JP7352292B2 - ホログラフィック撮像装置およびホログラフィック撮像方法 - Google Patents
ホログラフィック撮像装置およびホログラフィック撮像方法 Download PDFInfo
- Publication number
- JP7352292B2 JP7352292B2 JP2020539595A JP2020539595A JP7352292B2 JP 7352292 B2 JP7352292 B2 JP 7352292B2 JP 2020539595 A JP2020539595 A JP 2020539595A JP 2020539595 A JP2020539595 A JP 2020539595A JP 7352292 B2 JP7352292 B2 JP 7352292B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- hologram
- inline
- axis
- spherical wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/36—Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
- G02B21/361—Optical details, e.g. image relay to the camera or image sensor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0443—Digital holography, i.e. recording holograms with digital recording means
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/08—Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
- G03H1/0866—Digital holographic imaging, i.e. synthesizing holobjects from holograms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/36—Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
- G02B21/365—Control or image processing arrangements for digital or video microscopes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B35/00—Stereoscopic photography
- G03B35/08—Stereoscopic photography by simultaneous recording
- G03B35/10—Stereoscopic photography by simultaneous recording having single camera with stereoscopic-base-defining system
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/08—Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
- G03H1/0808—Methods of numerical synthesis, e.g. coherent ray tracing [CRT], diffraction specific
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/22—Processes or apparatus for obtaining an optical image from holograms
- G03H1/2202—Reconstruction geometries or arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
- G01N21/211—Ellipsometry
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
- G03H2001/005—Adaptation of holography to specific applications in microscopy, e.g. digital holographic microscope [DHM]
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0443—Digital holography, i.e. recording holograms with digital recording means
- G03H2001/0445—Off-axis recording arrangement
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0443—Digital holography, i.e. recording holograms with digital recording means
- G03H2001/045—Fourier or lensless Fourier arrangement
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0443—Digital holography, i.e. recording holograms with digital recording means
- G03H2001/0454—Arrangement for recovering hologram complex amplitude
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0465—Particular recording light; Beam shape or geometry
- G03H2001/0473—Particular illumination angle between object or reference beams and hologram
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/08—Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
- G03H1/0866—Digital holographic imaging, i.e. synthesizing holobjects from holograms
- G03H2001/0883—Reconstruction aspect, e.g. numerical focusing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2222/00—Light sources or light beam properties
- G03H2222/50—Geometrical property of the irradiating beam
- G03H2222/52—Divergent beam
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2223/00—Optical components
- G03H2223/24—Reflector; Mirror
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2225/00—Active addressable light modulator
- G03H2225/30—Modulation
- G03H2225/31—Amplitude only
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2225/00—Active addressable light modulator
- G03H2225/30—Modulation
- G03H2225/33—Complex modulation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Optics & Photonics (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Holo Graphy (AREA)
Description
振幅ホログラム生成部と、ビーム結合器の屈折率を考慮してその内部の伝播を含む光伝播計算を行ってインライン球面波参照光(L)の光波を表すインライン参照光ホログラム(jL)をホログラム面において生成する計算参照光ホログラム生成部と、複素振幅インラインホログラム(JOL)とインライン参照光ホログラム(jL)のデータを用いて物体光(O)のホログラムである物体光ホログラム(g)をホログラム面において生成する物体光ホログラム生成部と、を備えることを特徴とする。
図1(a)(b)、図2を参照して、第1の実施形態に係るホログラフィック撮像装置1を説明する。図1(a)(b)に示すように、ホログラフィック撮像装置1は、照明光Qで照明された物体4から放たれる物体光Oのデータを取得して電子的に保存するデータ取得部10と、データ取得部10によって取得されたデータから物体4の画像を再生する画像再生部12と、を備えている。本実施形態のホログラフィック撮像装置1は、長作動距離を有する撮像装置である。
図3乃至図6を参照して、第2の実施形態に係るデータ処理方法を説明する。なお、本方法が適用される装置例として、第1の実施形態の装置(図1,図2)をあわせて参照する。本データ処理方法は、長作動距離かつ広視野のホログラフィック撮像装置、高開口数または1を超える合成開口数を有する超高分解能の透過型や反射型の顕微鏡を実現するホログラフィック撮像装置などに適用することができる。
ホログラムデータとその処理を数式表現に基づいて説明する。ホログラムには、オフアクシス参照光R、インライン球面波参照光L、物体光Oなどが関与する。ここで、xyz右手系直交座標系の原点がホログラム面50(イメージセンサ5の受光面)の中央に設定される。ホログラム面50から物体光Oの光源に向かう向きがz軸の正の向きである。位置座標(x,y)を用いて、物体光O(x,y,t)、オフアクシス参照光R(x,y,t)、およびインライン球面波参照光L(x,y,t)を、それぞれ一般的な形で、下式(1)(2)(3)で表す。これらの光は互いにコヒーレントな角周波数ωの光である。各式中の係数、引数、添え字などは、一般的な表現と意味に解釈される。以下の各式において、位置座標(x,y,z)、空間周波数(u,v,w)の明示などは、適宜省略される。
次に、式(8)において、両辺に乗算因子L0(x,y)exp(i(φL(x,y))を乗じることにより、上式(8)からインライン球面波参照光Lの成分を除去することができ、物体光Oの光波O0(x,y)exp(i(φO(x,y))だけを含んでいるホログラム(物体光ホログラム)を生成できる。このホログラムの用語は、光波を再生するために必要なデータを全て含んでいるという意味で用いられており、以下においても同様の意味で用いられる。インライン球面波参照光Lの振幅L0(x,y)は、緩やかに変化して無視できる場合、残しておくこともできる。
インライン参照光ホログラムjLの算出に用いられるイメージセンサからインライン球面波参照光Lの集光点P2までの距離ρは、以下の手順で決定できる。物体に替えて、透光板にスケールパターンを有して構成されるターゲットTを配置し、インライン球面波参照光Lで照射したときの透過光から成るターゲット物体光OTのデータを、オフアクシス参照光Rを用いてターゲットオフアクシスホログラムITRとして取得する。参照光オフアクシスホログラムILRは取得済みとする。
次に、インライン参照光ホログラムjLの生成を説明する。インライン参照光ホログラムjLは、図4、図5、図6に示すように、インライン球面波参照光Lの集光点P2の位置からイメージセンサ5の入射面であるホログラム面50に至る光波の光伝播計算を行って、ホログラム面50におけるインライン球面波参照光Lのホログラムとして生成される。光伝播計算は平面波展開を使って行う。集光点P2において参照光Lを平面波展開し、空気中およびビーム結合器3内を伝播させてホログラム面50における各平面波成分を計算し、計算した平面波成分を足し挙げてインライン参照光ホログラムjLを求める。
式(8)にL0(x,y)exp(i(φL(x,y))を乗じることにより、振幅因子L0(x,y)による振幅変調と、位相因子exp(i(φL(x,y))によるヘテロダイン変調が実行され、イメージセンサ5の表面(ホログラム面、xy平面、または面z=0)における物体光Oの光波を表す物体光ホログラムg(x,y)が下式(12)のように得られる。物体光ホログラムg(x,y)を生成する工程は、物体光Oを再生する工程である。物体光ホログラムg(x,y)の絶対値の2乗|g(x,y)|2をディスプレイに表示して、ホログラム面50における物体光Oの光強度分布を画像として見ることができる。同様に、物体光ホログラムg(x,y)の振幅分布画像や位相分布画像を表示して見ることができる。
電磁波に関するヘルムホルツ方程式の厳密解である平面波を用いて物体光Oの光波を展開することができ、光を伝播させる光伝播計算をすることができる。この平面波展開は、上式(12)の物体光ホログラムg(x,y)をフーリエ変換することにより実行される。すなわち、フーリエ変換が平面波展開である。平面波展開の結果、物体光Oについての空間周波数スペクトルG(u,v)が下式(13)のように得られる。空間周波数スペクトルG(u,v)は、波数ベクトル(u,v)を有する平面波の複素振幅であり、複素振幅G(u,v)とも称される。また、平面波の伝播よりz=z0の再生面における物体光h(x,y)は、下式(14)によって得られる。
図7、図8を参照して、第3の実施形態に係るホログラフィック撮像装置1を説明する。本実施形態のホログラフィック撮像装置1は、物体4をビーム結合器3に近接して配置する透過型のホログラフィック顕微鏡を実現する。ホログラフィック撮像装置1は、集光点を有する照明光Qによって物体4を照明するための集光レンズ23をビーム結合器3に近接して備えている。オフアクシス参照光Rの光学系は、集光点P1を形成して球面波状とした参照光Rをビーム結合器3の側面から入射させるため、小径の集光レンズ21と、集光点P1の位置にピンホールを有するピンホール板25とを、ビーム結合器3の側面に近接して備えている。
図9、図10を参照して、第4の実施形態に係るホログラフィック撮像装置1を説明する。本実施形態のホログラフィック撮像装置1は、物体4をビーム結合器3に近接して配置する反射型のホログラフィック顕微鏡を実現する。照明光Qの光学系は、反射型の顕微鏡とするため、ビーム結合器3におけるオフアクシス参照光Rが入射される側面の対向側面に、大径の集光レンズ26を有する。照明光Qは、集光レンズ26を通して入射され、ビーム結合器3の内部反射鏡30によって物体4に向けて反射されて、物体4の裏面すなわちイメージセンサ5に対向する面を、イメージセンサ5側から照明する。集光レンズ26は、照明光Qを物体4に向けて集光する。オフアクシス参照光Rとインライン球面波光Lの各光学系は、第3の実施形態と同様である。
図11、図12を参照して、第5の実施形態に係るホログラフィック撮像装置1を説明する。図7乃至図10に示す光学系において屈折率nが大きいビーム結合器を使用すれば、開口数NAを大きくできる。屈折率n=1.5ではおよそNA=0.63、屈折率n=2.0ではおよそNA=0.8まで開口数を大きくできる。さらに大きい開口数NAを得るには、奥行きサイズが小さいビーム結合器を用いる方法が効果的である。本実施形態のホログラフィック撮像装置1は、第3の実施形態に係る透過型のホログラフィック顕微鏡において、開口数NAを1に近い値まで大きくする顕微鏡である。開口数NAを1に近い値まで大きくするため、ビーム結合器3は、イメージセンサ5に対向する2面間の厚さが、他のいずれの2面間の厚さよりも薄くされている。すなわち、奥行きサイズが小さいキューブ型BSが用いられている。
図13を参照して、第6の実施形態に係るホログラフィック撮像装置1を説明する。本実施形態のホログラフィック撮像装置1は、第3の実施形態に係る透過型のホログラフィック顕微鏡におけるビーム結合器3が、物体4を斜め照射する照明光Qとビーム結合器3とが干渉しないように形成された、面取り部31aを有するものである。面取り部31aは、例えば、円錐面のように形成してもよく、また、多角錐の平面で形成してもよい。
図14にしめす第7の実施形態に係るホログラフィック撮像装置1は、第4の実施形態に係る反射型のホログラフィック顕微鏡におけるビーム結合器3が、物体4を斜め照射する照明光Qとビーム結合器3とが干渉しないように形成された、面取り部31aを有するものである。このホログラフィック撮像装置1によれば、第6の実施形態のホログラフィック撮像装置1と同様に、高分解能再生画像が得られる。
図15乃至図17を参照して、物体光ホログラムgと空間サンプリング間隔δについて説明する。上述の各ホログラフィック撮像装置は、球面波状に広がる物体光Oの発生点に近い位置に集光点P1があるオフアクシス参照光Rを用いて、物体光Oを記録している。従って、物体光Oと参照光Rの干渉縞のホログラムは、空間周波数帯域が狭められている。このようなホログラムから、物体光Oのみのホログラムを単独で取り出すと、空間周波数帯域が広くなる。このことから、物体光Oの波面を表す上式(12)の物体光ホログラムg(x,y)は、上式(9)の複素振幅インラインホログラムJOL(x,y)に比べて、より広い空間周波数帯域を有することがわかる。
図16(a)(b)、図17(a)(b)は、物体光ホログラムg(x,y)を高速に処理する方法を示す。高速フーリエ変換(FFT)を用いてホログラムデータを処理する場合、必要なサンプリング点数が大きくなりすぎると、物体光ホログラムg(x,y)の処理が困難になる。ところで、異なる周波数帯域に記録されたそれぞれの情報は空間的に重ねても失われずに保存される。このことを利用すると、広帯域の大開口数物体光である物体光ホログラムg(x,y)を重ねて、広帯域の微小ホログラム(データ点数の少ないホログラム)を作成することができる。また、ホログラムは、分割した各領域の各々に、光波を再生するための情報を保持している。
図18は、図1(a)(b)の光学系を有するホログラフィック撮像装置を用いて得られたカラー画像である。被写体は、1辺の長さが18mmのサイコロであり、イメージセンサ5から64cmの位置に置かれた。記録ホログラムの開口数NAは、NA=0.017である。光源には青色半導体励起固体レーザ(波長473nm,出力30mW)、緑色半導体励起固体レーザ(波長532nm,出力50mW)、および赤色He-Neレーザ(波長632.8nm,出力10mW)を用いた。
図19(a)(b)は、図7、図8の透過型ホログラフィック顕微鏡の光学系を用いて得られた、USAFテストターゲットの画像である。コヒーレント光源として青色の半導体励起固体レーザ(波長473nm,出力30mW)を用いた。CCDカメラの前方に被写体のUSAFテストターゲットを置いて物体光Oとオフアクシス参照光Rが作る干渉縞を記録した。また、被写体のUSAFテストターゲットを取り除いてインライン球面波参照光Lとオフアクシス参照光Rとが作る干渉縞を記録した。
図20(a)は図19(a)の比較例として、空気中の光伝播計算のみを行って再生した画像を示し、図20(b)はその部分拡大画像を示す。光伝播計算の際には、キューブ型ビームスプリッタ内における光伝播をキューブ奥行きの屈折率倍の奥行きを持つ空気中における光伝播で近似して計算を行った。
図21は乾燥珪藻の光強度画像、図22は同光強度画像に対応する位相差画像であり、図7、図8の透過型ホログラフィック顕微鏡の光学系を用いて撮像して再生した。記録ホログラムの開口数NAは、NA=0.5である。図10の位相差画像は、物体光と照明光の位相差を表す画像である。再生された光強度画像と位相差画像から、より細かい試料の構造を観察することができる。
図23(a)(b)は、図9,図10の反射型ホログラフィック顕微鏡の光学系を用いて得られた、USAFテストターゲットの画像である。記録ホログラムの開口数NAは、NA=0.5であり、理論分解能は0.457μmとなる。また、図23(b)の部分拡大画像において、矩形領域a1とその中の矩形領域a2に歪みが見られない。すなわち、再生画像に歪が生じてないことが分かる。また、図23(b)における線と線間の幅0.775μmのパターンがはっきりと識別でき、反射型においても透過型と同程度の分解能が得られていることが分かる。
2 光学系
3 ビーム結合器
31a 面取り部
4 物体
5 イメージセンサ
50 ホログラム面
6 データ保存部
10 データ取得部
12 画像再生部
13 複素振幅ホログラム生成部
14 計算参照光ホログラム生成部
15 物体光ホログラム生成部
ILR 参照光オフアクシスホログラム
IOR 物体光オフアクシスホログラム
ITR ターゲットオフアクシスホログラム
jL インライン参照光ホログラム
jLm 変換波長インライン参照光ホログラム
JOL 物体光の複素振幅インラインホログラム
O 物体光
OT ターゲットの物体光
Q 照明光
R オフアクシス参照光
L インライン球面波参照光
P2 インライン球面波参照光の集光点
P1 オフアクシス参照光の集光点
T ターゲット
g 物体光ホログラム
gT ターゲット物体光ホログラム
h 再生物体光ホログラム
m 係数
ρ イメージセンサからインライン球面波参照光の集光点までの距離
φL 位相
φLm 位相
λ 光波長
λm 変換波長
Claims (10)
- ホログラフィック撮像装置において、
照明された物体から放射される物体光(O)と前記物体光(O)に対するインライン光となるインライン球面波参照光(L)の2つの光をオフアクシス参照光(R)を用いて個別に2種類のオフアクシスホログラム(IOR,ILR)のデータとしてイメージセンサの受光面であるホログラム面において電子的に取得するデータ取得部と、
前記データ取得部によって取得されたデータから前記物体の画像を再生する画像再生部と、を備え、
前記データ取得部は、
キューブ型ビームスプリッタから構成されるビーム結合器を備え、
前記ビーム結合器を透過して前記イメージセンサに入射する光を前記2種類のオフアクシスホログラム(IOR,ILR)のデータとして取得し、
前記画像再生部は、
前記2種類のオフアクシスホログラム(IOR,ILR)のデータから、前記物体光(O)と前記インライン球面波参照光(L)の両方の情報を含む複素振幅インラインホログラム(JOL)を前記ホログラム面において生成する複素振幅ホログラム生成部と、
前記ビーム結合器の屈折率を考慮してその内部の伝播を含む光伝播計算を行って前記インライン球面波参照光(L)の光波を表すインライン参照光ホログラム(jL)を前記ホログラム面において生成する計算参照光ホログラム生成部と、
前記複素振幅インラインホログラム(JOL)と前記インライン参照光ホログラム(jL)のデータを用いて前記物体光(O)のホログラムである物体光ホログラム(g)を前記ホログラム面において生成する物体光ホログラム生成部と、を備えることを特徴とするホログラフィック撮像装置。 - 前記計算参照光ホログラム生成部は、
前記インライン球面波参照光(L)の光波長(λ)に係数(m)を掛け算して波長を長くした変換波長(mλ)の光について平面波展開法を用いる光伝播計算を行って、前記ホログラム面における球面波の位相(φLm)を算出し、
前記変換波長(mλ)の光について算出された前記位相(φLm)に前記係数(m)を掛け算して得られる位相(mφLm)を前記インライン参照光ホログラム(jL)の位相として前記インライン参照光ホログラム(jL)を生成する、ことを特徴とする請求項1に記載のホログラフィック撮像装置。 - 前記オフアクシス参照光(R)は、集光点(P1)を有する球面波状の光であり、前記ビーム結合器にその側面から入射され、
前記オフアクシス参照光(R)の集光点(P1)と、前記インライン球面波参照光(L)の集光点(P2)とは光学的に互いに近接している、ことを特徴とする請求項1または請求項2に記載のホログラフィック撮像装置。 - 前記オフアクシス参照光(R)の集光点(P1)と前記インライン球面波参照光(L)の集光点(P2)とは、それぞれ前記ビーム結合器に近接しており、前記ホログラフィック撮像装置が顕微鏡として用いられる、ことを特徴とする請求項3に記載のホログラフィック撮像装置。
- 前記ビーム結合器は、開口数NAを1に近い大きな値にするため、前記物体光(O)が入射する光軸方向における厚さが、前記オフアクシス参照光(R)が入射される側面方向の厚さよりも薄く、前記オフアクシス参照光(R)の集光点(P1)が前記ビーム結合器の内部にある、ことを特徴とする請求項4に記載のホログラフィック撮像装置。
- 前記ビーム結合器は、前記物体を斜め方向から照明する照明光(Q)と前記ビーム結合器とが干渉しないように形成された面取り部を有する、ことを特徴とする請求項4または請求項5に記載のホログラフィック撮像装置。
- 前記物体を照明する照明光(Q)は、前記ビーム結合器における前記オフアクシス参照光(R)が入射される側面に対向する側面から前記ビーム結合器に入射されて、前記ホログラフィック撮像装置が反射型の顕微鏡として用いられる、ことを特徴とする請求項4に記載のホログラフィック撮像装置。
- ホログラフィック撮像方法において、
照明された物体から放射され、キューブ型ビームスプリッタから構成されるビーム結合器を直進してイメージセンサに入射する物体光(O)のデータを、前記ビーム結合器に側面から入射しその内部で反射して前記イメージセンサに入射するオフアクシス参照光(R)を用いて、物体光オフアクシスホログラム(IOR)として取得し、
前記オフアクシス参照光(R)のデータを、前記物体光(O)に対してインラインとなるインライン球面波参照光(L)を用いて、前記イメージセンサによって参照光オフアクシスホログラム(ILR)として取得し、
前記物体光オフアクシスホログラム(IOR )と前記参照光オフアクシスホログラム(ILR)のデータから、前記イメージセンサの受光面であるホログラム面において前記物体光の複素振幅インラインホログラム(JOL)を生成し、
前記インライン球面波参照光(L)の集光点(P2)から放たれる球面波について、前記ビーム結合器の屈折率を考慮して前記ビーム結合器の内部の伝播を含む光伝播計算を行うことにより、前記ホログラム面における光波を表すインライン参照光ホログラム(jL)を生成し、
前記物体光の複素振幅インラインホログラム(JOL)のデータと前記インライン参照光ホログラム(jL)のデータとを用いて前記ホログラム面における前記物体光(O)を表す物体光ホログラム(g)を生成する、ことを特徴とするホログラフィック撮像方法。 - 前記インライン参照光ホログラム(jL)を算出する光伝播計算は、
前記インライン球面波参照光(L)の光波長(λ)に係数(m)を掛け算して波長を長くした変換波長(mλ)の光について平面波展開法を用いる光伝播計算を行って、前記ホログラム面における球面波の位相(φLm)を算出し、
前記変換波長(mλ)の光について算出された前記位相(φLm)に前記係数(m)を掛け算して得られる位相(mφLm)を前記インライン参照光ホログラム(jL)の位相とする、ことを特徴とする請求項8に記載のホログラフィック撮像方法。 - イメージセンサから前記インライン球面波参照光(L)の集光点(P2)までの距離(ρ)が、
前記物体に替えて、透光板にスケールパターンを有して構成されるターゲットを配置し、前記インライン球面波参照光(L)で照射したときの透過光であるターゲット物体光(OT)のデータを、前記オフアクシス参照光(R)を用いてターゲットオフアクシスホログラム(ITR)として取得し、
前記距離(ρ)をパラメータとして、前記インライン参照光ホログラム(jL)を生成し、
前記ターゲットオフアクシスホログラム(ITR)と前記参照光オフアクシスホログラム(ILR)と前記インライン参照光ホログラム(jL)とを用いて、前記ホログラム面における前記ターゲットの物体光を表すターゲット物体光ホログラム(gT)を生成し、
前記ターゲット物体光ホログラム(gT)を光伝播計算によって位置変換して、前記ターゲットの位置における前記ターゲットの画像を再生し、
前記ターゲットの再生画像の寸法が前記ターゲットの寸法と一致するときのパラメータの値として決定され、
前記インライン参照光ホログラム(jL)の算出に用いられる、ことを特徴とする請求項8または請求項9に記載のホログラフィック撮像方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018160899 | 2018-08-29 | ||
JP2018160899 | 2018-08-29 | ||
PCT/JP2019/033982 WO2020045584A1 (ja) | 2018-08-29 | 2019-08-29 | ホログラフィック撮像装置およびホログラフィック撮像方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020045584A1 JPWO2020045584A1 (ja) | 2021-08-12 |
JP7352292B2 true JP7352292B2 (ja) | 2023-09-28 |
Family
ID=69644374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020539595A Active JP7352292B2 (ja) | 2018-08-29 | 2019-08-29 | ホログラフィック撮像装置およびホログラフィック撮像方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210325825A1 (ja) |
EP (1) | EP3845970A4 (ja) |
JP (1) | JP7352292B2 (ja) |
KR (1) | KR102697552B1 (ja) |
CN (1) | CN112823316B (ja) |
WO (1) | WO2020045584A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022137560A1 (ja) | 2020-12-25 | 2022-06-30 | 大塚電子株式会社 | 光学測定システムおよび光学測定方法 |
EP4404004A1 (en) | 2021-09-16 | 2024-07-24 | Otsuka Electronics Co., Ltd. | Optical measurement system and optical measurement method |
CN113885209B (zh) * | 2021-11-04 | 2023-08-29 | 深圳珑璟光电科技有限公司 | 一种全息ar三维显示方法及模组、近眼显示系统 |
KR20240086598A (ko) | 2021-11-08 | 2024-06-18 | 오츠카덴시가부시끼가이샤 | 광학 측정 방법 및 광학 측정 시스템 |
KR20250024355A (ko) * | 2023-08-11 | 2025-02-18 | 주식회사 토모큐브 | 고해상도 반사형 토모그래피 측정 시스템 및 방법 |
CN118999343B (zh) * | 2024-10-21 | 2025-01-14 | 广东省傲来科技有限公司 | 一种全息显微测量方法及装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014054776A1 (ja) | 2012-10-05 | 2014-04-10 | 公立大学法人兵庫県立大学 | ホログラフィック断層顕微鏡、ホログラフィック断層画像生成方法、およびホログラフィック断層画像用のデータ取得方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5149622A (en) * | 1974-10-28 | 1976-04-30 | Nippon Telegraph & Telephone | Karaagazosaiseihoho oyobisono sochi |
US6008914A (en) * | 1994-04-28 | 1999-12-28 | Mitsubishi Denki Kabushiki Kaisha | Laser transfer machining apparatus |
US6747771B2 (en) * | 2002-09-03 | 2004-06-08 | Ut-Battelle, L.L.C. | Off-axis illumination direct-to-digital holography |
US20040130762A1 (en) * | 2002-09-12 | 2004-07-08 | Thomas Clarence E. | Optical acquisition systems for direct-to-digital holography and holovision |
US6809845B1 (en) * | 2002-09-25 | 2004-10-26 | University Of South Florida | Phase imaging using multi-wavelength digital holography |
WO2006090320A1 (en) * | 2005-02-23 | 2006-08-31 | Lyncee Tec S.A. | Wave front sensing method and apparatus |
US8194124B2 (en) | 2007-10-09 | 2012-06-05 | Nanyang Technological University | In-line digital holographic microscope and a method of in-line digital holographic microscopy |
EP2409139A4 (en) * | 2009-03-18 | 2016-10-12 | Univ Utah Res Found | MICROSCOPY WITH NON-COHERENT LIGHT |
US8363316B2 (en) * | 2009-08-21 | 2013-01-29 | Nanyang Technological University | Digital holographic microscopy |
JP2011089820A (ja) | 2009-10-21 | 2011-05-06 | Clarion Co Ltd | ナビゲーション装置及びその表示方法 |
US8416669B2 (en) | 2010-01-22 | 2013-04-09 | Hyogo Prefectural Government | Generation method for complex amplitude in-line hologram and image recording device using said method |
JP5652639B2 (ja) | 2010-06-21 | 2015-01-14 | 日本パルスモーター株式会社 | リニアモータの可動子 |
WO2012005315A1 (ja) | 2010-07-07 | 2012-01-12 | 兵庫県 | ホログラフィック顕微鏡、微小被写体のホログラム画像記録方法、高分解能画像再生用ホログラム作成方法、および画像再生方法 |
JP5988629B2 (ja) | 2012-03-14 | 2016-09-07 | オリンパス株式会社 | 複数の光学ユニットを備えた顕微鏡 |
US9316536B2 (en) * | 2013-06-24 | 2016-04-19 | ASTRODESIGN, Inc. | Spatial frequency reproducing apparatus and optical distance measuring apparatus |
JP6424313B2 (ja) | 2013-10-28 | 2018-11-21 | 公立大学法人兵庫県立大学 | ホログラフィック顕微鏡および高分解能ホログラム画像用のデータ処理方法 |
JP6817642B2 (ja) | 2016-08-24 | 2021-01-20 | 公立大学法人兵庫県立大学 | エリプソメトリ装置およびエリプソメトリ方法 |
WO2018078417A1 (en) * | 2016-10-25 | 2018-05-03 | Lyncee Tec Sa | Fiber splitter device for digital holographic imaging and interferometry and optical system comprising said fiber splitter device |
-
2019
- 2019-08-29 KR KR1020217008744A patent/KR102697552B1/ko active Active
- 2019-08-29 WO PCT/JP2019/033982 patent/WO2020045584A1/ja unknown
- 2019-08-29 CN CN201980064483.2A patent/CN112823316B/zh active Active
- 2019-08-29 EP EP19853383.8A patent/EP3845970A4/en active Pending
- 2019-08-29 US US17/272,392 patent/US20210325825A1/en active Pending
- 2019-08-29 JP JP2020539595A patent/JP7352292B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014054776A1 (ja) | 2012-10-05 | 2014-04-10 | 公立大学法人兵庫県立大学 | ホログラフィック断層顕微鏡、ホログラフィック断層画像生成方法、およびホログラフィック断層画像用のデータ取得方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020045584A1 (ja) | 2021-08-12 |
EP3845970A4 (en) | 2021-10-20 |
US20210325825A1 (en) | 2021-10-21 |
CN112823316A (zh) | 2021-05-18 |
KR20210049873A (ko) | 2021-05-06 |
CN112823316B (zh) | 2022-08-05 |
WO2020045584A1 (ja) | 2020-03-05 |
EP3845970A1 (en) | 2021-07-07 |
KR102697552B1 (ko) | 2024-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7352292B2 (ja) | ホログラフィック撮像装置およびホログラフィック撮像方法 | |
US11644791B2 (en) | Holographic imaging device and data processing method therefor | |
US10209673B2 (en) | Holographic microscope, microscopic subject hologram image recording method, method of creation of hologram for reproduction of high-resolution image, and method for reproduction of image | |
JP4772961B2 (ja) | ディジタル・ホログラムを数値的に再構成することにより、振幅コントラスト画像と定量的位相コントラスト画像を同時に形成する方法 | |
JP6424313B2 (ja) | ホログラフィック顕微鏡および高分解能ホログラム画像用のデータ処理方法 | |
JP6817642B2 (ja) | エリプソメトリ装置およびエリプソメトリ方法 | |
TWI797377B (zh) | 表面形狀量測裝置以及表面形狀量測方法 | |
CN111561864B (zh) | 一种基于偏振光栅的点衍射数字全息显微装置及方法 | |
EP2788820B1 (en) | Apparatus for producing a hologram | |
JP2004500601A (ja) | ダイレクト対デジタル式ホログラフィ及びホロビジョンの捕捉及び再生システムに対する改良 | |
CN104457611A (zh) | 双波长剪切干涉数字全息显微测量装置及其方法 | |
JP2012145361A (ja) | デジタルホログラフィ装置 | |
Lobera et al. | Contrast enhancing techniques in digital holographic microscopy | |
TW202232475A (zh) | 光學測定系統及光學測定方法 | |
JP2022162306A (ja) | 表面形状計測装置および表面形状計測方法 | |
CN102288203B (zh) | 基于剪切原理消除载频的方法 | |
JP6762063B2 (ja) | 光学測定装置及び光学測定方法 | |
KR100715021B1 (ko) | 디지털 홀로그램 기록 장치, 기록 방법 및 재생 방법 | |
Shang | Spectral domain interferometry: A high-sensitivity, high-speed approach to quantitative phase imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210222 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230613 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230809 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230908 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7352292 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |