JP7356017B2 - Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet - Google Patents
Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet Download PDFInfo
- Publication number
- JP7356017B2 JP7356017B2 JP2019204749A JP2019204749A JP7356017B2 JP 7356017 B2 JP7356017 B2 JP 7356017B2 JP 2019204749 A JP2019204749 A JP 2019204749A JP 2019204749 A JP2019204749 A JP 2019204749A JP 7356017 B2 JP7356017 B2 JP 7356017B2
- Authority
- JP
- Japan
- Prior art keywords
- steel plate
- coating
- less
- steel sheet
- grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Chemical Treatment Of Metals (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Description
本発明は、方向性電磁鋼板及び方向性電磁鋼板の製造方法に関する。 The present invention relates to a grain-oriented electrical steel sheet and a method for manufacturing a grain-oriented electrical steel sheet.
方向性電磁鋼板は、{110}<001>を主方位とする結晶組織を有しており、変圧器の鉄心材料として多用されている。方向性電磁鋼板は、特にエネルギーロスを少なくするために鉄損の小さい材料が求められている。 Grain-oriented electrical steel sheets have a crystal structure with {110}<001> as the main orientation, and are often used as core materials for transformers. Grain-oriented electrical steel sheets are required to be materials with low iron loss, especially in order to reduce energy loss.
特許文献1には、方向性電磁鋼板の鉄損を低減する手段として、仕上げ焼鈍後の鋼板表面にレーザービームを照射して局部的な歪を与え、それによって磁区を細分化する方法が記載されている。 Patent Document 1 describes a method of irradiating a laser beam onto the surface of a steel sheet after final annealing to give local strain, thereby subdividing magnetic domains, as a means of reducing iron loss in a grain-oriented electrical steel sheet. ing.
特許文献2には、鉄心加工後の歪取り焼鈍(応力除去焼鈍)を施した後もその効果が消失しない磁区細分化手段が記載されている。 Patent Document 2 describes a magnetic domain refining means that does not lose its effect even after applying strain relief annealing (stress relief annealing) after core processing.
一方で、鉄及び珪素を含有する鉄合金は、結晶磁気異方性が大きいため、外部張力を付加すると磁区の細分化が起こり、鉄損の主要素である渦電流損失を低下させることができる。特に、5%以下の珪素を含有する方向性電磁鋼板の鉄損の低減には鋼板に張力を付与することが有効であることが知られている。この張力は、表面に形成された被膜によって付与される。 On the other hand, iron alloys containing iron and silicon have large magnetocrystalline anisotropy, so when external tension is applied, magnetic domains become fragmented, which can reduce eddy current loss, which is the main element of iron loss. . In particular, it is known that applying tension to the steel sheet is effective in reducing iron loss in grain-oriented electrical steel sheets containing 5% or less silicon. This tension is provided by a coating formed on the surface.
方向性電磁鋼板には、仕上げ焼鈍工程で鋼板表面の酸化物と焼鈍分離剤とが反応して生成するフォルステライトを主体とする一次被膜と、特許文献3等に記載されたコロイド状シリカとリン酸塩とを主体とするコーティング液を焼き付けることによって生成する非晶質を主とする二次被膜とからなる2層の被膜によって、板厚0.23mmの場合で10MPa程度の張力が付与されている。このような被膜で鋼板に張力を効果的に付与するためには、被膜の熱膨張係数が低く、被膜全体の剛性が高いことなど、被膜自体の機械的性質が適当であること、また被膜と鋼板の密着性が良好であること、の2点の条件を満足する必要がある。 Grain-oriented electrical steel sheets include a primary film mainly composed of forsterite, which is produced by the reaction between oxides on the surface of the steel sheet and an annealing separator in the final annealing process, and colloidal silica and phosphorus described in Patent Document 3. A tension of about 10 MPa is applied to a plate with a thickness of 0.23 mm by the two-layer coating consisting of a secondary coating mainly made of amorphous material produced by baking a coating liquid mainly composed of acid salts. There is. In order to effectively apply tension to a steel plate with such a coating, the mechanical properties of the coating itself must be appropriate, such as a low thermal expansion coefficient and high rigidity of the entire coating, and the coating must have appropriate mechanical properties. It is necessary to satisfy two conditions: the adhesion of the steel plate is good.
被膜の機械的性質については、特許文献4では、ホウ酸アルミニウム結晶を主とする被膜を表面に有する方向性電磁鋼板が提案されている。 Regarding the mechanical properties of the coating, Patent Document 4 proposes a grain-oriented electrical steel sheet having a coating mainly composed of aluminum borate crystals on its surface.
特許文献3に記載されているような従来の被膜の場合、被膜量を多くすることにより被膜全体の剛性が高まることから、さらに大きな張力付与が可能であり、張力向上による鉄損改善の可能性は残されている。しかし、付与張力向上のために現状以上に被膜を厚くすることは、占積率の低下をもたらすため好ましくない。このため、占積率低下を引き起こすことなく、密着性に優れ、薄くても鋼板に大きな張力が付与できる被膜が望まれている。 In the case of a conventional coating as described in Patent Document 3, increasing the amount of coating increases the rigidity of the entire coating, so it is possible to apply even greater tension, and there is a possibility of improving iron loss by increasing the tension. is left behind. However, it is not preferable to make the coating thicker than the current thickness in order to improve the applied tension because this will result in a decrease in the space factor. For this reason, there is a need for a coating that has excellent adhesion without causing a decrease in space factor, and is capable of imparting large tension to a steel plate even if it is thin.
ある被膜が被膜厚さを増すことなく高張力被膜とするためには、被膜のヤング率を高くする、または低熱膨張性とする、あるいは両方を同時に実現するということが求められる。一般に、結晶は非晶質よりもヤング率が高いことから、ヤング率を高くするためには結晶性の被膜を形成する方法が考えられる。このような指針で開発された、特許文献4に記載されるホウ酸アルミニウムからなる被膜は、主たる構成物が結晶であるため、特許文献3に記載されたようなシリカとリン酸塩からなる従来の非晶質の被膜よりもヤング率が高い。ホウ酸アルミニウム結晶は、熱膨張係数も十分に低いため、ヤング率の効果と相まって、特許文献3に記載されたような被膜よりも高い張力を得ることが可能である。 In order for a certain coating to have a high tensile strength without increasing the coating thickness, it is required that the Young's modulus of the coating be increased or that the thermal expansion be low, or that both be achieved at the same time. Generally, a crystalline material has a higher Young's modulus than an amorphous material, so a method of forming a crystalline coating may be considered in order to increase the Young's modulus. The film made of aluminum borate developed based on these guidelines and described in Patent Document 4 is mainly composed of crystals, so it is different from the conventional film made of silica and phosphate as described in Patent Document 3. Young's modulus is higher than that of an amorphous film. Aluminum borate crystals also have a sufficiently low coefficient of thermal expansion, so combined with the effect of Young's modulus, it is possible to obtain higher tension than the coating described in Patent Document 3.
一方、被膜自体が高剛性で低熱膨張であっても、被膜と鋼板の密着性が良好ではないと、被膜が剥離して張力が付与できなくなる。特に、ホウ酸アルミニウム被膜は張力付与能力が高いため、厚塗りをすることで大きな張力を得ることができる。しかしながら、張力を上げると密着性が問題となる場合があるが、十分な密着性を簡便に得るための方法は必ずしも明らかではなかった。 On the other hand, even if the coating itself has high rigidity and low thermal expansion, if the adhesion between the coating and the steel plate is not good, the coating will peel off and no tension can be applied. In particular, since the aluminum borate coating has a high ability to impart tension, a large tension can be obtained by coating it thickly. However, when the tension is increased, adhesion may become a problem, but it has not always been clear how to easily obtain sufficient adhesion.
本発明は、従来よりも大きな張力付与が可能な絶縁皮膜を有する、方向性電磁鋼板および方向性電磁鋼板の製造方法を提供することを目的とする。 An object of the present invention is to provide a grain-oriented electrical steel sheet and a method for manufacturing the grain-oriented electrical steel sheet, which have an insulating film that can be applied with a larger tension than before.
本発明者は、ホウ酸アルミニウム被膜のような絶縁皮膜によって鋼板に高い張力を与えるためには、最表層に位置するホウ酸アルミニウム被膜とその下部に位置する一次被膜の界面の密着性が重要と考え、この界面の密着性を向上させる方法を検討した。その結果、この界面の粗度を一定の条件とすることで密着性が向上することを見出した。 The present inventor believes that in order to impart high tension to a steel plate with an insulating film such as an aluminum borate film, the adhesion of the interface between the aluminum borate film located at the outermost layer and the primary film located below it is important. We considered ways to improve the adhesion of this interface. As a result, it was found that adhesion can be improved by keeping the roughness of this interface constant.
本発明は上記の知見に基づきなされたものであって、その要旨は以下のとおりである。 The present invention has been made based on the above findings, and the gist thereof is as follows.
(1)鋼板の最表層に、アルミニウムと硼素を成分とし、Al
2
O
3
/B
2
O
3
換算の質量比が1.80~2.60である酸化物結晶質からなる絶縁被膜を有し、
前記絶縁被膜と前記鋼板との間にフォルステライトからなる中間層を有し、絶縁被膜の張力が鋼板片面の絶縁被膜の付着量当たりの張力が4.0MPa/g/m2以上であり、
前記絶縁被膜と前記中間層との界面の粗さ曲線の算術平均粗さRaが0.35μm以上0.85μm以下であり、かつ前記界面の前記粗さ曲線における要素の平均長さRSmが20μm以上100μm以下であることを特徴とする方向性電磁鋼板。
(2)Al2O3/B2O3換算の質量比が1.80~2.60であるホウ素源およびアルミニウム源を含む塗布液を、フォルステライトからなる一次被膜を有する鋼板の表面に塗布する段階と、
露点が0~40℃で水素を0~25体積%含む不活性ガス雰囲気中で、前記鋼板を、600℃以下の到達温度までの平均昇温速度が2~5℃/秒となるように加熱したのち、平均冷却速度5℃/秒以上10℃/秒未満で200℃以下まで冷却する段階と、
前記鋼板を、750℃までの平均昇温速度が10~100℃/秒となるように昇温し、750~1000℃の温度域で20~120秒の間熱処理する段階と、を有する、方向性電磁鋼板の製造方法。
(1) The outermost layer of the steel plate has an insulating coating made of oxide crystal containing aluminum and boron and having a mass ratio of 1.80 to 2.60 in terms of Al 2 O 3 /B 2 O 3 . death,
There is an intermediate layer made of forsterite between the insulating coating and the steel plate, and the tension of the insulating coating is 4.0 MPa/g/m 2 or more per amount of the insulating coating deposited on one side of the steel plate,
The arithmetic mean roughness Ra of the roughness curve of the interface between the insulating coating and the intermediate layer is 0.35 μm or more and 0.85 μm or less, and the average length RSm of the elements in the roughness curve of the interface is 20 μm or more. A grain-oriented electrical steel sheet characterized by having a thickness of 100 μm or less.
(2) Applying a coating solution containing a boron source and an aluminum source with a mass ratio of 1.80 to 2.60 in terms of Al 2 O 3 /B 2 O 3 to the surface of a steel plate having a primary coating made of forsterite. and the step of
Heating the steel plate in an inert gas atmosphere having a dew point of 0 to 40°C and containing 0 to 25% by volume of hydrogen such that the average temperature increase rate is 2 to 5°C/sec to reach a temperature of 600°C or less. After that, cooling to 200°C or less at an average cooling rate of 5°C/second or more and less than 10°C/second,
heating the steel plate at an average temperature increase rate of 10 to 100°C/sec to 750°C, and heat-treating the steel plate in a temperature range of 750 to 1000°C for 20 to 120 seconds. manufacturing method of magnetic steel sheet.
本発明によれば、絶縁被膜とフォルステライトからなる中間層との間の界面の粗度を制御することで、従来よりも大きな張力付与が可能な絶縁被膜を有する方向性電磁鋼板を得ることができる。 According to the present invention, by controlling the roughness of the interface between the insulating coating and the intermediate layer made of forsterite, it is possible to obtain a grain-oriented electrical steel sheet having an insulating coating that can be applied with greater tension than before. can.
<1.方向性電磁鋼板>
以下、本実施形態に係る方向性電磁鋼板について説明する。本実施形態に係る方向性電磁鋼板は、鋼板(母材鋼板)と、鋼板上に設けられた、フォルステライトからなる中間層と、さらに中間層の上に形成された、アルミニウムとホウ素とを含むとともにAl
2
O
3
/B
2
O
3
換算の質量比が1.80~2.60である酸化物結晶質からなる絶縁被膜と、を有する。
<1. Grain-oriented electrical steel sheet>
The grain-oriented electrical steel sheet according to this embodiment will be described below. The grain-oriented electrical steel sheet according to the present embodiment includes a steel plate (base steel plate), an intermediate layer made of forsterite provided on the steel plate , and aluminum and boron further formed on the intermediate layer. and an insulating coating made of an oxide crystalline material having a mass ratio in terms of Al 2 O 3 /B 2 O 3 of 1.80 to 2.60.
本実施形態において使用可能な鋼板(母材鋼板)については、二次再結晶が完了しているものであれば特に制限はない。母材鋼板として一般的に用いられる鋼板は、例えば仕上げ焼鈍(二次再結晶焼鈍)時に形成されたフォルステライト質の一次被膜を有する鋼板である。 There are no particular restrictions on the steel plate (base steel plate) that can be used in this embodiment as long as it has undergone secondary recrystallization. A steel plate generally used as a base material steel plate is, for example, a steel plate having a forsterite primary coating formed during finish annealing (secondary recrystallization annealing).
上述したように、鋼板の表面上にはアルミニウムとホウ素とを含む酸化物からなる絶縁被膜と、フォルステライトからなる中間層が設けられている。 As described above, an insulating film made of an oxide containing aluminum and boron and an intermediate layer made of forsterite are provided on the surface of the steel plate.
本発明者は、絶縁被膜の密着性向上を実現する条件について調査及び検討を行った。その結果、絶縁被膜(ホウ酸アルミニウム被膜)とフォルステライトからなる中間層との界面の粗度を制御することで、密着性が良好で高い張力付与能力のある被膜を有した方向性電磁鋼板が得られることを見出した。具体的には、上記界面の算術平均粗さRaが0.35μm以上0.85μm以下かつ界面の粗さ曲線における要素の平均長さRSmを20μm以上100μm以下とすると、密着性が良好で高い張力付与能力のある被膜を有した方向性電磁鋼板が得られることを見出した。
また、張力が確保されることが必要であることから、絶縁被膜の張力が鋼板片面の絶縁被膜の付着量当たりの張力が4.0MPa/g/m2以上であることが必要である。
The present inventor investigated and studied conditions for realizing improved adhesion of an insulating coating. As a result, by controlling the roughness of the interface between the insulating coating (aluminum borate coating) and the intermediate layer made of forsterite, grain-oriented electrical steel sheets with coatings with good adhesion and high tensile ability were created. I found out what I can get. Specifically, when the arithmetic mean roughness Ra of the interface is 0.35 μm or more and 0.85 μm or less and the average length RSm of the elements in the interface roughness curve is 20 μm or more and 100 μm or less, good adhesion and high tension are achieved. It has been found that a grain-oriented electrical steel sheet can be obtained that has a coating that has the ability to provide a coating.
Furthermore, since it is necessary to ensure tension, it is necessary that the tension of the insulating coating is 4.0 MPa/g/m 2 or more per amount of the insulating coating deposited on one side of the steel plate.
表面粗さを測定する方法は種々あるが、触針式粗度計あるいはレーザ光による計測装置による方法が簡便であり、特に本発明の場合はレーザ光による計測装置による方法が簡便である。Ra及びRSmは、JIS B601:2001に準拠して測定する。 There are various methods for measuring surface roughness, but a method using a stylus roughness meter or a measuring device using a laser beam is simple, and in the case of the present invention, a method using a measuring device using a laser beam is particularly convenient. Ra and RSm are measured in accordance with JIS B601:2001.
界面の粗さを測定するためには、最表層の絶縁被膜であるホウ酸アルミニウム被膜を除去し、中間層である一次被膜を露出させ、中間層の表面粗さを測定し、これを界面の表面粗さとする。最表層の絶縁被膜を除去して中間層露出させるには、水酸化ナトリウム水溶液に浸漬して絶縁皮膜を除去することで容易に実現できる。 To measure the roughness of the interface, remove the outermost insulating coating, the aluminum borate coating, expose the intermediate layer, the primary coating, measure the surface roughness of the intermediate layer, and calculate the surface roughness of the interface. Surface roughness. Removing the outermost insulating film to expose the intermediate layer can be easily achieved by removing the insulating film by immersing it in an aqueous sodium hydroxide solution.
ホウ酸アルミニウム被膜と中間層との間の界面の粗さがホウ酸アルミニウム被膜の密着性に影響を与える理由としては、この界面の密着性が機械的結合の強さに依存しているためと考えられる。すなわちこの界面の密着性に影響する結合力の種類として、原子あるいは分子間の結合力ではなく、いわゆる嵌合構造による機械的結合力の効果が大きいためと考えられる。 The reason why the roughness of the interface between the aluminum borate film and the intermediate layer affects the adhesion of the aluminum borate film is that the adhesion of this interface depends on the strength of the mechanical bond. Conceivable. In other words, it is considered that the type of bonding force that influences the adhesion of this interface is not the bonding force between atoms or molecules, but the mechanical bonding force due to the so-called fitting structure has a large effect.
強固な嵌合構造を得るためには、相手の層に入り込む嵌合の深さと、入り込む部分の周期を制御することが重要と考えられる。中間層表面の粗さ曲線で表現すると、嵌合の深さは算術平均粗さRa、入り込む部分の周期は粗さ曲線における要素の平均長さRSmに相当すると考えられる。 In order to obtain a strong fitted structure, it is considered important to control the depth of the fitting that penetrates into the mating layer and the period of the portion that penetrates. When expressed in terms of the roughness curve of the surface of the intermediate layer, it is thought that the depth of the fit corresponds to the arithmetic mean roughness Ra, and the period of the intruding portion corresponds to the average length RSm of the elements in the roughness curve.
以上のような機構を考えると、絶縁被膜であるホウ酸アルミニウム被膜と中間層との間の界面の粗さが密着性に影響する理由が理解できる。なお、中間層と鋼板の界面は嵌合構造が発達しており、この界面では十分な密着性が得られている。 Considering the above mechanism, it can be understood why the roughness of the interface between the aluminum borate film, which is an insulating film, and the intermediate layer affects the adhesion. Note that a fitting structure is developed at the interface between the intermediate layer and the steel plate, and sufficient adhesion is obtained at this interface.
RaとRSmには良好な範囲があり、この範囲を外れると良好な密着性が得られない。Raについては、この値が小さすぎると密着性が不十分となる。また、Raが大きすぎると中間層と鋼板の密着性が劣化するが、この理由についての詳細は明らかではないが、本発明者は以下のように推定している。大きすぎるRaは嵌合構造が過度に発達し、中間層が膜構造を維持できなくなることにより中間層自体の強度が保てなくなり、中間層と鋼板の間から剥離が生じると推定される。以上の理由から算術平均粗さRaは、0.35μm以上0.85μm以下の値をとることが必要である。 There is a good range for Ra and RSm, and good adhesion cannot be obtained outside this range. Regarding Ra, if this value is too small, the adhesion will be insufficient. Further, if Ra is too large, the adhesion between the intermediate layer and the steel plate deteriorates, but the details of this reason are not clear, but the inventor estimates it as follows. It is presumed that if Ra is too large, the fitting structure will develop excessively, and the intermediate layer will no longer be able to maintain its membrane structure, making it impossible to maintain the strength of the intermediate layer itself, and peeling will occur between the intermediate layer and the steel plate. For the above reasons, the arithmetic mean roughness Ra needs to take a value of 0.35 μm or more and 0.85 μm or less.
またRSmにも良好な範囲が存在し、20μm以上100μm以下であることが必要である。Raが上記の0.35μm以上0.85μm以下であっても、RSmが小さすぎたり、大きすぎたりすると良好な密着性は得られず、いずれの場合もホウ酸アルミニウム被膜と中間層の界面で剥離が起こりやすくなる。この理由は明らかではないが、本発明者は以下のように推定している。すなわちRSmが小さすぎると互いの層に入り込む部分の太さが過度に細くなることにより嵌合構造の強度が保てなくなり、またRSmが大きすぎると互いの層に入り込む部分の強度は十分ながら入り込む部分の間隔が開きすぎて嵌合構造としての強度が下がるためと推定する。 There is also a good range for RSm, which needs to be 20 μm or more and 100 μm or less. Even if Ra is 0.35 μm or more and 0.85 μm or less, good adhesion cannot be obtained if RSm is too small or too large, and in either case, the interface between the aluminum borate film and the intermediate layer Peeling is more likely to occur. The reason for this is not clear, but the inventor estimates it as follows. In other words, if RSm is too small, the thickness of the parts that penetrate into each other's layers will become too thin, making it impossible to maintain the strength of the mating structure, and if RSm is too large, the parts that penetrate into each other's layers will have sufficient strength, but they will still penetrate. It is presumed that this is because the spacing between the parts is too wide, reducing the strength of the fitted structure.
<2.方向性電磁鋼板の製造方法>
次に、本実施形態に係る方向性電磁鋼板の製造方法について説明する。本実施形態に係る方向性電磁鋼板の製造方法は、Al2O3/B2O3換算の質量比が1.80~2.60であるホウ素源およびアルミニウム源を含む塗布液を、フォルステライトからなる一次被膜を有する鋼板の表面に塗布する段階と、露点が0~40℃で水素を0~25体積%含む不活性ガス雰囲気中で、鋼板を600℃以下の到達温度までの平均昇温速度が2~5℃/秒となるように加熱したのち、平均冷却速度5℃/秒以上10℃/秒未満で200℃以下まで冷却する段階と、鋼板を、750℃までの平均昇温速度が10~100℃/秒となるように昇温し、750~1000℃の温度域で20~120秒の間熱処理する段階と、を有する。
<2. Manufacturing method of grain-oriented electrical steel sheet>
Next, a method for manufacturing a grain-oriented electrical steel sheet according to the present embodiment will be described. In the method for producing a grain-oriented electrical steel sheet according to the present embodiment, a coating solution containing a boron source and an aluminum source having a mass ratio of 1.80 to 2.60 in terms of Al 2 O 3 /B 2 O 3 is mixed with forsterite. The step of coating the surface of a steel sheet with a primary coating consisting of the following steps, and the average temperature increase of the steel sheet to an ultimate temperature of 600°C or less in an inert gas atmosphere with a dew point of 0 to 40°C and containing 0 to 25% by volume of hydrogen. After heating the steel plate at a rate of 2 to 5°C/sec, the steel plate is cooled to 200°C or less at an average cooling rate of 5°C/sec or more and less than 10°C/sec, and the steel plate is heated at an average heating rate of 750°C. and heat treatment in a temperature range of 750 to 1000°C for 20 to 120 seconds.
本発明者は、上述したような界面の粗度を実現する手段について、プロセス条件を詳細に検討した。プロセス検討の結果、上述の条件を満たす絶縁被膜を形成するためには、方向性電磁鋼板の母材鋼板に酸化アルミニウムと酸化ホウ素の質量比率Al2O3/B2O3が、1.80~2.60となる塗布液を塗布したのち、塗布後の乾燥及び、焼き付け温度を含む熱処理の温度および雰囲気条件を限定するとよいことが明らかになった。 The present inventors have studied in detail the process conditions for achieving the above-mentioned interface roughness. As a result of process studies, in order to form an insulating film that satisfies the above conditions, the mass ratio of aluminum oxide to boron oxide, Al 2 O 3 /B 2 O 3 , in the base steel sheet of grain-oriented electrical steel sheet must be 1.80. It has become clear that after coating a coating solution with a coating temperature of ~2.60, it is advisable to limit the temperature and atmospheric conditions for post-coating drying and heat treatment, including baking temperature.
このプロセスは、下記の(i)~(iii)からなる。
(i)塗布液乾燥後ホウ酸アルミニウム結晶化前の昇温中における、ホウ素の拡散。
(ii)余剰ホウ素の中間層との反応、および、ホウ酸アルミニウム結晶の核生成。
(iii)ホウ酸アルミニウムの結晶成長。
This process consists of the following (i) to (iii).
(i) Diffusion of boron during heating after drying of the coating solution and before crystallization of aluminum borate.
(ii) Reaction of excess boron with the intermediate layer and nucleation of aluminum borate crystals.
(iii) Crystal growth of aluminum borate.
以下、上記のプロセス(i)~(iii)との対応を言及しつつ、本実施形態に係る方向性電磁鋼板の製造方法について詳細に説明する。 Hereinafter, the method for manufacturing a grain-oriented electrical steel sheet according to the present embodiment will be explained in detail, referring to the correspondence with the above processes (i) to (iii).
まず、各工程に先立ち、絶縁被膜を形成する母材鋼板を準備する。母材鋼板として具体的には、従来公知の方法で仕上げ焼鈍を行って、表面にフォルステライト質の一次被膜が形成された鋼板等の、仕上げ焼鈍が完了した鋼板を準備すればよい。本発明は中間層との界面の粗度を制御する技術なので、二次再結晶後にフォルステライトからなる一次被膜が無い鋼板は不適当である。 First, prior to each step, a base steel plate on which an insulating coating will be formed is prepared. Specifically, as the base material steel plate, a steel plate that has been finish annealed, such as a steel plate on which a forsterite primary coating is formed by finish annealing by a conventionally known method, may be prepared. Since the present invention is a technology for controlling the roughness of the interface with the intermediate layer, a steel plate without a primary coating made of forsterite after secondary recrystallization is inappropriate.
次に、このような母材鋼板に対し、絶縁被膜を形成するための塗布液を塗布する。塗布液は、Al2O3/B2O3換算の質量比が1.80~2.60のホウ素源およびアルミニウム源を含むものとする。 Next, a coating liquid for forming an insulating film is applied to such a base steel plate. The coating liquid contains a boron source and an aluminum source having a mass ratio in terms of Al 2 O 3 /B 2 O 3 of 1.80 to 2.60.
ホウ素源としては、H3BO3で表されるオルトホウ酸が作業性、価格等の点から最も好ましいが、HBO2で表されるメタホウ酸、B2O3で表される酸化ホウ素、あるいはこれらの混合物も用いることができる。 As a boron source, orthoboric acid represented by H 3 BO 3 is most preferable from the viewpoint of workability, cost, etc., but metaboric acid represented by HBO 2 , boron oxide represented by B 2 O 3 , or any of these may also be used. Mixtures of can also be used.
アルミニウム源としては、酸化アルミニウムや酸化アルミニウム前駆体化合物が挙げられる。酸化アルミニウム前駆体化合物としては、例えば、ベーマイトのようなAl2O3・mH2Oで表記される酸化アルミニウムの水和物、水酸化アルミニウム等や、硝酸アルミニウム、塩化アルミニウムをはじめとする各種のアルミニウム塩類等が好適に用いられる。 Examples of the aluminum source include aluminum oxide and aluminum oxide precursor compounds. Examples of aluminum oxide precursor compounds include hydrates of aluminum oxide expressed as Al 2 O 3 .mH 2 O such as boehmite, aluminum hydroxide, and various other compounds including aluminum nitrate and aluminum chloride. Aluminum salts and the like are preferably used.
また、塗布液中におけるホウ素源およびアルミニウム源は、Al2O3/B2O3換算の質量比が1.80~2.60となるように含まれる。これにより、適切な組成比で絶縁被膜を形成することができる。これに対し、上記質量比が1.80未満である場合、絶縁被膜中のホウ素量が多くなりすぎる結果、ホウ素が界面に集積しすぎ、絶縁被膜中でのホウ素の存在が不均一となり、絶縁被膜の一部ではホウ酸アルミニウム結晶の形成が十分ではなくなって被膜張力が低下する場合がある。また、上記質量比が2.60を超えると、アルミニウム源が多くなりすぎる結果、絶縁被膜と母材鋼板との界面付近におけるホウ素が十分な量とならず、生成するホウ酸アルミニウム結晶が少なくなり、被膜張力が高くならない。 Further, the boron source and the aluminum source in the coating solution are contained so that the mass ratio in terms of Al 2 O 3 /B 2 O 3 is 1.80 to 2.60. Thereby, an insulating film can be formed with an appropriate composition ratio. On the other hand, if the above mass ratio is less than 1.80, the amount of boron in the insulating film becomes too large, resulting in too much boron being accumulated at the interface, and the presence of boron in the insulating film becomes uneven, resulting in In some parts of the coating, aluminum borate crystals may not be formed sufficiently, resulting in a decrease in coating tension. In addition, if the above mass ratio exceeds 2.60, the aluminum source becomes too large, and as a result, the amount of boron near the interface between the insulating coating and the base steel sheet is insufficient, resulting in fewer aluminum borate crystals being generated. , the coating tension does not increase.
上記質量比は、好ましくは1.90以上2.40以下、より好ましくは2.00以上2.20以下である。 The mass ratio is preferably 1.90 or more and 2.40 or less, more preferably 2.00 or more and 2.20 or less.
これらの原料を分散媒に分散させて塗布液としてのスラリーを作製する。分散媒は水が最もよいが、他の工程で特に支障がなければ、有機溶媒、あるいはこれらの混合物が使用できる。スラリーの固形分濃度は、その作業性等に応じて適宜選択されればよく、特に限定されない。 These raw materials are dispersed in a dispersion medium to prepare a slurry as a coating liquid. The best dispersion medium is water, but organic solvents or mixtures thereof can be used as long as they do not interfere with other steps. The solid content concentration of the slurry may be appropriately selected depending on the workability and the like, and is not particularly limited.
また、このスラリーのうち、酸化アルミニウム前駆体として、いわゆるゾルと呼ばれる微粒子分散系を用いることにより、薄くて均一、かつ、密着性の良い絶縁被膜が得られる場合がある。これは、鋼板の表面に非金属物質が存在せず、鋼板の金属面上に直接絶縁被膜を形成するような場合に特に顕著である。 Furthermore, by using a fine particle dispersion system called a sol as the aluminum oxide precursor in this slurry, a thin, uniform, and highly adhesive insulating film may be obtained. This is particularly noticeable when there is no non-metallic substance on the surface of the steel plate and an insulating film is formed directly on the metal surface of the steel plate.
塗布液にゾルを用いる場合には、酸化アルミニウム前駆体として上述のベーマイトゾル、及び/又はアルミナゾルと呼ばれているものが作業性、あるいは価格等の点から特に適している。 When a sol is used in the coating liquid, the above-mentioned boehmite sol and/or alumina sol are particularly suitable as aluminum oxide precursors from the viewpoint of workability, cost, etc.
なお、塗布液は、本発明の奏する効果を阻害しない範囲において、上述した以外の成分を含んでいてもよい。 In addition, the coating liquid may contain components other than those mentioned above within a range that does not inhibit the effects of the present invention.
得られたスラリー(塗布液)は、ロールコーター等のコーター、ディップ法、スプレー吹き付けあるいは電気泳動等といった方法によって、仕上げ焼鈍が完了した方向性電磁鋼板表面に塗布される。 The obtained slurry (coating liquid) is applied to the surface of a grain-oriented electrical steel sheet that has been finish-annealed using a coater such as a roll coater, a dipping method, spraying, electrophoresis, or the like.
なお、塗布(コーティング)前の塗布液は、ホウ酸の析出や過度な水分の蒸発を防ぐため、例えば20℃以上40℃以下の温度に保つとよい。塗布液の温度が低すぎると、ホウ素源の種類や濃度によっては、塗布液中でホウ酸の析出が起こり、温度が高すぎると水分が少なくなりやすく、正常な塗布ができなくなり、いずれの場合も目的とする被膜が得られなくなる場合がある。 Note that the coating liquid before application (coating) is preferably kept at a temperature of, for example, 20° C. or higher and 40° C. or lower in order to prevent precipitation of boric acid and excessive evaporation of water. If the temperature of the coating solution is too low, depending on the type and concentration of the boron source, boric acid may precipitate in the coating solution, and if the temperature is too high, the water content tends to decrease, making normal coating impossible. However, the desired coating may not be obtained.
次に、露点が0~40℃で水素を0~25体積%含む不活性ガス雰囲気中で、鋼板を600℃以下の到達温度までの平均昇温速度が2~5℃/秒となるように加熱する。このような室温から600℃以下の到達温度までの温度域では、塗布液の加熱、乾燥、及び乾燥終了後に母材鋼板上に形成されたホウ素化合物とアルミニウム化合物との混合物からなる膜状物質の加熱が行われる。 Next, the steel plate was heated in an inert gas atmosphere with a dew point of 0 to 40°C and containing 0 to 25% by volume of hydrogen such that the average heating rate was 2 to 5°C/second to reach a temperature of 600°C or less. Heat. In such a temperature range from room temperature to an ultimate temperature of 600°C or less, the coating solution is heated, dried, and a film-like substance consisting of a mixture of boron compounds and aluminum compounds formed on the base steel plate after drying is completed. Heating takes place.
平均昇温速度を2~5℃/秒に限定するのは、上記プロセス(i)に関し、ホウ素の拡散を十分に行うためである。平均昇温速度が速すぎると、ホウ素の拡散が十分でなくなり、目標とするホウ酸アルミニウム結晶質成分の組成、量が得られないことに加え、塗布液の乾燥時に突沸による被膜欠陥が生じやすくなる。一方、平均昇温速度が遅すぎると、ホウ素の蒸散が進み過ぎる結果、狙った組成の絶縁被膜が得られなくなる。すなわち平均昇温速度が2~5℃/秒の範囲を外れると、高い張力が得られなくなる。 The reason why the average temperature increase rate is limited to 2 to 5° C./sec is to ensure sufficient diffusion of boron in the above process (i). If the average temperature increase rate is too fast, boron will not diffuse sufficiently, making it impossible to obtain the desired composition and amount of aluminum borate crystalline components, and also causing film defects due to bumping when the coating solution dries. Become. On the other hand, if the average temperature increase rate is too slow, boron evaporates too much, making it impossible to obtain an insulating film with the desired composition. That is, if the average temperature increase rate is outside the range of 2 to 5° C./sec, high tension cannot be obtained.
なお、上記鋼板の加熱における到達温度は、450℃を超え、600℃以下であるものであればよいが、好ましくは480℃以上530℃以下である。これにより、ホウ素の蒸散を抑制したうえで十分にホウ素を拡散させることができるとともに、不要な結晶の生成を抑制することができる。 The temperature reached in heating the steel plate may be higher than 450°C and lower than 600°C, but preferably higher than 480°C and lower than 530°C. This makes it possible to sufficiently diffuse boron while suppressing evaporation of boron, and to suppress the formation of unnecessary crystals.
また、加熱時における雰囲気中の不活性ガスとしては、例えば、窒素や、ヘリウム、アルゴン、キセノン等の希ガスが挙げられる。このうち、コストを抑制するためにも、窒素が好ましい。 Furthermore, examples of the inert gas in the atmosphere during heating include nitrogen, and rare gases such as helium, argon, and xenon. Among these, nitrogen is preferable also in order to suppress costs.
また、加熱時における雰囲気は、水素を0~25体積%、好ましくは0超25体積%を含む。これにより、鋼板と絶縁被膜の間の酸化を抑制し、密着性を確保することができる。雰囲気中の水素の含有量が25体積%を超えても、特に問題はないが、コストがかかりすぎる観点から好ましくない。 Further, the atmosphere during heating contains hydrogen in an amount of 0 to 25% by volume, preferably more than 0 to 25% by volume. Thereby, oxidation between the steel plate and the insulating coating can be suppressed and adhesion can be ensured. Even if the hydrogen content in the atmosphere exceeds 25% by volume, there is no particular problem, but it is not preferable from the viewpoint of excessive cost.
また、加熱時における雰囲気の露点は、0℃以上40℃以下である。上記露点が0℃未満の場合、絶縁被膜の張力を十分に確保できない。また、上記露点が40℃を超えると鋼板と絶縁被膜界面の酸化が生じやすく、密着性が劣化する場合があるという問題が生じる。加熱時における雰囲気の露点は、好ましくは、10℃以上30℃以下である。 Further, the dew point of the atmosphere during heating is 0° C. or higher and 40° C. or lower. When the dew point is less than 0°C, sufficient tension of the insulating coating cannot be ensured. Further, when the dew point exceeds 40° C., oxidation tends to occur at the interface between the steel plate and the insulating coating, resulting in a problem that adhesion may deteriorate. The dew point of the atmosphere during heating is preferably 10°C or more and 30°C or less.
次に、鋼板を、上述した平均昇温速度で到達温度まで加熱した後、200℃以下まで冷却速度5℃/秒以上、10℃/秒未満の冷却速度で冷却する。このプロセスの効果の理由は明らかではないが、上述したプロセス(ii)に関し、このような冷却処理により、ホウ酸アルミニウム結晶の核生成が促進されるほか、余剰のホウ素が中間層のフォルステライトと反応し、嵌合構造を形成するための前駆段階の構造を形成すると考えられる。この構造を経て、次の加熱プロセスの750℃以上まで鋼板を加熱するプロセスで嵌合構造が完成すると考えられる。このような嵌合構造が実現することで、密着性が向上する。密着性が向上することで、高い張力付与能力のある被膜が形成された場合に、鋼板に高い張力を付与することができる。逆に、高い張力付与能力のある被膜が形成されとしても、密着性が十分でなければ、鋼板に高い張力をかけることができず、結果的に高張力被膜が実現できない。冷却の到達温度が200℃以下ではない場合、あるいは平均冷却速度が5℃/秒未満あるいは10℃/秒以上の場合は、十分な密着性が得られない。つまり、このような条件では、被膜の密着性が十分ではないために今回のような高い張力効果を得ることはできない。冷却の到達温度は、200℃以下であればよいが、コスト、所要時間の観点から、過度に低温とすることは好ましくなく、好ましくは100℃以上200℃以下である。 Next, the steel plate is heated to the final temperature at the above-mentioned average heating rate, and then cooled to 200° C. or lower at a cooling rate of 5° C./second or more and less than 10° C./second. Although the reason for the effect of this process is not clear, regarding process (ii) above, such cooling treatment not only promotes nucleation of aluminum borate crystals, but also causes excess boron to interact with forsterite in the intermediate layer. It is believed to react and form a precursor stage structure for forming a mating structure. After this structure, it is thought that the fitting structure is completed in the next heating process of heating the steel plate to 750° C. or higher. By realizing such a fitting structure, adhesion is improved. By improving adhesion, high tension can be applied to the steel plate when a film with high tension application ability is formed. Conversely, even if a coating with high tension imparting ability is formed, if the adhesion is not sufficient, high tension cannot be applied to the steel plate, and as a result, a high tension coating cannot be realized. If the temperature reached by cooling is not 200° C. or less, or if the average cooling rate is less than 5° C./second or more than 10° C./second, sufficient adhesion cannot be obtained. In other words, under these conditions, the adhesion of the film is not sufficient, so it is not possible to obtain the high tension effect as in this case. The temperature reached by cooling may be 200°C or less, but from the viewpoint of cost and required time, it is not preferable to set the temperature to an excessively low temperature, and preferably 100°C or more and 200°C or less.
次に、鋼板を、750℃までの平均昇温速度が10~100℃/秒となるように昇温し、750~1000℃の温度域で20~120秒の間熱処理する。以上のようにして塗布後の鋼板を乾操後、750℃以上で焼き付けることによって、表面に絶縁被膜としての酸化物被膜を形成する。 Next, the steel plate is heated so that the average temperature increase rate up to 750°C is 10 to 100°C/sec, and heat treated in a temperature range of 750 to 1000°C for 20 to 120 seconds. After drying the coated steel plate as described above, it is baked at 750° C. or higher to form an oxide film as an insulating film on the surface.
そして上述したように、鋼板を、750℃まで10~100℃/秒の平均昇温速度で昇温することにより、上述したプロセス(i)に関し、ホウ素の蒸散を抑制することができる。すなわち、600℃以上の温度域では、特にホウ素の蒸散が進みやすいため、上記のように比較的早い速度で鋼板の昇温を行う。平均昇温速度が遅いとホウ素の蒸散が進み、狙った組成の絶縁被膜が得られなくなる。平均昇温速度が速くても問題はないが、100℃/秒を超えても、より低い平均昇温速度の場合と比較しても改善が見られないようになり、また急速な昇温は設備コストを押し上げる要因にもなりうることから、平均昇温速度の実質的な上限は100℃/秒である。平均昇温速度は、好ましくは50℃/秒以上80℃/秒以下である。 As described above, by heating the steel plate to 750° C. at an average heating rate of 10 to 100° C./sec, boron evaporation can be suppressed in the process (i) described above. That is, in a temperature range of 600° C. or higher, evaporation of boron is particularly likely to proceed, so the temperature of the steel plate is raised at a relatively fast rate as described above. If the average heating rate is slow, evaporation of boron will proceed, making it impossible to obtain an insulating film with the desired composition. There is no problem even if the average heating rate is fast, but if it exceeds 100°C/sec, no improvement will be seen compared to a lower average heating rate, and rapid heating The practical upper limit of the average temperature increase rate is 100° C./sec, since this can be a factor that increases equipment costs. The average temperature increase rate is preferably 50°C/second or more and 80°C/second or less.
750~1000℃の間で20~120秒熱処理する必要があるのは、上述したプロセス(iii)に関し、750℃以上でホウ酸アルミニウムの結晶成長が起こり、結晶化が進行するためである。温度及び時間が上記の範囲に満たないと、ホウ酸アルミニウムの結晶化が十分に進行せず、十分な張力が得られなくなる。また、焼き付け温度(熱処理温度)が750℃末満の場合、塗布した前駆体が酸化物とならない場合があり、また焼き付け温度が低いため十分な張力が発現せず、好ましくない。 The reason why heat treatment is required at 750 to 1000°C for 20 to 120 seconds is because crystal growth of aluminum borate occurs at 750°C or higher and crystallization progresses in the above-mentioned process (iii). If the temperature and time are less than the above ranges, crystallization of aluminum borate will not proceed sufficiently and sufficient tension will not be obtained. Furthermore, if the baking temperature (heat treatment temperature) is less than 750° C., the applied precursor may not become an oxide, and sufficient tension will not be developed due to the low baking temperature, which is not preferable.
なお、熱処理温度(均熱温度)あるいは熱処理時間がこの範囲を超えても問題はないが、温度高温化あるいは長時間化の効果が得られなくなる。 Although there is no problem if the heat treatment temperature (soaking temperature) or heat treatment time exceeds this range, the effect of increasing the temperature or increasing the time will not be obtained.
熱処理温度は、上述した範囲内であればよいが、張力向上への効果とコストのバランスの観点から、好ましくは800℃以上950℃以下である。また、熱処理時間は、上述した範囲内であればよいが、好ましくは50秒以上90秒以下である。 The heat treatment temperature may be within the above-mentioned range, but is preferably 800° C. or higher and 950° C. or lower from the viewpoint of the balance between the effect on tension improvement and cost. Further, the heat treatment time may be within the above-mentioned range, but is preferably 50 seconds or more and 90 seconds or less.
なお、750℃を越えて昇温を行う場合、750℃を超えた時点から次に750℃未満となるまでの時間を熱処理時間とする。 Note that when the temperature is raised above 750°C, the time from when the temperature exceeds 750°C until the temperature becomes below 750°C is defined as the heat treatment time.
焼き付け時(昇温時および熱処理時)の雰囲気は、窒素等の不活性ガス雰囲気、窒素-水素混合雰囲気等の還元性雰囲気が好ましい。空気、あるいは酸素を含む雰囲気は、鋼板を酸化させる可能性があり好ましくない。 The atmosphere during baking (temperature raising and heat treatment) is preferably a reducing atmosphere such as an inert gas atmosphere such as nitrogen or a nitrogen-hydrogen mixed atmosphere. Air or an atmosphere containing oxygen may oxidize the steel plate and is therefore undesirable.
雰囲気ガスの露点については、0~40℃で良好な結果が得られる。あるいは、焼き付け時の雰囲気は、塗布液の乾燥時における雰囲気と同一であってもよい。 As for the dew point of the atmospheric gas, good results can be obtained at 0 to 40°C. Alternatively, the atmosphere during baking may be the same as the atmosphere during drying of the coating liquid.
以上のようにして、上述したような絶縁被膜を有する、高い張力を有する方向性電磁鋼板が得られる。 In the manner described above, a grain-oriented electrical steel sheet having a high tensile strength and having an insulating coating as described above is obtained.
以下に本発明を実施例に基づいてより詳細に説明するが、以下に示す実施例は、本発明のあくまでも一例であって、本発明はかかる実施例にのみ限定されるものではない。 The present invention will be described in more detail below based on Examples, but the Examples shown below are merely examples of the present invention, and the present invention is not limited only to these Examples.
(実験例1)
市販のホウ酸試薬及び、酸化アルミニウム(Al2O3)粉末(平均粒径:0.4μm)を、表1に示した割合で混合した。なお、ホウ酸は酸化ホウ素(B2O3)相当に換算して秤量した。これに蒸留水を加えてスラリーを作製した。
(Experiment example 1)
A commercially available boric acid reagent and aluminum oxide (Al 2 O 3 ) powder (average particle size: 0.4 μm) were mixed in the proportions shown in Table 1. Note that boric acid was weighed in terms of boron oxide (B 2 O 3 ) equivalent. Distilled water was added to this to prepare a slurry.
得られたスラリーを、3.2%のSiを含有し、厚さが0.23mmであり、仕上げ焼鈍が完了した一方向性珪素鋼板(フォルステライト質の一次被膜あり)に、焼き付け後の被膜質量で鋼板片側あたり4.5g/m2となるように塗布した。その後、表1に示す条件で乾燥、冷却後、750℃まで昇温し、この温度で均熱時間を100秒として焼き付け(熱処理)を行い、絶縁被膜を形成した。乾燥時の鋼板の到達温度は500℃とした。乾燥、冷却、昇温、焼き付け時の雰囲気は、水素を10%含む窒素雰囲気とし、露点は30℃とした。 The obtained slurry was applied to a unidirectional silicon steel plate (with a forsterite primary coating) containing 3.2% Si, having a thickness of 0.23 mm, and which had been finish annealed. The coating was applied so that the weight was 4.5 g/m 2 per side of the steel plate. Thereafter, after drying and cooling under the conditions shown in Table 1, the temperature was raised to 750°C, and baking (heat treatment) was performed at this temperature with a soaking time of 100 seconds to form an insulating coating. The temperature reached by the steel plate during drying was 500°C. The atmosphere during drying, cooling, heating, and baking was a nitrogen atmosphere containing 10% hydrogen, and the dew point was 30°C.
絶縁被膜を形成した試料をX線回折で測定し、回折線より絶縁被膜中に結晶質ホウ酸アルミニウムが存在することを確認した。 The sample on which the insulating coating was formed was measured by X-ray diffraction, and the presence of crystalline aluminum borate in the insulating coating was confirmed from the diffraction lines.
次に、絶縁皮膜を形成した方向性電磁鋼板から、80mm×80mmの試験片を切り出して、直径20mmの丸棒に巻き付け、次いで、平らに伸ばし、電磁鋼板から剥離していない絶縁被膜の面積を測定して、皮膜残存面積率を算出し、絶縁皮膜の密着性を評価した。「○(Good)」は皮膜残存面積率が90%以上であることを意味する。「×(Poor)」は皮膜残存面積率が90%未満であることを意味する。 Next, a test piece of 80 mm x 80 mm was cut out from the grain-oriented electrical steel sheet on which the insulating film had been formed, wrapped around a round bar with a diameter of 20 mm, and then flattened to measure the area of the insulating film that had not peeled off from the electrical steel sheet. The remaining area ratio of the film was measured, and the adhesion of the insulating film was evaluated. "Good" means that the remaining area ratio of the film is 90% or more. "Poor" means that the remaining area ratio of the film is less than 90%.
また、絶縁被膜を形成した鋼板の片側の被膜を除去し、鋼板の曲りから被膜張力を算出した。この張力は、フォルステライト層を含まない、ホウ酸アルミニウム被膜(絶縁被膜)のみの張力である。絶縁被膜の除去には水酸化ナトリウム水溶液を用いた。具体的には、鋼板を80℃の20%水酸化ナトリウム水溶液中に10分程度浸漬する。片側のみを除去するためには、除去しない側をテープなどで保護した。張力は、鋼板片面の絶縁被膜の付着量当たりの張力が4.0MPa/g/m2以上を高い張力と定義した。 Furthermore, the coating on one side of the steel plate on which the insulating coating was formed was removed, and the coating tension was calculated from the bending of the steel plate. This tension is the tension of only the aluminum borate film (insulating film), which does not include the forsterite layer. A sodium hydroxide aqueous solution was used to remove the insulating film. Specifically, the steel plate is immersed in a 20% aqueous sodium hydroxide solution at 80° C. for about 10 minutes. To remove only one side, protect the side that is not to be removed with tape or the like. The tension was defined as high tension when the tension per amount of insulating coating deposited on one side of the steel plate was 4.0 MPa/g/m 2 or more.
界面の粗さは、絶縁皮膜を除去して中間層を露出させた鋼板に対して、レーザ光による計測装置を用い、JIS B601:2001に準拠して中間層の表面粗さを測定し、これを界面の粗さとした。 The surface roughness of the interface was determined by measuring the surface roughness of the intermediate layer in accordance with JIS B601:2001 using a laser beam measurement device on a steel plate with the insulation coating removed to expose the intermediate layer. is the roughness of the interface.
表1の結果から、試験番号1~3、9~11、17、18、21、22の実施例では、密着性に優れ、張力の高い絶縁被膜が得られていることがわかる。 From the results in Table 1, it can be seen that in Examples of test numbers 1 to 3, 9 to 11, 17, 18, 21, and 22, insulating coatings with excellent adhesion and high tension were obtained.
(実験例2)
市販の酸化アルミニウム(Al2O3)粉末(平均粒径:0.4μm)100gに対し、ホウ酸試薬を酸化ホウ素(B2O3)相当で45.3gとし、これに蒸留水を加えてスラリーを作製した。Al2O3/B2O3は2.2である。
(Experiment example 2)
To 100 g of commercially available aluminum oxide (Al 2 O 3 ) powder (average particle size: 0.4 μm), 45.3 g of boric acid reagent (equivalent to boron oxide (B 2 O 3 )) was added, and distilled water was added to this. A slurry was prepared. Al 2 O 3 /B 2 O 3 is 2.2.
このスラリーを、3.2%のSiを含有し、厚さが0.23mmであり、仕上げ焼鈍が完了した一方向性珪素鋼板(フォルステライト質の一次被膜あり)に焼き付け後の被膜重量で鋼板片側あたり4.5g/m2となるように塗布した。その後、露点30℃で水素を10体積%含む窒素雰囲気中で500℃まで平均昇温速度3℃/秒で昇温後、200℃まで平均冷却速度8℃/秒で冷却したのち、均熱温度まで平均昇温温度50℃/秒で昇温し、表2に示す条件で焼き付け(熱処理)を行い、絶縁被膜を形成した。 This slurry was baked onto a unidirectional silicon steel plate (with a forsterite primary coating) containing 3.2% Si, having a thickness of 0.23 mm, and which had been finish annealed. It was applied at a concentration of 4.5 g/m 2 per side. After that, the temperature was raised to 500°C at an average temperature increase rate of 3°C/sec in a nitrogen atmosphere containing 10% by volume of hydrogen with a dew point of 30°C, and then cooled to 200°C at an average cooling rate of 8°C/sec. The temperature was increased at an average temperature of 50° C./sec until the temperature reached 50° C., and baking (heat treatment) was performed under the conditions shown in Table 2 to form an insulating film.
絶縁被膜を形成した試料をX線回折で測定し、回折線より絶縁被膜中に結晶質ホウ酸アルミニウムが存在することを確認した。 The sample on which the insulating coating was formed was measured by X-ray diffraction, and the presence of crystalline aluminum borate in the insulating coating was confirmed from the diffraction lines.
また、実験例1の場合と同様にして、絶縁被膜の皮膜残存面積率を算出し、絶縁皮膜の密着性を評価した。「○(Good)」は皮膜残存面積率が90%以上であることを意味する。「×(Poor)」は皮膜残存面積率が90%未満であることを意味する。 In addition, in the same manner as in Experimental Example 1, the remaining area ratio of the insulating coating was calculated, and the adhesion of the insulating coating was evaluated. "Good" means that the remaining area ratio of the film is 90% or more. "Poor" means that the remaining area ratio of the film is less than 90%.
実施例1と同様に、絶縁被膜を形成した鋼板の片側の被膜を除去し、鋼板の曲りから被膜張力を算出した。この張力は、フォルステライト層を含まない、ホウ酸アルミニウム被膜(絶縁被膜)のみの張力である。絶縁被膜の除去には水酸化ナトリウム水溶液を用いた。張力は18MPa以上を高い張力と定義した。 As in Example 1, the coating on one side of the steel plate on which the insulating coating was formed was removed, and the coating tension was calculated from the bending of the steel plate. This tension is the tension of only the aluminum borate film (insulating film), which does not include the forsterite layer. A sodium hydroxide aqueous solution was used to remove the insulating film. A tension of 18 MPa or more was defined as high tension.
界面の粗さは、絶縁皮膜を除去して中間層を露出させた鋼板に対して、レーザ光による計測装置を用い、JIS B601:2001に準拠して中間層の表面粗さを測定し、これを界面の粗さとした。 The surface roughness of the interface was determined by measuring the surface roughness of the intermediate layer in accordance with JIS B601:2001 using a laser beam measurement device on a steel plate with the insulation coating removed to expose the intermediate layer. is the roughness of the interface.
表2の結果から、試験番号24~30の実施例では、密着性に優れ、高い被膜張力が得られていることがわかる。 From the results in Table 2, it can be seen that Examples with test numbers 24 to 30 had excellent adhesion and high film tension.
Claims (2)
前記絶縁被膜と前記鋼板との間にフォルステライトからなる中間層を有し、絶縁被膜の張力が鋼板片面の絶縁被膜の付着量当たりの張力が4.0MPa/g/m2以上であり、
前記絶縁被膜と前記中間層との界面の粗さ曲線の算術平均粗さRaが0.35μm以上0.85μm以下であり、かつ前記界面の前記粗さ曲線における要素の平均長さRSmが20μm以上100μm以下であることを特徴とする方向性電磁鋼板。 The outermost layer of the steel plate has an insulating coating made of an oxide crystalline material containing aluminum and boron and having a mass ratio of 1.80 to 2.60 in terms of Al 2 O 3 /B 2 O 3 ,
There is an intermediate layer made of forsterite between the insulating coating and the steel plate, and the tension of the insulating coating is 4.0 MPa/g/m 2 or more per amount of the insulating coating deposited on one side of the steel plate,
The arithmetic mean roughness Ra of the roughness curve of the interface between the insulating coating and the intermediate layer is 0.35 μm or more and 0.85 μm or less, and the average length RSm of the elements in the roughness curve of the interface is 20 μm or more. A grain-oriented electrical steel sheet characterized by having a thickness of 100 μm or less.
露点が0~40℃で水素を0~25体積%含む不活性ガス雰囲気中で、前記鋼板を、600℃以下の到達温度までの平均昇温速度が2~5℃/秒となるように加熱したのち、平均冷却速度5℃/秒以上10℃/秒未満で200℃以下まで冷却する段階と、
前記鋼板を、750℃までの平均昇温速度が10~100℃/秒となるように昇温し、750~1000℃の温度域で20~120秒の間熱処理する段階と、を有する、方向性電磁鋼板の製造方法。 applying a coating solution containing a boron source and an aluminum source with a mass ratio of 1.80 to 2.60 in terms of Al 2 O 3 /B 2 O 3 to the surface of a steel plate having a primary coating made of forsterite; ,
Heating the steel plate in an inert gas atmosphere having a dew point of 0 to 40°C and containing 0 to 25% by volume of hydrogen such that the average temperature increase rate is 2 to 5°C/sec to reach a temperature of 600°C or less. After that, cooling to 200°C or less at an average cooling rate of 5°C/second or more and less than 10°C/second,
heating the steel plate at an average temperature increase rate of 10 to 100°C/sec to 750°C, and heat-treating the steel plate in a temperature range of 750 to 1000°C for 20 to 120 seconds. manufacturing method of magnetic steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019204749A JP7356017B2 (en) | 2019-11-12 | 2019-11-12 | Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019204749A JP7356017B2 (en) | 2019-11-12 | 2019-11-12 | Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021075769A JP2021075769A (en) | 2021-05-20 |
JP7356017B2 true JP7356017B2 (en) | 2023-10-04 |
Family
ID=75899236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019204749A Active JP7356017B2 (en) | 2019-11-12 | 2019-11-12 | Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7356017B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004332072A (en) | 2003-05-09 | 2004-11-25 | Jfe Steel Kk | Method of forming chromeless coating for grain-oriented electrical steel sheets |
JP2005120405A (en) | 2003-10-15 | 2005-05-12 | Jfe Steel Kk | Oriented electrical steel sheet for laminated iron cores |
WO2013175733A1 (en) | 2012-05-24 | 2013-11-28 | Jfeスチール株式会社 | Method for manufacturing grain-oriented electrical steel sheet |
WO2018079845A1 (en) | 2016-10-31 | 2018-05-03 | 新日鐵住金株式会社 | Grain-oriented electromagnetic steel sheet |
JP2019137874A (en) | 2018-02-06 | 2019-08-22 | 日本製鉄株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
JP2019151921A (en) | 2018-02-28 | 2019-09-12 | Jfeスチール株式会社 | Grain orientated magnetic steel sheet with insulating film and method of producing the same |
-
2019
- 2019-11-12 JP JP2019204749A patent/JP7356017B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004332072A (en) | 2003-05-09 | 2004-11-25 | Jfe Steel Kk | Method of forming chromeless coating for grain-oriented electrical steel sheets |
JP2005120405A (en) | 2003-10-15 | 2005-05-12 | Jfe Steel Kk | Oriented electrical steel sheet for laminated iron cores |
WO2013175733A1 (en) | 2012-05-24 | 2013-11-28 | Jfeスチール株式会社 | Method for manufacturing grain-oriented electrical steel sheet |
WO2018079845A1 (en) | 2016-10-31 | 2018-05-03 | 新日鐵住金株式会社 | Grain-oriented electromagnetic steel sheet |
JP2019137874A (en) | 2018-02-06 | 2019-08-22 | 日本製鉄株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
JP2019151921A (en) | 2018-02-28 | 2019-09-12 | Jfeスチール株式会社 | Grain orientated magnetic steel sheet with insulating film and method of producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2021075769A (en) | 2021-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6547835B2 (en) | Directional electromagnetic steel sheet and method of manufacturing directional electromagnetic steel sheet | |
CN111684106B (en) | Electromagnetic steel sheet with insulating coating and method for producing same | |
JP7027925B2 (en) | Electrical steel sheet and its manufacturing method | |
JP6904499B1 (en) | Film forming method and manufacturing method of electrical steel sheet with insulating coating | |
CN115627332A (en) | Grain-oriented electromagnetic steel sheet and method for producing same | |
JP7356017B2 (en) | Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet | |
JP7124892B2 (en) | Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet | |
CN114381584A (en) | Insulating coating liquid for oriented silicon steel surface, oriented silicon steel plate and manufacturing method thereof | |
CN114555860A (en) | Electromagnetic steel sheet with insulating coating film | |
JP3394845B2 (en) | Low iron loss unidirectional silicon steel sheet | |
CN114106593B (en) | Paint for oriented silicon steel surface coating, oriented silicon steel plate and manufacturing method thereof | |
JP4236431B2 (en) | Method for forming insulating film on grain-oriented electrical steel sheet | |
JP2005240157A (en) | A grain-oriented electrical steel sheet having a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance, and a method for forming a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance. | |
JP3162624B2 (en) | Method for producing low iron loss unidirectional silicon steel sheet | |
JPH07278832A (en) | Grain-oriented silicon steel sheet low in iron loss and its production | |
JP3065908B2 (en) | Low iron loss unidirectional silicon steel sheet | |
JP7448819B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
RU2780701C1 (en) | Sheet of anisotropic electrotechnical steel and method for manufacture thereof | |
JP3280844B2 (en) | Method for forming insulating film on unidirectional silicon steel sheet | |
JP4448287B2 (en) | Method for forming insulating coating on unidirectional electrical steel sheet | |
JP3527008B2 (en) | Low iron loss unidirectional electrical steel sheet and method of manufacturing the same | |
JP3456893B2 (en) | Low iron loss unidirectional silicon steel sheet | |
JPH07278828A (en) | Coating agent for forming grain-oriented electrical steel sheet coating and method for producing grain-oriented electrical steel sheet having the coating | |
KR20240116512A (en) | Coating for oriented silicon steel coating layer, oriented silicon steel plate, and manufacturing method therefor | |
JPH08283957A (en) | Low iron loss unidirectional silicon steel sheet with excellent water resistance and rust resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230328 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230522 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230822 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230904 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7356017 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |