JP7337030B2 - Chemical solution manufacturing method and chemical solution manufacturing system - Google Patents
Chemical solution manufacturing method and chemical solution manufacturing system Download PDFInfo
- Publication number
- JP7337030B2 JP7337030B2 JP2020106414A JP2020106414A JP7337030B2 JP 7337030 B2 JP7337030 B2 JP 7337030B2 JP 2020106414 A JP2020106414 A JP 2020106414A JP 2020106414 A JP2020106414 A JP 2020106414A JP 7337030 B2 JP7337030 B2 JP 7337030B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- solution
- chemical
- chemical solution
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Description
本発明は、薬液製造方法及び薬液製造システムに関する。 The present invention relates to a chemical liquid manufacturing method and a chemical liquid manufacturing system.
地盤改良工法の一つである薬液注入工法においては、酸性溶液とアルカリ性溶液を混合することにより溶液型の注入薬液が製造され、この薬液製造は例えば現場において行われる。
薬液注入工法では、注入管等を通して流動性を有する薬液を地盤内に注入・浸透させることにより、薬液と地盤の間隙内にある地下水とを置換する。その後、間隙内にとどまった薬液が流動性を失ってゲル化することにより、地盤の止水性を向上させることができ、あるいは地震力に対する地盤の抵抗性を高めることができる。
ところで、地盤内に注入された薬液が当該地盤内でゲル化するまでに長時間を要する場合、薬液が地下水によって移動されたり希釈されることにより、地盤改良効果が低下することが知られている。そのため、薬液の品質確保に際しては、注入施工の条件に応じて適切なタイミングにて薬液をゲル化させる必要がある。
注入に用いられる薬液には様々な種類が存在するが、希釈水ガラスを含有する溶液型の薬液は、その高い浸透性等を理由に広く用いられている。この希釈水ガラスはアルカリ性の溶液であり、単体では半永久的に安定した溶液状態を保つ一方で、酸性の溶液に投入・混合して溶液全体を酸性乃至中性にした場合には、一定時間流動性を保った後にゲル化する性質を有している。尚、混合からゲル化に至るまでの時間(ゲルタイム)は、溶液のpHが中性に近いほど短くなることが知られている。
上記特性を利用する代表的な水ガラス系溶液型の薬液においては、構成材料に含まれる酸性反応材の量を変化させて薬液pHを調節することにより、ゲルタイムを任意に設定することが可能になる。
In the chemical injection method, which is one of ground improvement methods, a solution-type injection chemical is produced by mixing an acidic solution and an alkaline solution, and this chemical is produced, for example, on site.
In the chemical injection method, a fluid chemical is injected into the ground through an injection pipe or the like to permeate the ground, thereby replacing the chemical with groundwater in the gaps between the ground. After that, the chemical solution remaining in the gap loses its fluidity and gels, thereby improving the water stoppage of the ground or increasing the ground's resistance to seismic force.
By the way, it is known that when it takes a long time for the chemical solution injected into the ground to gel in the ground, the ground improvement effect is reduced due to the migration and dilution of the chemical solution by the groundwater. . Therefore, in order to ensure the quality of the chemical solution, it is necessary to gel the chemical solution at an appropriate timing according to the conditions of the injection work.
There are various types of chemical solutions used for injection, but solution-type chemical solutions containing diluted water glass are widely used because of their high permeability and the like. This diluted water glass is an alkaline solution, and while it maintains a semi-permanently stable solution state by itself, when it is put into an acidic solution and mixed to make the whole solution acidic or neutral, it flows for a certain period of time. It has the property of gelling after maintaining its properties. It is known that the time from mixing to gelation (gel time) becomes shorter as the pH of the solution approaches neutrality.
In typical water glass solution-type chemicals utilizing the above characteristics, the gel time can be arbitrarily set by adjusting the pH of the chemical by changing the amount of the acidic reactant contained in the constituent materials. Become.
ここで、特許文献1には、水ガラス水溶液、コロイダルシリカ水溶液、及び酸の水溶液といった各種配合液を混合槽に送液する過程において、送液ポンプ停止後に惰性的に超過供給される各種配合液の量を予め把握し、この超過供給量を制御装置に入力しておき、超過供給量を見越したポンプ制御を行うことにより、所定量の送液による混合液の製造を行う、地盤改良薬液の混合システムが提案されている。
Here, in
また、特許文献2には、薬液の全体が特定のpH範囲となるように水素イオン量を増減させる機能を備えた緩衝剤を利用することにより、構成材料の計量誤差や品質のばらつきに左右されずにpH調節がなされている地盤注入薬液と、この地盤注入薬液を用いる薬液注入工法が提案されている。 In addition, in Patent Document 2, by using a buffering agent with a function to increase or decrease the amount of hydrogen ions so that the entire chemical solution is within a specific pH range, There have been proposed a ground injection chemical solution whose pH is adjusted without using soil, and a chemical injection construction method using this ground injection chemical solution.
特許文献1に記載の地盤改良薬液の混合システムは、薬液の材料となる各種配合液の量を管理することにより、所望性能の薬液を製造するものである。ところで、薬液を構成する各種配合液の品質は製造ロットごとにある程度のばらつきを有していることが一般的でであり、また、混合に使用される水にも一般に品質のばらつきがある。そのため、特許文献1に記載されるように規定量の混合を前提とした製造管理(量に基づく製造管理)を厳格に実施したとしても、所望するpHを備えた薬液が必ずしも製造される保証はない。
一方、特許文献2に記載の地盤注入薬液は、他の薬液材料に比べて高価な緩衝剤が適用されることから、薬液単価増が避けられず、地盤改良範囲が広域に及ぶに従い材料コスト増の影響が顕著になるといった課題を内包する。
The soil improvement chemical mixing system described in
On the other hand, the ground injection chemical described in Patent Document 2 uses a buffering agent that is more expensive than other chemical materials. It includes the problem that the impact of
本発明は、材料コストを増加させることなく、高精度にpH調節された薬液を製造することのできる、薬液製造方法及び薬液製造システムを提供することを目的としている。 An object of the present invention is to provide a chemical solution production method and a chemical solution production system capable of producing a chemical solution whose pH is adjusted with high accuracy without increasing material costs.
前記目的を達成すべく、本発明による薬液製造方法の一態様は、
酸性溶液であるA液が投入されている混合槽に対して、アルカリ性溶液であるB液を投入して混合することにより、薬液注入工法に適用される薬液を製造する、薬液製造方法であって、
前記薬液の目標pHを設定する、目標pH設定工程と、
前記B液の投入停止後の前記薬液pHの変化傾向を特定する、pH変化傾向特定工程と、
前記薬液の製造の過程で該薬液の前記薬液pHを随時計測する、作液計測工程と、
前記薬液pHが停止目安pHとなった段階で、前記B液の投入を停止する、B液投入停止工程と、を有し、
前記停止目安pHは、前記薬液pHの変化傾向に基づいて前記目標pHから逆算することにより設定されることを特徴とする。
In order to achieve the above object, one aspect of the method for producing a chemical solution according to the present invention is
A chemical liquid production method for producing a chemical liquid applied to a chemical injection method by charging and mixing liquid B, which is an alkaline solution, into a mixing tank in which liquid A, which is an acidic solution, is charged. ,
a target pH setting step of setting a target pH of the chemical solution;
a pH change tendency identification step of identifying a change tendency of the chemical solution pH after the supply of the liquid B is stopped;
a solution measuring step of measuring the chemical solution pH of the chemical solution at any time during the manufacturing process of the chemical solution;
a liquid B injection stop step of stopping injection of the liquid B when the pH of the chemical solution reaches a target pH for stopping,
The reference pH for stopping is set by calculating back from the target pH based on the change tendency of the chemical solution pH.
本態様によれば、混合槽に投入されている酸性溶液であるA液に対してアルカリ性溶液であるB液を投入して混合することにより薬液を製造する製造方法において、pH変化傾向特定工程にてB液の投入停止後の薬液pHの変化傾向を特定しておき、薬液pHが、薬液pHの変化傾向に基づいて目標pHから逆算された停止目安pHとなった段階でB液の投入を停止することにより、B液投入に用いられているポンプ停止後に時間差をもって薬液pHが変化した場合でも、高精度に目標pHの薬液を製造することが可能になる。また、薬液の製造に際して高価な緩衝剤を使用しないことから、薬液製造において材料コストが増加する恐れはない。
薬液注入工法に適用される薬液の製造に限られるものではないが、ポンプを用いて送液を行う際の当該ポンプの停止制御においては、使用するポンプが機械的に停止した後にも当該ポンプに連通する配管内の残存液が送り出されることが往々にしてあり、従って送液が完全に停止するまでに時間差が生じることになる。この現象は落差とも称され、この落差により、ポンプ停止時の薬液pHが変化することはpH落差と称することができる。
According to this aspect, in the manufacturing method for producing a chemical liquid by adding and mixing liquid B, which is an alkaline solution, with liquid A, which is an acidic solution, which is added to the mixing tank, the pH change tendency identifying step The change trend of the chemical solution pH after stopping the addition of the B solution is specified by using the method, and when the chemical solution pH reaches the target pH for stopping, which is calculated backward from the target pH based on the change trend of the chemical solution pH, the addition of the B solution is started. By stopping the pump, even if the pH of the chemical solution changes with a time lag after the pump used for introducing the B liquid is stopped, it is possible to manufacture the chemical solution with the target pH with high accuracy. In addition, since no expensive buffering agent is used in the production of the chemical solution, there is no danger of an increase in material costs in the production of the chemical solution.
Although it is not limited to the production of chemicals applied to the chemical injection method, in the stop control of the pump when sending liquid using a pump, the pump to be used can be stopped even after the pump is mechanically stopped. The liquid remaining in the communicating pipes is often sent out, so there is a time lag until the liquid transfer completely stops. This phenomenon is also called a drop, and the change in the pH of the chemical solution when the pump is stopped due to this drop can be called a pH drop.
例えば、特許文献1に示すように各種配合液の量(液量)にて薬液pHを管理する上記落差への対応方法では、実際の薬液製造(運用)前に行うキャリブレーションを通してポンプに連通する配管内の残存液量を把握し、この残存液量に応じてB液投入量(もしくは、ポンプ停止タイミング)を補正することになる。ここで、残存液量は、ポンプの仕様や配管のレイアウト、ポンプ停止時の流量が固定されることにより一義的に定まることから、B液投入量(液量)の補正量も一定となる。
一方、残存液によるpH増加の程度は混合液のpH水準に依存して変化することから、仮に残存液量が一義的に定まったとしても、薬液pHの補正量は一定とはならない。さらに、液量に起因する上記落差が完了した後は、時間差をもって混合液の撹拌による均一化が生じ、この均一化に伴い薬液pHが増加し得る。
本態様の薬液製造方法によれば、pH変化傾向特定工程にて特定されているB液の投入停止後の薬液pHの変化傾向に基づいて停止目安pHを目標pHから逆算し、B液投入停止工程においてこの停止目安pHとなった段階でB液の投入を停止することにより、上記するpH落差を解消して目標pHの薬液を製造することが可能になる。
For example, as shown in
On the other hand, since the degree of pH increase due to the residual liquid changes depending on the pH level of the mixed liquid, even if the residual liquid amount is uniquely determined, the chemical liquid pH correction amount will not be constant. Furthermore, after the drop caused by the liquid volume is completed, the mixed liquid is stirred with a time lag to homogenize, and the pH of the chemical solution may increase along with this homogenization.
According to the chemical solution manufacturing method of this aspect, the target pH for stopping is calculated backward from the target pH based on the change trend of the chemical solution pH after the supply of liquid B is stopped, which is specified in the pH change tendency specifying step, and the supply of liquid B is stopped. By stopping the addition of liquid B when the target pH for stopping is reached in the process, it is possible to eliminate the above-described pH difference and produce a chemical liquid having a target pH.
また、本発明による薬液製造方法の他の態様において、前記pH変化傾向特定工程では、製造条件に固有の以下の式(X)に基づいて前記薬液pHの変化傾向を特定することを特徴とする。 In another aspect of the chemical solution manufacturing method according to the present invention, the pH change tendency identifying step identifies the chemical solution pH change tendency based on the following formula (X) specific to manufacturing conditions. .
本態様によれば、B液投入停止時の薬液pHと、B液投入停止時の薬液pHやB液投入速度に依存する係数を備える上記式(X)を適用することにより、高精度にB液投入を停止する目安となる停止目安pHを特定することができ、このことにより、高精度に目標pHの薬液を製造できることが本発明者等により特定されている。 According to this aspect, by applying the above formula (X) having the chemical solution pH at the time of stopping the addition of liquid B and the coefficient depending on the chemical solution pH at the time of stopping the addition of liquid B and the addition speed of the B liquid, B The present inventors have identified that it is possible to specify a target pH for stopping the supply of the liquid, and thereby to manufacture a chemical liquid having a target pH with high accuracy.
また、本発明による薬液製造方法の他の態様は、
酸性溶液であるA液が投入されている混合槽に対して、アルカリ性溶液であるB液を投入して混合することにより、薬液注入工法に適用される薬液を製造する、薬液製造方法であって、
前記薬液の目標pHを設定する、目標pH設定工程と、
前記B液の投入速度を段階的に低減しながら該B液を投入する際に、投入速度の低減後の前記薬液pHの変化傾向を特定する、pH変化傾向特定工程と、
前記薬液pHが速度切替目安pHとなった段階で、前記B液の投入速度を低減することにより前記薬液を製造し、該製造の過程で該薬液の前記薬液pHを随時計測する、作液計測工程と、を有し、
前記速度切替目安pHは、前記薬液pHの変化傾向に基づいて前記目標pHから逆算することにより設定されることを特徴とする。
Another aspect of the method for producing a chemical solution according to the present invention is
A chemical liquid production method for producing a chemical liquid applied to a chemical injection method by charging and mixing liquid B, which is an alkaline solution, into a mixing tank in which liquid A, which is an acidic solution, is charged. ,
a target pH setting step of setting a target pH of the chemical solution;
a pH change tendency identification step of identifying a change tendency of the pH of the chemical solution after reducing the injection speed when the liquid B is injected while the injection speed of the liquid B is gradually reduced;
When the pH of the chemical solution reaches the reference pH for speed switching, the chemical solution is manufactured by reducing the charging speed of the liquid B, and the chemical solution pH of the chemical solution is measured at any time during the manufacturing process. and
The reference pH for speed switching is set by calculating back from the target pH based on the change tendency of the chemical solution pH.
本態様によれば、混合槽に投入されている酸性溶液であるA液に対してアルカリ性溶液であるB液を投入して混合することにより薬液を製造する製造方法において、pH変化傾向特定工程にてB液の投入速度を段階的に低減しながら該B液を投入する際の投入速度の低減後の薬液pHの変化傾向を特定しておき、薬液pHが、薬液pHの変化傾向に基づいて目標pHから逆算された速度切替目安pHとなった段階でB液の投入速度を低減することにより、B液投入に用いられているポンプによる投入速度低減後に時間差をもって薬液pHが変化した場合でも、高精度に目標pHの薬液を製造することが可能になる。
ここで、「投入速度を段階的に低減」するとは、B液の投入速度を一回低減する(切替える)こと、二回、三回といった複数回に亘り順次低減する(切替える)ことを含んでいる。
本発明者等によれば、混合槽に投入されているA液に対して投入されるB液の投入速度の低減(切替え)を実施した際に、投入速度切替えに時間を要すること、投入速度が完全に切替えられた直後に薬液pHが顕著に増加し、その後暫くして一定の増加傾向に漸近することが確認されている。これは、投入速度切替え前のB液投入の際の上記pH落差により、投入速度切替え後の初期段階でB液量増分に対するpH増分が一時的に上昇し、その後に上記pH落差の影響が収束することにより、投入速度切替え後の投入速度に応じた薬液pHの増加傾向に移行したものと推察される。そこで、B液投入速度を段階的に低減する本態様の製造方法においては、B液の投入速度低減後のpH落差の影響の程度(投入速度の低減後の薬液pHの変化傾向)を予め特定しておき、薬液pHの変化傾向に基づいて目標pHから逆算された速度切替目安pHとなった段階で、B液の投入速度を低減することにより、上記するpH落差を解消して目標pHの薬液を製造することが可能になる。
According to this aspect, in the manufacturing method for producing a chemical liquid by adding and mixing liquid B, which is an alkaline solution, with liquid A, which is an acidic solution, which is added to the mixing tank, the pH change tendency identifying step The change tendency of the chemical solution pH after the reduction of the introduction speed when introducing the B solution while gradually reducing the introduction speed of the B solution is specified, and the chemical solution pH is determined based on the change tendency of the chemical solution pH. By reducing the injection speed of liquid B at the stage when it reaches the target pH for speed switching calculated backward from the target pH, even if the chemical solution pH changes with a time lag after the injection speed is reduced by the pump used for introducing liquid B, It becomes possible to manufacture a chemical solution with a target pH with high accuracy.
Here, "gradually reducing the injection speed" includes reducing (switching) the injection speed of liquid B once, and sequentially reducing (switching) a plurality of times such as twice and three times. there is
According to the present inventors, when reducing (switching) the charging speed of B liquid added to A liquid added to the mixing tank, it takes time to switch the charging speed, and the charging speed It has been confirmed that the pH of the chemical solution markedly increases immediately after the switching is complete, and then asymptotically approaches a constant increasing trend after a while. This is because, due to the above-mentioned pH drop at the time of adding liquid B before switching the charging speed, the pH increment with respect to the increase in the amount of liquid B temporarily increases in the initial stage after switching the charging speed, and then the effect of the above-mentioned pH drop converges. By doing so, it is presumed that the pH of the chemical solution shifted to an increasing tendency according to the charging speed after the switching of the charging speed. Therefore, in the manufacturing method of this embodiment, in which the injection speed of liquid B is reduced stepwise, the extent of the influence of the pH difference after the injection speed of liquid B is reduced (tendency of change in the pH of the chemical solution after the injection speed is reduced) is specified in advance. Then, at the stage where the speed switching reference pH calculated backward from the target pH based on the change tendency of the chemical solution pH is reached, the introduction speed of liquid B is reduced to eliminate the above-described pH difference and reach the target pH. It becomes possible to manufacture a chemical solution.
また、本発明による薬液製造方法の他の態様において、前記pH変化傾向特定工程では、製造条件に固有の以下の式(Y)に基づいて前記薬液pHの変化傾向を特定することを特徴とする。 In another aspect of the chemical solution manufacturing method according to the present invention, the pH change tendency identification step identifies the chemical solution pH change tendency based on the following formula (Y) specific to manufacturing conditions. .
本態様によれば、B液投入速度切替時の薬液pHと、B液投入速度低減前のB液投入速度や薬液pHに依存する係数を備える上記式(Y)を適用することにより、高精度にB液の投入速度を低減する(切替える)目安となる速度切替目安pHを特定することができ、このことにより、高精度に目標pHの薬液を製造できることが本発明者等により特定されている。 According to this aspect, by applying the above formula (Y) having the chemical solution pH at the time of switching the liquid B introduction speed and the coefficient depending on the B solution introduction speed before reducing the B solution introduction speed and the chemical solution pH, high accuracy can be achieved. The inventors of the present invention have identified that it is possible to specify a reference speed switching reference pH that serves as a reference for reducing (switching) the injection speed of liquid B, and that this makes it possible to manufacture a chemical solution with a target pH with high accuracy. .
また、本発明による薬液製造方法の他の態様において、前記作液計測工程では、前記薬液pHが1上昇した際に前記B液の投入速度を1/10に低減することを特徴とする。 Further, in another aspect of the chemical solution manufacturing method according to the present invention, in the solution measuring step, when the chemical solution pH increases by 1, the injection speed of the solution B is reduced to 1/10.
本態様によれば、B液の投入速度を段階的に低減しながら薬液を製造する方法において、薬液pHの上昇に応じたB液の投入速度が具体的に規定されることにより、投入速度の低減管理が容易となり、投入速度が過大に設定されることにより薬液pHの調節精度が低下するといった課題や、逆に投入速度が過小に設定されることにより製造システムにおける製造能力が低下するといった課題が解消される。尚、薬液pHが1上昇した際にB液の投入速度を1/10に低減することは、本発明者等による実験結果に依拠している。尚、ここでの「1/10」は、1/10の近傍を含むものであり、1/9乃至1/11程度の範囲が「1/10」に含まれる。 According to this aspect, in the method of manufacturing the chemical solution while gradually reducing the injection speed of the liquid B, the injection speed of the liquid B is specifically defined according to the increase in the pH of the chemical solution, thereby reducing the injection speed. Reduction management is facilitated, and the problem that the adjustment accuracy of the chemical solution pH is lowered by setting the injection speed too high, and conversely, the problem that the production capacity of the manufacturing system is reduced by setting the injection speed too low. is canceled. It should be noted that the fact that the injection speed of liquid B is reduced to 1/10 when the pH of the chemical liquid is increased by 1 is based on the experimental results of the present inventors. Here, "1/10" includes the vicinity of 1/10, and the range of about 1/9 to 1/11 is included in "1/10".
また、本発明による薬液製造システムの一態様は、
酸性溶液であるA液が投入されている混合槽に対して、アルカリ性溶液であるB液を投入して混合することにより、薬液注入工法に適用される薬液を製造する、薬液製造システムであって、
前記A液を作液するA液作液装置と、
前記B液を作液するB液作液装置と、
投入された前記A液と前記B液を混合して前記薬液を製造する混合槽、及び、該薬液の製造の過程で該薬液の薬液pHを計測するpH計を備えている、混合装置と、
前記混合槽に対して、前記A液作液装置と前記B液作液装置からそれぞれ前記A液と前記B液を送液するポンプと、
制御装置と、を有し、
前記制御装置は、
前記薬液の目標pHと、随時計測される前記薬液pHとが少なくとも格納される、格納部と、
前記B液の投入停止後の前記薬液pHの変化傾向を特定する、pH変化傾向特定部と、
前記B液の投入を停止する際の目安となる停止目安pHを設定する、停止目安pH設定部と、
前記薬液pHが前記停止目安pHとなった段階で、前記B液の投入を停止する、B液投入停止部と、を有し、
前記停止目安pH設定部では、前記pH変化傾向特定部において特定された前記薬液pHの変化傾向に基づいて、前記目標pHから逆算することにより前記停止目安pHを設定することを特徴とする。
Further, one aspect of the chemical liquid manufacturing system according to the present invention is
A chemical liquid production system for producing a chemical liquid applied to a chemical injection method by charging and mixing liquid B, which is an alkaline solution, into a mixing tank in which liquid A, which is an acidic solution, is charged. ,
an A-solution working device for producing the A-solution;
a B-solution forming device for forming the B-solution;
A mixing device comprising a mixing tank for mixing the introduced liquid A and the liquid B to produce the chemical solution, and a pH meter for measuring the chemical solution pH of the chemical solution during the process of producing the chemical solution;
a pump that feeds the A solution and the B solution from the A solution operating device and the B solution operating device to the mixing tank, respectively;
a controller;
The control device is
a storage unit that stores at least the target pH of the chemical and the pH of the chemical that is measured at any time;
a pH change tendency identification unit that identifies a change tendency of the chemical solution pH after the supply of the liquid B is stopped;
a target stop pH setting unit that sets a target stop pH that serves as a target when stopping the addition of the liquid B;
a liquid B injection stop unit for stopping injection of the liquid B when the chemical solution pH reaches the stop target pH;
The target pH for stopping setting unit sets the target pH for stopping by calculating back from the target pH based on the change tendency of the chemical solution pH specified by the pH change trend specifying unit.
本態様によれば、混合槽に投入されている酸性溶液であるA液に対してアルカリ性溶液であるB液を投入して混合することにより薬液を製造する製造システムにおいて、制御装置のpH変化傾向特定部にてB液の投入停止後の薬液pHの変化傾向が特定され、停止目安pH設定部にて薬液pHの変化傾向に基づいて目標pHから逆算して停止目安pHが設定され、薬液pHが停止目安pHとなった段階でB液投入停止部にてB液の投入を停止することにより、B液投入に用いられているポンプ停止後に時間差をもって薬液pHが変化した場合でも、高精度に目標pHの薬液を製造することが可能になる。 According to this aspect, in a manufacturing system for producing a chemical liquid by adding and mixing liquid B, which is an alkaline solution, with liquid A, which is an acidic solution, which is added to a mixing tank, the pH change tendency of the control device The change tendency of the chemical solution pH after the supply of liquid B is stopped is specified in the specifying unit, and the target pH for stopping is set by calculating back from the target pH based on the change trend of the chemical solution pH in the target pH setting unit, and the chemical solution pH is set. By stopping the injection of liquid B at the liquid B injection stop unit at the stage when the pH reaches the stop target pH, even if the chemical solution pH changes with a time lag after the pump used for liquid B injection is stopped, it can be performed with high accuracy. It becomes possible to manufacture a chemical solution with a target pH.
また、本発明による薬液製造システムの他の態様は、
酸性溶液であるA液が投入されている混合槽に対して、アルカリ性溶液であるB液を投入して混合することにより、薬液注入工法に適用される薬液を製造する、薬液製造システムであって、
前記A液を作液するA液作液装置と、
前記B液を作液するB液作液装置と、
投入された前記A液と前記B液を混合して前記薬液を製造する混合槽、及び、該薬液の製造の過程で該薬液の薬液pHを計測するpH計を備えている、混合装置と、
前記混合槽に対して、前記A液作液装置と前記B液作液装置からそれぞれ前記A液と前記B液を送液するポンプと、
制御装置と、を有し、
前記制御装置は、
前記薬液の目標pHと、随時計測される前記薬液pHとが少なくとも格納される、格納部と、
前記B液の投入速度を段階的に低減しながら該B液を投入する際に、投入速度の低減後の前記薬液pHの変化傾向を特定する、pH変化傾向特定部と、
前記B液の投入速度を低減する際の目安となる速度切替目安pHを設定する、速度切替目安pH設定部と、
前記薬液pHが前記速度切替目安pHとなった段階で、前記B液の投入速度を低減する、B液投入速度切替部と、を有し、
前記速度切替目安pH設定部では、前記pH変化傾向特定部において特定された前記薬液pHの変化傾向に基づいて、前記目標pHから逆算することにより前記速度切替目安pHを設定することを特徴とする。
Another aspect of the chemical liquid manufacturing system according to the present invention is
A chemical liquid production system for producing a chemical liquid applied to a chemical injection method by charging and mixing liquid B, which is an alkaline solution, into a mixing tank in which liquid A, which is an acidic solution, is charged. ,
an A-solution working device for producing the A-solution;
a B-solution forming device for forming the B-solution;
A mixing device comprising a mixing tank for mixing the introduced liquid A and the liquid B to produce the chemical solution, and a pH meter for measuring the chemical solution pH of the chemical solution during the process of producing the chemical solution;
a pump that feeds the A solution and the B solution from the A solution operating device and the B solution operating device to the mixing tank, respectively;
a controller;
The control device is
a storage unit that stores at least the target pH of the chemical and the pH of the chemical that is measured at any time;
a pH change tendency identification unit that identifies the change tendency of the pH of the chemical solution after reducing the injection speed when the liquid B is injected while the injection speed of the liquid B is gradually reduced;
a speed switching reference pH setting unit that sets a speed switching reference pH that serves as a reference when reducing the injection speed of the liquid B;
a liquid B injection speed switching unit that reduces the injection speed of the liquid B when the chemical solution pH reaches the speed switching target pH,
The reference speed switching pH setting unit sets the reference speed switching pH by calculating back from the target pH based on the change tendency of the chemical solution pH specified by the pH change tendency identification unit. .
本態様によれば、混合槽に投入されている酸性溶液であるA液に対してアルカリ性溶液であるB液を投入して混合することにより薬液を製造する製造システムにおいて、制御装置のpH変化傾向特定部にてB液の投入速度低減後の薬液pHの変化傾向が特定され、速度切替目安pH設定部にて薬液pHの変化傾向に基づいて目標pHから逆算して速度切替目安pHが設定され、B液投入速度切替部にて薬液pHが速度切替目安pHとなった段階でB液の投入速度を低減することにより、B液投入に用いられているポンプによる投入速度低減後に時間差をもって薬液pHが変化した場合でも、高精度に目標pHの薬液を製造することが可能になる。 According to this aspect, in a manufacturing system for producing a chemical liquid by adding and mixing liquid B, which is an alkaline solution, with liquid A, which is an acidic solution, which is added to a mixing tank, the pH change tendency of the control device The specifying unit specifies the change tendency of the chemical solution pH after the introduction speed of the liquid B is reduced, and the speed switching target pH setting unit calculates back from the target pH based on the change trend of the chemical solution pH and sets the speed switching target pH. , By reducing the injection speed of liquid B at the stage when the chemical solution pH reaches the speed switching reference pH in the liquid B injection speed switching unit, the chemical solution pH Even when is changed, it is possible to manufacture a chemical solution with a target pH with high accuracy.
本発明の薬液製造方法及び薬液製造システムによれば、材料コストを増加させることなく、高精度にpH調節された薬液を製造することができる。 According to the chemical solution manufacturing method and the chemical solution manufacturing system of the present invention, it is possible to manufacture a chemical solution whose pH is adjusted with high accuracy without increasing the material cost.
以下、各実施形態に係る薬液製造システムと薬液製造方法について、添付の図面を参照しながら説明する。尚、本明細書及び図面において、実質的に同一の構成要素については、同一の符号を付することにより重複した説明を省く場合がある。 Hereinafter, a chemical solution manufacturing system and a chemical solution manufacturing method according to each embodiment will be described with reference to the accompanying drawings. In addition, in the present specification and drawings, substantially the same components may be denoted by the same reference numerals, thereby omitting duplicate descriptions.
[実施形態]
<薬液製造システムの全体構成>
まず、図1及び図2を参照して、実施形態に係る薬液製造システムの一例の全体構成について説明する。ここで、図1は、実施形態に係る薬液製造システムの一例の全体構成を示す図であり、図2は、薬液製造システムを構成する制御装置のハードウェア構成の一例を示す図である。
[Embodiment]
<Overall configuration of chemical manufacturing system>
First, with reference to FIGS. 1 and 2, an overall configuration of an example of a chemical manufacturing system according to an embodiment will be described. Here, FIG. 1 is a diagram showing the overall configuration of an example of the chemical manufacturing system according to the embodiment, and FIG. 2 is a diagram showing an example of the hardware configuration of a control device that constitutes the chemical manufacturing system.
薬液製造システム60(60A)は、酸性溶液であるA液を作液するA液作液装置10と、アルカリ性溶液であるB液を作液するB液作液装置20と、A液とB液を混合して薬液を製造する混合装置30と、制御装置50(50A)とを有する。薬液製造システム60(60A)は、例えば薬液注入工法が適用される現場において構築され、薬液製造システム60(60A)にて製造された薬液は、図示例のように薬液貯留槽へ送液されて貯留されたり、薬液貯留槽へ送液されることなく、地盤へ直接注入される。尚、第1実施形態に係る薬液製造システム60の備える制御装置50と、第2実施形態に係る薬液製造システム60Aの備える制御装置50Aのそれぞれの機能構成に関しては、以下で詳説する。
The chemical solution manufacturing system 60 (60A) includes a
A液は、造粒シリカ材料(シリカコロイド)と、酸性反応材と、水とを含み、酸性反応材として例えば硫酸が適用される。一方、B液は、水ガラス系材料(水ガラスを主材とした材料)と水とを含み、水ガラス系材料には無機系材料と有機系材料が含まれる。例えば、強酸のA液に対して弱アルカリ性のB液を投入することにより弱酸の遊離が生じ、珪酸の沈殿により混合液をゲル化することができる。また、A液が造粒シリカ材料を含むことから、ゲルにより土粒子を固結させた後、ゲルからシリカが溶脱することを抑制できる。 Liquid A contains a granulated silica material (silica colloid), an acidic reactant, and water, and sulfuric acid, for example, is applied as the acidic reactant. On the other hand, liquid B contains water glass-based materials (materials containing water glass as the main component) and water, and water glass-based materials include inorganic materials and organic materials. For example, by adding a weakly alkaline liquid B to a strong acid liquid A, the weak acid is liberated, and silicic acid precipitates to gel the mixed liquid. Moreover, since the liquid A contains the granulated silica material, it is possible to suppress the leaching of silica from the gel after the soil particles are solidified by the gel.
A液作液装置10は、A液撹拌槽14とA液貯留槽15とを備え、A液撹拌槽14には、構成材料槽11,12,13からそれぞれ、不図示の送液ポンプを介して造粒シリカ材料と酸性反応材と水が供給される。そして、造粒シリカ材料と酸性反応材と水がA液撹拌槽14にて撹拌されることによりA液が作液され、作液されたA液がA液貯留槽15に貯留される。
The
A液撹拌槽14は、モータ17aと、モータ17aの駆動により回転する撹拌翼17bとにより構成される撹拌機17を備えており、撹拌翼17bの回転にてA液の構成材料を撹拌することによりA液を作液する。また、A液貯留槽15には、モータ18aと、モータ18aの駆動により回転する撹拌翼18bとにより構成される撹拌機18と、貯留するA液のpH(pH値)を計測するpH計19とが設けられており、撹拌機18にて再度撹拌されたA液のpHがpH計19にて計測され、計測データは制御装置50(50A)に随時送信されるようになっている。尚、少なくとも混合槽31にpH計33が設けられていればよいことから、pH計19が取り付けられていない形態であってもよい。
The liquid
一方、B液作液装置20は、B液撹拌槽23とB液貯留槽24とを備え、B液撹拌槽23には、構成材料槽21,22からそれぞれ、不図示の送液ポンプを介して水ガラス系材料と水が供給される。そして、水ガラス系材料と水がB液撹拌槽23にて撹拌されることによりB液が作液され、作液されたB液がB液貯留槽24に貯留される。
On the other hand, the B-
B液撹拌槽23は、モータ26aと、モータ26aの駆動により回転する撹拌翼26bとにより構成される撹拌機26とを備えており、撹拌翼26bの回転にてB液の構成材料を撹拌することによりB液を作液する。また、B液貯留槽24には、モータ27aと、モータ27aの駆動により回転する撹拌翼27bとにより構成される撹拌機27と、貯留するB液のpH(pH値)を計測するpH計28とが設けられており、撹拌機27にて再度撹拌されたB液のpHがpH計28にて計測され、計測データは制御装置50(50A)に随時送信されるようになっている。尚、少なくとも混合槽31にpH計33が設けられていればよいことから、pH計28が取り付けられていない形態であってもよい。
The liquid
A液作液装置10は、A液送液管41を介して混合装置30を構成する混合槽31に通じており、A液貯留槽15に貯留されているA液は、A液送液管41を介して混合槽31に供給(投入)される。ここで、A液送液管41には、送液ポンプ42(ポンプの一例)と流量計43が介在しており、制御装置50(50A)により送液ポンプ42の駆動制御や駆動停止制御が実行され、流量計43にて計測されたA液送液量に関する計測データが制御装置50(50A)に送信されるようになっている。尚、混合槽31に対して最初に所定量のA液が投入されることから、例えば制御装置50(50A)に対してA液の投入量が現場管理者等により入力されており、現場管理者が例えば制御装置50(50A)に備えてある送液ポンプ42の駆動スイッチをON制御することにより、送液ポンプ42にて混合槽31へA液が送液される。このA液の送液の過程で流量計43にて計測される計測データに基づき、制御装置50(50A)は所定量のA液が混合槽31へ送液された段階(もしくは所定量の送液を見越した前段階)で送液ポンプ42の駆動を停止する制御を実行する。
The
B液作液装置20は、二系統のB液送液管44,47を介して混合槽31に通じており、B液貯留槽24に貯留されているB液は、B液送液管44,47を介して混合槽31に供給(投入)される。ここで、B液送液管44,47にはそれぞれ、送液ポンプ45,48(ポンプの一例)と流量計46,49が介在しており、制御装置50(50A)により送液ポンプ45,48の駆動制御や駆動停止制御が実行され、流量計46,49にて計測された計測データが制御装置50(50A)に送信されるようになっている。
The B-
例えば、一方のB液送液管44が相対的に大容量のB液を送液し、他方のB液送液管47が相対的に小容量のB液を送液するように設定されており、B液の送液量の微調整の際には送液ポンプ48を制御することにより、B液送液管47を介して送液されるB液の送液量を調整する制御が実行できる。また、例えば、B液送液管44、47の双方からB液を送液し、あるタイミングで一方の送液管からのB液の送液を停止することにより、混合槽31へのB液投入量を低減することができる。尚、図示例では、二系統のB液送液管44,47が設けられているが、三系統以上のB液送液管を備えたシステムであってもよい。
For example, one B
混合装置30は、混合槽31と、三基の撹拌機32とを有し、それぞれの撹拌機32は、モータ32aと、モータ32aの駆動により回転する撹拌翼32bとにより構成される。混合装置30は、混合槽31において、A液作液装置10から投入されているA液に対して、B液作液装置20から随時B液が投入され、各撹拌機32によりA液とB液を撹拌することにより、混合液である薬液を製造する。尚、A液撹拌槽14やB液撹拌槽23に比べて混合槽31は大容量であることから、三基の撹拌機32が設けられているが、撹拌機32は二基、四基以上等、混合槽31の大きさに応じた好適な数が設定されるのがよい。
The mixing
また、混合槽31にはpH計33が設けられており、B液の投入により随時製造される薬液のpHを都度測定し、測定データが制御装置50(50A)に送信されるようになっている。尚、図示例では、一台のpH計33が設けられているが、複数台(例えば四台等)のpH計33が設けられてもよい。
Further, the mixing
混合槽31に所定量のA液が投入された後、B液が複数種の投入制御方法により投入されるようになっており、このB液の投入制御形態に応じて、送液ポンプ45,48の制御方法が相違する。以下、相違する二種類の制御を実行する二種類の制御装置50,50Aを有する薬液製造システム60,60Aとして説明するが、一つの薬液製造システムの制御装置において、複数種のB液投入制御方法を切換え制御可能なシステムであってもよい。
After a predetermined amount of A liquid is introduced into the mixing
次に、図2を参照して、制御装置50(50A)のハードウェア構成の一例について説明する。図2に示すように、制御装置50(50A)は、パーソナルコンピュータ(PC:Personal Computer)等の情報処理装置(コンピュータ)により構成される。 Next, an example of the hardware configuration of the control device 50 (50A) will be described with reference to FIG. As shown in FIG. 2, the control device 50 (50A) is configured by an information processing device (computer) such as a personal computer (PC).
制御装置50(50A)を構成するコンピュータは、接続バス56により相互に接続されているCPU(Central Processing Unit)51、主記憶装置52、補助記憶装置53、入出力IF(interface)54、及び通信IF55を備えている。主記憶装置52と補助記憶装置53は、コンピュータが読み取り可能な記録媒体である。尚、上記の構成要素はそれぞれ個別に設けられてもよいし、一部の構成要素を設けないようにしてもよい。
A computer constituting the control device 50 (50A) includes a CPU (Central Processing Unit) 51, a
CPU51は、MPU(Microprocessor)やプロセッサとも呼ばれ、CPU51は、単一のプロセッサであってもよいし、マルチプロセッサであってもよい。CPU51は、コンピュータからなる制御装置50(50A)の全体の制御を行う中央演算処理装置である。CPU51は、例えば、補助記憶装置53に記憶されたプログラムを主記憶装置52の作業領域にて実行可能に展開し、プログラムの実行を通じて周辺機器の制御を行うことにより、所定の目的に合致した機能を提供する。
The
主記憶装置52は、CPU51が実行するコンピュータプログラムや、CPU51が処理するデータ等を記憶する。主記憶装置52は、例えば、フラッシュメモリ、RAM(Random Access Memory)やROM(Read Only Memory)を含む。補助記憶装置53は、各種のプログラム及び各種のデータを読み書き自在に記録媒体に格納し、外部記憶装置とも呼ばれる。補助記憶装置53には、例えば、OS(Operating System)、各種プログラム、各種テーブル等が格納される。OSは、例えば、通信IF55を介して接続される外部装置等とのデータの受け渡しを行う通信インターフェースプログラムを含む。外部装置等には、例えば、ネットワークに接続する作業所(管理棟)にあるパーソナルコンピュータ(図示せず)等が含まれる。すなわち、現場にて製造された薬液に関する種々のデータは、ネットワークを介して作業所等に搭載されているパーソナルコンピュータに無線通信等により送信され、作業所のコンピュータに薬液製造に関する種々のデータが保存される。
The
補助記憶装置53は、例えば、主記憶装置52を補助する記憶領域として使用され、CPU51が実行するコンピュータプログラムや、CPU51が処理するデータ等を記憶する。補助記憶装置53は、不揮発性半導体メモリ(フラッシュメモリ、EPROM(Erasable Programmable ROM))を含むシリコンディスク、ハードディスクドライブ(HDD:Hard Disk Drive)装置、ソリッドステートドライブ装置等である。また、補助記憶装置53として、CDドライブ装置、DVDドライブ装置、BDドライブ装置といった着脱可能な記録媒体の駆動装置が例示され、着脱可能な記録媒体として、CD、DVD、BD、USB(Universal Serial Bus)メモリ、SD(Secure Digital)メモリカード等が例示される。
The
入出力IF54は、制御装置50(50A)に接続する機器との間でデータの入出力を行うインターフェイスである。入出力IF54には、例えば、キーボード、タッチパネルやマウス等のポインティングデバイス、マイクロフォン等の入力デバイス等が接続する。制御装置50(50A)は、入出力IF54を介して、入力デバイスを操作する操作者からの操作指示等を受け付ける。 The input/output IF 54 is an interface for inputting/outputting data with devices connected to the control device 50 (50A). The input/output IF 54 is connected to, for example, a keyboard, a pointing device such as a touch panel or a mouse, and an input device such as a microphone. The control device 50 (50A) receives, via the input/output IF 54, an operation instruction or the like from an operator who operates an input device.
また、入出力IF54には、例えば、液晶パネル(LCD:Liquid Crystal Display)や有機ELパネル(EL:Electroluminescence)等の表示デバイス、プリンタ、スピーカ等の出力デバイスが接続される。例えば、制御装置50(50A)において、設定されている目標pHと、pH計33により計測された計測データ(薬液pH)とが入出力IF54を構成する表示デバイスに同時に表示されることにより、工事管理者等は、混合装置30にて製造されている薬液の薬液pHと目標pHとを同時に視認し、双方を比較することができる。
Further, the input/output IF 54 is connected to, for example, a display device such as a liquid crystal panel (LCD) or an organic EL panel (EL: Electroluminescence), and an output device such as a printer and a speaker. For example, in the control device 50 (50A), by simultaneously displaying the set target pH and the measurement data (chemical solution pH) measured by the
通信IF55は、制御装置50(50A)が接続するネットワークとのインターフェイスである。通信IF55は、インターネット等の公衆ネットワーク、携帯電話網等の無線ネットワーク、VPN(Virtual Private Network)等の専用ネットワーク、LAN(Local Area Network)等、様々なネットワークを介して、作業所にあるパーソナルコンピュータ等に薬液を製造する過程で得られる様々なデータを送信する。 Communication IF 55 is an interface with a network to which control device 50 (50A) is connected. The communication IF 55 communicates with a personal computer in the workplace via various networks such as a public network such as the Internet, a wireless network such as a mobile phone network, a dedicated network such as a VPN (Virtual Private Network), a LAN (Local Area Network), and the like. Various data obtained in the process of manufacturing chemical solutions are transmitted to
<第1実施形態に係る薬液製造システムと薬液製造方法>
次に、図3乃至図6を参照して、第1実施形態に係る薬液製造システムと薬液製造方法の一例について説明する。ここで、図3は、第1実施形態に係る薬液製造システムを構成する制御装置の機能構成の一例を示す図である。また、図4は、B液投入停止後のB液流入と薬液pHの変化に関する実験結果を示す図であり、図5は、停止目安pHの設定の際に適用されるグラフを示す図である。さらに、図6は、第1実施形態に係る薬液製造方法の一例のフローチャートである。
<Chemical Solution Manufacturing System and Chemical Solution Manufacturing Method According to First Embodiment>
Next, an example of a chemical liquid manufacturing system and a chemical liquid manufacturing method according to the first embodiment will be described with reference to FIGS. 3 to 6. FIG. Here, FIG. 3 is a diagram showing an example of the functional configuration of the control device that constitutes the chemical manufacturing system according to the first embodiment. FIG. 4 is a diagram showing experimental results regarding the inflow of liquid B and changes in chemical solution pH after the supply of liquid B is stopped, and FIG. 5 is a diagram showing a graph applied when setting the reference pH for stopping. . Furthermore, FIG. 6 is a flow chart of an example of the chemical manufacturing method according to the first embodiment.
図3に示すように、薬液製造システム60を構成する制御装置50は、CPU51によるプログラムの実行により、少なくとも、計測データ取得部502、pH変化傾向特定部504、停止目安pH設定部506、B液投入停止部508,及び格納部510の各種機能を提供する。尚、上記処理機能の少なくとも一部が、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)等によって提供されてもよく、同様に、上記処理機能の少なくとも一部が、FPGA(Field-Programmable Gate Array)、数値演算プロセッサ、画像処理プロセッサ等の専用LSI(large scale integration)やその他のデジタル回路等であってもよい。
As shown in FIG. 3 , the
計測データ取得部502は、pH計19,28,33により計測されたA液、B液、及び混合液(薬液)のpHに関する計測データを受信し、格納部510に格納する。尚、pH計19,28を備えていない場合は、pH計33により計測された混合液のpHに関する計測データのみが受信される。
The measurement
pH変化傾向特定部504は、A液が所定量投入されている混合装置30に対してB液を随時投入し、B液投入停止後の薬液pHの変化傾向を特定する。
The pH change
ここで、図4は、本発明者等により行われた実験の中で、B液の投入を停止した後の、混合槽内の薬液pHの変化傾向(pH落差)を検証した実験結果を示すグラフである。本実験では、B液の投入停止pHを3.2に設定し、混合槽内のpH計が3.2となった段階(B液投入量が395.7Lとなった段階)でB液の投入を停止した。この結果、混合槽内の薬液pHは僅かな時間後に目標pHから大きく変化することが実証されている。 Here, FIG. 4 shows the results of an experiment conducted by the inventors of the present invention, in which the change tendency (pH drop) of the chemical solution pH in the mixing tank after stopping the injection of the B solution was verified. graph. In this experiment, the stop pH of liquid B was set to 3.2, and when the pH meter in the mixing tank reached 3.2 (when the amount of liquid B introduced was 395.7 L), liquid B was added. Stopped injection. As a result, it has been demonstrated that the pH of the chemical solution in the mixing tank greatly changes from the target pH after a short period of time.
B液送液管内の残存液によるpH増加程度は、混合液(薬液)のpH水準に依存して変化することから、仮に残存液量が一律に定まったとしてもpHの補正量は一定にはならない。さらに、液量に起因するpH落差が完了した後は、時間差で混合液の撹拌による均一化が生じ、それによるpH増加が生じる。薬液pHの目標pH超過を防ぐには、B液投入停止後のpH変化を把握し、定式化して、特定された関係式に基づいてB液の投入停止の目安となる薬液pH(送液ポンプの停止タイミング)を決定することが有効となる。 Since the degree of pH increase due to the residual liquid in the liquid B liquid delivery pipe changes depending on the pH level of the mixed liquid (chemical liquid), even if the residual liquid amount is uniformly fixed, the pH correction amount will not be constant. not. Furthermore, after the pH drop caused by the liquid volume is completed, the mixed liquid is agitated for homogenization with a time lag, resulting in an increase in pH. In order to prevent the chemical solution pH from exceeding the target pH, the pH change after the supply of liquid B is stopped is grasped, formulated, and based on the specified relational expression, the chemical solution pH (liquid feed pump It is effective to determine the stop timing of
そこで、pH変化傾向特定部504では、製造条件に固有の以下の式(Q1)に基づいて、もしくは、式(Q1)を示す図5に基づいて、薬液pHの変化傾向を特定する。尚、以下の式(Q1)は、pH落差補正チャートと称することもできる。
Therefore, the pH change
図5に示すように、式(Q1)の導出は、運用前のキャリブレーションで確認されたB液投入停止時の薬液pHと実績pHとの関係(三点の黒丸)に基づいて行っており、実際の作液におけるB液投入停止時の薬液pHと実績pHの関係(一点の白丸)を式(Q1)のグラフ上にプロットし、式(Q1)の妥当性を確認している。 As shown in FIG. 5, the formula (Q1) is derived based on the relationship (three black circles) between the chemical solution pH and the actual pH when the addition of liquid B is stopped, which was confirmed in the calibration before operation. , the relationship between the chemical solution pH and the actual pH (single white circle) when the addition of the B solution is stopped in the actual solution is plotted on the graph of the formula (Q1) to confirm the validity of the formula (Q1).
図5に示すように、B液投入停止時の薬液pHが2.94未満の範囲では、B液投入停止時の薬液pHは目標pHと同じになる(y=x)ことが分かり、B液投入停止時の薬液pHが2.94以上の範囲において、目標pHを達成するためのB液投入停止時の薬液pHを関係式(式(Q1))に基づいて特定する必要があることが分かる。 As shown in FIG. 5, it can be seen that in the range where the pH of the chemical solution when the addition of liquid B is stopped is less than 2.94, the pH of the chemical solution when the addition of liquid B is stopped is the same as the target pH (y=x). It can be seen that it is necessary to specify the chemical solution pH at the time when the addition of liquid B is stopped in order to achieve the target pH in the range where the chemical solution pH is 2.94 or more at the time when the addition is stopped based on the relational expression (formula (Q1)). .
停止目安pH設定部506は、B液の投入を停止する際の目安となる停止目安pHを設定する。ここで、停止目安pH設定部506では、pH変化傾向特定部504において特定された薬液pHの変化傾向に基づいて、目標pHから逆算することにより停止目安pHを設定する。例えば、pH変化傾向特定部504において作成されている図5に示すグラフを参照して、製造される薬液の目標pHが3.5の際には、縦軸の作液実績pH3.5を関係式のyに代入し、このy値に対応するB液停止時の薬液pHを示すx値を特定することにより、この例ではB液投入停止時の薬液pHを3.3と特定することができる。
A stop target
格納部510には目標pHが格納されており、この目標pHの薬液を製造するべく、停止目安pH設定部506にて設定されたB液投入停止時の薬液pHも格納部510に格納される。また、格納部510には、混合槽31に対してB液が随時投入される過程において、計測される薬液pHの計測データが計測データ取得部502にて取得され、格納部510に随時格納される。
A
B液投入停止部508は、格納部510に格納されている目標pHと、随時pHが上昇する薬液pH(計測データ)とを比較し、薬液pHが投入停止目安pHとなった際に、現在駆動している送液ポンプ45,48の駆動を停止する停止信号を双方のポンプに送信し、ポンプの駆動を停止させる。
The liquid B
送液ポンプ45,48の駆動停止後、一定時間の間はB液送液管44,47から残存液が混合槽31に送液されることから、pH計33による計測と計測データの制御装置50への送信が継続され、計測された薬液pHが一定値に収斂した際に制御装置50による制御を終了する。
After the driving of the liquid-sending
制御装置50を備えた薬液製造システム60によれば、制御装置50のpH変化傾向特定部504にてB液の投入停止後の薬液pHの変化傾向が特定され、停止目安pH設定部506にて薬液pHの変化傾向に基づいて目標pHから逆算して停止目安pHが設定され、B液投入停止部508にて薬液pHが停止目安pHとなった段階でB液の投入を停止することにより、B液投入に用いられているポンプ停止後に時間差をもって薬液pHが変化した場合でも、高精度に目標pHの薬液を製造することが可能になる。
According to the chemical
次に、図6を参照して、第1実施形態に係る薬液製造方法の一例について説明する。薬液製造方法では、まず、製造される薬液の目標pHの設定を行う。この目標pHは、薬液製造からゲル化に至るまでの時間(ゲルタイム)に基づいて設定する(以上、目標pH設定工程(ステップS102))。 Next, an example of the chemical manufacturing method according to the first embodiment will be described with reference to FIG. In the chemical solution manufacturing method, first, the target pH of the chemical solution to be manufactured is set. This target pH is set based on the time (gel time) from the manufacture of the drug solution to gelation (the above is the target pH setting step (step S102)).
次に、B液の投入停止後の薬液pHの変化傾向を特定する。既に説明したように、運用前のキャリブレーションで確認されたB液投入停止時の薬液pHと実績pHとの関係や、実際の作液により特定されたB液投入停止時の薬液pHと実績pHの関係に基づき、製造条件に固有の式(Q1)や式(Q1)を示す図5等を特定する。 Next, the change tendency of the pH of the chemical solution after stopping the injection of the B solution is specified. As already explained, the relationship between the chemical solution pH when the addition of liquid B was stopped and the actual pH, which was confirmed in the calibration before operation, and the chemical solution pH and the actual pH when the addition of liquid B was stopped, which was specified by the actual liquid production. Based on the relationship, the formula (Q1) specific to the manufacturing conditions and FIG. 5 showing the formula (Q1) are identified.
特定された図5等に示される式(Q1)を参照して、目標pHに対応する薬液pHを特定し、ここで特定された薬液pHを、B液の投入を停止する際の目安となる停止目安pHとして設定する(以上、pH変化傾向特定工程(ステップS104))。 The chemical solution pH corresponding to the target pH is specified by referring to the specified formula (Q1) shown in FIG. It is set as a stop reference pH (the above is the pH change tendency identifying step (step S104)).
次に、混合装置30を形成する混合槽31に所定量のA液を投入し、混合槽31にB液を随時投入し、混合槽31内を撹拌機32にて撹拌することにより、薬液を製造する。この薬液製造過程では、混合槽31内に設けられているpH計33により、薬液pHを随時計測する(以上、作液計測工程(ステップS106))。
Next, a predetermined amount of liquid A is put into the mixing
次に、随時計測される薬液pHが、既に設定されている停止目安pHとなった段階で、混合槽31へのB液の投入を停止する(B液投入停止工程(ステップS108))。B液投入停止後も、混合槽31内の撹拌と薬液pHの計測を継続し、一定時間が経過して薬液pHが一定値に収斂した段階で薬液の製造を終了する。一定値に収斂した薬液pHは目標pHとなっており、所定量の目標pHの薬液が製造される。
Next, when the pH of the chemical solution, which is measured at any time, reaches the preset stop reference pH, the injection of the B liquid into the mixing
以上で説明する薬液製造方法によれば、pH変化傾向特定工程にてB液の投入停止後の薬液pHの変化傾向を特定しておき、薬液pHが、薬液pHの変化傾向に基づいて目標pHから逆算された停止目安pHとなった段階でB液の投入を停止することにより、B液投入に用いられているポンプ停止後に時間差をもって薬液pHが変化した場合でも、高精度に目標pHの薬液を製造することが可能になる。 According to the chemical solution manufacturing method described above, the chemical solution pH change tendency after the supply of liquid B is stopped is specified in the pH change trend specifying step, and the chemical solution pH is set to the target pH based on the chemical solution pH change trend. By stopping the injection of liquid B at the stage when it reaches the target pH for stopping calculated backward from the can be manufactured.
<第2実施形態に係る薬液製造システムと薬液製造方法>
次に、図7乃至図12を参照して、第2実施形態に係る薬液製造システムと薬液製造方法の一例について説明する。ここで、図7は、第2実施形態に係る薬液製造システムを構成する制御装置の機能構成の一例を示す図である。また、図8は、B液の投入速度を低減した際の薬液pHの変化に関する実験結果を示す図であり、図9は、一次投入から三次投入まで三段階に投入速度を切替える制御において、速度切替目安pHの設定の際に適用されるグラフを示す図であって、図9(a)は、三次投入の際(二次投入完了時)の速度切替目安pHの設定の際に適用されるグラフを示す図であり、図9(b)は、二次投入の際(一次投入完了時)の速度切替目安pHの設定の際に適用されるグラフを示す図である。さらに、図12は、第2実施形態に係る薬液製造方法の一例のフローチャートである。
<Chemical Solution Manufacturing System and Chemical Solution Manufacturing Method According to Second Embodiment>
Next, an example of a chemical manufacturing system and a chemical manufacturing method according to the second embodiment will be described with reference to FIGS. 7 to 12. FIG. Here, FIG. 7 is a diagram showing an example of the functional configuration of a control device that constitutes the chemical manufacturing system according to the second embodiment. FIG. 8 is a diagram showing experimental results regarding changes in the pH of the chemical solution when the charging speed of the B liquid is reduced. FIG. FIG. 9A is a diagram showing a graph applied when setting the reference pH for switching, and FIG. 9A is applied when setting the reference pH for speed switching at the time of tertiary charging (at the completion of secondary charging). FIG. 9B is a diagram showing a graph, and FIG. 9B is a diagram showing a graph applied when setting the reference pH for speed switching at the time of secondary charging (at the time of completion of primary charging). Furthermore, FIG. 12 is a flow chart of an example of a chemical manufacturing method according to the second embodiment.
図7に示すように、薬液製造システム60Aを構成する制御装置50Aは、CPU51によるプログラムの実行により、少なくとも、計測データ取得部502、pH変化傾向特定部504A、速度切替目安pH設定部512、B液投入速度切替部514,及び格納部510の各種機能を提供する。
As shown in FIG. 7, the
計測データ取得部502は、pH計19,28,33により計測されたA液、B液、及び混合液(薬液)のpHに関する計測データを受信し、格納部510に格納する。尚、pH計19,28を備えていない場合は、pH計33により計測された混合液のpHに関する計測データのみが受信される。
The measurement
pH変化傾向特定部504Aは、A液が所定量投入されている混合装置30に対してB液を随時投入し、B液の段階的な投入速度の低減後の薬液pHの変化傾向を特定する。
The pH change tendency identification unit 504A continuously introduces B liquid into the mixing
ここで、図8は、本発明者等により行われた実験の中で、B液の投入速度を低減した(切替えた)後の、混合槽内の薬液pHの変化傾向(pH落差)を検証した実験結果を示すグラフである。本実験では、混合槽へのB液の投入量が380Lとなった段階でそれまでのB液の投入速度24L/minの低減を開始し、381.5L付近となった段階で2L/minに低減させている。この結果、B液の投入速度が2L/minに到達した直後に薬液pHは顕著に増加し、その後暫くして一定の増加傾向に漸近する傾向が見られた。これは、先行の投入速度24L/min(先行工程)のpH落差によって次の投入速度2L/min(次工程)のB液量増分に対するpH増分が一時的に上昇し、その後にpH落差の影響が収束することにより、投入速度2L/minに応じたpH増加傾向に移行したものと推察される。 Here, FIG. 8 verifies the change tendency (pH difference) of the chemical solution pH in the mixing tank after reducing (switching) the charging speed of the B solution in the experiment conducted by the present inventors. It is a graph which shows the experimental result which carried out. In this experiment, when the amount of liquid B introduced into the mixing tank reached 380 L, the injection rate of liquid B was started to be reduced from 24 L/min, and when the amount reached around 381.5 L, the rate was reduced to 2 L/min. are reducing. As a result, the pH of the chemical solution increased markedly immediately after the charging speed of the B solution reached 2 L/min, and after a while, there was a tendency to asymptotically approach a constant increasing trend. This is because the pH drop at the preceding feeding rate of 24 L/min (preceding process) temporarily increases the pH increment relative to the B liquid volume increment at the next feeding rate of 2 L/min (next process), and then the effect of the pH drop. By converging, it is inferred that the pH shifted to an increasing tendency according to the charging rate of 2 L/min.
そこで、pH変化傾向特定部504Aでは、製造条件に固有の以下の式(Q2)、もしくは式(Q2)を示す図9に基づいて、薬液pHの変化傾向を特定する。尚、以下の式(Q2)も式(Q1)と同様、pH落差補正チャートと称することもできる。 Therefore, the pH change tendency identification unit 504A identifies the change tendency of the chemical solution pH based on the following formula (Q2) specific to the manufacturing conditions or FIG. 9 showing the formula (Q2). The following formula (Q2) can also be referred to as a pH difference correction chart, like formula (Q1).
図示例では、B液の投入速度を、一次投入、二次投入、及び三次投入の三段階で低減(切替え)する例を示しており、運用前のキャリブレーションで確認されたB液投入速度切替時の薬液pHと、その後の薬液pHの落差影響が安定した時点での薬液pHの関係を導出している。ここで、図9は、一次投入から三次投入まで三段階に投入速度を切替える制御において、速度切替目安pHの設定の際に適用されるグラフを示す図であって、図9(a)は、三次投入の際(二次投入完了時)の速度切替目安pHの設定の際に適用されるグラフを示す図であり、図9(b)は、二次投入の際(一次投入完了時)の速度切替目安pHの設定の際に適用されるグラフを示す図である。 The illustrated example shows an example in which the injection speed of liquid B is reduced (switched) in three steps of primary injection, secondary injection, and tertiary injection. The relationship between the pH of the chemical solution at that time and the pH of the chemical solution at the time when the effect of the drop in the pH of the chemical solution is stabilized is derived. Here, FIG. 9 is a diagram showing a graph applied when setting the reference pH for speed switching in the control of switching the charging speed in three steps from the primary charging to the tertiary charging. FIG. FIG. 9B is a diagram showing a graph applied when setting the speed switching target pH at the time of tertiary charging (when secondary charging is completed), and FIG. FIG. 10 is a diagram showing a graph applied when setting a reference pH for speed switching;
速度切替目安pH設定部512は、B液の投入速度を段階的に低減する(切替える)際の目安となる速度切替目安pHを設定する。ここで、速度切替目安pH設定部512では、pH変化傾向特定部504Aにおいて特定された薬液pHの変化傾向に基づいて、目標pHから逆算することにより速度切替目安pHを設定する。例えば、pH変化傾向特定部504Aにおいて作成されている図9に示すグラフを参照して、各切替段階におけるB液投入切替時の薬液pHを特定する。B液投入停止時の目標pH(図示例の三段階の投入速度減速において、最後の三次投入停止の目安となる停止目安pH)を3.32に設定した場合、図9(a)に示すように、二次投入が完了する際の薬液pHが2.56と特定される。そして、図9(b)に示すように、二次投入が完了する際の薬液pHが2.56と特定されている場合において、一次投入が完了する際の薬液pHが2.23と特定される。
The speed switching reference
格納部510には目標pHが格納されており、この目標pHの薬液を製造するべく、速度切替目安pH設定部512にて特定されたB液投入速度切替時の薬液pHも格納部510に格納される。尚、図示例では、B液の投入速度の切替えを三段階に亘り実行することから、一次投入完了時と二次投入完了時の二つの速度切替目安pHが格納部510に格納される。また、格納部510には、混合槽31に対してB液が随時投入される過程において、計測される薬液pHの計測データが計測データ取得部502にて取得され、格納部510に随時格納される。
A target pH is stored in the
B液投入速度切替部514は、格納部510に格納されている目標pHと、随時pHが上昇する薬液pH(計測データ)とを比較し、薬液pHが速度切替目標pHとなった際に、現在駆動している送液ポンプ45,48のいずれか一方の駆動を停止する信号を該当するポンプに送信し、該当するポンプの駆動を停止することにより、混合槽31へ投入されるB液の投入速度を低減する。尚、B液の投入速度の他の低減方法として、送液ポンプ45,48のいずれか一方の送液量を低減する制御が実行されてもよい。この制御においては、例えばポンプ内にある流量弁(図示せず)の開度を調整して開度を小さくすること等により、送液量の低減制御を実行できる。
The liquid B introduction
図示例では、三次投入の終了目安となる薬液pH3.32となった段階でB液の投入を停止する制御を実行し、撹拌機32による撹拌とpH計33による計測と計測データの制御装置50Aへの送信を継続する。そして、計測された薬液pHが一定値に収斂した際に制御装置50Aによる制御を終了する。
In the illustrated example, the
制御装置50Aを備えた薬液製造システム60Aによれば、pH変化傾向特定部504AにてB液の投入速度を段階的に低減しながら該B液を投入する際の投入速度の低減後の薬液pHの変化傾向を特定しておき、薬液pHが、薬液pHの変化傾向に基づいて目標pHから逆算された速度切替目安pHとなった段階で、B液投入速度切替部514がB液の投入速度を低減することにより、B液投入に用いられているポンプによる投入速度低減後に時間差をもって薬液pHが変化した場合でも、高精度に目標pHの薬液を製造することが可能になる。
According to the chemical
ここで、B液の投入速度低減制御に関し、薬液pHの上昇に応じたB液の投入速度が本発明者等による検証により具体的に規定されている。このことを、図10及び図11を参照して説明する。ここで、図10は、滴定曲線を説明する図であり、図11は、薬液pHの上昇とB液の投入速度の低減割合との関係を示すグラフである。 Here, regarding the injection speed reduction control of the B liquid, the injection speed of the B liquid according to the increase in the pH of the chemical solution is specifically defined by verification by the present inventors. This will be described with reference to FIGS. 10 and 11. FIG. Here, FIG. 10 is a diagram for explaining a titration curve, and FIG. 11 is a graph showing the relationship between the increase in chemical solution pH and the rate of decrease in the introduction rate of liquid B. As shown in FIG.
作液過程の薬液pHは,図10の概念図に示すように、酸性領域から中性領域にかけての中和滴定曲線に類する傾向を示し、B液の投入が進行して薬液pHが上昇するに従い、B液の投入量に対する薬液pHの増加量は指数関数的に大きくなる。pHの定義と本発明者等による実験結果を示す図11に示す観察事実に基づけば、B液投入速度を一定とした場合、混合液のpH水準が1増加するごとに単位時間当たりのpH増加量は概ね10倍になる。このことから、作液過程の全般に亘り単位時間当たりのpH増加量を安定させながらpH調節の際の精度を確保するには、混合液のpH水準が1増加するごとにB液の投入速度を1/10程度に順次低減することが有効であることが分かった。尚、ここでの「1/10」は、1/10の近傍を含むものであり、1/9乃至1/11程度の範囲が「1/10」に含まれるものとする。 As shown in the conceptual diagram of FIG. 10, the chemical solution pH in the solution preparation process shows a tendency similar to the neutralization titration curve from the acidic region to the neutral region. , the amount of increase in chemical solution pH with respect to the input amount of solution B increases exponentially. Based on the definition of pH and the observed facts shown in FIG. Approximately 10 times the amount. For this reason, in order to stabilize the pH increase per unit time throughout the entire process of making the solution and to ensure the accuracy of pH adjustment, the injection speed of solution B should be It has been found that it is effective to sequentially reduce to about 1/10. Here, "1/10" includes the vicinity of 1/10, and the range of about 1/9 to 1/11 is included in "1/10".
次に、図12を参照して、第2実施形態に係る薬液製造方法の一例について説明する。薬液製造方法では、まず、製造される薬液の目標pHの設定を行う。この目標pHは、薬液製造からゲル化に至るまでの時間(ゲルタイム)に基づいて設定する(以上、目標pH設定工程(ステップS102))。 Next, with reference to FIG. 12, an example of a method for manufacturing a chemical liquid according to the second embodiment will be described. In the chemical solution manufacturing method, first, the target pH of the chemical solution to be manufactured is set. This target pH is set based on the time (gel time) from the manufacture of the drug solution to gelation (the above is the target pH setting step (step S102)).
次に、B液の投入速度を段階的に低減するに当たり、各投入速度軽減後の薬液pHの変化傾向を特定する。既に説明したように、運用前のキャリブレーションで確認されたB液投入速度低減時の薬液pHと実績pHとの関係等に基づき、製造条件に固有の式(Q2)や式(Q2)を示す図9等を特定する。 Next, in gradually reducing the introduction speed of liquid B, the change tendency of the chemical solution pH after each reduction in the introduction speed is specified. As already explained, formula (Q2) and formula (Q2) specific to the manufacturing conditions are shown based on the relationship between the chemical solution pH and the actual pH when the liquid B injection speed is reduced, which was confirmed in the calibration before operation. Identify FIG. 9 and the like.
特定された図9等に示される式(Q2)を参照して、目標pHの薬液を製造するための、各減速段階におけるB液投入速度低減時の薬液pHを特定し、ここで特定された薬液pHを、B液の投入速度を低減する際の目安となる速度切替目安pHとして設定する(以上、pH変化傾向特定工程(ステップS110))。 By referring to the specified formula (Q2) shown in FIG. The chemical solution pH is set as a reference speed switching reference pH that serves as a reference when reducing the introduction speed of liquid B (the above is the pH change tendency identification step (step S110)).
次に、混合装置30を形成する混合槽31に所定量のA液を投入し、混合槽31にB液を随時投入し、混合槽31内を撹拌機32にて撹拌することにより、薬液を製造する。この薬液製造過程では、混合槽31内に設けられているpH計33により、薬液pHを随時計測する。
Next, a predetermined amount of liquid A is put into the mixing
投入速度が最も早い(単位時間当たりのB液投入量が最も多い)一次投入の過程で、随時計測される薬液pHが、一次投入完了の目安となる速度切替目安pHとなった段階で、混合槽31へのB液の投入速度を減速し、二次投入に移行する。
In the process of primary injection, where the injection speed is the fastest (the amount of liquid B injected per unit time is the largest), when the chemical solution pH measured at any time reaches the speed switching reference pH, which is a guideline for the completion of the primary injection, mixing The charging speed of liquid B into the
次に、二次投入の過程で、二次投入完了の目安となる速度切替目安pHとなった段階で、混合槽31へのB液の投入速度をさらに減速し、三次投入に移行する。
Next, in the process of secondary charging, at the stage when the speed switching target pH, which serves as a guideline for completion of secondary charging, is reached, the charging speed of liquid B into the mixing
次に、三次投入の過程で、三次投入完了の目安となる速度切替目安pH(ここでは、B液の投入を終了するので、投入停止目安pHとも言う)となった段階で、混合槽31へのB液の投入を停止する(以上、作液計測工程(ステップS112))。
Next, in the process of tertiary charging, at the stage when the target pH for speed switching, which is a guideline for the completion of the tertiary charging (here, it is also referred to as the charging stop target pH because the charging of liquid B is completed), it is transferred to the
B液投入停止後も、混合槽31内の撹拌と薬液pHの計測を継続し、一定時間が経過して薬液pHが一定値に収斂した段階で薬液の製造を終了する。一定値に収斂した薬液pHは目標pHとなっており、所定量の目標pHの薬液が製造される。
Even after the supply of liquid B is stopped, stirring in the
以上で説明する薬液製造方法によれば、pH変化傾向特定工程にてB液の投入速度を段階的に低減しながら該B液を投入する際の投入速度の低減後の薬液pHの変化傾向を特定しておき、薬液pHが、薬液pHの変化傾向に基づいて目標pHから逆算された速度切替目安pHとなった段階でB液の投入速度を低減することにより、B液投入に用いられているポンプによる投入速度低減後に時間差をもって薬液pHが変化した場合でも、高精度に目標pHの薬液を製造することが可能になる。 According to the chemical solution manufacturing method described above, in the pH change tendency identifying step, the chemical solution pH change tendency after reducing the charging speed when introducing the B solution is gradually reduced. By reducing the injection speed of liquid B at the stage when the chemical solution pH reaches the speed switching reference pH calculated backward from the target pH based on the change tendency of the chemical solution pH, Even if the chemical solution pH changes with a time lag after the input speed is reduced by the existing pump, it is possible to manufacture the chemical solution with the target pH with high accuracy.
[B液の投入速度を切替えて薬液を製造する実験]
本発明者等は、B液の投入速度を切替えて薬液を製造する実験を行った。ここで、薬液の製造において、作液過程の薬液pHの水準は、酸性のA液が先行投入された状態のpH=1程度から、アルカリ性のB液を投入し適度なゲルタイムが得られるpH=3~4程度までが一般的である。本実験は、先行投入されるA液量を400Lとした。
[Experiment to produce chemical solution by switching injection speed of B solution]
The inventors of the present invention conducted an experiment in which the injection speed of liquid B was changed to produce chemical solutions. Here, in the production of the chemical solution, the pH level of the chemical solution in the process of making the solution is changed from about pH=1 when the acidic solution A is added in advance to pH=1 when the alkaline solution B is added to obtain an appropriate gelling time. About 3 to 4 is common. In this experiment, the amount of liquid A to be preliminarily charged was set to 400L.
pH=3~4付近のB液投入速度を数L/minとすることにより、pH調節精度が確保できること、既述するようにpHが1増加するごとのB液の投入速度低減割合が1/10程度であることから、pH=2~3付近のB液投入速度は数十L/minであり、さらにその前段のpH=1~2付近のB液投入速度は数百L/minが適切であることが特定できる。そこで、目標pHが3~4程度の条件の下で薬液を製造する実験を行った。この実験では、汎用的なポンプ能力等を考慮した上で、選定した具体的なB液の投入速度として、一次投入120L/min、二次投入24L/min、三次投入2L/minの三段階の投入速度切替を設定した。この試験条件を図13に示し、試験結果である、経過時間ごとに計測された混合槽内の薬液pHを図14に示す。尚、図14において、二系統の送液管のうち、大容量の送液管のB液第1速度を100L/minとし、小容量の送液管のB液第2速度を24L/minとし、二次投入に切換える際にはB液第1速度の送液を停止し、三次投入に切換える際にはB液第2速度を減速した。 By setting the injection rate of liquid B around pH = 3 to 4 to several L/min, the accuracy of pH adjustment can be ensured, and as described above, the rate of reduction in the injection rate of liquid B is 1/1 for each increase in pH by 1. Since it is about 10, the injection rate of liquid B around pH = 2 to 3 is several tens of L/min, and the injection rate of liquid B in the vicinity of pH = 1 to 2 in the previous stage is appropriate to be several hundred L/min. It can be specified that Therefore, an experiment was conducted to produce a chemical solution under the condition that the target pH was about 3-4. In this experiment, considering the general-purpose pump capacity, etc., the selected specific injection speed of liquid B was three stages of primary injection 120 L / min, secondary injection 24 L / min, and tertiary injection 2 L / min. Set the input speed switch. FIG. 13 shows the test conditions, and FIG. 14 shows the pH of the chemical solution in the mixing tank measured at each elapsed time, which is the test result. In FIG. 14, of the two systems of liquid-sending pipes, the first speed of liquid B for the large-capacity liquid-sending pipe is 100 L/min, and the second speed of liquid B for the small-capacity liquid-sending pipe is 24 L/min. When switching to the secondary charging, the feeding of the B liquid at the first speed was stopped, and when switching to the tertiary charging, the second speed of the B liquid was reduced.
図14に示すように、本実験では、製造過程の全般に亘って薬液pHが急増することがなく、目標pH3の薬液が製造されていることが分かる。この実験結果より、実施形態に係る薬液製造システムと薬液製造方法を適用することにより、目標pHの薬液を高精度に製造できることが実証されている。 As shown in FIG. 14, in this experiment, the pH of the chemical solution did not suddenly increase throughout the manufacturing process, and the chemical solution with a target pH of 3 was produced. This experimental result proves that the chemical liquid with the target pH can be manufactured with high accuracy by applying the chemical liquid manufacturing system and the chemical liquid manufacturing method according to the embodiment.
尚、既述の内容によれば、B液投入速度の低減段階数は、作液過程の薬液pH水準の変化程度に依拠することから、例えばA液投入時点のpH=1程度で目標pH=2~3程度の条件の場合に、pH=1~2程度において一次投入を完了させ、pH=2~3程度において二次投入を完了させる、二段階の投入速度切替方法を適用することもできる。 According to the above description, the number of stages of reduction in the introduction rate of liquid B depends on the degree of change in the pH level of the chemical solution in the process of making the solution. In the case of a condition of about 2 to 3, a two-stage charging speed switching method can be applied in which the primary charging is completed at about pH = 1 to 2, and the secondary charging is completed at about pH = 2 to 3. .
また、本実験において適用した三段階のB液投入速度は、先行投入されるA液量に依拠して変化するものであり、例えばA液量が400Lから200Lに半減した場合のB液投入速度は、それぞれ半減された値である、一次投入60L/min、二次投入12L/min、三次投入1L/min程度が適切になるものと推察される。このことに加えて、B液投入速度に関しては、作液過程の全般に亘ってpH調節精度が確保できることを前提として、適宜選択することが可能である。 In addition, the three-stage liquid B injection speed applied in this experiment changes depending on the amount of liquid A to be injected in advance. are halved values, which are presumed to be appropriate for the primary charge of 60 L/min, the secondary charge of 12 L/min, and the tertiary charge of 1 L/min. In addition to this, it is possible to appropriately select the B liquid feeding speed on the premise that the accuracy of pH control can be ensured throughout the entire process of making the solution.
尚、上記実施形態に挙げた構成等に対し、その他の構成要素が組み合わされるなどした他の実施形態であってもよく、ここで示した構成に本発明が何等限定されるものではない。この点に関しては、本発明の趣旨を逸脱しない範囲で変更することが可能であり、その応用形態に応じて適切に定めることができる。 It should be noted that other embodiments may be possible in which other components are combined with the configurations described in the above embodiments, and the present invention is not limited to the configurations shown here. Regarding this point, it is possible to change without departing from the gist of the present invention, and it can be determined appropriately according to the application form.
10:A液作液装置
11,12,13:構成材料槽
14:A液撹拌槽
15:A液貯留槽
17,18:撹拌機
17a,18a:モータ
17b、18b:撹拌翼
19:pH計
20:B液作液装置
21,22:構成材料槽
23:B液撹拌槽
24:B液貯留槽
26,27:撹拌機
26a,27a:モータ
26b、27b:撹拌翼
28:pH計
30:混合装置
31:混合槽
32:撹拌機
32a:モータ
32b:撹拌翼
33:pH計
41:A液送液管
42:送液ポンプ(ポンプ)
43:流量計
44,47:B液送液管
45,48:送液ポンプ(ポンプ)
46,49:流量計
50,50A:制御装置
60,60A:薬液製造システム
502:計測データ取得部
504,504A:pH変化傾向特定部
506:停止目安pH設定部
508:B液投入停止部
510:格納部
512:速度切替目安pH設定部
514:B液投入速度切替部
10: A liquid working
43:
46, 49:
Claims (7)
前記A液は、造粒シリカ材料と酸性反応材と水を含み、前記B液は、水ガラス系材料と水を含んでおり、
前記薬液の目標pHを設定する、目標pH設定工程と、
前記B液の投入停止後の前記薬液pHの変化傾向を特定する、pH変化傾向特定工程と、
前記薬液の製造の過程で該薬液の前記薬液pHを随時計測する、作液計測工程と、
前記薬液pHが停止目安pHとなった段階で、前記B液の投入を停止する、B液投入停止工程と、を有し、
前記停止目安pHは、前記薬液pHの変化傾向に基づいて前記目標pHから逆算することにより設定されることを特徴とする、薬液製造方法。 A chemical liquid production method for producing a chemical liquid applied to a chemical injection method by charging and mixing liquid B, which is an alkaline solution, into a mixing tank in which liquid A, which is an acidic solution, is charged. ,
The A liquid contains a granulated silica material, an acidic reaction material, and water, and the B liquid contains a water glass-based material and water,
a target pH setting step of setting a target pH of the chemical solution;
a pH change tendency identification step of identifying a change tendency of the chemical solution pH after the supply of the liquid B is stopped;
a solution measuring step of measuring the chemical solution pH of the chemical solution at any time during the manufacturing process of the chemical solution;
a liquid B injection stop step of stopping injection of the liquid B when the pH of the chemical solution reaches a target pH for stopping,
A method of manufacturing a chemical solution, wherein the reference pH for stopping is set by calculating back from the target pH based on a change tendency of the pH of the chemical solution.
前記A液は、造粒シリカ材料と酸性反応材と水を含み、前記B液は、水ガラス系材料と水を含んでおり、
前記薬液の目標pHを設定する、目標pH設定工程と、
前記B液の投入速度を段階的に低減しながら該B液を投入する際に、投入速度の低減後の前記薬液pHの変化傾向を特定する、pH変化傾向特定工程と、
前記薬液pHが速度切替目安pHとなった段階で、前記B液の投入速度を低減することにより前記薬液を製造し、該製造の過程で該薬液の前記薬液pHを随時計測する、作液計測工程と、を有し、
前記速度切替目安pHは、前記薬液pHの変化傾向に基づいて前記目標pHから逆算することにより設定されることを特徴とする、薬液製造方法。 A chemical liquid production method for producing a chemical liquid applied to a chemical injection method by charging and mixing liquid B, which is an alkaline solution, into a mixing tank in which liquid A, which is an acidic solution, is charged. ,
The A liquid contains a granulated silica material, an acidic reaction material, and water, and the B liquid contains a water glass-based material and water,
a target pH setting step of setting a target pH of the chemical solution;
a pH change tendency identification step of identifying a change tendency of the pH of the chemical solution after reducing the injection speed when the liquid B is injected while the injection speed of the liquid B is gradually reduced;
When the pH of the chemical solution reaches the reference pH for speed switching, the chemical solution is manufactured by reducing the charging speed of the liquid B, and the chemical solution pH of the chemical solution is measured at any time during the manufacturing process. and
A method of manufacturing a chemical liquid, wherein the reference pH for speed switching is set by calculating back from the target pH based on a change tendency of the pH of the chemical liquid.
造粒シリカ材料と酸性反応材と水を撹拌して前記A液を作液するA液作液装置と、
水ガラス系材料と水を撹拌して前記B液を作液するB液作液装置と、
投入された前記A液と前記B液を混合して前記薬液を製造する混合槽、及び、該薬液の製造の過程で該薬液の薬液pHを計測するpH計を備えている、混合装置と、
前記混合槽に対して、前記A液作液装置と前記B液作液装置からそれぞれ前記A液と前記B液を送液するポンプと、
制御装置と、を有し、
前記制御装置は、
前記薬液の目標pHと、随時計測される前記薬液pHとが少なくとも格納される、格納部と、
前記B液の投入停止後の前記薬液pHの変化傾向を特定する、pH変化傾向特定部と、
前記B液の投入を停止する際の目安となる停止目安pHを設定する、停止目安pH設定部と、
前記薬液pHが前記停止目安pHとなった段階で、前記B液の投入を停止する、B液投入停止部と、を有し、
前記停止目安pH設定部では、前記pH変化傾向特定部において特定された前記薬液pHの変化傾向に基づいて、前記目標pHから逆算することにより前記停止目安pHを設定することを特徴とする、薬液製造システム。 A chemical liquid production system for producing a chemical liquid applied to a chemical injection method by charging and mixing liquid B, which is an alkaline solution, into a mixing tank in which liquid A, which is an acidic solution, is charged. ,
a liquid A-producing device that agitates the granulated silica material, the acidic reaction material, and water to form the liquid A;
a B-solution-producing device for agitating a water glass-based material and water to form the B-solution;
A mixing device comprising a mixing tank for mixing the introduced liquid A and the liquid B to produce the chemical solution, and a pH meter for measuring the chemical solution pH of the chemical solution during the process of producing the chemical solution;
a pump that feeds the A solution and the B solution from the A solution operating device and the B solution operating device to the mixing tank, respectively;
a controller;
The control device is
a storage unit that stores at least the target pH of the chemical and the pH of the chemical that is measured at any time;
a pH change tendency identification unit that identifies a change tendency of the chemical solution pH after the supply of the liquid B is stopped;
a target stop pH setting unit that sets a target stop pH that serves as a target when stopping the addition of the liquid B;
a liquid B injection stop unit for stopping injection of the liquid B when the chemical solution pH reaches the stop target pH;
The target pH for stopping setting unit sets the target pH for stopping by back-calculating from the target pH based on the change tendency of the chemical solution pH specified by the pH change trend specifying unit. manufacturing system.
造粒シリカ材料と酸性反応材と水を撹拌して前記A液を作液するA液作液装置と、
水ガラス系材料と水を撹拌して前記B液を作液するB液作液装置と、
投入された前記A液と前記B液を混合して前記薬液を製造する混合槽、及び、該薬液の製造の過程で該薬液の薬液pHを計測するpH計を備えている、混合装置と、
前記混合槽に対して、前記A液作液装置と前記B液作液装置からそれぞれ前記A液と前記B液を送液するポンプと、
制御装置と、を有し、
前記制御装置は、
前記薬液の目標pHと、随時計測される前記薬液pHとが少なくとも格納される、格納部と、
前記B液の投入速度を段階的に低減しながら該B液を投入する際に、投入速度の低減後の前記薬液pHの変化傾向を特定する、pH変化傾向特定部と、
前記B液の投入速度を低減する際の目安となる速度切替目安pHを設定する、速度切替目安pH設定部と、
前記薬液pHが前記速度切替目安pHとなった段階で、前記B液の投入速度を低減する、B液投入速度切替部と、を有し、
前記速度切替目安pH設定部では、前記pH変化傾向特定部において特定された前記薬液pHの変化傾向に基づいて、前記目標pHから逆算することにより前記速度切替目安pHを設定することを特徴とする、薬液製造システム。 A chemical liquid production system for producing a chemical liquid applied to a chemical injection method by charging and mixing liquid B, which is an alkaline solution, into a mixing tank in which liquid A, which is an acidic solution, is charged. ,
a liquid A-producing device that agitates the granulated silica material, the acidic reaction material, and water to form the liquid A;
a B-solution-producing device for agitating a water glass-based material and water to form the B-solution;
A mixing device comprising a mixing tank for mixing the introduced liquid A and the liquid B to produce the chemical solution, and a pH meter for measuring the chemical solution pH of the chemical solution during the process of producing the chemical solution;
a pump that feeds the A solution and the B solution from the A solution operating device and the B solution operating device to the mixing tank, respectively;
a controller;
The control device is
a storage unit that stores at least the target pH of the chemical and the pH of the chemical that is measured at any time;
a pH change tendency identification unit that identifies the change tendency of the pH of the chemical solution after reducing the injection speed when the liquid B is injected while the injection speed of the liquid B is gradually reduced;
a speed switching reference pH setting unit that sets a speed switching reference pH that serves as a reference when reducing the injection speed of the liquid B;
a liquid B injection speed switching unit that reduces the injection speed of the liquid B when the chemical solution pH reaches the speed switching target pH,
The reference speed switching pH setting unit sets the reference speed switching pH by calculating back from the target pH based on the change tendency of the chemical solution pH specified by the pH change tendency identification unit. , chemical manufacturing system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020106414A JP7337030B2 (en) | 2020-06-19 | 2020-06-19 | Chemical solution manufacturing method and chemical solution manufacturing system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020106414A JP7337030B2 (en) | 2020-06-19 | 2020-06-19 | Chemical solution manufacturing method and chemical solution manufacturing system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022001701A JP2022001701A (en) | 2022-01-06 |
JP7337030B2 true JP7337030B2 (en) | 2023-09-01 |
Family
ID=79244425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020106414A Active JP7337030B2 (en) | 2020-06-19 | 2020-06-19 | Chemical solution manufacturing method and chemical solution manufacturing system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7337030B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001162148A (en) | 1999-12-10 | 2001-06-19 | Anest Iwata Corp | Control method for mixing multiple liquids |
JP2002147364A (en) | 2000-11-15 | 2002-05-22 | Ckd Corp | Fixed volume delivery system |
JP2002350199A (en) | 2001-05-24 | 2002-12-04 | Samson Co Ltd | Water-passing apparatus having flow rate calculation section for calculating flow rate by operation |
JP2003200031A (en) | 2001-12-28 | 2003-07-15 | Nakakin:Kk | Mixing device for concentration adjustment |
JP2012007019A (en) | 2010-06-22 | 2012-01-12 | Toa Harbor Works Co Ltd | Mixing system of soil improvement chemical |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6057476B2 (en) * | 1977-05-20 | 1985-12-14 | 強化土エンジニヤリング株式会社 | Ground injection method |
JPH0136894Y2 (en) * | 1985-05-09 | 1989-11-08 | ||
US5368059A (en) * | 1992-08-07 | 1994-11-29 | Graco Inc. | Plural component controller |
JP3352171B2 (en) * | 1993-09-14 | 2002-12-03 | 株式会社東芝 | Solution neutralization control method |
-
2020
- 2020-06-19 JP JP2020106414A patent/JP7337030B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001162148A (en) | 1999-12-10 | 2001-06-19 | Anest Iwata Corp | Control method for mixing multiple liquids |
JP2002147364A (en) | 2000-11-15 | 2002-05-22 | Ckd Corp | Fixed volume delivery system |
JP2002350199A (en) | 2001-05-24 | 2002-12-04 | Samson Co Ltd | Water-passing apparatus having flow rate calculation section for calculating flow rate by operation |
JP2003200031A (en) | 2001-12-28 | 2003-07-15 | Nakakin:Kk | Mixing device for concentration adjustment |
JP2012007019A (en) | 2010-06-22 | 2012-01-12 | Toa Harbor Works Co Ltd | Mixing system of soil improvement chemical |
Also Published As
Publication number | Publication date |
---|---|
JP2022001701A (en) | 2022-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10647026B2 (en) | Dynamic segregation monitoring of concrete | |
JP7337030B2 (en) | Chemical solution manufacturing method and chemical solution manufacturing system | |
EP3250353A1 (en) | Grout preparation and administration | |
CN108607462B (en) | Liquid mixing device and liquid flow control method | |
CN110344591A (en) | A kind of single liquid automatic grouting refractory gunning equipment of realization and method | |
CN114699985B (en) | Aqueous solution configuration method, apparatus, and computer-readable storage medium | |
CN104483177B (en) | Water quality automatic sample control method and system | |
CN104338481B (en) | Concentrated solution dilution apparatus and method | |
CN114840556A (en) | Stirring intensity adjustment method, device, equipment and storage medium | |
US20020169517A1 (en) | Quality monitoring procedure | |
JP5139388B2 (en) | Air mortar quality confirmation management method | |
CN220219093U (en) | Remote adding control device for concrete admixture of mixer truck | |
CN109608078B (en) | A kind of semi-aqueous building gypsum coagulant and its preparation method and application | |
CN209320017U (en) | A kind of concrete admixture automatic adding device applied on tank car | |
CN114740908B (en) | A method for controlling the ratio of krill to water in an Antarctic krill homogenization tank | |
CN109278184A (en) | A kind of method that additive reduction concrete slump loss is added in gradation | |
JP2012007019A (en) | Mixing system of soil improvement chemical | |
CN106626075A (en) | Control device,capable of controlling temperature, for concrete manufacturing system | |
CN210561592U (en) | Asphalt metering and spraying discharging device | |
CN203794793U (en) | Vertical lime curing device | |
CN211640485U (en) | System for accurately controlling commercial concrete mixing proportion in concrete mixing transport vehicle | |
CN103936306A (en) | Vertical type lime aging equipment | |
CN206627419U (en) | A kind of concrete erosion experiment monitoring experimental bench | |
CN111408313A (en) | Well cementation additive preparation device and preparation method | |
CN206253048U (en) | Polycarboxylate water-reducer is added dropwise small powder agitator tank |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220830 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230822 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7337030 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |