[go: up one dir, main page]

JP7340419B2 - Electrocatalyst materials for fuel cells - Google Patents

Electrocatalyst materials for fuel cells Download PDF

Info

Publication number
JP7340419B2
JP7340419B2 JP2019201189A JP2019201189A JP7340419B2 JP 7340419 B2 JP7340419 B2 JP 7340419B2 JP 2019201189 A JP2019201189 A JP 2019201189A JP 2019201189 A JP2019201189 A JP 2019201189A JP 7340419 B2 JP7340419 B2 JP 7340419B2
Authority
JP
Japan
Prior art keywords
catalyst material
electrode catalyst
electrode
metal oxide
nanocrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019201189A
Other languages
Japanese (ja)
Other versions
JP2021077470A (en
Inventor
秀和 都築
悟志 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2019201189A priority Critical patent/JP7340419B2/en
Publication of JP2021077470A publication Critical patent/JP2021077470A/en
Application granted granted Critical
Publication of JP7340419B2 publication Critical patent/JP7340419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、電極触媒材料に関し、特に、燃料電池の空気極触媒材料として高い触媒活性を有する電極触媒材料に関するものである。 The present invention relates to an electrode catalyst material, and particularly to an electrode catalyst material having high catalytic activity as an air electrode catalyst material for a fuel cell.

近年、省エネルギー化の観点から、発電装置や電池性能の改善要求がさらに高まっている。また、発電装置や電池に搭載する電極について、環境負荷や生産コストの低減の観点から、従来の性能を維持、向上しつつ、新たな材料を開発することが要求されている。また、排ガスや温室効果ガスの削減の観点から、燃料電池等の発電装置を用いて自動車等の輸送機器を駆動させることも提案されている。 In recent years, from the perspective of energy conservation, there has been an increasing demand for improvements in power generation equipment and battery performance. Furthermore, from the perspective of reducing environmental impact and production costs, there is a need to develop new materials for electrodes installed in power generation devices and batteries while maintaining and improving conventional performance. Furthermore, from the viewpoint of reducing exhaust gas and greenhouse gases, it has been proposed to use power generation devices such as fuel cells to drive transportation equipment such as automobiles.

燃料電池に用いられる空気極触媒材料として、従来、炭素粒子表面に白金(Pt)の微粒子を担持させた触媒材料が使用されている。白金は酸素還元反応(以下、「ORR」ということがある。)の触媒として優れ、炭素粒子は導電性に優れていることから、炭素粒子表面に白金微粒子を担持させた触媒材料が、燃料電池の空気極触媒材料として、一般的に使用されている。しかし、白金は、埋蔵量の少ない希少金属であり、高価でもあることから、炭素粒子表面に白金微粒子を担持させた触媒材料に代わる、新たな触媒材料が必要である。 Conventionally, as an air electrode catalyst material used in a fuel cell, a catalyst material in which fine particles of platinum (Pt) are supported on the surface of carbon particles has been used. Platinum is excellent as a catalyst for oxygen reduction reactions (hereinafter sometimes referred to as "ORR"), and carbon particles have excellent conductivity. It is commonly used as an air electrode catalyst material. However, since platinum is a rare metal with little reserves and is also expensive, a new catalyst material is needed to replace the catalyst material in which fine platinum particles are supported on the surface of carbon particles.

燃料電池の電極にも使用可能な新たな電極として、電極基材の表面に、多孔質酸化物及びカーボンナノチューブを含む表面層を有するカーボンナノチューブ複合電極であって、前記カーボンナノチューブが、前記多孔質酸化物から生成してなり、かつ、該カーボンナノチューブのうち、少なくとも一部のカーボンナノチューブが、電極基材と電気的に接続してなるカーボンナノチューブ複合電極が提案されている(特許文献1)。 As a new electrode that can also be used as an electrode for fuel cells, there is provided a carbon nanotube composite electrode having a surface layer containing a porous oxide and carbon nanotubes on the surface of an electrode base material, wherein the carbon nanotubes are A carbon nanotube composite electrode has been proposed that is formed from an oxide and in which at least some of the carbon nanotubes are electrically connected to an electrode base material (Patent Document 1).

特許文献1では、多孔質酸化物から生成したカーボンナノチューブが電極基材に強固に固定されることで、電極基材と電子授受をおこなうカーボンナノチューブが電極基材から脱落することを防止できる電極である。また、特許文献1では、電極基材に固定されたカーボンナノチューブの壁面に、白金微粒子等、電極に搭載する触媒として汎用されている金属微粒子を担持させることが提案されている。 Patent Document 1 discloses an electrode in which carbon nanotubes generated from a porous oxide are firmly fixed to an electrode base material, thereby preventing the carbon nanotubes that exchange electrons with the electrode base material from falling off from the electrode base material. be. Further, Patent Document 1 proposes that metal fine particles, such as platinum fine particles, which are commonly used as a catalyst to be mounted on an electrode, be supported on the wall surface of a carbon nanotube fixed to an electrode base material.

このように、特許文献1では、カーボンナノチューブに担持される金属触媒微粒子として、従来と同じく、白金微粒子等の金属微粒子が使用されており、白金微粒子を担持させた触媒材料に代わる、新たな触媒材料は提案されていない。 In this way, in Patent Document 1, metal fine particles such as platinum fine particles are used as the metal catalyst fine particles supported on carbon nanotubes, as in the past, and a new catalyst material is used to replace the catalyst material on which platinum fine particles are supported. No materials have been proposed.

国際公開第2012/157506号International Publication No. 2012/157506

本発明は、上記実情に鑑みてなされたものであり、炭素粒子表面に白金微粒子を担持させた電極触媒材料と同等程度の酸素還元反応活性と触媒活性を有しつつ、触媒成分として白金を用いない燃料電池用の電極触媒材料を提供することを目的とする。 The present invention was made in view of the above circumstances, and uses platinum as a catalyst component while having oxygen reduction reaction activity and catalytic activity equivalent to that of an electrode catalyst material in which fine platinum particles are supported on the surface of carbon particles. The purpose of the present invention is to provide an electrocatalyst material for fuel cells that does not require the use of an electrocatalyst material.

本発明者らは、上記問題に対して鋭意検討を行った結果、触媒活性を有する金属酸化物
が、特定の結晶面が表出している主表面および端面をもつ薄片状であるナノ結晶片が相互に連結され、複数の前記ナノ結晶片が、前記主表面間に、前記連結集合体の外側に開口して配置された間隙を有する連結集合体であり、導電材料が、ナノ結晶片の主表面に沿って、複数の導電性線状物質が相互に接触して面方向に分布した面状部位を有し、該面状部位の面方向の導電性が該面方向に対して直交方向の導電性よりも大きい導電性構造体であり、前記ナノ結晶片の主表面と前記面状部位とが、電気的に接触していることで、触媒成分として白金を用いなくても、同等程度の酸素還元反応活性と触媒活性を得ることを見出した。
The present inventors have conducted intensive studies on the above-mentioned problem, and have found that nanocrystalline pieces of a metal oxide having catalytic activity are flaky with a main surface and end faces in which specific crystal planes are exposed. The plurality of nanocrystal pieces are connected to each other, and the plurality of nanocrystal pieces are connected to each other, and the plurality of nanocrystal pieces are connected to each other, and the plurality of nanocrystal pieces are connected to each other, and the conductive material is connected to the main surfaces of the nanocrystal pieces. Along the surface, there are planar parts where a plurality of conductive linear substances are in contact with each other and distributed in the planar direction, and the planar conductivity of the planar parts is in the direction perpendicular to the planar direction. It is a conductive structure with greater conductivity, and the main surface of the nanocrystal piece and the planar portion are in electrical contact, so that the same level of conductivity can be achieved even without using platinum as a catalyst component. It was found that oxygen reduction reaction activity and catalytic activity were obtained.

すなわち、本発明の要旨構成は、以下のとおりである。
[1]金属酸化物と、導電性構造体と、を有する燃料電池用の電極触媒材料であって、前記金属酸化物が、特定の結晶面が表出している主表面および端面をもつ薄片状であるナノ結晶片が相互に連結された連結集合体であり、
複数の前記ナノ結晶片が、前記主表面間に、前記連結集合体の外側に開口して配置された間隙を有し、
前記導電性構造体が、前記ナノ結晶片の主表面に沿って、複数の導電性線状物質が相互に接触して面方向に分布した面状部位を有し、該面状部位の面方向の導電性が該面方向に対して直交方向の導電性よりも大きく、
前記ナノ結晶片と前記面状部位とが、接触している電極触媒材料。
[2]前記ナノ結晶片の平均厚さが、10nm未満である[1]に記載の電極触媒材料。
[3]前記金属酸化物が、酸化銅である[1]または[2]に記載の電極触媒材料。
[4]前記特定の結晶面が、(001)結晶面である[3]に記載の電極触媒材料。
[5]前記面状部位の前記面方向に対して直交方向の平均寸法が、10nm未満である[1]乃至[4]のいずれか1つに記載の電極触媒材料。
[6]前記導電性構造体が、複数の前記導電性線状物質のうち、少なくとも1つの前記導電性線状物質が前記ナノ結晶片と電気的に接触した金属酸化物接触部と、少なくとも1つの前記導電性線状物質が電極基材と電気的に接触した電極基材接触部と、を有する[1]乃至[5]のいずれか1つに記載の電極触媒材料。
[7]前記導電性構造体が、さらに、ガス透過性を有するガス拡散部を有する[1]乃至[6]のいずれか1つに記載の電極触媒材料。
[8]前記導電性線状物質が、カーボンナノチューブである[1]乃至[7]のいずれか1つに記載の電極触媒材料。
[9]電極上に形成した前記電極触媒材料の電気伝導度が、該電極上に前記導電性構造体により形成した層の電気伝導度に対して5.0%以上である[1]乃至[8]のいずれか1つに記載の電極触媒材料。
That is, the gist of the present invention is as follows.
[1] An electrode catalyst material for a fuel cell comprising a metal oxide and a conductive structure, wherein the metal oxide has a flaky shape having a main surface and end surfaces in which specific crystal planes are exposed. It is a connected aggregate in which nanocrystal pieces are interconnected,
A plurality of the nanocrystal pieces have a gap arranged between the main surfaces and open to the outside of the connected aggregate,
The conductive structure has a planar portion along the main surface of the nanocrystal piece, in which a plurality of conductive linear substances are in contact with each other and distributed in the planar direction, and the conductivity is greater than the conductivity in the direction perpendicular to the surface direction,
An electrode catalyst material in which the nanocrystal piece and the planar portion are in contact with each other.
[2] The electrode catalyst material according to [1], wherein the nanocrystalline pieces have an average thickness of less than 10 nm.
[3] The electrode catalyst material according to [1] or [2], wherein the metal oxide is copper oxide.
[4] The electrode catalyst material according to [3], wherein the specific crystal plane is a (001) crystal plane.
[5] The electrode catalyst material according to any one of [1] to [4], wherein the average dimension of the planar portion in a direction orthogonal to the surface direction is less than 10 nm.
[6] The conductive structure includes a metal oxide contact portion in which at least one conductive linear substance among the plurality of conductive linear substances electrically contacts the nanocrystal piece; The electrode catalyst material according to any one of [1] to [5], further comprising: an electrode base material contact portion in which the two conductive linear substances are electrically contacted with the electrode base material.
[7] The electrode catalyst material according to any one of [1] to [6], wherein the conductive structure further includes a gas diffusion section having gas permeability.
[8] The electrode catalyst material according to any one of [1] to [7], wherein the conductive linear substance is a carbon nanotube.
[9] The electrical conductivity of the electrocatalyst material formed on the electrode is 5.0% or more of the electrical conductivity of the layer formed of the conductive structure on the electrode [1] to [ 8].

本発明の態様によれば、触媒活性を有する金属酸化物の、特定の結晶面が表出している主表面をもつ薄片状のナノ結晶片の少なくとも一部が、導電性構造体の、ナノ結晶片(例えば、ナノ結晶片の主表面)に沿って形成された面方向の導電性に優れる面状部位と、接触していることにより、炭素粒子表面に白金微粒子を担持させた電極触媒材料と同等程度の酸素還元反応活性と触媒活性を有する燃料電池用の電極触媒材料とすることができる。 According to an aspect of the present invention, at least a portion of the flaky nanocrystal piece having a main surface in which a specific crystal plane of a metal oxide having catalytic activity is exposed is a nanocrystal of a conductive structure. The electrocatalyst material, in which platinum fine particles are supported on the surface of carbon particles, is in contact with a planar region with excellent conductivity in the plane direction formed along the main surface of a nanocrystalline piece. An electrode catalyst material for fuel cells having comparable oxygen reduction reaction activity and catalytic activity can be obtained.

本発明の態様によれば、金属酸化物が酸化銅であり、特定の結晶面が、(001)結晶面であることにより、炭素粒子表面に白金微粒子を担持させた電極触媒材料と同等程度の酸素還元反応活性と触媒活性を、確実に得ることができる。 According to an aspect of the present invention, the metal oxide is copper oxide, and the specific crystal plane is the (001) crystal plane, so that the metal oxide has the same level of performance as an electrode catalyst material in which platinum fine particles are supported on the carbon particle surface. Oxygen reduction reaction activity and catalytic activity can be reliably obtained.

本発明の態様によれば、導電性構造体が金属酸化物接触部と電極基材接触部とを有することにより、金属酸化物と電極基材間の電子授受が円滑化される。 According to the aspect of the present invention, since the conductive structure has the metal oxide contact portion and the electrode base material contact portion, electron transfer between the metal oxide and the electrode base material is facilitated.

本発明の電極触媒材料の実施態様を説明する概略図である。1 is a schematic diagram illustrating an embodiment of an electrode catalyst material of the present invention. 触媒活性の測定における電位と電流密度の関係を示すグラフである。It is a graph showing the relationship between potential and current density in measuring catalytic activity. 実施例3における電極触媒材料のSEM画像である。3 is a SEM image of the electrode catalyst material in Example 3.

以下、図面を用いながら、本発明の実施形態である電極触媒材料について説明する。図1は、本発明の電極触媒材料の実施態様を説明する概略図である。 EMBODIMENT OF THE INVENTION Hereinafter, the electrode catalyst material which is an embodiment of this invention is demonstrated using drawings. FIG. 1 is a schematic diagram illustrating an embodiment of the electrode catalyst material of the present invention.

<電極触媒材料>
図1に示すように、本発明の実施形態の電極触媒材料1は、触媒活性を有する金属酸化物と、金属酸化物に担持された導電性構造体31と、を有する。金属酸化物は、特定の結晶面が表出している主表面22および端面23をもつ薄片状である複数のナノ結晶片21が相互に連結された連結集合体20である。連結集合体20は、特定の結晶面が表出している主表面22をもつ薄片状のナノ結晶片21から構成されていることで、優れた触媒活性を発揮する。また、連結集合体20は、複数のナノ結晶片21が主表面22間に、連結集合体20の外側に開口して配置された間隙Gを有している。
<Electrode catalyst material>
As shown in FIG. 1, an electrode catalyst material 1 according to an embodiment of the present invention includes a metal oxide having catalytic activity and a conductive structure 31 supported on the metal oxide. The metal oxide is a connected aggregate 20 in which a plurality of thin nanocrystal pieces 21 are interconnected, each having a main surface 22 and an end surface 23 in which specific crystal planes are exposed. The connected aggregate 20 exhibits excellent catalytic activity because it is composed of flaky nanocrystal pieces 21 having a main surface 22 in which specific crystal planes are exposed. Further, the connected aggregate 20 has a gap G in which a plurality of nanocrystal pieces 21 are arranged between the main surfaces 22 and open to the outside of the connected aggregate 20 .

薄片状であるナノ結晶片21が集合した連結集合体20には、導電性構造体31が担持されている。導電性構造体31は、ナノ結晶片21の主表面22に沿って、複数の導電性線状物質30が相互に接触して面方向に分布することで面状部位32が形成されている。面状部位32の面方向の導電性は、面方向に対して直交方向の導電性よりも大きい特性を有している。また、ナノ結晶片21の主表面22と面状部位32とは、電気的に接触している。導電性構造体31の面状部位32は、面方向の導電性が面方向に対して直交方向の導電性よりも大きい特性を有していることから、連結集合体20と導電性構造体31間の電子授受が円滑化される。 A conductive structure 31 is supported on a connected aggregate 20 in which flaky nanocrystal pieces 21 are assembled. In the conductive structure 31, a planar portion 32 is formed by a plurality of conductive linear substances 30 being in contact with each other and distributed in the plane direction along the main surface 22 of the nanocrystal piece 21. The conductivity of the planar portion 32 in the planar direction is greater than the conductivity in the direction orthogonal to the planar direction. Further, the main surface 22 of the nanocrystal piece 21 and the planar portion 32 are in electrical contact. Since the planar portion 32 of the conductive structure 31 has a property that the conductivity in the planar direction is greater than the conductivity in the direction orthogonal to the planar direction, the connected assembly 20 and the conductive structure 31 Electronic transfers between the parties will be facilitated.

<金属酸化物>
図1に示すように、金属酸化物は、主表面22と端面23をもつ複数のナノ結晶片21が相互に連結された連結集合体20であり、花のような形状を示す。複数のナノ結晶片21の連結状態は、特に限定されず、複数のナノ結晶片21が連結して集合体を形成していればよい。
<Metal oxide>
As shown in FIG. 1, the metal oxide is a connected aggregate 20 in which a plurality of nanocrystal pieces 21 having a main surface 22 and an end surface 23 are interconnected, and has a flower-like shape. The connection state of the plurality of nanocrystal pieces 21 is not particularly limited, and it is sufficient that the plurality of nanocrystal pieces 21 are connected to form an aggregate.

また、ナノ結晶片21の形状は、主表面22の大きさに対し、端面23の厚さが薄い、薄片状である。連結集合体20の外面において、隣接する複数のナノ結晶片21の主表面22の間には間隙Gが形成されており、この間隙Gは、連結集合体20の外側に開口して配置されている。 Further, the shape of the nanocrystal piece 21 is a thin flake with the thickness of the end face 23 being thinner than the size of the main surface 22. On the outer surface of the connected aggregate 20, a gap G is formed between the main surfaces 22 of the plurality of adjacent nanocrystal pieces 21, and this gap G is opened to the outside of the connected aggregate 20. There is.

ここで、ナノ結晶片21の主表面22とは、薄片状のナノ結晶片21を構成する外面のうち、表面積が広い面のことであって、表面積が狭い端面23の上下端縁を区画形成する両表面を意味する。触媒反応に使用される電極触媒材料1では、主表面22に特定の結晶面が表出している。特定の結晶面が表出している主表面22が、高い触媒活性を示す触媒活性面となる。そのため、主表面22の表面積が大きいほど、触媒反応をより効率的に行うことができる。 Here, the main surface 22 of the nanocrystal piece 21 is a surface with a large surface area among the outer surfaces constituting the flaky nanocrystal piece 21, and defines the upper and lower edges of the end face 23 with a narrow surface area. means both surfaces. In the electrode catalyst material 1 used for catalytic reactions, specific crystal planes are exposed on the main surface 22. The main surface 22 on which a specific crystal plane is exposed becomes a catalytically active surface exhibiting high catalytic activity. Therefore, the larger the surface area of the main surface 22, the more efficiently the catalytic reaction can be performed.

ナノ結晶片21の主表面22の最小寸法は、特に限定はされないが、10nm以上1.0μm未満であることが好ましく、ナノ結晶片21の平均厚さtは、特に限定はされないが、主表面22の最小寸法の1/10以下であることが好ましい。これにより、ナノ結晶片21の主表面22の面積が端面23の面積に比べて約10倍以上広くなり、連結集合体20の単位量当たりの触媒活性が、ナノ粒子の単位量当たりの触媒活性と比べて向上する
。例えば、ナノ結晶片の平均厚さは10nm未満であることが好ましい。主表面22の最小寸法が1.0μm以上であると、ナノ結晶片21を高密度で連結させることが困難となる傾向があり、最小寸法が10nm未満であると、隣接する複数のナノ結晶片21の主表面22の間で十分な間隙Gを形成することができなくなる傾向がある。また、ナノ結晶片21の厚さ方向の剛性の低下を抑制するため、ナノ結晶片21の平均厚さtは1.0nm以上であることが好ましい。なお、ナノ結晶片21の主表面22の寸法は、ナノ結晶片21の形状を損なわないように連結集合体20から分離したナノ結晶片21を、個別のナノ結晶片として測定することにより求めることができる。測定法の具体例としては、ナノ結晶片21の主表面22に対し、外接する最小面積の長方形を描き、長方形の短辺および長辺を、ナノ結晶片21の最小寸法および最大寸法として、それぞれ測定する。
The minimum dimension of the main surface 22 of the nanocrystal piece 21 is not particularly limited, but is preferably 10 nm or more and less than 1.0 μm, and the average thickness t of the nanocrystal piece 21 is not particularly limited, but is It is preferably 1/10 or less of the minimum dimension of No. 22. As a result, the area of the main surface 22 of the nanocrystal piece 21 becomes about 10 times larger than the area of the end face 23, and the catalytic activity per unit amount of the connected aggregate 20 is increased by the catalytic activity per unit amount of the nanoparticles. improved compared to For example, the average thickness of the nanocrystalline pieces is preferably less than 10 nm. If the minimum dimension of the main surface 22 is 1.0 μm or more, it tends to be difficult to connect the nanocrystal pieces 21 with high density, and if the minimum dimension is less than 10 nm, the adjacent nanocrystal pieces There is a tendency that it becomes impossible to form a sufficient gap G between the main surfaces 22 of 21. Furthermore, in order to suppress a decrease in the rigidity of the nanocrystalline pieces 21 in the thickness direction, the average thickness t of the nanocrystalline pieces 21 is preferably 1.0 nm or more. Note that the dimensions of the main surface 22 of the nanocrystal piece 21 can be determined by measuring the nanocrystal piece 21 separated from the connected aggregate 20 as an individual nanocrystal piece so as not to damage the shape of the nanocrystal piece 21. I can do it. As a specific example of the measurement method, a rectangle with the minimum area circumscribing the main surface 22 of the nanocrystal piece 21 is drawn, and the short and long sides of the rectangle are taken as the minimum and maximum dimensions of the nanocrystal piece 21, respectively. Measure.

連結集合体20を構成するナノ結晶片21は、金属酸化物で構成されている。金属酸化物としては、例えば、貴金属の酸化物、遷移金属の酸化物、それらの合金の酸化物、複合酸化物等が挙げられる。貴金属及びその合金としては、例えば、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、銀(Ag)及び金(Au)の群から選択される1種の成分からなる金属、又はこれらの群から選択される1種以上の成分を含む合金が挙げられる。また、遷移金属及びその合金としては、例えば、銅(Cu)、ニッケル(Ni)、コバルト(Co)及び亜鉛(Zn)の群から選択される1種の成分からなる金属またはこれらの群から選択される1種以上の成分を含む合金が挙げられる。 The nanocrystal pieces 21 constituting the connected aggregate 20 are made of metal oxide. Examples of metal oxides include oxides of noble metals, oxides of transition metals, oxides of alloys thereof, and composite oxides. Examples of noble metals and alloys thereof include metals consisting of one component selected from the group of palladium (Pd), rhodium (Rh), ruthenium (Ru), silver (Ag), and gold (Au), or Mention may be made of alloys containing one or more components selected from the group. Furthermore, the transition metal and its alloy include, for example, a metal consisting of one component selected from the group of copper (Cu), nickel (Ni), cobalt (Co), and zinc (Zn), or a metal selected from these groups. Examples include alloys containing one or more components.

これらの金属酸化物のうち、遷移金属の群から選択される1種または2種以上の金属を含む金属酸化物が好ましい。遷移金属の金属酸化物は、金属資源として地球上に豊富に存在しており、貴金属に比べて安価であることから、生産コストを低減することができる。遷移金属のうち、Cu、Ni、CoおよびZnの群から選択される1種または2種以上の金属を含む金属酸化物であることがより好ましく、このような金属酸化物は少なくとも銅を含むことがさらに好ましい。また、銅を含む金属酸化物としては、例えば、酸化銅、Ni-Cu酸化物、Cu-Pd酸化物等が挙げられ、酸化銅(CuO)が特に好ましい。 Among these metal oxides, metal oxides containing one or more metals selected from the group of transition metals are preferred. Metal oxides of transition metals are abundant on the earth as metal resources and are cheaper than precious metals, so production costs can be reduced. Among transition metals, it is more preferable to be a metal oxide containing one or more metals selected from the group of Cu, Ni, Co and Zn, and such a metal oxide should contain at least copper. is even more preferable. Further, examples of metal oxides containing copper include copper oxide, Ni--Cu oxide, Cu--Pd oxide, etc., and copper oxide (CuO) is particularly preferred.

<主表面の結晶方位>
本発明の電極触媒材料1が燃料電池用の電極に搭載される場合、ナノ結晶片21の主表面22が触媒活性面となるために、ナノ結晶片21の主表面22が特定の結晶方位を有するように構成される。
<Crystal orientation of main surface>
When the electrode catalyst material 1 of the present invention is mounted on an electrode for a fuel cell, the main surface 22 of the nanocrystal piece 21 becomes a catalytically active surface. configured to have.

ナノ結晶片21の主表面22が還元性の触媒活性面となるように構成するには、ナノ結晶片21を構成する金属酸化物において、触媒活性を発揮する金属原子の面を、主表面22に位置するように配向させて、主表面22を金属原子面で構成すればよく、具体的には、主表面22に存在する金属酸化物を構成する、金属原子及び酸素原子に占める金属原子の個数割合を80%以上とすることが好ましい。 In order to configure the main surface 22 of the nanocrystal piece 21 to be a reducing catalytically active surface, in the metal oxide constituting the nanocrystal piece 21, the surface of metal atoms that exhibit catalytic activity is set to the main surface 22. The main surface 22 may be composed of a metal atomic plane by oriented so that the main surface 22 is located at It is preferable that the number ratio is 80% or more.

一方、ナノ結晶片21の主表面22が酸化性の触媒活性面となるように構成するには、ナノ結晶片21を構成する金属酸化物において、触媒活性を発揮する酸素原子の面を、主表面22に位置するように配向させて、主表面22を酸素原子面で構成すればよく、具体的には、主表面22に存在する金属酸化物を構成する、金属原子及び酸素原子に占める酸素原子の個数割合を80%以上とすることが好ましい。 On the other hand, in order to configure the main surface 22 of the nanocrystal piece 21 to be an oxidizing catalytically active surface, in the metal oxide constituting the nanocrystal piece 21, the surface of oxygen atoms that exhibits catalytic activity is The main surface 22 may be composed of an oxygen atomic plane by oriented so as to be located on the surface 22. Specifically, the oxygen atoms occupying in the metal atoms and oxygen atoms constituting the metal oxide present on the main surface 22 may be It is preferable that the number ratio of atoms is 80% or more.

触媒活性面の役割に応じて、ナノ結晶片21の主表面22に存在する金属酸化物を構成する、金属原子及び酸素原子に占める金属原子もしくは酸素原子の個数割合を調整することにより、主表面22の触媒活性機能を高めることができ、ナノ結晶片21、ひいては、電極触媒材料1として、十分な触媒活性を発揮できる。 Depending on the role of the catalytic active surface, by adjusting the number ratio of metal atoms or oxygen atoms to the metal atoms and oxygen atoms that constitute the metal oxide present on the main surface 22 of the nanocrystal piece 21, the main surface The catalytic activity function of 22 can be enhanced, and sufficient catalytic activity can be exhibited as nanocrystalline pieces 21 and, ultimately, as electrode catalyst material 1.

また、ナノ結晶片21の主表面22が特定の結晶方位を有するとしたのは、ナノ結晶片21を構成する金属酸化物の種類に応じて、主表面22に多く存在する結晶方位が異なるためである。そのため、主表面22の結晶方位は具体的には記載はしないが、例えば、金属酸化物が酸化銅(CuO)の場合には、主表面22を構成する単結晶の主な結晶方位、すなわち、触媒活性面は、(001)結晶面であることが好ましい。 Furthermore, the main surface 22 of the nanocrystalline piece 21 is assumed to have a specific crystal orientation because the crystal orientation that is present in large numbers on the main surface 22 differs depending on the type of metal oxide constituting the nanocrystalline piece 21. It is. Therefore, although the crystal orientation of the main surface 22 is not specifically described, for example, when the metal oxide is copper oxide (CuO), the main crystal orientation of the single crystal constituting the main surface 22, that is, The catalytically active plane is preferably a (001) crystal plane.

また、主表面22を金属原子面とする構成としては、金属酸化物の結晶構造を、金属原子面と酸素原子面が規則的に交互に積層され、原子の並び方に規則性を有する規則構造として、主表面22に金属原子面が位置するように構成することが好ましい。具体的には、主表面22が、同じ配向をもつ単結晶の集合体で構成された構造の場合だけではなく、異なる結晶構造や異なる配向をもつ単結晶の集合体や、結晶粒界や多結晶を含んだ集合体で構成された構造であっても、主表面22に金属原子面が存在する場合が含まれる。 In addition, as for the structure in which the main surface 22 is a metal atomic plane, the crystal structure of the metal oxide is changed to a regular structure in which metal atomic planes and oxygen atomic planes are stacked regularly and alternately, and the arrangement of atoms is regular. , it is preferable to configure so that the metal atomic plane is located on the main surface 22. Specifically, this applies not only when the main surface 22 has a structure composed of an aggregate of single crystals with the same orientation, but also when the main surface 22 has a structure composed of an aggregate of single crystals with different crystal structures or different orientations, or when the main surface 22 has a structure composed of an aggregate of single crystals with different crystal structures or different orientations, Even if the structure is composed of an aggregate containing crystals, there may be a case where a metal atomic plane exists on the main surface 22.

導電性構造体31を構成する導電性線状物質30としては、例えば、カーボンナノチューブ(以下、「CNT」ということがある。)を挙げることができる。CNTは、単層構造又は複層構造を有する筒状体であり、それぞれ、SWNT(single-walled nanotube)、MWNT(multi-walled nanotube)と呼ばれる。CNTの外径は、数nm以下、長手
方向の長さは、例えば、500nm~20μmである。2層構造を有するCNTでは、六角形格子の網目構造を有する2つの筒状体が略同軸で配された3次元網目構造体となっており、DWNT(double-walled nanotube)と呼ばれる。構成単位である六角形格子は、その頂点に炭素原子が配された六員環であり、他の六員環と隣接してこれらが連続的に結合している。CNTの性質は、上記筒状体のカイラリティ(chirality)と関連する。カ
イラリティは、アームチェア型、ジグザグ型、及びカイラル型に大別され、アームチェア型は金属性、ジグザグ型は半導体性および半金属性、カイラル型は半導体性および半金属性の挙動を示す。従って、CNTの導電性は、筒状体がいずれのカイラリティを有するかによって相違する。電極触媒材料1では、導電性線状物質30の導電性をさらに向上させる点から、金属性の挙動を示すアームチェア型のCNTの割合を増大させることが好ましい。
An example of the conductive linear substance 30 constituting the conductive structure 31 is a carbon nanotube (hereinafter sometimes referred to as "CNT"). CNTs are cylindrical bodies having a single-walled structure or a multi-walled structure, and are called SWNTs (single-walled nanotubes) and MWNTs (multi-walled nanotubes), respectively. The outer diameter of the CNT is several nm or less, and the length in the longitudinal direction is, for example, 500 nm to 20 μm. A CNT having a two-layer structure has a three-dimensional network structure in which two cylindrical bodies having a hexagonal lattice network structure are arranged substantially coaxially, and is called a DWNT (double-walled nanotube). The hexagonal lattice, which is a constituent unit, is a six-membered ring with a carbon atom at its apex, and these six-membered rings are adjacent to and continuously bonded to other six-membered rings. The properties of CNT are related to the chirality of the cylindrical body. Chirality is broadly classified into armchair type, zigzag type, and chiral type, with armchair type exhibiting metallic behavior, zigzag type exhibiting semiconducting and semimetallic behavior, and chiral type exhibiting semiconducting and semimetallic behavior. Therefore, the conductivity of CNTs differs depending on which chirality the cylindrical body has. In the electrode catalyst material 1, in order to further improve the conductivity of the conductive linear substance 30, it is preferable to increase the proportion of armchair-type CNTs exhibiting metallic behavior.

一方で、半導体性の挙動を示すカイラル型のCNTに電子供与性もしくは電子受容性を持つ物質(異種元素)をドープすることにより、カイラル型のCNTが金属性の挙動を示す。また、一般的な金属では、異種元素をドープすることによって金属内部での伝導電子の散乱が起こって導電性が低下するが、これと同様に、金属性の挙動を示すCNTに異種元素をドープした場合には、導電性の低下を引き起こす。このように、金属性の挙動を示すCNT及び半導体性の挙動を示すCNTへのドーピング効果は、導電性の観点からはトレードオフの関係にあることから、理論的には金属性の挙動を示すCNTと半導体性の挙動を示すCNTとを別個に作製し、半導体性の挙動を示すCNTにのみドーピング処理を施した後、これらを組み合わせることが望ましい。金属性の挙動を示すCNTと半導体性の挙動を示すCNTが混在した状態で作製される場合には、異種元素又は分子によるドーピング処理が効果的となるCNTの層構造を選択することが好ましい。これにより、金属性の挙動を示すCNTと半導体性の挙動を示すCNTの混合物からなる導電性構造体31の導電性をさらに向上させることができる。 On the other hand, by doping chiral CNTs exhibiting semiconducting behavior with a substance (different element) having electron-donating or electron-accepting properties, the chiral CNTs exhibit metallic behavior. In addition, in general metals, doping with a different element causes scattering of conduction electrons within the metal, resulting in a decrease in conductivity. Similarly, CNTs that exhibit metallic behavior are doped with a different element. If it does, it will cause a decrease in conductivity. In this way, the doping effects on CNTs that exhibit metallic behavior and CNTs that exhibit semiconducting behavior are in a trade-off relationship from the viewpoint of conductivity, so theoretically CNTs exhibit metallic behavior. It is desirable to separately produce CNTs and CNTs exhibiting semiconducting behavior, perform doping treatment only on the CNTs exhibiting semiconducting behavior, and then combine them. When CNTs exhibiting metallic behavior and CNTs exhibiting semiconducting behavior are produced in a mixed state, it is preferable to select a CNT layer structure in which doping treatment with different elements or molecules is effective. Thereby, the conductivity of the conductive structure 31 made of a mixture of CNTs exhibiting metallic behavior and CNTs exhibiting semiconducting behavior can be further improved.

例えば、2層構造又は3層構造のような層数が少ないCNTは、それより層数の多いCNTよりも比較的導電性が高く、ドーピング処理を施した際には、2層構造又は3層構造を有するCNTでのドーピング効果が最も高い。従って、導電性構造体31の導電性をさらに向上させる点から、2層構造又は3層構造を有するCNTの割合を増大させることが好ましい。具体的には、CNT全体に対する2層構造又は3層構造をもつCNTの割合は50個数%以上が好ましく、75個数%以上が特に好ましい。 For example, CNTs with a small number of layers, such as a two-layer structure or a three-layer structure, have relatively higher conductivity than CNTs with a larger number of layers. The doping effect is highest in structured CNTs. Therefore, in order to further improve the conductivity of the conductive structure 31, it is preferable to increase the proportion of CNTs having a two-layer structure or a three-layer structure. Specifically, the ratio of CNTs having a two-layer structure or a three-layer structure to the total CNTs is preferably 50% by number or more, and particularly preferably 75% by number or more.

CNTは、上記構造から、径方向の導電性と比較して長手方向の導電性に優れている特性を有している、すなわち、CNTは、導電性に異方性を有している。このことから、導電性構造体31の面状部位32の面方向の導電性は、面方向に対して直交方向(厚さ方向)の導電性よりも大きい特性を有している。 Due to the above-mentioned structure, CNTs have a characteristic that the conductivity in the longitudinal direction is superior to that in the radial direction, that is, the CNTs have anisotropy in conductivity. From this, the conductivity in the planar direction of the planar portion 32 of the conductive structure 31 has a characteristic that is greater than the conductivity in the direction perpendicular to the planar direction (thickness direction).

<導電性構造体>
図1に示すように、本発明の実施形態の電極触媒材料1では、連結集合体20に担持された導電性構造体31を有している。導電性構造体31は、上記した複数の導電性線状物質30を含み、複数の導電性線状物質30が分散して連結集合体20に担持されていることで、導電性構造体31が連結集合体20に担持されている。導電性線状物質30は、間隙G内に担持されている。また、複数の導電性線状物質30が、ナノ結晶片21の主表面22に沿って、相互に接触しながらナノ結晶片21の主表面22に担持されている。また、導電性線状物質30の長手方向が、ナノ結晶片21の主表面22に沿った状態で担持されている。従って、導電性構造体31は、複数の導電性線状物質30がナノ結晶片21の主表面22の面方向に沿って面状に分布した部位である面状部位32を有する。面状部位32における複数の導電性線状物質30の長手方向は、それぞれ、ランダムに配置されている。導電性構造体31は、面状部位32以外の部分では、複数の導電性線状物質30が面状に分布していなくてもよく、複数の導電性線状物質30の長手方向は、それぞれ、ランダムに配置されている。なお、図1では、説明の便宜上、連結集合体20の一部領域に導電性構造体31(複数の導電性線状物質30)が担持されているが、連結集合体20の全領域にわたって導電性構造体31(複数の導電性線状物質30)が担持されていてもよい。
<Conductive structure>
As shown in FIG. 1, the electrode catalyst material 1 according to the embodiment of the present invention has a conductive structure 31 supported on a connected assembly 20. As shown in FIG. The conductive structure 31 includes the plurality of conductive linear substances 30 described above, and the plurality of conductive linear substances 30 are dispersed and supported on the connected aggregate 20, so that the conductive structure 31 is It is carried by a connected assembly 20. The conductive linear material 30 is supported within the gap G. Further, a plurality of conductive linear substances 30 are supported on the main surface 22 of the nanocrystal piece 21 along the main surface 22 of the nanocrystal piece 21 while being in contact with each other. Furthermore, the conductive linear material 30 is supported with its longitudinal direction along the main surface 22 of the nanocrystal piece 21 . Therefore, the conductive structure 31 has a planar region 32 in which a plurality of conductive linear substances 30 are distributed planarly along the plane direction of the main surface 22 of the nanocrystal piece 21 . The plurality of conductive linear substances 30 in the planar region 32 are arranged randomly in the longitudinal direction. In the conductive structure 31, the plurality of conductive linear substances 30 do not need to be distributed in a planar manner in a portion other than the planar portion 32, and the longitudinal direction of the plurality of conductive linear substances 30 is , are randomly placed. In FIG. 1, for convenience of explanation, a conductive structure 31 (a plurality of conductive linear substances 30) is supported on a partial region of the connected assembly 20, but the conductive structure 31 (a plurality of conductive linear substances 30) is supported over the entire region of the connected assembly 20. A conductive structure 31 (a plurality of conductive linear substances 30) may be supported.

導電性構造体31の面状部位32の面方向に対して直交方向(すなわち、面状部位32の厚さ方向)の平均寸法は、金属酸化物である連結集合体20の触媒活性が阻害されるのを防止する点から、10nm未満が好ましい。面状部位32の厚さ方向の平均寸法が10nm未満であることにより、触媒活性面であるナノ結晶片21の主表面22が導電性構造体31の面状部位32で完全に被覆されることが防止され、結果、主表面22が優れた触媒機能を発揮できる。また、導電性構造体31の面状部位32の面方向の寸法は、面状部位32はナノ結晶片21の主表面22の面方向に沿って面状に分布した部位であることから、例えば、ナノ結晶片21の主表面22の寸法と略同等である。 The average dimension of the planar portion 32 of the conductive structure 31 in the direction perpendicular to the planar direction (that is, the thickness direction of the planar portion 32) is such that the catalytic activity of the connected aggregate 20, which is a metal oxide, is inhibited. The thickness is preferably less than 10 nm from the viewpoint of preventing the formation of particles. Since the average dimension in the thickness direction of the planar portions 32 is less than 10 nm, the main surface 22 of the nanocrystal piece 21, which is a catalytically active surface, is completely covered with the planar portions 32 of the conductive structure 31. As a result, the main surface 22 can exhibit an excellent catalytic function. Further, the dimension in the planar direction of the planar portion 32 of the conductive structure 31 is, for example, since the planar portion 32 is a portion distributed in a planar manner along the planar direction of the main surface 22 of the nanocrystal piece 21. , is approximately the same as the dimension of the main surface 22 of the nanocrystal piece 21.

導電性構造体31の面状部位32は、複数のCNT(導電性線状物質30)がナノ結晶片21の主表面22の面方向に沿って面状に分布した部位なので、導電性構造体31を構成するCNTは、該CNTで形成された面状部位32にてナノ結晶片21の主表面22と電気的に面接触している。従って、CNTの面状部位32からナノ結晶片21の主表面22へ電子授受が円滑化される。燃料電池の空気極における酸素還元反応であるO+4H+4e→2HOの触媒である、電極触媒材料1の金属酸化物が、CNTの面状部位32から円滑に電子授受されるので、酸素還元反応の効率が向上する。 The planar region 32 of the conductive structure 31 is a region in which a plurality of CNTs (conductive linear substances 30) are distributed in a planar manner along the plane direction of the main surface 22 of the nanocrystal piece 21. The CNTs 31 are in electrical surface contact with the main surface 22 of the nanocrystal piece 21 at a planar portion 32 formed of the CNTs. Therefore, electron transfer from the planar portion 32 of the CNT to the main surface 22 of the nanocrystal piece 21 is facilitated. The metal oxide of the electrode catalyst material 1, which is a catalyst for O 2 +4H + +4e →2H 2 O, which is the oxygen reduction reaction at the air electrode of the fuel cell, smoothly transfers electrons from the planar portion 32 of the CNT. , the efficiency of oxygen reduction reaction is improved.

導電性線状物質30が連結集合体20に確実に担持され、またナノ結晶片21の主表面22が触媒活性を効率的に発揮するためには、連結集合体20に対する導電性線状物質30の担持量を適切に制御する。例えば、電極触媒材料1の導電性と触媒活性のバランスの点から、100質量部の連結集合体20に対して導電性線状物質30が0.1質量部以上20質量部以下担持されるのが好ましく、0.2質量部以上10質量部以下担持されるのが特に好ましい。 In order for the conductive linear substance 30 to be reliably supported on the connected aggregate 20 and for the main surface 22 of the nanocrystal piece 21 to efficiently exhibit catalytic activity, the conductive linear substance 30 must be supported on the connected aggregate 20. Appropriately control the amount of supported. For example, from the viewpoint of the balance between the conductivity and catalytic activity of the electrode catalyst material 1, it is preferable that the conductive linear substance 30 is supported in an amount of 0.1 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the connected aggregate 20. is preferable, and it is particularly preferable that 0.2 parts by mass or more and 10 parts by mass or less are supported.

<電極触媒材料の用途>
本発明の実施形態である電極触媒材料1は、燃料電池用の空気極触媒材料として使用することができる。
<Applications of electrode catalyst materials>
Electrode catalyst material 1, which is an embodiment of the present invention, can be used as an air electrode catalyst material for fuel cells.

本発明の実施形態である電極触媒材料1が燃料電池用の電極触媒材料として用いられるにあたり、導電性構造体31は、複数の導電性線状物質30のうち、少なくとも1つの導電性線状物質30がナノ結晶片21と電気的に接触した金属酸化物接触部と、少なくとも1つの導電性線状物質30が電極基材と電気的に接触した電極基材接触部と、を有する態様としてもよい。導電性構造体31の面状部位32は、金属酸化物接触部に対応する。導電性構造体31が金属酸化物接触部と電極基材接触部とを有することにより、連結集合体20のナノ結晶片21と電極基材間の電子授受をさらに円滑化することができる。 When the electrode catalyst material 1 according to the embodiment of the present invention is used as an electrode catalyst material for a fuel cell, the conductive structure 31 includes at least one conductive linear material among the plurality of conductive linear materials 30. In an embodiment, 30 has a metal oxide contact portion in which the nanocrystal piece 21 is electrically contacted, and an electrode base material contact portion in which at least one conductive linear substance 30 is in electrical contact with the electrode base material. good. Planar portion 32 of conductive structure 31 corresponds to a metal oxide contact portion. Since the conductive structure 31 has the metal oxide contact portion and the electrode base material contact portion, electron exchange between the nanocrystal pieces 21 of the connected aggregate 20 and the electrode base material can be further facilitated.

燃料電池用の電極には、電極に供給されるガスを均一に分散させるために、ガス拡散層が搭載される。一方で、導電性構造体31は、複数の導電性線状物質30を含むことから、優れたガス透過性を有している。従って、導電性構造体31は、ガス透過性を有するガス拡散部をさらに備えることができる。上記から、本発明の実施形態である電極触媒材料1が燃料電池用の電極触媒材料として用いられるにあたり、導電性構造体31が、さらに、ガス透過性を有するガス拡散部を有していることにより、導電性構造体31のガス拡散部をガス拡散層の代替とすることができ、結果、別途、ガス拡散層を設ける必要がないので、部品点数を減らすことができる。 Electrodes for fuel cells are equipped with a gas diffusion layer in order to uniformly disperse gas supplied to the electrodes. On the other hand, since the conductive structure 31 includes the plurality of conductive linear substances 30, it has excellent gas permeability. Therefore, the conductive structure 31 can further include a gas diffusion section having gas permeability. From the above, when the electrode catalyst material 1 according to the embodiment of the present invention is used as an electrode catalyst material for a fuel cell, it is clear that the conductive structure 31 further has a gas diffusion part having gas permeability. Therefore, the gas diffusion section of the conductive structure 31 can be used as a substitute for the gas diffusion layer, and as a result, there is no need to provide a separate gas diffusion layer, so the number of parts can be reduced.

<電極触媒材料の製造方法>
次に、本発明の電極触媒材料の製造方法例について説明する。電極触媒材料の製造方法例としては、薄片状であるナノ結晶片が相互に連結された連結集合体である金属酸化物を調製する金属酸化物調製工程Saと、調製された金属酸化物に導電性線状物質を担持させる導電性線状物質担持工程Sbと、を有する。
<Method for producing electrode catalyst material>
Next, an example of a method for manufacturing the electrode catalyst material of the present invention will be described. An example of a method for producing an electrode catalyst material is a metal oxide preparation step Sa in which a metal oxide is a connected aggregate in which flaky nanocrystal pieces are interconnected, and a metal oxide preparation step Sa in which the prepared metal oxide is conductive. and a conductive linear material supporting step Sb of supporting a conductive linear material.

金属酸化物調製工程Saは、混合工程Sa1と、温度と圧力を印加する水熱合成工程Sa2と、を有する。 The metal oxide preparation step Sa includes a mixing step Sa1 and a hydrothermal synthesis step Sa2 in which temperature and pressure are applied.

(混合工程Sa1)
混合工程は、金属酸化物の原料となる、貴金属、遷移金属またはそれらの合金を含む化合物の水和物、特に金属ハロゲン化物の水和物と、金属酸化物の前駆体である金属錯体の配位子を構成する炭酸ジアミド骨格を有する有機化合物とを、エチレングリコール、1,4-ブタンジオール、ポリエチレングリコール等の有機溶媒、水、又はその両方を含む溶媒に溶かす工程である。金属ハロゲン化物の水和物として、例えば、塩化銅(II)二水和物、炭酸ジアミド骨格を有する有機化合物として、例えば、尿素が挙げられる。
(Mixing step Sa1)
The mixing process involves mixing a hydrate of a compound containing a noble metal, a transition metal, or an alloy thereof, which is a raw material for a metal oxide, especially a hydrate of a metal halide, and a metal complex, which is a precursor of a metal oxide. This is a step of dissolving an organic compound having a diamide carbonate skeleton constituting a ligand in an organic solvent such as ethylene glycol, 1,4-butanediol, or polyethylene glycol, water, or a solvent containing both. Examples of hydrates of metal halides include copper(II) chloride dihydrate, and examples of organic compounds having a carbonate diamide skeleton include urea.

(水熱合成工程Sa2)
水熱合成工程は、得られた混合溶液に所定の熱、圧力を加えて、所定時間、放置する工程である。混合溶液は、100℃以上300℃以下で加熱することが好ましい。加熱温度が100℃未満では、尿素と金属ハロゲン化物との反応を完了させることができず、300℃超では、発生する高蒸気圧に反応容器が耐えられない。加熱時間は、10時間以上であることが好ましい。加熱時間が10時間未満では、未反応の材料が残留する場合がある。所定の熱、圧力を加えるため、例えば、耐圧容器、密閉容器を用いて加熱、加圧する方法が挙げられる。混合溶液を加熱、加圧した後、室温に冷却して一定時間保持した後、生成した沈殿物を回収する。回収した沈殿物を、メタノール、純水等で洗浄し、所定時間乾燥させる。これにより、所望とする金属酸化物が得られる。
(Hydrothermal synthesis step Sa2)
The hydrothermal synthesis step is a step of applying predetermined heat and pressure to the obtained mixed solution and leaving it for a predetermined period of time. The mixed solution is preferably heated at 100°C or higher and 300°C or lower. If the heating temperature is less than 100°C, the reaction between urea and the metal halide cannot be completed, and if it exceeds 300°C, the reaction vessel cannot withstand the high vapor pressure generated. The heating time is preferably 10 hours or more. If the heating time is less than 10 hours, unreacted materials may remain. In order to apply predetermined heat and pressure, for example, a method of heating and pressurizing using a pressure-resistant container or a closed container can be mentioned. After the mixed solution is heated and pressurized, it is cooled to room temperature and held for a certain period of time, and then the generated precipitate is collected. The collected precipitate is washed with methanol, pure water, etc., and dried for a predetermined period of time. In this way, the desired metal oxide can be obtained.

金属酸化物調製工程Saの後に、導電性線状物質担持工程Sbを実施する。導電性線状物質担持工程Sbは、導電性線状物質の分散液を作製する導電性線状物質分散工程Sb1と、調製した金属酸化物の分散液を作製する金属酸化物分散工程Sb2と、導電性線状物質の分散液と金属酸化物の分散液を混合する分散液混合工程Sb3と、を有する。 After the metal oxide preparation step Sa, a conductive linear substance supporting step Sb is performed. The conductive linear material supporting step Sb includes a conductive linear material dispersion step Sb1 of producing a dispersion of a conductive linear material, a metal oxide dispersion step Sb2 of producing a dispersion of the prepared metal oxide, The method includes a dispersion mixing step Sb3 of mixing a conductive linear substance dispersion and a metal oxide dispersion.

(導電性線状物質分散工程Sb1)
導電性線状物質分散工程は、分散媒(例えば、水)に有機溶媒と分散剤を添加、混合した混合液に、導電性線状物質を添加後、超音波分散機等で分散処理をして導電性線状物質の分散液を作製する工程である。有機溶媒としては、例えば、エタノール、イソプロピルアルコール等のアルコールが挙げられる。分散剤としては、例えば、カルボキシメチルセルロース、ドデシル硫酸ナトリウム、 水溶性キシラン等が挙げられる。導電性線状物質
の分散液に含まれる導電性線状物質の含有量は、導電性線状物質の分散性と製造効率のバランスの点から、0.05質量%以上5.0質量%以下が好ましく、0.1質量%以上2.0質量%以下が特に好ましい。なお、必要に応じて、さらに、導電性線状物質の分散液に燃料電池に使用する電解質を添加、分散させてもよい。電解質としては、例えば、Nafion(登録商標)等の高分子電解質が挙げられる。
(Conductive linear substance dispersion step Sb1)
In the conductive linear substance dispersion process, an organic solvent and a dispersant are added to a dispersion medium (e.g., water), a conductive linear substance is added to a mixed liquid, and then the conductive linear substance is dispersed using an ultrasonic dispersion machine or the like. This is a step of preparing a dispersion of a conductive linear substance. Examples of the organic solvent include alcohols such as ethanol and isopropyl alcohol. Examples of the dispersant include carboxymethyl cellulose, sodium dodecyl sulfate, and water-soluble xylan. The content of the conductive linear substance contained in the dispersion of the conductive linear substance is 0.05% by mass or more and 5.0% by mass or less, from the viewpoint of the balance between dispersibility of the conductive linear substance and manufacturing efficiency. is preferred, and 0.1% by mass or more and 2.0% by mass or less is particularly preferred. Note that, if necessary, an electrolyte used in a fuel cell may be further added to and dispersed in the dispersion of the conductive linear material. Examples of the electrolyte include polymer electrolytes such as Nafion (registered trademark).

(金属酸化物分散工程Sb2)
金属酸化物分散工程は、分散媒(例えば、水)に有機溶媒を添加、混合した混合液に、金属酸化物調製工程で調製した金属酸化物を添加後、超音波分散機等で分散処理をして金属酸化物の分散液を作製する工程である。有機溶媒としては、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール等のモノアルコールが挙げられる。金属酸化物の分散液に含まれる金属酸化物の含有量は、金属酸化物の分散性と製造効率のバランスの点から、0.05質量%以上5.0質量%以下が好ましく、0.1質量%以上2.0質量%以下が特に好ましい。なお、必要に応じて、さらに、金属酸化物の分散液に燃料電池に使用する電解質を添加、分散させてもよい。電解質としては、例えば、Nafion(登録商標)等の高分子電解質が挙げられる。
(Metal oxide dispersion step Sb2)
In the metal oxide dispersion process, the metal oxide prepared in the metal oxide preparation process is added to a mixed liquid in which an organic solvent is added to a dispersion medium (for example, water), and then the metal oxide prepared in the metal oxide preparation process is dispersed using an ultrasonic dispersion machine or the like. In this step, a metal oxide dispersion is prepared. Examples of the organic solvent include monoalcohols such as methanol, ethanol, n-propyl alcohol, and isopropyl alcohol. The content of metal oxide contained in the metal oxide dispersion is preferably 0.05% by mass or more and 5.0% by mass or less, and 0.1% by mass or less, from the viewpoint of balance between dispersibility of metal oxide and production efficiency. Particularly preferably % by mass or more and 2.0% by mass or less. Note that, if necessary, an electrolyte used in a fuel cell may be further added to and dispersed in the metal oxide dispersion. Examples of the electrolyte include polymer electrolytes such as Nafion (registered trademark).

(分散液混合工程Sb3)
分散液混合工程は、導電性線状物質の分散液と金属酸化物の分散液とを超音波分散機等で分散処理をして混合する工程である。分散液混合工程では、電極触媒材料の導電性と触媒活性のバランスの点から、電極触媒材料の構成において金属酸化物の触媒活性面を導電性線状物質が被覆する面積が50%以下であるのが好ましいため、金属酸化物と導電性線状物質の含有量を調整する。金属酸化物として酸化銅のナノ結晶片、導電性線状物質としてCNTが用いられる場合、金属酸化物と導電性線状物質を等質量で含有することにより、好ましい被覆面積が得られる。このような工程を経て、電極触媒材料1が作製される。
(Dispersion liquid mixing step Sb3)
The dispersion mixing step is a step in which a dispersion of a conductive linear material and a dispersion of a metal oxide are subjected to a dispersion treatment using an ultrasonic disperser or the like and mixed. In the dispersion mixing step, from the viewpoint of the balance between the conductivity and catalytic activity of the electrode catalyst material, the area covered by the conductive linear substance on the catalytically active surface of the metal oxide in the composition of the electrode catalyst material is 50% or less. Therefore, the contents of the metal oxide and the conductive linear substance are adjusted. When copper oxide nanocrystal pieces are used as the metal oxide and CNTs are used as the conductive linear substance, a preferable coverage area can be obtained by containing the metal oxide and the conductive linear substance in equal mass. Through such steps, the electrode catalyst material 1 is produced.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and includes all aspects included in the concept of the present invention and the scope of the claims. It can be modified to .

次に、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。 Next, the present invention will be explained in more detail based on Examples, but the present invention is not limited thereto.

(実施例1)
金属酸化物の作製
金属酸化物として、酸化銅の(001)結晶面が表出している主表面をもつ薄片状であるナノ結晶片が相互に連結された連結集合体を作製した。具体的には、2.0gの塩化銅(II)二水和物(純正化学株式会社製)と、1.6gの尿素(純正化学株式会社製)とを混合した後、180mlのエチレングリコール(純正化学株式会社製)と120mlの水を添加してさらに混合した。得られた塩化銅と尿素の混合溶液を、内容積500mlの耐圧硝子容器に注入し、該容器内の密閉雰囲気下で180℃、24時間の熱処理を行った。その後、混合溶液を、室温に冷却して1日保持した後、さらに密閉容器から生成した薄
膜形状の沈殿物を回収し、この沈殿物を、メタノールおよび純水で洗浄して、真空下、70℃で10時間真空乾燥させ、酸化銅のナノ結晶片が相互に連結された連結集合体を得た。
(Example 1)
Preparation of Metal Oxide As a metal oxide, a connected aggregate in which flaky nanocrystal pieces having a main surface in which the (001) crystal plane of copper oxide was exposed was interconnected. Specifically, after mixing 2.0 g of copper (II) chloride dihydrate (manufactured by Junsei Kagaku Co., Ltd.) and 1.6 g of urea (manufactured by Junsei Kagaku Co., Ltd.), 180 ml of ethylene glycol ( (manufactured by Junsei Kagaku Co., Ltd.) and 120 ml of water were added and further mixed. The obtained mixed solution of copper chloride and urea was poured into a pressure-resistant glass container with an internal volume of 500 ml, and heat-treated at 180° C. for 24 hours in a sealed atmosphere inside the container. Thereafter, the mixed solution was cooled to room temperature and held for one day, and then a thin film-shaped precipitate was collected from the sealed container, washed with methanol and pure water, and then heated under vacuum for 70 minutes. It was vacuum dried at ℃ for 10 hours to obtain a connected aggregate in which copper oxide nanocrystal pieces were interconnected.

導電性線状物質の分散液の作製
導電性線状物質としてCNTを用いた。CNT分散液は、CNTの含有量が1.0質量%となるように、精製水(60質量%)、エタノール(20質量%)、イソプロピルアルコール(20質量%)を混合した分散媒で作製した。CNT分散液に用いる分散剤として、カルボキシメチルセルロース(CMC)をCNTに対して等質量を添加した。CNT分散液は、上記分散媒にCNTとカルボキシメチルセルロースを加えた後、超音波分散機で20~40℃にて1時間の分散処理を行うことで作製した。CNT分散液は、CNT分散液中でのCNTの動的光散乱粒子径が150~300nmであることで、安定して分散していることを確認した。
Preparation of dispersion liquid of conductive linear material CNT was used as the conductive linear material. The CNT dispersion liquid was prepared using a dispersion medium containing purified water (60 mass%), ethanol (20 mass%), and isopropyl alcohol (20 mass%) so that the CNT content was 1.0 mass%. . As a dispersant used in the CNT dispersion, carboxymethyl cellulose (CMC) was added in an equal mass to CNT. A CNT dispersion liquid was prepared by adding CNTs and carboxymethyl cellulose to the above dispersion medium, and then performing a dispersion treatment at 20 to 40° C. for 1 hour using an ultrasonic disperser. It was confirmed that the CNT dispersion liquid was stably dispersed, as the dynamic light scattering particle diameter of CNTs in the CNT dispersion liquid was 150 to 300 nm.

金属酸化物の分散液の作製
上記のようにして得られた酸化銅の連結集合体4mgを精製水1700μLとイソプロピルアルコール800μLの混合液に添加し、さらに高分子電解質としてナフィオン5質量%溶液を15μL添加して、超音波分散機で20~40℃にて1時間の分散処理を行って酸化銅の連結集合体の分散液を作製した。
Preparation of metal oxide dispersion 4 mg of the copper oxide linked aggregate obtained as described above was added to a mixed solution of 1700 μL of purified water and 800 μL of isopropyl alcohol, and 15 μL of a 5% by mass solution of Nafion as a polymer electrolyte was added. A dispersion liquid of a connected aggregate of copper oxide was prepared by performing a dispersion treatment at 20 to 40° C. for 1 hour using an ultrasonic disperser.

分散液の混合
上記のようにして得られた酸化銅の連結集合体の分散液に、上記のようにして得られたCNT分散液20mgを添加して、超音波分散機で20~40℃にて10分の分散処理を行い、実施例1の酸化銅の連結集合体に複数のCNTで形成された導電性構造体が担持された電極触媒材料を製造した。
Mixing of the dispersion 20 mg of the CNT dispersion obtained as above was added to the dispersion of the connected aggregate of copper oxide obtained as above, and the mixture was heated to 20 to 40°C using an ultrasonic disperser. A dispersion treatment was performed for 10 minutes to produce an electrode catalyst material in which a conductive structure formed of a plurality of CNTs was supported on the interconnected aggregate of copper oxide of Example 1.

(実施例2)
CNT分散液として、実施例1で作製したCNT分散液に代えて、ゼオンナノテクノロジー株式会社製のZERONANO SG101分散液(分散媒:水、CNT濃度0.5質量%)を用いた。実施例1と同様にして作製した酸化銅の連結集合体4mgを精製水1600μLとイソプロピルアルコール800μLの混合液に添加し、さらに高分子電解質としてナフィオン5質量%溶液を15μL添加して、超音波分散機で20~40℃にて1時間の分散処理を行って、酸化銅の連結集合体の分散液を作製した。上記のようにして得られた酸化銅の連結集合体の分散液に、上記CNT分散液16mgを添加して、超音波分散機で20~40℃にて10分の分散処理を行い、実施例2の酸化銅の連結集合体に複数のCNTで形成された導電性構造体が担持された電極触媒材料を製造した。
(Example 2)
As the CNT dispersion, ZERONANO SG101 dispersion (dispersion medium: water, CNT concentration 0.5% by mass) manufactured by Zeon Nano Technology Co., Ltd. was used in place of the CNT dispersion prepared in Example 1. 4 mg of a linked aggregate of copper oxide prepared in the same manner as in Example 1 was added to a mixed solution of 1600 μL of purified water and 800 μL of isopropyl alcohol, and 15 μL of a 5% by mass solution of Nafion was added as a polymer electrolyte, followed by ultrasonic dispersion. Dispersion treatment was carried out in a machine at 20 to 40°C for 1 hour to prepare a dispersion of connected aggregates of copper oxide. 16 mg of the above CNT dispersion was added to the dispersion of the linked aggregate of copper oxide obtained as above, and a dispersion treatment was performed at 20 to 40°C for 10 minutes using an ultrasonic disperser. An electrode catalyst material was manufactured in which a conductive structure formed of a plurality of CNTs was supported on a connected aggregate of copper oxide of No. 2.

(実施例3)
CNT分散液として、実施例1で作製したCNT分散液に代えて、株式会社名城ナノカーボン製の多層CNT分散液MW-I(分散媒:水,CNT濃度2質量%)を用いた。実施例1と同様にして作製した酸化銅の連結集合体4mgを精製水1600μLとイソプロピルアルコール800μLの混合液に添加し、さらに高分子電解質としてナフィオン5質量%溶液を15μL添加して、超音波分散機で20~40℃にて1時間の分散処理を行って、酸化銅の連結集合体の分散液を作製した。上記のようにして得られた酸化銅の連結集合体の分散液に、上記CNT分散液2mgを添加して、超音波分散機で20~40℃にて10分の分散処理を行い、実施例3の酸化銅の連結集合体に複数のCNTで形成された導電性構造体が担持された電極触媒材料を製造した。
(Example 3)
As the CNT dispersion, instead of the CNT dispersion prepared in Example 1, a multilayer CNT dispersion MW-I (dispersion medium: water, CNT concentration 2% by mass) manufactured by Meijo Nano Carbon Co., Ltd. was used. 4 mg of a linked aggregate of copper oxide prepared in the same manner as in Example 1 was added to a mixed solution of 1600 μL of purified water and 800 μL of isopropyl alcohol, and 15 μL of a 5% by mass solution of Nafion was added as a polymer electrolyte, followed by ultrasonic dispersion. Dispersion treatment was carried out in a machine at 20 to 40°C for 1 hour to prepare a dispersion of connected aggregates of copper oxide. 2 mg of the above CNT dispersion was added to the dispersion of the linked aggregate of copper oxide obtained as above, and a dispersion treatment was performed at 20 to 40°C for 10 minutes using an ultrasonic disperser. An electrode catalyst material was manufactured in which a conductive structure formed of a plurality of CNTs was supported on a connected aggregate of copper oxide of No. 3.

(比較例1)
実施例1と同様にして作製した酸化銅の連結集合体4mgを精製水1700μLとイソ
プロピルアルコール800μLの混合液に添加し、さらに高分子電解質としてナフィオン5質量%溶液を15μL添加して、超音波分散機で20~40℃にて1時間の分散処理を行って、酸化銅の連結集合体の分散液を作製した。上記のようにして得られた酸化銅の連結集合体の分散液に、カーボンブラック(キャボット社製、Vulcan Carbon)4mgを添加して、超音波分散機で20~40℃にて10分の分散処理を行い、比較例1の電極触媒材料を製造した。
(Comparative example 1)
4 mg of a linked aggregate of copper oxide prepared in the same manner as in Example 1 was added to a mixed solution of 1700 μL of purified water and 800 μL of isopropyl alcohol, and 15 μL of a 5% by mass solution of Nafion was added as a polymer electrolyte, followed by ultrasonic dispersion. Dispersion treatment was carried out in a machine at 20 to 40°C for 1 hour to prepare a dispersion of connected aggregates of copper oxide. 4 mg of carbon black (Vulcan Carbon, manufactured by Cabot) was added to the dispersion of the linked aggregate of copper oxide obtained as described above, and the mixture was dispersed for 10 minutes at 20 to 40°C using an ultrasonic disperser. The treatment was carried out to produce an electrocatalyst material of Comparative Example 1.

(比較例2)
実施例1の酸化銅の連結集合体に代えて、市販の酸化銅ナノ粒子(シグマ アルドリッ
チ ジャパン合同会社製 544868 Copper(II) oxide)を用いた
こと以外は、実施例1と同様にして比較例2の電極触媒材料を製造した。
(Comparative example 2)
A comparative example was carried out in the same manner as in Example 1, except that commercially available copper oxide nanoparticles (manufactured by Sigma-Aldrich Japan LLC, 544868 Copper (II) oxide) were used in place of the linked aggregate of copper oxide in Example 1. Electrocatalyst materials of No. 2 were manufactured.

(比較例3)
市販の酸化銅ナノ粒子(シグマ アルドリッチ ジャパン合同会社製 544868 Copper(II) oxide)4mgを精製水1700μLとイソプロピルアルコール800μLの混合液に添加し、さらに高分子電解質としてナフィオン5質量%溶液を15μL添加して、超音波分散機で20~40℃にて1時間の分散処理を行って、酸化銅ナノ粒子の分散液を作製した。上記のようにして得られた酸化銅ナノ粒子の分散液に、カーボンブラック(キャボット社製、Vulcan Carbon)4mgを添加して、超音波分散機で20~40℃にて10分の分散処理を行い、比較例3の電極触媒材料を製造した。
(Comparative example 3)
4 mg of commercially available copper oxide nanoparticles (manufactured by Sigma-Aldrich Japan LLC, 544868 Copper (II) oxide) were added to a mixed solution of 1700 μL of purified water and 800 μL of isopropyl alcohol, and 15 μL of a 5% by mass solution of Nafion as a polymer electrolyte was added. Then, dispersion treatment was performed at 20 to 40° C. for 1 hour using an ultrasonic dispersion machine to prepare a dispersion of copper oxide nanoparticles. 4 mg of carbon black (Vulcan Carbon, manufactured by Cabot) was added to the dispersion of copper oxide nanoparticles obtained as above, and a dispersion treatment was performed at 20 to 40°C for 10 minutes using an ultrasonic dispersion machine. The electrode catalyst material of Comparative Example 3 was produced.

(実施例4)
実施例1と同様にしてCNT分散液を作製し、実施例1と同様にして作製した酸化銅の連結集合体4mgを前記CNT分散液0.8mgに添加し、これを精製水1700μLとイソプロピルアルコール800μLの混合液に添加し、さらに高分子電解質としてナフィオン5質量%溶液を15μL添加して、超音波分散機で20~40℃にて1時間の分散処理を行い、実施例4の電極触媒材料を製造した。
(Example 4)
A CNT dispersion liquid was prepared in the same manner as in Example 1, and 4 mg of the copper oxide connected aggregate prepared in the same manner as in Example 1 was added to 0.8 mg of the CNT dispersion liquid, and this was mixed with 1700 μL of purified water and isopropyl alcohol. The electrode catalyst material of Example 4 was added to 800 μL of the mixed solution, and 15 μL of a 5% by mass solution of Nafion as a polymer electrolyte was added, followed by dispersion treatment for 1 hour at 20 to 40° C. using an ultrasonic dispersion machine. was manufactured.

(電極作製とORR活性評価)
上記のようにして得られた電極触媒材料15μLをマイクロピペットで採取し、回転電極の5mmΦのグラッシーカーボンの上に滴下し、60℃の恒温槽内で30分加熱して乾燥させた。この滴下作業を3回繰り返した後、回転電極の表面を実体顕微鏡で観察し、グラッシーカーボン上に均質に電極触媒材料の触媒層が形成されているのを確認した後、ORR活性評価を行った。具体的には、対流ボルタンメトリー法により、ORR活性評価を行った。PINE INSTRUMENT社製の回転リングディスク電極装置、ポテンショスタット(HSV-110)、電解液に0.1MのKOH水溶液を用い、サイクリックボルタンメトリー(CV)測定で安定性を確認した後、リニアスイープボルタンメトリ―(L
SV)で電極触媒材料の触媒活性を評価した。作用電極(WE)として5mmφのグラッシ
ーカーボン電極、対電極(CE)としてコイル状白金電極、参照電極(RE)として銀・塩化銀比較電極を用いた。
測定条件は以下の通りである。
(1)Arバブリング(30分)
(2)Oバブリング(30分)
(3)CV測定(O中) +0.2V~-1.0V、掃引速度:10mV/s、3サイクル
(4)LSV測定(O中) 0.0V~-0.8V、掃引速度:1mV/s、3サイクル
、回転数2000rpm
(Electrode preparation and ORR activity evaluation)
15 μL of the electrode catalyst material obtained as described above was collected with a micropipette, dropped onto a 5 mmΦ glassy carbon of a rotating electrode, and heated and dried in a constant temperature bath at 60° C. for 30 minutes. After repeating this dropping operation three times, the surface of the rotating electrode was observed with a stereomicroscope, and after confirming that a catalyst layer of the electrode catalyst material was homogeneously formed on the glassy carbon, ORR activity evaluation was performed. . Specifically, ORR activity was evaluated by convective voltammetry. Using a rotating ring disk electrode device manufactured by PINE INSTRUMENT, a potentiostat (HSV-110), and a 0.1M KOH aqueous solution as the electrolyte, after confirming stability with cyclic voltammetry (CV) measurement, linear sweep voltammetry was performed. Metry (L
The catalytic activity of the electrode catalyst material was evaluated by SV). A glassy carbon electrode with a diameter of 5 mm was used as the working electrode (WE), a coiled platinum electrode was used as the counter electrode (CE), and a silver/silver chloride comparison electrode was used as the reference electrode (RE).
The measurement conditions are as follows.
(1) Ar bubbling (30 minutes)
(2) O2 bubbling (30 minutes)
(3) CV measurement (in O2 ) +0.2V to -1.0V, sweep rate: 10mV/s, 3 cycles (4) LSV measurement (in O2 ) 0.0V to -0.8V, sweep rate: 1mV/s, 3 cycles, rotation speed 2000rpm

以上のようにして得られたデータから、電位と電流密度の関係を図2に示すように図示
し、触媒活性を評価した。触媒活性は、以下の2種類の基準にて評価し、2種類の基準とも下記評価が[B]以上、且つ少なくとも一方の基準の下記評価が[A]で、触媒活性が良好と評価した。
(1)ORRの開始電位の評価:-5.0×10-5Aでの電位で、燃料電池での理論起電力(1.23V)に対しての損失量である絶対値で15%の0.19V以下を合格[B]、0.19V超を不合格[C]と評価した。合格の中でも、理論起電力(1.23V)に対しての損失量である絶対値で10%の0.12V以下を特に優れた特性[A]と評価した。(2)Pt-C触媒の電流値との比較:-0.7Vでの電流の絶対値で、同じ条件で測定したAlfaAesar社製Pt-C触媒(20質量%のPt)の電流値1.52mAに対して80%以上の電流値1.22mA以上を合格[B]、1.22mA未満を不合格[C]と評価した。合格の中でも、90%の1.37mA以上を特に優れた特性[A]と評価した。
From the data obtained as described above, the relationship between potential and current density was illustrated as shown in FIG. 2, and the catalytic activity was evaluated. The catalytic activity was evaluated using the following two types of criteria, and the following evaluation was [B] or higher for both of the two types of criteria, and the following evaluation for at least one of the criteria was [A], and the catalytic activity was evaluated as good.
(1) Evaluation of ORR starting potential: At a potential of -5.0×10 -5 A, the absolute value is 15% of the loss amount relative to the theoretical electromotive force (1.23V) in the fuel cell. A value of 0.19V or less was evaluated as a pass [B], and a value exceeding 0.19V was evaluated as a fail [C]. Among those that passed, those with an absolute value of 10% of 0.12 V or less, which is the amount of loss with respect to the theoretical electromotive force (1.23 V), were evaluated as particularly excellent characteristics [A]. (2) Comparison with current value of Pt-C catalyst: Absolute value of current at -0.7V, current value of Alfa Aesar Pt-C catalyst (20 mass% Pt) measured under the same conditions 1. A current value of 1.22 mA or more, which is 80% or more with respect to 52 mA, was evaluated as a pass [B], and a current value of less than 1.22 mA was evaluated as a fail [C]. Among those that passed, 90% (90%) of 1.37 mA or more were evaluated as particularly excellent characteristics [A].

(電気伝導度の評価)
グラッシーカーボン上に形成された電極触媒材料の電気伝導度を日置電機株式会社製抵抗計RM3545の4探針プローブで測定した。なお、電極触媒材料の電気伝導度は次のように作成した基準電極の電気伝導度(100%とする)に対する割合で評価した。
(Evaluation of electrical conductivity)
The electrical conductivity of the electrode catalyst material formed on the glassy carbon was measured using a 4-probe probe of a resistance meter RM3545 manufactured by Hioki Electric Co., Ltd. Note that the electrical conductivity of the electrode catalyst material was evaluated as a ratio to the electrical conductivity (assumed to be 100%) of a reference electrode prepared as follows.

実施例1で作成したCNT分散液15μLをマイクロピペットで採取し、回転電極の5mmΦのグラッシーカーボンの上に滴下し、60℃の恒温槽内で30分加熱して乾燥させた。この滴下作業を1回行い、電気伝導度に対する基準電極とした。 15 μL of the CNT dispersion prepared in Example 1 was collected with a micropipette, dropped onto a 5 mmΦ glassy carbon of a rotating electrode, and dried by heating in a constant temperature bath at 60° C. for 30 minutes. This dropping operation was performed once and used as a reference electrode for electrical conductivity.

(組織観察)
電極触媒材料の結晶組織の観察は、走査型電子顕微鏡(SEM、日本電子株式会社製)を用いて行った。図3は、実施例3における電極触媒材料を、倍率20000倍で観察した際のSEM画像である。細い線形状の一次元結晶体CNTが折り重なるように二次元の導電面を形成し、その上に酸化銅の連結集合体が載っているが、酸化銅の連結集合体の面にCNTが接触しており、設計通りの電極触媒材料が確認できた。
(organizational observation)
The crystal structure of the electrode catalyst material was observed using a scanning electron microscope (SEM, manufactured by JEOL Ltd.). FIG. 3 is a SEM image of the electrode catalyst material in Example 3 observed at a magnification of 20,000 times. A two-dimensional conductive surface is formed by folding thin line-shaped one-dimensional crystalline CNTs, and a connected aggregate of copper oxide is placed on top of the two-dimensional conductive surface. It was confirmed that the electrode catalyst material was as designed.

実施例1~4、比較例1~3の評価結果を下記表1に示す。 The evaluation results of Examples 1 to 4 and Comparative Examples 1 to 3 are shown in Table 1 below.

Figure 0007340419000001
Figure 0007340419000001

上記表1から、酸化銅の連結集合体にCNTが担持された実施例1~3では、ORRの開始電位、Pt-C触媒の電流値との比較のいずれもA評価であり、優れた触媒活性を発揮した。酸化銅の連結集合体にCNTを担持させる処理を行っていない実施例4では、Pt-C触媒の電流値との比較はA評価だったが、ORRの開始電位はB評価であった。 From Table 1 above, in Examples 1 to 3 in which CNTs were supported on a connected aggregate of copper oxide, both the ORR starting potential and the comparison with the current value of the Pt-C catalyst were rated A, indicating that they were excellent catalysts. It showed activity. In Example 4, in which the process of supporting CNTs on the connected aggregate of copper oxide was not carried out, the comparison with the current value of the Pt--C catalyst was rated A, but the starting potential of ORR was rated B.

一方で、CNTに代えてカーボンブラックが酸化銅の連結集合体に担持された比較例1、酸化銅の連結集合体に代えて酸化銅ナノ粒子にCNTが担持された比較例2、酸化銅ナノ粒子にカーボンブラックが担持された比較例3では、ORRの開始電位、Pt-C触媒の電流値との比較で、A評価がなく、良好な触媒活性を得ることができなかった。 On the other hand, Comparative Example 1 in which carbon black was supported on a connected aggregate of copper oxide instead of CNT, Comparative Example 2 in which CNT was supported on copper oxide nanoparticles instead of a connected aggregate of copper oxide, and Copper oxide nano In Comparative Example 3 in which carbon black was supported on particles, there was no A rating in comparison with the starting potential of ORR and the current value of the Pt--C catalyst, and good catalytic activity could not be obtained.

また、実施例1~4での中でも、実施例1~3の電極触媒材料の電気伝導率が、基準電極(実施例1で作製したCNT分散液をグラッシーカーボン上に作製した薄膜)の電気伝導率に対して5.0%以上、実施例4の電極触媒材料の電気伝導率が、基準電極の電気伝導率に対して3.2%であることから、実施例1~3では、優れた触媒活性を発揮したことに対応して、電気的接触に優れた電極触媒材料が得られた。 Furthermore, among Examples 1 to 4, the electrical conductivity of the electrode catalyst materials of Examples 1 to 3 was higher than that of the reference electrode (a thin film made of the CNT dispersion prepared in Example 1 on glassy carbon). Since the electrical conductivity of the electrode catalyst material of Example 4 was 3.2% with respect to the electrical conductivity of the reference electrode, Examples 1 to 3 had an excellent Corresponding to the catalytic activity exhibited, an electrode catalyst material with excellent electrical contact was obtained.

1 電極触媒材料
20 連結集合体
21 ナノ結晶片
22 主表面
23 端面
30 導電性線状物質
31 導電性構造体
32 面状部位
1 Electrocatalyst material 20 Connected aggregate 21 Nanocrystal piece 22 Main surface 23 End surface 30 Conductive linear substance 31 Conductive structure 32 Planar site

Claims (9)

金属酸化物と、導電性構造体と、を有する燃料電池用の電極触媒材料であって、
前記金属酸化物が、特定の結晶面が表出している主表面および端面をもつ薄片状であるナノ結晶片が相互に連結された連結集合体であり、
複数の前記ナノ結晶片が、前記主表面間に、前記連結集合体の外側に開口して配置された間隙を有し、
前記連結集合体が、花びらに相当する前記ナノ結晶片が連結して集合した花のような形状を有し、
前記導電性構造体が、前記ナノ結晶片の主表面に沿って、複数の導電性線状物質が相互に接触して面方向に分布した面状部位を有し、該面状部位の面方向の導電性が該面方向に対して直交方向の導電性よりも大きく、
前記ナノ結晶片と前記面状部位とが、接触している電極触媒材料。
An electrode catalyst material for a fuel cell, comprising a metal oxide and a conductive structure,
The metal oxide is a connected aggregate in which flaky nanocrystal pieces having main surfaces and end faces with specific crystal planes are interconnected,
A plurality of the nanocrystal pieces have a gap arranged between the main surfaces and open to the outside of the connected aggregate,
The connected aggregate has a flower-like shape in which the nanocrystal pieces corresponding to petals are connected and aggregated,
The conductive structure has a planar portion along the main surface of the nanocrystal piece, in which a plurality of conductive linear substances are in contact with each other and distributed in the planar direction, and the conductivity is greater than the conductivity in the direction perpendicular to the surface direction,
An electrode catalyst material in which the nanocrystal piece and the planar portion are in contact with each other.
前記ナノ結晶片の平均厚さが、10nm未満である請求項1に記載の電極触媒材料。 The electrocatalyst material according to claim 1, wherein the nanocrystalline pieces have an average thickness of less than 10 nm. 前記金属酸化物が、酸化銅である請求項1または2に記載の電極触媒材料。 The electrode catalyst material according to claim 1 or 2, wherein the metal oxide is copper oxide. 前記特定の結晶面が、(001)結晶面である請求項3に記載の電極触媒材料。 The electrode catalyst material according to claim 3, wherein the specific crystal plane is a (001) crystal plane. 前記面状部位の前記面方向に対して直交方向の平均寸法が、10nm未満である請求項1乃至4のいずれか1項に記載の電極触媒材料。 The electrode catalyst material according to any one of claims 1 to 4, wherein the average dimension of the planar portion in a direction perpendicular to the planar direction is less than 10 nm. 前記導電性構造体が、複数の前記導電性線状物質のうち、少なくとも1つの前記導電性線状物質が前記ナノ結晶片と電気的に接触した金属酸化物接触部と、少なくとも1つの前記導電性線状物質が電極基材と電気的に接触した電極基材接触部と、を有する請求項1乃至5のいずれか1項に記載の電極触媒材料。 The conductive structure includes a metal oxide contact portion where at least one of the plurality of conductive linear substances electrically contacts the nanocrystal piece, and at least one of the conductive linear substances. The electrode catalyst material according to any one of claims 1 to 5, further comprising an electrode base material contact portion in which the linear substance is in electrical contact with the electrode base material. 前記導電性構造体が、さらに、ガス透過性を有するガス拡散部を有する請求項1乃至6のいずれか1項に記載の電極触媒材料。 The electrode catalyst material according to any one of claims 1 to 6, wherein the conductive structure further includes a gas diffusion section having gas permeability. 前記導電性線状物質が、カーボンナノチューブである請求項1乃至7のいずれか1項に記載の電極触媒材料。 The electrode catalyst material according to any one of claims 1 to 7, wherein the conductive linear substance is a carbon nanotube. 電極上に形成した前記電極触媒材料の電気伝導度が、該電極上に前記導電性構造体により形成した層の電気伝導度に対して5.0%以上である請求項1乃至8のいずれか1項に記載の電極触媒材料。 Any one of claims 1 to 8, wherein the electrical conductivity of the electrode catalyst material formed on the electrode is 5.0% or more with respect to the electrical conductivity of the layer formed on the electrode with the conductive structure. Electrocatalyst material according to item 1.
JP2019201189A 2019-11-06 2019-11-06 Electrocatalyst materials for fuel cells Active JP7340419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019201189A JP7340419B2 (en) 2019-11-06 2019-11-06 Electrocatalyst materials for fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019201189A JP7340419B2 (en) 2019-11-06 2019-11-06 Electrocatalyst materials for fuel cells

Publications (2)

Publication Number Publication Date
JP2021077470A JP2021077470A (en) 2021-05-20
JP7340419B2 true JP7340419B2 (en) 2023-09-07

Family

ID=75899779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019201189A Active JP7340419B2 (en) 2019-11-06 2019-11-06 Electrocatalyst materials for fuel cells

Country Status (1)

Country Link
JP (1) JP7340419B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058429A (en) 2011-09-09 2013-03-28 Shinshu Univ Electrode catalyst having oxygen-reducing property
JP2016066612A (en) 2014-09-17 2016-04-28 国立研究開発法人理化学研究所 Metal-air battery, and air positive electrode for metal-air battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058429A (en) 2011-09-09 2013-03-28 Shinshu Univ Electrode catalyst having oxygen-reducing property
JP2016066612A (en) 2014-09-17 2016-04-28 国立研究開発法人理化学研究所 Metal-air battery, and air positive electrode for metal-air battery

Also Published As

Publication number Publication date
JP2021077470A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
Talluri et al. High entropy spinel metal oxide (CoCrFeMnNi) 3O4 nanoparticles as novel efficient electrocatalyst for methanol oxidation and oxygen evolution reactions
Samad et al. Carbon and non-carbon support materials for platinum-based catalysts in fuel cells
Jia et al. Formation of hierarchical structure composed of (Co/Ni) Mn-LDH nanosheets on MWCNT backbones for efficient electrocatalytic water oxidation
Tiwari et al. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells
Hsieh et al. Fabrication of bimetallic Pt–M (M= Fe, Co, and Ni) nanoparticle/carbon nanotube electrocatalysts for direct methanol fuel cells
Wang et al. A Comparative Study of Composition and Morphology Effect of Ni x Co1–x (OH) 2 on Oxygen Evolution/Reduction Reaction
Ning et al. Palladium-based nanocatalysts anchored on CNT with high activity and durability for ethanol electro-oxidation
Pu et al. Electrocatalytic oxygen evolution reaction in acidic conditions: recent progress and perspectives
Kim et al. Crumpled rGO-supported Pt-Ir bifunctional catalyst prepared by spray pyrolysis for unitized regenerative fuel cells
Wu et al. A novel octahedral MnO/RGO composite prepared by thermal decomposition as a noble-metal free electrocatalyst for ORR
Garcia-Cardona et al. Electrochemical performance of carbon-supported Pt (Cu) electrocatalysts for low-temperature fuel cells
Hosseini et al. Preparation of NiO nanofibers by electrospinning and their application for electro-catalytic oxidation of ethylene glycol
Hu et al. PtMn/PtCo alloy nanofascicles: robust electrocatalysts for electrocatalytic hydrogen evolution reaction under both acidic and alkaline conditions
Ghouri et al. Cooperative electrocatalytic effect of Pd and Ce alloys nanoparticles in PdCe@ CNWs electrode for oxygen evolution reaction (OER)
Li et al. Bimetal-MOF and bacterial cellulose-derived three-dimensional N-doped carbon sheets loaded Co/CoFe nanoparticles wrapped graphite carbon supported on porous carbon nanofibers: An efficient multifunctional electrocatalyst for Zn-air batteries and overall water splitting
Hameed et al. Facile synthesis of electrospun transition metallic nanofibrous mats with outstanding activity for ethylene glycol electro-oxidation in alkaline solution
Chen et al. Pd nanoparticles on self-doping-defects mesoporous carbon supports for highly active ethanol oxidation and ethylene glycol oxidation
Li et al. Bimetallic molybdenum-tungsten carbide/reduced graphene oxide hybrid promoted Pt catalyst with enhanced electrocatalytic activity and stability for direct methanol fuel cells
Sravani et al. Bimetallic PtCu-decorated reduced graphene oxide (RGO)-TiO2 nanocomposite for efficient oxygen reduction reaction
Marbaniang et al. Forming a BB bond in boron carbon nitride composite: A way for metal free electrocatalyst for oxygen reduction reaction in alkaline medium
Yavari et al. The improvement of methanol oxidation using nano-electrocatalysts
Karuppasamy et al. Sonochemical synthesis of PdAg/RGO nanocomposite as an efficient electrocatalyst for both ethanol oxidation and oxygen reduction reaction with high CO tolerance
Majumdar et al. Recent Developments of Methanol Electrooxidation Using Nickel‐based Nanocatalysts
Mahato et al. CuO modified ZnO on nitrogen-doped carbon: a durable and efficient electrocatalyst for oxygen reduction reaction
Zhong et al. Co-doped Ni–Fe spinels for electrocatalytic oxidation over glycerol

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20220209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230828

R151 Written notification of patent or utility model registration

Ref document number: 7340419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151