記エンサイファEnsifer sesbaniae Y5を接種し、前記エンサイファEnsifer sesbaniae Y5は、前記培養培地で浮遊状態で増殖するか、または陽極の表面に付着するステップ(1)と、
接種後、無菌窒素を注入させて前記陽極室内の酸素を除去し前記陽極室を密閉して、嫌気性培養を行い、前記微生物燃料電池から電気を発生させるステップ(2)と、を含む、ことを特徴とする付記2に記載の用途。
(Additional note 3)
(1) inoculating the Encipher sesbaniae Y5 into a culture medium in the anode chamber of the microbial fuel cell, and the Encipher sesbaniae Y5 grows in suspension in the culture medium or adheres to the surface of the anode; ,
After inoculation, the step (2) includes injecting sterile nitrogen to remove oxygen in the anode chamber, sealing the anode chamber, performing anaerobic culture, and generating electricity from the microbial fuel cell. The use described in Appendix 2, characterized by:

(付記4)
前記陽極室中の前記培養培地の組成は、リン酸水素二ナトリウム17.1~18g/L、リン酸二水素カリウム3~3.6g/L、塩化ナトリウム0.5~0.6g/L、塩化アンモニウム1~1.2g/L、酵母抽出物0.5~0.6g/L、酢酸ナトリウム0.82~1g/Lまたはギ酸ナトリウム1.04~1.2g/Lまたは乳酸ナトリウム1.12~1.5g/Lまたはグルコース1.8~2.0g/Lであり、溶媒は水である、ことを特徴とする付記3に記載の用途。
(Additional note 4)
The composition of the culture medium in the anode chamber is 17.1 to 18 g/L of disodium hydrogen phosphate, 3 to 3.6 g/L of potassium dihydrogen phosphate, 0.5 to 0.6 g/L of sodium chloride, Ammonium chloride 1-1.2 g/L, yeast extract 0.5-0.6 g/L, sodium acetate 0.82-1 g/L or sodium formate 1.04-1.2 g/L or sodium lactate 1.12 ~1.5 g/L or glucose 1.8 to 2.0 g/L, and the solvent is water.

(付記5)
前記ステップ(1)では、固形培養培地に前記エンサイファEnsifer sesbaniae Y5を接種し、それを嫌気性ワークステーションに静置して培養し、コロニーを選択して無菌のPBS緩衝溶液中に均一に混合し、均一に混合した後細菌溶液を前記微生物燃料電池の前記陽極室中の前記培養培地に接種し、前記エンサイファEnsifer sesbaniae Y5は前記培養培地で浮遊状態で増殖するか、または前記陽極の表面に付着する、ことを特徴とする付記3に記載の用途。
(Appendix 5)
In step (1), a solid culture medium is inoculated with the Ensifer sesbaniae Y5, which is left to culture on an anaerobic workstation, and colonies are selected and uniformly mixed in a sterile PBS buffer solution. , after uniformly mixing, the bacterial solution is inoculated into the culture medium in the anode chamber of the microbial fuel cell, and the Ensifer sesbaniae Y5 grows in suspension in the culture medium or adheres to the surface of the anode. The use according to appendix 3, which is characterized by:

(付記6)
前記嫌気性ワークステーションの温度は30~37℃である、ことを特徴とする付記5に記載の用途。
(Appendix 6)
The use according to appendix 5, characterized in that the temperature of the anaerobic workstation is 30 to 37°C.

(付記7)
前記固形培養培地は、付記4に記載の前記陽極室中の前記培養培地に、アマランス0.15~0.2mMまたはメチルオレンジ染料0.15~0.2mM、および寒天15~18g/Lを添加したものである、ことを特徴とする付記5に記載の用途。
(Appendix 7)
The solid culture medium is prepared by adding 0.15 to 0.2 mM of amaranth or 0.15 to 0.2 mM of methyl orange dye, and 15 to 18 g/L of agar to the culture medium in the anode chamber described in Appendix 4. The use according to appendix 5, which is characterized in that:

(付記8)
前記PBS緩衝溶液の組成は、リン酸水素二ナトリウム3.6g/L、リン酸二水素カリウム0.27g/L、塩化ナトリウム8g/L、塩化カリウム0.2g/Lであり、溶媒は水であり、pH値は7.3~7.5である、ことを特徴とする付記5に記載の用途。
(Appendix 8)
The composition of the PBS buffer solution is 3.6 g/L of disodium hydrogen phosphate, 0.27 g/L of potassium dihydrogen phosphate, 8 g/L of sodium chloride, and 0.2 g/L of potassium chloride, and the solvent is water. The use according to appendix 5, characterized in that the pH value is 7.3 to 7.5.

(付記9)
接種後の前記陽極室の培養液のOD600は0.05~0.06である、ことを特徴とする付記3に記載の用途。
(Appendix 9)
The use according to appendix 3, wherein the culture solution in the anode chamber after inoculation has an OD 600 of 0.05 to 0.06.

(付記10)
前記微生物燃料電池は、プロトン交換膜によって分離されたデュアルチャンバー微生物燃料電池であり、陰極と陽極は両方ともグラファイト板であるか、または単一チャンバー微生物燃料電池であり、陽極はグラファイト板であり、陰極は白金担持空気陰極である、ことを特徴とする付記3に記載の用途。
(Appendix 10)
The microbial fuel cell is a dual-chamber microbial fuel cell separated by a proton exchange membrane, and the cathode and anode are both graphite plates, or a single-chamber microbial fuel cell, and the anode is a graphite plate; The use according to appendix 3, wherein the cathode is a platinum-supported air cathode.

Claims (10)

保蔵番号がGDMCC No:60957である、エンサイファEnsifer sesbaniae Y5。 Ensifer sesbaniae Y5 whose storage number is GDMCC No: 60957. 請求項1に記載のエンサイファEnsifer sesbaniae Y5の生物発電または微生物燃料電池の調製における使用 Use of Ensifer sesbaniae Y5 according to claim 1 in the preparation of biopower or microbial fuel cells. 前記微生物燃料電池の負極室の培養培地に前記エンサイファEnsifer sesbaniae Y5を接種し、前記エンサイファEnsifer sesbaniae Y5は、前記培養培地で浮遊状態で増殖するか、または負極の表面に付着するステップ(1)と、
接種後、無菌窒素を注入させて前記負極室内の酸素を除去し前記負極室を密閉して、嫌気性培養を行い、前記微生物燃料電池から電気を発生させるステップ(2)と、を含む、ことを特徴とする請求項2に記載の使用
(1) inoculating the Encipher sesbaniae Y5 into the culture medium of the negative electrode chamber of the microbial fuel cell, and the Encipher sesbaniae Y5 proliferates in suspension in the culture medium or adheres to the surface of the negative electrode; ,
After the inoculation, sterile nitrogen is injected to remove oxygen in the negative electrode chamber, the negative electrode chamber is sealed, anaerobic culture is performed, and electricity is generated from the microbial fuel cell (2). Use according to claim 2, characterized in that:
前記負極室中の前記培養培地の組成は、リン酸水素二ナトリウム17.1~18g/L、リン酸二水素カリウム3~3.6g/L、塩化ナトリウム0.5~0.6g/L、塩化アンモニウム1~1.2g/L、酵母抽出物0.5~0.6g/L、酢酸ナトリウム0.82~1g/Lまたはギ酸ナトリウム1.04~1.2g/Lまたは乳酸ナトリウム1.12~1.5g/Lまたはグルコース1.8~2.0g/Lであり、溶媒は水である、ことを特徴とする請求項3に記載の使用The composition of the culture medium in the negative electrode chamber is 17.1 to 18 g/L of disodium hydrogen phosphate, 3 to 3.6 g/L of potassium dihydrogen phosphate, 0.5 to 0.6 g/L of sodium chloride, Ammonium chloride 1-1.2 g/L, yeast extract 0.5-0.6 g/L, sodium acetate 0.82-1 g/L or sodium formate 1.04-1.2 g/L or sodium lactate 1.12 Use according to claim 3, characterized in that the concentration is ~1.5 g/L or glucose 1.8-2.0 g/L and the solvent is water. 前記ステップ(1)では、固形培養培地に前記エンサイファEnsifer sesbaniae Y5を接種し、それを嫌気性ワークステーションに静置して培養し、コロニーを選択して無菌のPBS緩衝溶液中に均一に混合し、均一に混合した後細菌溶液を前記微生物燃料電池の前記負極室中の前記培養培地に接種し、前記エンサイファEnsifer sesbaniae Y5は前記培養培地で浮遊状態で増殖するか、または前記負極の表面に付着する、ことを特徴とする請求項3に記載の使用In step (1), a solid culture medium is inoculated with the Ensifer sesbaniae Y5, which is left to culture on an anaerobic workstation, and colonies are selected and uniformly mixed in a sterile PBS buffer solution. After uniformly mixing, the bacterial solution is inoculated into the culture medium in the negative electrode chamber of the microbial fuel cell, and the Ensifer sesbaniae Y5 grows in suspension in the culture medium or adheres to the surface of the negative electrode. 4. Use according to claim 3, characterized in that: 前記嫌気性ワークステーションの温度は30~37℃である、ことを特徴とする請求項5に記載の使用 Use according to claim 5, characterized in that the temperature of the anaerobic workstation is between 30 and 37°C. 前記固形培養培地は、請求項4に記載の前記負極室中の前記培養培地に、アマランス0.15~0.2mMまたはメチルオレンジ染料0.15~0.2mM、および寒天15~18g/Lを添加したものである、ことを特徴とする請求項5に記載の使用The solid culture medium includes 0.15 to 0.2 mM of amaranth or 0.15 to 0.2 mM of methyl orange dye, and 15 to 18 g/L of agar to the culture medium in the negative electrode chamber according to claim 4. The use according to claim 5, characterized in that it is an additive. 前記PBS緩衝溶液の組成は、リン酸水素二ナトリウム3.6g/L、リン酸二水素カリウム0.27g/L、塩化ナトリウム8g/L、塩化カリウム0.2g/Lであり、溶媒は水であり、pH値は7.3~7.5である、ことを特徴とする請求項5に記載の使用The composition of the PBS buffer solution is 3.6 g/L of disodium hydrogen phosphate, 0.27 g/L of potassium dihydrogen phosphate, 8 g/L of sodium chloride, and 0.2 g/L of potassium chloride, and the solvent is water. Use according to claim 5, characterized in that the pH value is between 7.3 and 7.5. 接種後の前記負極室の培養液のOD600は0.05~0.06である、ことを特徴とする請求項3に記載の使用 The use according to claim 3, wherein the OD600 of the culture solution in the negative electrode chamber after inoculation is 0.05 to 0.06. 前記微生物燃料電池は、プロトン交換膜によって分離されたデュアルチャンバー微生物燃料電池であり、正極負極は両方ともグラファイト板であるか、または単一チャンバー微生物燃料電池であり、負極はグラファイト板であり、正極は白金担持空気正極である、ことを特徴とする請求項3に記載の使用The microbial fuel cell is a dual-chamber microbial fuel cell separated by a proton exchange membrane, and the positive and negative electrodes are both graphite plates, or a single-chamber microbial fuel cell, and the negative electrode is a graphite plate; Use according to claim 3, characterized in that the positive electrode is a platinum-supported air positive electrode.
JP2022530342A 2020-07-22 2020-12-31 Encipher and its applications in biopower generation Active JP7359309B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010712489.0A CN111733112B (en) 2020-07-22 2020-07-22 A sword fungus and its application in bioelectricity production
CN202010712489.0 2020-07-22
PCT/CN2020/141924 WO2021159886A1 (en) 2020-07-22 2020-12-31 Ensifer sesbaniae strain and use thereof in biological electricity production

Publications (2)

Publication Number Publication Date
JP2022545580A JP2022545580A (en) 2022-10-27
JP7359309B2 true JP7359309B2 (en) 2023-10-11

Family

ID=72657291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022530342A Active JP7359309B2 (en) 2020-07-22 2020-12-31 Encipher and its applications in biopower generation

Country Status (3)

Country Link
JP (1) JP7359309B2 (en)
CN (1) CN111733112B (en)
WO (1) WO2021159886A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111733112B (en) * 2020-07-22 2020-11-10 广东省微生物研究所(广东省微生物分析检测中心) A sword fungus and its application in bioelectricity production
JP7573922B1 (en) 2024-05-07 2024-10-28 株式会社Cell-En Solid microbial fuel cell and method for producing same
CN119020247B (en) * 2024-10-29 2025-01-28 南京万瑞环境科技有限公司 Shewanella strain and application thereof in black and odorous water body treatment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147697A (en) 2011-01-18 2012-08-09 Sagami Chemical Research Institute Microorganism and microorganism battery using the same
CN103275887A (en) 2013-03-19 2013-09-04 华南理工大学 Shewanella haliotis strain and its application in bioelectricity generation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101552340B (en) * 2009-04-28 2011-02-09 浙江大学 Application of a kind of marine yeast and corresponding microbial fuel cell and preparation method
CN101892180B (en) * 2010-04-30 2012-07-04 广东省生态环境与土壤研究所 Corynebacterium humireducens and application thereof
CN105765056B (en) * 2014-04-24 2020-11-24 梨花女子大学校产学协力团 Klebsiella or Candida strains and microbial fuel cells comprising the same
EP3058825A1 (en) * 2015-02-19 2016-08-24 Futureco Bioscience, S.A. Bacteria with nematicidal activity
CN105255766A (en) * 2015-10-30 2016-01-20 深圳清华大学研究院 Diesel degradable bacteria, microbial agent thereof and application of microbial agent
CN109148923B (en) * 2018-08-14 2021-07-09 广东省微生物研究所(广东省微生物分析检测中心) A method for accelerating the start-up of microbial fuel cell electricity production
CN110376264B (en) * 2019-06-28 2021-11-16 广东省微生物研究所(广东省微生物分析检测中心) Electricity-producing microorganism rapid screening method based on azo dye decoloration activity
CN111122680A (en) * 2019-12-16 2020-05-08 广东省微生物研究所(广东省微生物分析检测中心) Method for obtaining in-situ bottom mud sample from bottom mud type fuel cell
CN111733112B (en) * 2020-07-22 2020-11-10 广东省微生物研究所(广东省微生物分析检测中心) A sword fungus and its application in bioelectricity production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147697A (en) 2011-01-18 2012-08-09 Sagami Chemical Research Institute Microorganism and microorganism battery using the same
CN103275887A (en) 2013-03-19 2013-09-04 华南理工大学 Shewanella haliotis strain and its application in bioelectricity generation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Systematic and Applied Microbiology, 2013, Vol.36, No.7, pp.467-473

Also Published As

Publication number Publication date
WO2021159886A1 (en) 2021-08-19
CN111733112A (en) 2020-10-02
CN111733112B (en) 2020-11-10
JP2022545580A (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JP7359309B2 (en) Encipher and its applications in biopower generation
CN103275887B (en) Shewanella haliotis strain and its application in bioelectricity generation
CN101570731A (en) Method for domesticating and separating electricigens by electrochemistry
CN105238716B (en) One plant of rub root fungus and its application in microbiological fuel cell
CN111548969B (en) Shewanella alga scs-1 and application thereof in microbial power generation
CN108178328B (en) A bio-cathode electrochemical system for treating sewage with low C/N ratio and method for treating wastewater
CN102399722B (en) Bacillus cereus with electrogenesis characteristic and application thereof in microbiological fuel cell
CN107217023B (en) Multifunctional double-enzyme Clostridium and its application
CN103131651A (en) Bacillus subtilis bacterial strains and application thereof in microbial power generation
CN103509735A (en) Tolumonas osonensis bacterial strain with electrogenesis characteristic, and applications thereof in microbial fuel cells
CN103215205B (en) Citrobacter freundii and application thereof to production of bioelectricity
CN102399723B (en) Bacillus with electrogenesis characteristic and application thereof in microbiological fuel cell
CN108285881B (en) Mycobacterium with synchronous electricity generation and denitrification activity and application thereof
CN109735472B (en) Electrolysis algae-producing marine bacterium and application thereof
CN101728544A (en) Application of citrobacter freundii in electricity generation by microorganism and electricity generation method
Tardast et al. Bioelectrical power generation in a membrane less microbial fuel cell
CN103337651B (en) A kind of Biological-agent fuel cell
CN115786157B (en) Carassius auratus Shewanella SHEWANELLA CARASSII-D5 and application thereof in electrogenesis
CN103337652B (en) A kind of fuel cell
CN111100822B (en) A strain of Klebsiella pneumoniae and its application in the preparation of microbial fuel cells
CN108285880B (en) A kind of Bacillus with electricity-generating properties and denitrification activity and its application
Nwosu et al. Potentials of mixed and axenic microbial fuel cells for electricity generation
CN103215200B (en) Enterococcus faecalis and its application in bioelectricity production
CN118553939A (en) Method for modifying anode material of microbial fuel cell by using polydopamine coated graphene aerogel and application
CN116814500A (en) A light-dependent strain that optimizes MFC performance

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230911

R150 Certificate of patent or registration of utility model

Ref document number: 7359309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150