JP7337637B2 - レーザープローブ、及び光学調整方法 - Google Patents
レーザープローブ、及び光学調整方法 Download PDFInfo
- Publication number
- JP7337637B2 JP7337637B2 JP2019183418A JP2019183418A JP7337637B2 JP 7337637 B2 JP7337637 B2 JP 7337637B2 JP 2019183418 A JP2019183418 A JP 2019183418A JP 2019183418 A JP2019183418 A JP 2019183418A JP 7337637 B2 JP7337637 B2 JP 7337637B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- sensor
- line sensor
- laser probe
- linear range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
特許文献1に記載のレーザープローブ(表面検査装置)は、投光光学系、及び受光光学系を備えている。
投光光学系は、DMD(Digital Micro-mirror Device)と投影レンズとを備え、DMDにより一方向に沿って延在するライン状の光(ライン光)を形成し、投影レンズでDMDからのライン光を平行光にして測定対象に照射する。
受光光学系は、テレセントリック光学系、及びラインセンサとして構成されたCCD(Charge Coupled Device)を備え、テレセントリック光学系を透過した測定対象からの光が、ラインセンサに結像される。
なお、特許文献1では、投稿光学系からライン光を出射させるが、レーザースポット光の照射方向を、ガルバノミラー等の走査手段を用いて振ることで、測定対象上で走査させる場合もある(フライングスポット方式)。
つまり、ラインセンサは、複数の受光画素がラインセンサ軸に沿って配置されて構成されており、そのセンサ軸の幅(長手方向の直交する方向の幅)が非常に狭い。したがって、測定対象で反射されたスポット光又はライン光を、ラインセンサが設けられる平面に投影させた際の投影光の軸(以降、光投射軸と称する)が、ラインセンサのセンサ軸に対して傾斜している場合、ラインセンサによって正しく反射光を測定することができない。
このため、ラインセンサを用いたレーザープローブでは、ラインセンサのセンサ軸と、光投射軸と、を合わせ込む光学調整が必要である。しかしながら、ラインセンサの幅は非常に狭いので、ラインセンサのセンサ軸と光投射軸とが一致しているか否か、また、軸がずれている場合に、その軸調整方向や調整量がどの程度であるかを見極めるのが困難である。したがって、従来のレーザープローブでは、光学調整に多大な時間がかかり、かつ調整作業に熟練を要する、との課題があった。
本発明では、スポット光源から射出されるスポット光の反射方向を走査部により変化させることで、測定対象の直線範囲でスポット光を高速で走査させる、いわゆるフライングスポット方式での測定を実施することができる。このようなフライングスポット方式では、走査部によってスポット光を振る範囲を自由に設定することができる。
これにより、撮像画像に基づいて、光投射軸とセンサ軸との位置ずれを容易に確認でき、光学調整を容易に行うことができる。
図1は、本実施形態のレーザープローブ10を備えた測定装置1の概略構成を示す模式図である。
測定装置1は、レーザー光を用いて、非接触で対象物W(測定対象)の形状を測定する三次元測定装置であり、レーザープローブ10と、レーザープローブ10を三次元空間内の任意の位置に移動させる移動機構20と、レーザープローブ10からの信号に基づいて対象物Wの形状を測定する制御部30と、測定結果等の画像を表示させるディスプレイ40と、を備えている。
以下、各構成について、それぞれ詳細に説明する。
レーザープローブ10は、図1に示すように、レーザー照射光学系110(光源部)と、受光光学系120と、により構成されている。
レーザー照射光学系110は、レーザー光源111と、反射ミラー112と、走査部113と、を含んで構成されている。
レーザー光源111は、ポイントレーザー(以降、スポット光と称する)を出射するスポット光源である。
反射ミラー112は、レーザー光源111から出射されたスポット光を走査部113に向かって反射させる。
走査部113は、例えばガルバノミラーやレゾナントミラー等により構成されており、反射ミラー112で反射されたスポット光の反射方向を同一平面内に沿って振る。これにより、対象物Wに対して照射されるスポット光の照射方向が同一平面内に沿って移動するため、対象物Wの表面でのスポット光の照射位置も直線方向に沿って移動する。つまり、対象物Wの表面において、直線方向に沿った直線範囲W0でスポット光が走査される。
なお、ここでは、反射ミラー112で反射されたスポット光を、走査部113で対象物Wの直線範囲W0内に反射させる例を示すが、レーザー光源111から出射された光が反射ミラー112を介さずに走査部113に入射して、対象物Wの直線範囲W0に反射される構成としてもよい。
結像レンズ121は、対象物Wの直線範囲W0で反射されたスポット光をセンサ基板122上に結像させる。
センサ基板122は、ラインセンサ123が配置される基板である。センサ基板122は、結像レンズ121に対向する面が平面となる基板面を有し、例えば、基板面の中央部にラインセンサ123が配置されている。
撮像部124は、ラインセンサ123を含むセンサ基板122の基板面を撮像するイメージセンサであり、基板面の撮像画像を制御部30に出力する。なお、撮像部124は、レーザープローブ10に対して着脱可能に設けられていてもよい。
移動機構20は、レーザープローブ10を任意の位置に移動させる装置である。また、移動機構20には、レーザープローブ10の位置を検出するための図示略の位置検出センサが設けられている。
移動機構20の具体的な構成は特に限定されず、例えば、多関節アームの先端にレーザープローブ10を保持させ、多関節アームの各アームの角度を変更可能な構成としてもよい。この場合、各アームの回転角度を検出するロータリーエンコーダー等の角度検出センサを設ける。これにより、制御部30は、各アームのアーム長とアーム間の角度に基づいて、レーザープローブ10の位置や姿勢を算出することができる。
また、移動機構20として、レーザープローブ10をXYZ方向に移動させる門型フレームに保持させる構成としてもよい。つまり、移動機構20は、Y方向に移動可能なコラムと、コラムに保持されてX方向に平行なビームと、ビーム上をX方向に移動可能なスライダーと、スライダーに設けられて、Z方向に移動可能なヘッド保持部材とを備え、ヘッド保持部材にレーザープローブ10が保持される構成としてもよい。このような構成では、移動機構20は、コラムのY方向の位置を検出するYスケール、スライダーのX方向の位置を検出するXスケール、ヘッド保持部材のZ方向の位置を検出するZスケールを備える構成とすればよい。これにより、レーザープローブ10のXYZ座標を検出することができる。ヘッド保持部材に、レーザープローブ10の角度を変更する角度変更部を設けてもよく、この場合、角度変更部に角度検出センサを設けることで、レーザープローブ10の姿勢を検出できる。
制御部30は、コンピューターにより構成されており、図示略のメモリや、メモリに記録された各種プログラムを実施する演算回路等を備えて構成されている。そして、この制御部30は、レーザープローブ10及び移動機構20に接続され、レーザープローブ10のラインセンサ123での受光結果と、移動機構20から出力されるレーザープローブ10の位置や姿勢と、に基づいて、対象物Wの形状を測定する。また、制御部30は、撮像部124の撮像画像をディスプレイ40に出力する。これにより、作業者は、対象物Wの直線範囲W0で反射されたスポット光が、センサ基板122のラインセンサ123上に結像されているか否かを容易に確認することが可能となる。
プローブ制御部31は、レーザープローブ10のレーザー光源111の点灯制御、走査部113の走査制御、ラインセンサ123からの測定信号の受信制御、撮像部124の撮像制御等を実施する。
プローブ位置検出部32は、移動機構20の位置検出センサから入力された位置検出結果(例えば、ロータリーエンコーダー等の角度検出センサの検出値や、XYZスケールの検出値)を受信する。そして、プローブ位置検出部32は、位置検出結果に基づいて、レーザープローブ10の三次元空間内の位置や姿勢を算出する。
図3では、所定周期で撮像画像を取得した際の各撮像画像を重ね合わせた図を示している。図2に示すように、スポット光の反射位置qは、センサ基板122上で光投射軸Qに沿って移動する。したがって、複数の撮像画像を重ね合わせると、図3に示すように、光投射軸Qを示す、スポット光の反射位置qの軌跡が画像内に現れる。
レーザープローブ10により対象物Wの形状を正確に、かつ、精度良く測定するには、光投射軸Qが、ラインセンサ123のセンサ軸123Aと一致し、かつ、ラインセンサ123上に位置するように、位置合わせ(光学調整)を行う必要がある。
本実施形態では、画像出力部34は、図3に示すような撮像画像を、ディスプレイ40に表示させる。これにより、作業者は、レーザープローブ10におけるスポット光の走査方向と、ラインセンサ123のセンサ軸123Aとのずれを容易に認識することが可能となる。また、当該撮像画像に基づいて、スポット光の走査方向と、ラインセンサ123のセンサ軸123Aとのずれ方向やずれ量(角度)を容易に補正することができる。
次に、上記のような測定装置1におけるレーザープローブ10の光学調整方法について説明する。
図4は、本実施形態のレーザープローブ10の光学調整方法を示すフローチャートである。
レーザープローブ10では、上述のように、スポット光の走査方向、つまり、対象物Wの直線範囲W0で反射された反射光のセンサ基板122上での反射位置と、ラインセンサ123のセンサ軸123Aと、が一致するように光学調整を行う。
これには、まず、レーザープローブ10を対象物Wに対向する位置に移動させる(ステップS1)。対象物Wは、平坦面である校正面を有する基準校正物であってもよい。
そして、プローブ制御部31は、レーザー光源111を制御して、スポット光を出射させ、さらに、走査部113によりスポット光の反射方向を同一平面内で振り、フライングスポット方式で、スポット光を対象物Wに照射する(ステップS2)。これにより、対象物Wの直線範囲W0でスポット光が走査される。
ステップS3及びステップS4では、画像出力部34は、所定のフレームレートで撮像される撮像画像を、当該周期で順次ディスプレイ40に表示させることで、動画としてセンサ基板122の撮像画像をディスプレイ40に表示させてもよい。
また、画像出力部34は、所定周期で撮像した複数の撮像画像を重ね合わせることで、図3に示すような、光投射軸Qに沿った反射位置qの軌跡を含む画像を生成してディスプレイ40に表示させてもよい。
さらに、撮像部124のシャッタースピードに対して、走査部113での走査速度が十分に速い場合では、1回の撮像処理で得られる撮像画像を表示してもよい。この場合、画像出力部34は、撮像により得られた撮像画像をそのままディスプレイ40に表示させればよい。
例えば、走査部113としてガルバノミラーが用いられている場合、ガルバノミラーの回動軸の傾斜、及びガルバノミラーの配置位置を微調整して、スポット光の走査方向を調整し、光投射軸Qを、ラインセンサ123のセンサ軸123Aに一致させる。
また、ラインセンサ123又はセンサ基板122の位置を調整する場合では、ラインセンサ123が、光投射軸Qと重なるように、ラインセンサ123又はセンサ基板122の配置位置を微調整する。
なお、撮像部124が、レーザープローブ10に対して着脱可能に設けられている場合では、上記のような光学調整処理を実施した後、レーザープローブ10から撮像部124を取り外してもよい。
本実施形態の測定装置1は、レーザープローブ10を備え、当該レーザープローブ10は、レーザー照射光学系110と、受光光学系120とを含んで構成されている。レーザー照射光学系110は、スポット光を出射するレーザー光源111と、スポット光を反射し、かつスポット光の反射方向を振って、対象物W(測定対象)の表面の所定の直線範囲W0でスポット光を走査させる走査部113とを含む。受光光学系120は、直線範囲W0に照射された光の反射光を受光するラインセンサ123と、ラインセンサ123が設けられたセンサ基板122と、センサ基板122を撮像する撮像部124と、を含む。
これにより、本実施形態では、直線範囲W0でスポット光を高速で走査させる、いわゆるフライングスポット方式での測定を実施することができる。このような測定装置1では、走査部113によって走査範囲や走査速度を自由に設定することができる。
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、上記実施形態では、レーザー照射光学系110は、走査部113によりスポット光を直線範囲W0内で走査する構成を例示した。これに対して、レーザープローブ10は、直線範囲W0にライン光を照射するライン光源を備える構成としてもよい。このようなライン光源を用いる場合でも、測定対象で反射されたライン光は、直線上の光投射軸Qを有する投影像としてセンサ基板122に結像される。したがって、撮像部124を用いてセンサ基板122を撮像することで、撮像画像から、ライン光の光投射軸Qと、ラインセンサ123のセンサ軸123Aとの位置関係を確認することが可能となる。
これに対して、測定装置1の制御部30は、撮像画像に基づいて、光投射軸Qと、センサ軸123Aとの位置関係を評価する位置評価部として機能してもよい。例えば、位置評価部は、撮像画像からセンサ基板122を検出し、センサ基板122に対して既知の位置に設けられているラインセンサ123の位置を特定する。また、位置評価部は、撮像画像に対してエッジ検出フィルタ等を適用して、スポット光の位置(光投射軸Q)を検出する。そして、位置評価部は、ラインセンサ123のセンサ軸123Aと、光投射軸Qとが一致するか否かを評価する。例えば、スポット光の光量分布において光量が所定値以上となる中心部の軌跡と、ラインセンサ123とが重なる面積と、ラインセンサ123との面積の比率が閾値以上であるか否かを判定する。
これにより、作業者がセンサ軸123Aと光投射軸とが一致しているか否かを判断する必要がなく、光学調整に係る負担を軽減できる。また、位置評価部により、センサ軸123Aと光投射軸Qとが一致すると判定されるように光学調整を実施すればよいので、作業者の熟練が低い場合でも、精度良く光学調整を実施することができる。
この場合、制御部30を、位置評価部及び位置調整部として機能させてもよい。すなわち、位置評価部が、上記のように、センサ軸123Aと光投射軸Qとが一致しているか否かを判定する。そして、位置評価部により、センサ軸123Aと光投射軸Qとがずれていると判定された場合に、位置調整部は、撮像画像に基づいて、センサ軸123Aと光投射軸Qのずれ量や角度を算出し、センサ調整用アクチュエーター及びミラー用アクチュエーターの少なくともいずれかを制御して、走査部113によるスポット光の走査方向またはラインセンサ123の位置を自動で調整する。これにより、作業者による光学調整の作業を軽減できる。
Claims (3)
- 測定対象の表面の所定の直線範囲に光を照射する光源部と、
前記直線範囲に照射された光の反射光を受光するラインセンサと、
前記ラインセンサが設けられたセンサ基板と、
前記センサ基板を撮像する撮像部と、
制御部と、
を備え、
前記制御部は、前記撮像部により撮像された撮像画像であって、前記直線範囲で反射された光の前記センサ基板上での反射位置と、前記ラインセンサのセンサ軸と、を含む前記撮像画像を、ディスプレイに表示させる、
ことを特徴とするレーザープローブ。 - 請求項1に記載のレーザープローブにおいて、
前記光源部は、
スポット光を射出するスポット光源と、
前記スポット光を反射し、かつ、前記スポット光の反射方向を振って、前記直線範囲内で前記スポット光を走査させる走査部と、
を備える
ことを特徴とするレーザープローブ。 - 測定対象の表面の所定の直線範囲に光を照射する光源部と、前記直線範囲に照射された光の反射光を受光するラインセンサと、前記ラインセンサが設けられたセンサ基板と、前記センサ基板を撮像する撮像部と、を備えたレーザープローブの光学調整方法であって、
前記撮像部により前記センサ基板を撮像して撮像画像を取得し、
前記撮像画像における、前記直線範囲で反射された光の前記センサ基板上での反射位置と、前記ラインセンサのセンサ軸との位置関係に基づいて、前記光源部の前記光の照射方向、及び前記ラインセンサの位置の少なくともいずれかを調整する
ことを特徴とする光学調整方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019183418A JP7337637B2 (ja) | 2019-10-04 | 2019-10-04 | レーザープローブ、及び光学調整方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019183418A JP7337637B2 (ja) | 2019-10-04 | 2019-10-04 | レーザープローブ、及び光学調整方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021060233A JP2021060233A (ja) | 2021-04-15 |
JP7337637B2 true JP7337637B2 (ja) | 2023-09-04 |
Family
ID=75381463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019183418A Active JP7337637B2 (ja) | 2019-10-04 | 2019-10-04 | レーザープローブ、及び光学調整方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7337637B2 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004333367A (ja) | 2003-05-09 | 2004-11-25 | Pulstec Industrial Co Ltd | 3次元形状測定装置および3次元形状測定方法 |
JP2005009897A (ja) | 2003-06-16 | 2005-01-13 | Toyota Motor Corp | 表面状態計測装置の位置決め装置 |
JP2019110259A (ja) | 2017-12-20 | 2019-07-04 | 東京エレクトロン株式会社 | プローバ |
-
2019
- 2019-10-04 JP JP2019183418A patent/JP7337637B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004333367A (ja) | 2003-05-09 | 2004-11-25 | Pulstec Industrial Co Ltd | 3次元形状測定装置および3次元形状測定方法 |
JP2005009897A (ja) | 2003-06-16 | 2005-01-13 | Toyota Motor Corp | 表面状態計測装置の位置決め装置 |
JP2019110259A (ja) | 2017-12-20 | 2019-07-04 | 東京エレクトロン株式会社 | プローバ |
Also Published As
Publication number | Publication date |
---|---|
JP2021060233A (ja) | 2021-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10119805B2 (en) | Three-dimensional coordinate scanner and method of operation | |
US10578423B2 (en) | Diagnosing multipath interference and eliminating multipath interference in 3D scanners using projection patterns | |
JP6355710B2 (ja) | 非接触型光学三次元測定装置 | |
JP5016245B2 (ja) | 物体の六つの自由度を求めるための測定システム | |
US7508529B2 (en) | Multi-range non-contact probe | |
US20150015701A1 (en) | Triangulation scanner having motorized elements | |
US20130186871A1 (en) | Laser processing machine | |
US20040201856A1 (en) | Laser digitizer system for dental applications | |
CN109115126A (zh) | 三角测量传感器的校准 | |
JP7240139B2 (ja) | 変位測定装置 | |
US11054249B2 (en) | Profile measuring apparatus | |
JP2022080992A (ja) | 測定装置、制御装置、制御方法及びプログラム | |
JP7337637B2 (ja) | レーザープローブ、及び光学調整方法 | |
JP2021152525A (ja) | 計測装置、計測方法、移動体、ロボット、電子機器及び造形装置 | |
JP2004163346A (ja) | 非接触式三次元形状計測装置 | |
JP2001183117A (ja) | 表面形状の計測装置および計測方法 | |
US12030243B2 (en) | Measuring apparatus, movable apparatus, robot, electronic device, fabricating apparatus, and measuring method | |
KR20100068953A (ko) | 스캐너 구동 특성 검사 방법 및 장치 | |
JP2010169634A (ja) | 作業装置 | |
JP7219060B2 (ja) | 変位測定装置 | |
JP2023036302A (ja) | 測定システム、測定方法及びプログラム | |
JP2017015572A (ja) | 形状計測装置 | |
JP2006189390A (ja) | 光学式変位測定方法および装置 | |
JP2020076694A (ja) | 変位測定装置 | |
JPH0961120A (ja) | 寸法測定器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230523 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230801 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230823 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7337637 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |