JP7340418B2 - 燃料電池用の電極触媒材料、触媒インク、電極触媒層及び膜電極接合体 - Google Patents
燃料電池用の電極触媒材料、触媒インク、電極触媒層及び膜電極接合体 Download PDFInfo
- Publication number
- JP7340418B2 JP7340418B2 JP2019201187A JP2019201187A JP7340418B2 JP 7340418 B2 JP7340418 B2 JP 7340418B2 JP 2019201187 A JP2019201187 A JP 2019201187A JP 2019201187 A JP2019201187 A JP 2019201187A JP 7340418 B2 JP7340418 B2 JP 7340418B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode catalyst
- electrode
- conductive material
- catalyst layer
- metal oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Catalysts (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
[1] 金属酸化物と、導電性材料と、を有する燃料電池用の電極触媒材料であって、
前記金属酸化物が、特定の結晶面が表出している主表面および端面をもつ薄片状であるナノ結晶片が相互に連結された連結集合体であり、
複数の前記ナノ結晶片が、前記主表面間に、前記連結集合体の外側に開口して配置された間隙を有し、
前記導電性材料が、前記ナノ結晶片の少なくとも一部と接触している電極触媒材料。
[2] 前記ナノ結晶片の平均厚さが、10nm未満である[1]に記載の電極触媒材料。
[3] 前記金属酸化物が、酸化銅である[1]または[2]に記載の電極触媒材料。
[4] 前記特定の結晶面が、(001)結晶面である[3]に記載の電極触媒材料。
[5] 前記導電性材料が、導電性物質が連なった連続構造体を有する炭素材料である[1]乃至[4]のいずれか1つに記載の電極触媒材料。
[6] 前記導電性物質が、繊維状炭素及び炭素粒子から選択される少なくとも1種である[5]に記載の電極触媒材料。
[7] 電極上に形成した前記電極触媒材料の電気伝導度が、該電極上に前記導電性材料により形成した層の電気伝導度に対して0.5%以上である[1]乃至[6]のいずれか1つに記載の電極触媒材料。
[8] [1]乃至[7]のいずれか1つに記載の電極触媒材料と、高分子電解質と、溶媒とを含む、燃料電池用の電極触媒層を形成するための触媒インク。
[9] [8]に記載の触媒インクを用いて形成された燃料電池用の電極触媒層。
[10] 正極用電極触媒層を有する正極と、負極用電極触媒層を有する負極と、前記正極用電極触媒層と前記負極用電極触媒層との間に配置された固体高分子電解質層と、を備え、
前記正極用電極触媒層及び前記負極用電極触媒層の少なくとも一方の電極触媒層が、[1]乃至[7]のいずれか1つに記載の電極触媒材料を含む、燃料電池用膜電極接合体。
図1に示すように、本発明の実施形態の電極触媒材料1は、触媒活性を有する金属酸化物と、導電性を付与する導電性材料30とを有し、金属酸化物は、特定の結晶面が表出している主表面22および端面23をもつ薄片状であるナノ結晶片21が相互に連結された連結集合体20である。連結集合体20は、特定の結晶面が表出している主表面22をもつ薄片状のナノ結晶片21から構成されていることで、優れた触媒活性を発揮する。また、連結集合体20は、複数のナノ結晶片21の主表面22間に、連結集合体20の外側に開口して配置された間隙Gを有している。
図1に示すように、金属酸化物は、主表面22と端面23をもつ複数のナノ結晶片21が相互に連結された連結集合体20であり、花のような形状を示す。複数のナノ結晶片21の連結状態は、特に限定されず、複数のナノ結晶片21が連結して集合体を形成していればよい。
本発明の電極触媒材料1が燃料電池用の電極に搭載される場合、ナノ結晶片21において特定の結晶面が表出している主表面22が触媒活性面となるために、主表面22が特定の結晶方位を有するように構成される。
図1に示すように、本発明の実施形態の電極触媒材料1は、金属酸化物である連結集合体20と、導電性材料30とを有している。また、導電性材料30は、導電性材料30を構成する導電性物質が互いに数珠のように連続して繋がった連続構造体31を有し、連続構造体31がナノ結晶片21の主表面22の少なくとも一部に担持されていてもよい。導電性材料30の連続構造体31は、ナノ結晶片21の主表面22の少なくとも一部だけでなく、主表面22及び端面23の両方の少なくとも一部で接触していてもよい。連続構造体31を有する導電性材料30が、ナノ結晶片21の主表面22の一部が露出した状態で担持されることにより、触媒活性面の露出を維持しつつ、ナノ結晶片21と接触し得る範囲を増大させることができる。
本発明の実施形態である電極触媒材料1は、燃料電池用の空気極触媒材料として使用することができる。
次に、本発明の電極触媒材料の製造方法例について説明する。電極触媒材料の製造方法例としては、薄片状であるナノ結晶片が相互に連結された連結集合体である金属酸化物を調製する金属酸化物調製工程Saと、調製された金属酸化物に導電性材料を担持させる導電性材料担持工程Sbと、を有する。
混合工程は、金属酸化物の原料となる、貴金属、遷移金属またはそれらの合金を含む化合物の水和物、特に金属ハロゲン化物の水和物と、金属酸化物の前駆体である金属錯体の配位子を構成する炭酸ジアミド骨格を有する有機化合物とを、エチレングリコール、1,4-ブタンジオール、ポリエチレングリコール等の有機溶媒、水、又はその両方を含む溶媒に溶かす工程である。金属ハロゲン化物の水和物として、例えば、塩化銅(II)二水和物、炭酸ジアミド骨格を有する有機化合物として、例えば、尿素が挙げられる。
水熱合成工程は、混合工程Sa1で得られた混合溶液に所定の熱、圧力を加えて、所定時間、放置する工程である。混合溶液は、100℃以上300℃以下で加熱することが好ましい。加熱温度が100℃未満では、金属酸化物が生成せず、300℃超では、耐熱容器を構成する気密保持のためのパッキンの耐熱温度を超え、気密が維持できず外部に揮発気体が漏れるので好ましくない。加熱時間は10時間以上であることが好ましい。加熱時間が10時間未満では、未反応の材料が残留する場合がある。所定の圧力は、100℃における水の蒸気圧(1気圧)以上の圧力であることが好ましい。所定の熱・圧力を加えるため、例えば、耐圧容器、密閉容器を用いて加熱、加圧する方法が挙げられる。混合溶液を加熱、加圧した後、室温に冷却して一定時間保持した後、生成した沈殿物を回収する。回収した沈殿物を、メタノール、純水等で洗浄し、所定時間乾燥させる。これにより、所望とする金属酸化物が得られる。
金属酸化物分散工程は、分散媒(例えば、水)に有機溶媒を添加した混合液に、金属酸化物調製工程Saで調製した金属酸化物を添加後、超音波分散機等で分散処理をして金属酸化物の分散液を作製する工程である。有機溶媒としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール等のモノアルコールが挙げられる。金属酸化物の分散液に含まれる金属酸化物の含有量は、金属酸化物の分散性と製造効率のバランスの点から、0.05質量%以上5.0質量%以下が好ましく、0.1質量%以上1.0質量%以下が特に好ましい。なお、必要に応じて、金属酸化物の分散液に燃料電池に使用する電解質をさらに添加、分散させてもよい。電解質としては、例えば、Nafion(登録商標)等の高分子電解質が挙げられる。
導電性材料分散工程は、分散媒(例えば、水)に有機溶媒を添加、混合した混合液に、導電性材料を添加後、超音波分散機等で分散処理をして導電性材料の分散液を作製する工程である。有機溶媒としては、例えば、エタノール、イソプロピルアルコール等のアルコールが挙げられる。導電性材料の分散液に含まれる導電性材料の含有量は、導電性材料の分散性と製造効率のバランスの点から、0.05質量%以上5.0質量%以下が好ましく、0.1質量%以上1.0質量%以下が特に好ましい。なお、必要に応じて、導電性材料の分散液に燃料電池に使用する電解質をさらに添加、分散させてもよい。電解質としては、例えば、Nafion(登録商標)等の高分子電解質が挙げられる。
分散処理工程は、金属酸化物分散工程Sb1で作製した金属酸化物の分散液に導電性材料を添加するか、導電性材料分散工程Sb2で作製した導電性材料の分散液に金属酸化物調製工程Saで調製した金属酸化物を添加するか、又は金属酸化物分散工程Sb1で作製した金属酸化物の分散液と導電性材料分散工程Sb2で作製した導電性材料の分散液とを混合して、超音波分散機等で分散処理を行う工程である。分散処理工程では、電極触媒材料の導電性と触媒活性のバランスの点から、電極触媒材料の構成において金属酸化物の触媒活性面を導電性材料が被覆する面積が50%以下であることが好ましいため、金属酸化物と導電性材料の含有量を調整する。金属酸化物として酸化銅のナノ結晶片、導電性材料として炭素の球状粉体の場合、金属酸化物と導電性材料とを等質量で含有することにより、好ましい被覆面積が得られる。このような工程を経て、電極触媒材料1が作製される。
本発明の実施形態である触媒インクは、上述した電極触媒材料1と、高分子電解質と、溶媒とを含み、燃料電池用の電極触媒層を形成するために使用される。このような触媒インクは、これらの材料が混合した溶液を、ホモミキサー、ディスパー、超音波分散機、ホモジナイザー、マイルダーなどの分散機を用いた分散処理を施すことにより作製される。分散機として、超音波分散機が好ましい。触媒インク中の電極触媒材料1の含有量は、触媒インクに対して、0.1質量%以上10質量%以下が好ましく、0.2質量%以上2質量%以下がより好ましい。また、触媒インク中の高分子電解質の含有量は、触媒インクに対して、0.01質量%以上0.2質量%が好ましく、0.01質量%以上0.1質量%以下がより好ましい。
本発明の実施形態である電極触媒層は、上述した電極触媒材料1と、高分子電解質と、溶媒とを含む触媒インクを用いて形成され、燃料電池用の電極触媒層として有効である。このような電極触媒層は、上記のように作製した触媒インクを電極上に塗布し、次いで乾燥して形成する。触媒インクの塗布方法、乾燥方法等は適宜選択できる。例えば、塗布方法としては、スプレー法、インクジェット法、ドロップキャスト法、ダイコート法などが挙げられる。また、乾燥方法としては、例えば、減圧乾燥、加熱乾燥、減圧加熱乾燥などが挙げられる。減圧乾燥、加熱乾燥における具体的な条件は、特に制限はなく、適宜設定できる。また、電極触媒層の膜厚は、特に限定されないが、1μm以上20μm以下であってもよい。電極触媒層は、電極触媒材料1と高分子電解質とが適度に混ざり合ったマトリクスであり、電極触媒材料1と高分子電解質の界面で電極反応が行われる。
本発明の実施形態である膜電極接合体は、正極用電極触媒層を有する正極と、負極用電極触媒層を有する負極と、正極用電極触媒層と前記負極用電極触媒層との間に配置された固体高分子電解質層と、を備える。また、正極用電極触媒層及び負極用電極触媒層の少なくとも一方の電極触媒層が、上述の電極触媒材料1を含み、このような膜電極接合体は、燃料電池用の膜電極接合体として有効である。
<金属酸化物の作製>
金属酸化物として、酸化銅の(001)結晶面が表出している主表面をもつ薄片状であるナノ結晶片が相互に連結された連結集合体を作製した。具体的には、2.0gの塩化銅(II)二水和物(純正化学株式会社製)と、1.6gの尿素(純正化学株式会社製)とを混合した後、180mlのエチレングリコール(純正化学株式会社製)と120mlの水を添加してさらに混合した。得られた塩化銅と尿素の混合溶液を、内容積500mlの耐圧硝子容器に注入し、該容器内の密閉雰囲気下で180℃、24時間の熱処理を行った。その後、混合溶液を、室温に冷却して1日保持した後、密閉した容器から生成した薄膜形状の沈殿物を回収した。次いで、この沈殿物を、メタノールおよび純水で洗浄して、真空下、70℃で10時間真空乾燥させ、酸化銅のナノ結晶片が相互に連結された連結集合体を得た。
上記のようにして得られた酸化銅の連結集合体4mgを精製水1700μLとイソプロパノール800μLの混合液に添加し、さらに高分子電解質としてNafion(登録商標)5質量%溶液を15μL添加した。得られた混合液を超音波分散機で20~40℃にて1時間分散させ、酸化銅の連結集合体の分散液を作製した。
上記のようにして得られた酸化銅の連結集合体の分散液に、キャボットコーポレーション社製の導電性カーボンブラックであるVULCAN XC-72(登録商標)4mgを添加して、超音波分散機で20~40℃にて10分の分散処理を行い、酸化銅の連結集合体に炭素粒子が担持された電極触媒材料を含む触媒インクを作製した。
<導電性材料の分散液の作製>
実施例1で使用したキャボットコーポレーション社製の導電性カーボンブラックであるVULCAN XC-72(登録商標)4mgを、精製水1700μLとイソプロパノール800μLの混合液に添加し、さらに高分子電解質としてNafion(登録商標)5質量%溶液を15μL添加した。得られた混合液を超音波分散機で20~40℃にて1時間分散させ、導電性材料の分散液を作製した。
上記のようにして得られた導電性材料の分散液に、実施例1で得られた酸化銅の連結集合体4mgを添加して、超音波分散機で20~40℃にて10分の分散処理を行い、酸化銅の連結集合体に炭素粒子が担持された電極触媒材料を含む触媒インクを作製した。
<導電性材料の分散液の作製>
実施例1で使用したキャボットコーポレーション社製の導電性カーボンブラックであるVULCAN XC-72(登録商標)4mgを、精製水850μLとイソプロパノール400μLの混合液に添加し、さらに高分子電解質としてNafion(登録商標)5質量%溶液を8μL添加した。得られた混合液を超音波分散機で20~40℃にて1時間分散させ、導電性材料の分散液を作製した。
実施例1で得られた酸化銅の連結集合体4mgを精製水850μLとイソプロパノール400μLの混合液に添加し、さらに高分子電解質としてNafion(登録商標)5質量%溶液を7μL添加した。得られた混合液を超音波分散機で20~40℃にて1時間分散させ、酸化銅の連結集合体の分散液を作製した。
上記のようにして得られた導電性材料の分散液と酸化銅の連結集合体の分散液を混合して、超音波分散機で20~40℃にて10分の分散処理を行い、酸化銅の連結集合体に炭素粒子が担持された電極触媒材料を含む触媒インクを作製した。
<電極触媒材料及び触媒インクの作製>
実施例1で作製した酸化銅の連結集合体4mgと、キャボットコーポレーション社製の導電性カーボンブラックであるVULCAN XC-72(登録商標)4mgを秤量した粉末を乳鉢で混合し、精製水1700μLとイソプロパノール800μLの混合液に添加し、さらに高分子電解質としてNafion(登録商標)5質量%溶液を15μL添加した。得られた混合液を超音波分散機で20~40℃にて1時間の分散処理を行い、電極触媒材料を含む触媒インクを作製した。
実施例1で作製した酸化銅の連結集合体に代えて、市販の酸化銅ナノ粒子(シグマ アルドリッチ ジャパン合同会社製 544868 Copper(II) oxide)を準備し、これを電極触媒材料として使用したこと以外は、実施例1と同様にして電極触媒材料を含む触媒インクを作製した。
実施例2で作製した酸化銅の連結集合体に代えて、市販の酸化銅ナノ粒子(シグマ アルドリッチ ジャパン合同会社製 544868 Copper(II) oxide)を準備し、これを電極触媒材料として使用したこと以外は、実施例2と同様にして電極触媒材料を含む触媒インクを作製した。
実施例3で作製した酸化銅の連結集合体に代えて、市販の酸化銅ナノ粒子(シグマ アルドリッチ ジャパン合同会社製 544868 Copper(II) oxide)を準備し、これを電極触媒材料として使用したこと以外は、実施例3と同様にして電極触媒材料を含む触媒インクを作製した。
上記の実施例・比較例で得られた各電極触媒材料を含む触媒インク15μLをマイクロピペットで採取し、回転電極の5mmΦのグラッシーカーボンの上に滴下し、60℃の恒温槽内で30分加熱して乾燥させた。この滴下作業を3回繰り返した後、回転電極の表面を実体顕微鏡で観察し、グラッシーカーボン上に均質に電極触媒材料の触媒層(電極触媒層)が形成されているのを確認した。
その後、各電極触媒材料について酸素還元反応(ORR)活性評価を行った。具体的には、対流ボルタンメトリー法により、ORR活性評価を行った。PINE INSTRUMENT社製の回転リングディスク電極装置、ポテンショスタット(HSV-110)、電解液として0.1MのKOH水溶液を使用し、サイクリックボルタンメトリー(CV)測定で安定性を確認した。その後、リニアスイープボルタンメトリ―(LSV)で触媒活性を評価した。作用電極(WE)として5mmφのグラッシーカーボン電極、対電極(CE)としてコイル状白金電極、参照電極(RE)として銀・塩化銀比較電極を用いた。測定条件は以下の通りである。
(2)O2バブリング(30分)
(3)CV測定(O2中)
+0.2V~-1.0V、掃引速度:10mV/s、3サイクル
(4)LSV測定(O2中)
0.0V~-0.8V、掃引速度:1mV/s、3サイクル、回転数:2000rpm
-5.0×10-5Aでの電位の絶対値で、燃料電池での理論起電力(1.23V)に対しての損失量15%に相当する0.185V以下を合格、0.185V超を不合格と評価した。
-0.7Vでの電流の絶対値で、同じ条件で測定したAlfa Aesar社製Pt-C触媒(20質量%のPt)の電流値1.52mAに対して80%以上の電流値1.216mA以上を合格、1.216mA未満を不合格と評価した。
グラッシーカーボン上に形成された電極触媒材料の電気伝導度をHIOKI社製抵抗計RM3545の4探針プローブで測定した。なお、電極触媒材料の電気伝導度は次のように作成した基準電極の電気伝導度(100%とする)に対する割合で評価した。
20 連結集合体
21 ナノ結晶片
22 主表面
23 端面
30 導電性材料
31 連続構造体
Claims (10)
- 金属酸化物と、導電性材料と、を有する燃料電池用の電極触媒材料であって、
前記金属酸化物が、特定の結晶面が表出している主表面および端面をもつ薄片状であるナノ結晶片が相互に連結された連結集合体であり、
複数の前記ナノ結晶片が、前記主表面間に、前記連結集合体の外側に開口して配置された間隙を有し、
前記連結集合体が、花びらに相当する前記ナノ結晶片が連結して集合した花のような形状を有し、
前記導電性材料が、前記ナノ結晶片の少なくとも一部と接触している電極触媒材料。 - 前記ナノ結晶片の平均厚さが、10nm未満である請求項1に記載の電極触媒材料。
- 前記金属酸化物が、酸化銅である請求項1または2に記載の電極触媒材料。
- 前記特定の結晶面が、(001)結晶面である請求項3に記載の電極触媒材料。
- 前記導電性材料が、導電性物質が連なった連続構造体を有する炭素材料である請求項1乃至4のいずれか1項に記載の電極触媒材料。
- 前記導電性物質が、繊維状炭素及び炭素粒子から選択される少なくとも1種である請求項5に記載の電極触媒材料。
- 電極上に形成した前記電極触媒材料の電気伝導度が、該電極上に前記導電性材料により形成した層の電気伝導度に対して0.5%以上である請求項1乃至6のいずれか1項に記載の電極触媒材料。
- 請求項1乃至7のいずれか1項に記載の電極触媒材料と、高分子電解質と、溶媒とを含む、燃料電池用の電極触媒層を形成するための触媒インク。
- 請求項8に記載の触媒インクを用いて形成された燃料電池用の電極触媒層。
- 正極用電極触媒層を有する正極と、負極用電極触媒層を有する負極と、前記正極用電極触媒層と前記負極用電極触媒層との間に配置された固体高分子電解質層と、を有し、
前記正極用電極触媒層及び前記負極用電極触媒層の少なくとも一方の電極触媒層が、請求項1乃至7までのいずれか1項に記載の電極触媒材料を含む、燃料電池用の膜電極接合体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019201187A JP7340418B2 (ja) | 2019-11-06 | 2019-11-06 | 燃料電池用の電極触媒材料、触媒インク、電極触媒層及び膜電極接合体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019201187A JP7340418B2 (ja) | 2019-11-06 | 2019-11-06 | 燃料電池用の電極触媒材料、触媒インク、電極触媒層及び膜電極接合体 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021077468A JP2021077468A (ja) | 2021-05-20 |
JP7340418B2 true JP7340418B2 (ja) | 2023-09-07 |
Family
ID=75898348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019201187A Active JP7340418B2 (ja) | 2019-11-06 | 2019-11-06 | 燃料電池用の電極触媒材料、触媒インク、電極触媒層及び膜電極接合体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7340418B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102757019B1 (ko) * | 2022-10-12 | 2025-01-21 | 성균관대학교산학협력단 | 금속 산화물 나노입자 분산액의 제조 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013058429A (ja) | 2011-09-09 | 2013-03-28 | Shinshu Univ | 酸素還元能を有する電極触媒 |
JP2016066612A (ja) | 2014-09-17 | 2016-04-28 | 国立研究開発法人理化学研究所 | 金属空気電池及び金属空気電池用の空気正極 |
-
2019
- 2019-11-06 JP JP2019201187A patent/JP7340418B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013058429A (ja) | 2011-09-09 | 2013-03-28 | Shinshu Univ | 酸素還元能を有する電極触媒 |
JP2016066612A (ja) | 2014-09-17 | 2016-04-28 | 国立研究開発法人理化学研究所 | 金属空気電池及び金属空気電池用の空気正極 |
Also Published As
Publication number | Publication date |
---|---|
JP2021077468A (ja) | 2021-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Talluri et al. | High entropy spinel metal oxide (CoCrFeMnNi) 3O4 nanoparticles as novel efficient electrocatalyst for methanol oxidation and oxygen evolution reactions | |
Cai et al. | Promoting electrocatalysis upon aerogels | |
Tiwari et al. | Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells | |
Antolini | Composite materials: an emerging class of fuel cell catalyst supports | |
US11831025B2 (en) | Catalyst, preparation method therefor, electrode comprising same, membrane-electrode assembly, and fuel cell | |
JP5580990B2 (ja) | 燃料電池用電極触媒として使用されるプラチナおよびプラチナベース合金ナノチューブ | |
Wang et al. | Ultrathin PtMo-CeOx hybrid nanowire assemblies as high-performance multifunctional catalysts for methanol oxidation, oxygen reduction and hydrogen oxidation | |
Wu et al. | A novel octahedral MnO/RGO composite prepared by thermal decomposition as a noble-metal free electrocatalyst for ORR | |
US20130005567A1 (en) | Durable platinum / multi-walled carbon nanotube catalysts | |
CN103515621B (zh) | 用于燃料电池的载体、电极、膜电极组件和燃料电池系统 | |
Daryakenari et al. | Highly efficient electrocatalysts fabricated via electrophoretic deposition for alcohol oxidation, oxygen reduction, hydrogen evolution, and oxygen evolution reactions | |
WO2017126137A1 (ja) | コアシェル構造型ナノシート | |
JP2011134477A (ja) | 燃料電池用電極触媒の製造方法 | |
Ganesan et al. | Self-humidifying manganese oxide-supported Pt electrocatalysts for highly-durable PEM fuel cells | |
JP5477463B2 (ja) | 燃料電池 | |
Li et al. | Fe2NiO4/FeNiS2 heterostructure-assembled hollow microtubes with numerous intimate interfaces as advanced catalyst for Zn–Air battery | |
Hossain et al. | Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cell‐II‐Platinum‐Based Catalysts | |
Bagheri et al. | Introduction of a new active and stable cathode catalyst based on bimetal-organic frameworks/PPy-sheet for alkaline direct ethanol fuel cell | |
JP7340418B2 (ja) | 燃料電池用の電極触媒材料、触媒インク、電極触媒層及び膜電極接合体 | |
JP2010149008A (ja) | 電極触媒 | |
Yang et al. | A porous TiC supported nanostructured complex metal oxide ceramic electrode for oxygen evolution reaction | |
JP7359384B2 (ja) | 燃料電池用の電極触媒材料及び燃料電池用の電極触媒層 | |
JP6721679B2 (ja) | 電極触媒、その製造方法および当該電極触媒を用いた電極触媒層 | |
Roodbari et al. | Synthesis and characterization of GO-PpPDA/Ni–Mn nanocomposite as a novel catalyst for methanol electrooxidation | |
Chatterjee et al. | Carbon-based electrodes for direct methanol fuel cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD07 | Notification of extinguishment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7427 Effective date: 20220209 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230322 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230828 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7340418 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |