JP7311337B2 - Brazing wire for flux-free brazing and flux-free brazing method - Google Patents
Brazing wire for flux-free brazing and flux-free brazing method Download PDFInfo
- Publication number
- JP7311337B2 JP7311337B2 JP2019128367A JP2019128367A JP7311337B2 JP 7311337 B2 JP7311337 B2 JP 7311337B2 JP 2019128367 A JP2019128367 A JP 2019128367A JP 2019128367 A JP2019128367 A JP 2019128367A JP 7311337 B2 JP7311337 B2 JP 7311337B2
- Authority
- JP
- Japan
- Prior art keywords
- brazing
- surface layer
- flux
- wire
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005219 brazing Methods 0.000 title claims description 164
- 238000000034 method Methods 0.000 title claims description 24
- 239000002344 surface layer Substances 0.000 claims description 67
- 239000000463 material Substances 0.000 claims description 60
- 239000011856 silicon-based particle Substances 0.000 claims description 41
- 239000000956 alloy Substances 0.000 claims description 37
- 229910045601 alloy Inorganic materials 0.000 claims description 35
- 239000000945 filler Substances 0.000 claims description 31
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 29
- 229910052782 aluminium Inorganic materials 0.000 claims description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 18
- 229910018566 Al—Si—Mg Inorganic materials 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 229910021364 Al-Si alloy Inorganic materials 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 229910018125 Al-Si Inorganic materials 0.000 claims description 5
- 229910018520 Al—Si Inorganic materials 0.000 claims description 5
- 230000004907 flux Effects 0.000 claims description 5
- 239000010410 layer Substances 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 229910000861 Mg alloy Inorganic materials 0.000 claims 1
- 239000011162 core material Substances 0.000 description 58
- 230000000694 effects Effects 0.000 description 17
- 229910000838 Al alloy Inorganic materials 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 238000005304 joining Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 229910052790 beryllium Inorganic materials 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910017082 Fe-Si Inorganic materials 0.000 description 2
- 229910017133 Fe—Si Inorganic materials 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 238000010405 reoxidation reaction Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910007981 Si-Mg Inorganic materials 0.000 description 1
- 229910008316 Si—Mg Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000013210 evaluation model Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
Images
Landscapes
- Details Of Heat-Exchange And Heat-Transfer (AREA)
Description
この発明は、フラックスフリーでろう付を行うフラックスフリーろう付用ろう材ワイヤーおよびフラックスフリーろう付方法に関する。 The present invention relates to a brazing wire for flux-free brazing and a flux-free brazing method for performing flux-free brazing.
減圧を伴わない非酸化性ガス雰囲気下でのAl-Si-Mgろう材を用いたフラックスフリーろう付では、溶融して活性となったろう材中のMgが接合部表面のAl酸化皮膜(Al2O3)を還元分解することで接合が可能となる。閉塞的な面接合継手などでは、Mgによる酸化皮膜の分解作用によりろう材を有するブレージングシートを組合せた継手や、ブレージングシートとろう材を有さない被接合部材(ベア材)を組合せた継手で良好な接合状態が得られる。
しかし、雰囲気の影響を受け易い開放部を有する継手形状では、Mg添加ろう材の表面でMgO皮膜が成長し易くなるが、MgO皮膜は分解され難い安定な酸化皮膜であるため接合が著しく阻害される。このことから、開放部を有する継手で安定した接合状態が得られるフラックスフリーろう付方法が望まれる。
さらに、自動車用熱交換器では各種形状のアルミニウム部材が接合されるが、継手の部材間クリアランスが広いとブレージングシートから供給されるろう材量のみでは十分な接合状態が得られ難くなる問題がある。このことから、フラックスフリーろう付でクリアランスが広い継手を接合する際には、ろう材不足を補い良好な接合状態を実現するろう材ワイヤーの利用が重要となる場合がある。
In flux-free brazing using Al-Si-Mg brazing filler metal in a non-oxidizing gas atmosphere without reduced pressure, Mg in the brazing filler metal activated by melting forms an Al oxide film (Al 2 O 3 ) is reductively decomposed to enable bonding. In closed face joints, etc., joints that combine brazing sheets with brazing material due to the decomposition of oxide films by Mg, and joints that combine brazing sheets and members to be joined (bare materials) that do not have brazing material. A good bonding state can be obtained.
However, in a joint shape that has an open portion that is easily affected by the atmosphere, an MgO film tends to grow on the surface of the Mg-added brazing filler metal, but the MgO film is a stable oxide film that is difficult to decompose, which significantly hinders joining. be. For this reason, a flux-free brazing method that can obtain a stable joint state in a joint having an open portion is desired.
Furthermore, in heat exchangers for automobiles, aluminum members of various shapes are joined, but if the clearance between the members of the joint is wide, there is a problem that it is difficult to obtain a sufficient joint state with only the amount of brazing material supplied from the brazing sheet. . For this reason, when joining wide-clearance joints by flux-free brazing, it is sometimes important to use a brazing wire that compensates for the shortage of brazing material and realizes a good joining state.
上記課題に対し、ろう材表面でMgO皮膜が成長することを抑制するため、表層部をMg無添加合金とし、コア部にMgを添加したろう材合金を適用することで接合状態を改善するフラックスフリーろう付用のろう材ワイヤーが提案されている(特許文献1参照)。 In order to suppress the growth of the MgO film on the surface of the brazing filler metal, in order to solve the above problems, the surface layer is made of a Mg-free alloy and the core part is made of a brazing filler metal alloy with Mg added to improve the bonding state. A brazing wire for free brazing has been proposed (see Patent Document 1).
しかし、特許文献1の方法では、コア部よりも表層部の固相線温度が熱交換器の構造部材となるブレージングシートの心材合金(一般に固相線温度が600℃以上)などと同程度に高いため、到達温度600℃程度で行われる通常のろう付では、表層部の溶融が十分に進まずコア部ろう材の流動が妨げられる課題がある。ろう付昇温過程では、コア部から表層部にSiが拡散し表層部の固相線温度が低下するが、600℃程度までのろう付では表層部中に生成する液相の割合が少ないため、溶融したコアろう材の流出が進み難く安定したフィレットが形成され難い。
However, in the method of
本発明は、上記事情を背景としてなされたものであり、フラックスフリーで良好なろう付性が得られるフラックスフリーろう付用ろう材ワイヤーおよびフラックスフリーろう付方法を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a brazing wire for flux-free brazing and a flux-free brazing method that can obtain good flux-free brazeability.
すなわち、本発明のフラックスフリーろう付用ろう材ワイヤーのうち、第1の形態は、コア部に表層部が積層されており、アルミニウム部材のフラックスフリーろう付に用いられるフラックスフリーろう付用ろう材ワイヤーであって、
コア部が、質量%で4~13%のSiおよび0.1~5.0%のMgを含有するAl-Si-Mg系合金からなり、表層部が、質量%で2~13%Siを含有するAl-Si系合金からなり、
前記コア部に含まれるSi粒子が、断面観察において、円相当径0.25μm以上のSi粒子が10000μm
2
当たり3,000個未満であり、かつ、前記表層部に含まれるSi粒子が、表層面方向の観察において、円相当径で0.8μm以上の径をもつものの数の内、1.75μm以上の径のものの数の割合が10%以上であり、
前記表層部の厚さが30μm以上であり、
前記コア部のAl-Si-Mg系合金と、前記表層部のAl-Si系合金の液相線温度差が、前記表層部のAl-Si系合金の液相線温度-前記コア部のAl-Si-Mg系合金の液相線温度において、-60℃~71℃であることを特徴とする。
That is, among the brazing wire for flux-free brazing of the present invention, the first embodiment is a brazing wire for flux-free brazing in which a surface layer portion is laminated on a core portion and is used for flux-free brazing of aluminum members. is a wire,
The core portion is made of an Al-Si-Mg alloy containing 4 to 13% by mass of Si and 0.1 to 5.0% by mass of Mg, and the surface layer portion is composed of 2 to 13% by mass of Si. Consists of an Al-Si alloy containing
Si particles contained in the core portion have less than 3,000 Si particles having an equivalent circle diameter of 0.25 μm or more per 10000 μm 2 in cross-sectional observation , and the Si particles contained in the surface layer portion are on the surface layer surface In observation of the direction, the ratio of the number of objects having a diameter of 1.75 μm or more in the number of objects having an equivalent circle diameter of 0.8 μm or more is 10% or more,
The thickness of the surface layer portion is 30 μm or more,
The liquidus temperature difference between the Al—Si—Mg-based alloy in the core portion and the Al—Si-based alloy in the surface layer portion is the liquidus temperature of the Al—Si-based alloy in the surface layer portion−Al in the core portion. The liquidus temperature of the -Si-Mg alloy is -60°C to 71°C .
他の形態のフラックスフリーろう付用ろう材ワイヤーの発明は、コア部に表層部が積層されており、アルミニウム部材のフラックスフリーろう付に用いられるフラックスフリーろう付用ろう材ワイヤーであって、
コア部が、質量%で1%以上4%未満のSiおよび0.1~5.0%のMgを含有するAl-Si-Mg系合金からなり、表層部が、質量%で2~13%Siを含有するAl-Si系合金からなり、
前記コア部は、含まれるSi粒子が、断面観察において、円相当径0.25μm以上のSi粒子が10000μm
2
当たり3,000個未満であり、かつ、前記表層部に含まれるSi粒子が、表層面方向の観察において、円相当径で0.8μm以上の径をもつものの数の内、1.75μm以上の径のものの数の割合が10%以上であり、
前記表層部は、厚さが30μm以上であり、
前記コア部のAl-Si-Mg系合金と、前記表層部のAl-Si系合金の液相線温度差が60℃以下であることを特徴とする。
Another aspect of the invention of a brazing wire for flux-free brazing is a brazing wire for flux-free brazing in which a surface layer is laminated on a core and used for flux-free brazing of an aluminum member,
The core part is made of an Al-Si-Mg alloy containing 1% or more and less than 4% by mass of Si and 0.1 to 5.0% of Mg, and the surface layer part is 2 to 13% by mass. Made of an Al-Si alloy containing Si,
The core portion contains less than 3,000 Si particles with an equivalent circle diameter of 0.25 μm or more per 10000 μm 2 when observed in a cross section, and the Si particles contained in the surface layer portion are on the surface. When observed in the layer surface direction, the ratio of the number of particles having an equivalent circle diameter of 0.8 μm or more to the number of particles having a diameter of 1.75 μm or more is 10% or more,
The surface layer portion has a thickness of 30 μm or more,
A liquidus temperature difference between the Al—Si—Mg alloy in the core portion and the Al—Si alloy in the surface layer portion is 60° C. or less.
他の形態のフラックスフリーろう付用ろう材ワイヤーの発明は、前記形態の発明において、前記表層部のAl-Si-Mg系合金が、さらに質量%で、0.1~1.0%のFeを含有することを特徴とする。 Another embodiment of the invention of a brazing wire for flux-free brazing is the invention of the above embodiment, wherein the Al-Si-Mg-based alloy in the surface layer portion further contains 0.1 to 1.0% Fe by mass%. It is characterized by containing
他の形態のフラックスフリーろう付用ろう材ワイヤーの発明は、前記形態の発明において、前記表層部の厚さが30μm以上であることを特徴とする。 Another embodiment of the invention of a brazing wire for flux-free brazing is characterized in that, in the invention of the above embodiment, the surface layer portion has a thickness of 30 μm or more.
他の形態のフラックスフリーろう付用ろう材ワイヤーの発明は、前記形態の発明において、前記コア部のAl-Si-Mg系合金に、さらに質量%で、0.01~0.5%のBiを含有することを特徴とする。 Another form of the invention of a brazing wire for flux-free brazing is the invention of the above form, in which the Al-Si-Mg alloy of the core portion further contains 0.01 to 0.5% by mass of Bi It is characterized by containing
他の形態のフラックスフリーろう付用ろう材ワイヤーの発明は、前記形態の発明において、前記表層部のAl-Si系合金に、さらに質量%で、0.01~0.1%のBiを含有することを特徴とする。 Another form of the invention of a brazing wire for flux-free brazing is the invention of the above form, wherein the Al—Si alloy of the surface layer portion further contains 0.01 to 0.1% by mass of Bi. characterized by
本発明のフラックスフリーろう付方法のうち、第1の形態は、前記形態のいずれかのフラックスフリーろう付用ろう材ワイヤーを用いて、酸素濃度100ppm以下の非酸化性ガス雰囲気中で、フラックスを用いることなくアルミニウム部材同士の接合を行うことを特徴とする。 Among the flux-free brazing methods of the present invention, the first embodiment uses the brazing wire for flux-free brazing according to any one of the above embodiments, in a non-oxidizing gas atmosphere having an oxygen concentration of 100 ppm or less. It is characterized in that the aluminum members are joined together without using the method.
以下に本発明で規定する成分組成等について、その作用と限定理由を説明する。なお、以下の説明では、成分組成はいずれも質量%で示されている。
(コア部組成)
Si:4~13%
Siは、ろう付時にコア部中に液相を生成し、コア部に添加されたMgの表層部への拡散を促進する。Si含有量が不足すると効果が不十分であり、Siを過剰に含有すると、材料が硬く脆くなりワイヤーへの加工時やワイヤーの曲げ加工などで破断が生じ易くなるため、製造が困難となる。
これらの点でSi含有量を4~13%とするのが望ましい。
なお、同様の理由で、Si含有量の下限を5%、上限を11%とするのが一層望ましい。
Si:1~4%未満
上記同様に、Siは、ろう付時にコア部中に液相を生成し、コア部に添加されたMgの表層部への拡散を促進する。ところで、接合する継手のクリアランスが例えば600μmを超えるなど特に大きい場合は、コア部のSi添加量を低減すると、ろう付中の液相率が減りコア部が溶け残るため、クリアランスを埋める効果がある。Si含有量が不足するとMgの拡散効果が不十分となり、過剰になるとコア部が溶け残る割合が低下しクリアランスを埋める効果が不十分となる。ただし、Si量を4%未満に低減する場合は、前記4~13%Siよりもろう付中の表層部へのMg拡散量が低下し易くなるため、コア部へのMg添加量は0.5%以上とすることが望ましい。さらに同様の理由で0.8%Mg以上とすることがより望ましい。
これらの点でSi含有量を1~4%未満とするのが望ましい。なお、同様の理由で、Si含有量の下限を1.5%、上限を3%とするのが一層望ましい。
The effects and reasons for limitation of the component compositions defined in the present invention will be described below. In addition, in the following description, the component composition is shown in mass %.
(Core part composition)
Si: 4-13%
Si forms a liquid phase in the core during brazing and promotes diffusion of Mg added to the core to the surface layer. If the Si content is insufficient, the effect will be insufficient, and if the Si content is excessive, the material will be hard and brittle, and breakage will easily occur during wire processing or wire bending, making production difficult.
From these points, it is desirable to set the Si content to 4 to 13%.
For the same reason, it is more desirable to set the lower limit of the Si content to 5% and the upper limit to 11%.
Si: less than 1 to 4% As described above, Si forms a liquid phase in the core portion during brazing and promotes diffusion of Mg added to the core portion to the surface layer portion. By the way, if the clearance of the joint to be joined is particularly large, such as exceeding 600 μm, for example, if the amount of Si added to the core is reduced, the liquid phase ratio during brazing will decrease and the core will remain undissolved, so there is an effect of filling the clearance. . If the Si content is insufficient, the effect of diffusing Mg will be insufficient, and if the Si content is excessive, the proportion of the core portion remaining undissolved will decrease and the effect of filling the clearance will be insufficient. However, when the Si content is reduced to less than 4%, the amount of Mg diffused into the surface layer during brazing tends to be lower than in the case of 4 to 13% Si. It is desirable to make it 5% or more. Furthermore, for the same reason, it is more desirable to set the Mg content to 0.8% or more.
From these points of view, it is desirable to set the Si content to less than 1 to 4%. For the same reason, it is more desirable to set the lower limit of the Si content to 1.5% and the upper limit to 3%.
Mg:0.1~5.0%
Mgは、Al酸化皮膜(Al2O3)を還元分解する。ただし、Mg含有量が不足すると、効果が不十分であり、Mg含有量が過剰になると、効果が飽和するとともに、材料が硬く脆くなるため、ワイヤー製造が困難になる。これらのため、Mg含有量は、0.1~5.0%とする。なお、同様の理由で、下限を0.3%、上限を3.0%とするのが望ましく、さらに、下限を0.8%、上限を2.5%とするのがより望ましい。
Mg: 0.1-5.0%
Mg reductively decomposes the Al oxide film (Al 2 O 3 ). However, if the Mg content is insufficient, the effect is insufficient, and if the Mg content is excessive, the effect saturates and the material becomes hard and brittle, making wire production difficult. For these reasons, the Mg content should be 0.1 to 5.0%. For the same reason, it is desirable to set the lower limit to 0.3% and the upper limit to 3.0%, and more preferably set the lower limit to 0.8% and the upper limit to 2.5%.
Bi:0.01~0.5%
Biは、溶融ろうの表面張力を低下させ隙間充填性を向上させるので所望により含有させる。Bi含有量が不足すると効果が不十分であり、Bi含有量が過剰になると効果が飽和する。これらのため、Bi含有量は0.01~0.5%とするのが望ましい。なお、同様の理由で下限を0.02%、上限を0.2%とするのが望ましい。
Bi: 0.01-0.5%
Bi lowers the surface tension of the molten brazing filler metal and improves gap-filling properties, so it is optionally contained. If the Bi content is insufficient, the effect is insufficient, and if the Bi content is excessive, the effect is saturated. For these reasons, the Bi content is preferably 0.01 to 0.5%. For the same reason, it is desirable to set the lower limit to 0.02% and the upper limit to 0.2%.
(表層部組成)
Si:2~13%
表層部では、ろう付時にSiによって溶融ろうを形成し、接合部のフィレットを形成する。Si含有量が不足すると、フィレットを形成するための溶融ろうが不足する。また、コア部からのMgの拡散が遅れ、十分な接合が得られない。一方、Si含有量が過剰になると、効果が飽和する。また、材料が硬く脆くなるため、素材製造が困難になる。
これらのため、表層部ろう材では、Si含有量を2~13%とする。また、同様の理由でSi含有量の下限を3%、上限を11%とするのがさらに望ましい。
(Surface layer composition)
Si: 2-13%
In the surface layer, molten solder is formed from Si during brazing to form a fillet of the joint. Insufficient Si content results in insufficient molten braze to form fillets. Moreover, diffusion of Mg from the core portion is delayed, and sufficient bonding cannot be obtained. On the other hand, if the Si content becomes excessive, the effect is saturated. Moreover, since the material becomes hard and brittle, it becomes difficult to manufacture the material.
For these reasons, the Si content in the surface brazing filler metal is set to 2 to 13%. For the same reason, it is more desirable to set the lower limit of the Si content to 3% and the upper limit to 11%.
Bi:0.01~0.1%
Biは、ろう付昇温過程で材料表面に濃縮し、緻密な酸化皮膜の成長抑制や溶融ろうの表面張力を低下させ隙間充填性を向上させるので所望により含有する。Biの含有量が不足すると効果が不十分であり、Biを過剰に含有すると、効果が飽和する。さらに、Mgを添加しない表層部では、Biを過剰に添加すると素材製造時の熱処理でBiが材料表面に濃縮し酸化皮膜が脆弱となり、接合を阻害する酸化皮膜が保管中に成長し易くなるため好ましくない。これらのため、Biの含有量を0.01~0.1%とするのが望ましい。また、同様の理由で、Biの下限を0.02%とし、上限を0.07%とするのが一層望ましい。
Bi: 0.01-0.1%
Bi concentrates on the surface of the material during the process of raising the brazing temperature, suppresses the growth of a dense oxide film, lowers the surface tension of the molten brazing filler metal, and improves the gap-filling properties, so it is contained as desired. If the Bi content is insufficient, the effect is insufficient, and if the Bi content is excessive, the effect saturates. Furthermore, in the surface layer where Mg is not added, if Bi is added excessively, Bi concentrates on the material surface during heat treatment during material production, making the oxide film brittle, and the oxide film that inhibits bonding tends to grow during storage. I don't like it. For these reasons, it is desirable to set the Bi content to 0.01 to 0.1%. For the same reason, it is more desirable to set the lower limit of Bi to 0.02% and the upper limit to 0.07%.
Fe:0.1~1.0%
FeはAlに殆ど固溶せず、表層部中で、単体またはAl、Mn、Siなどとの金属間化合物として存在する。材料表面に存在するこれらの粒子は酸化皮膜の欠陥部となるため、接合を阻害する酸化皮膜の成長を抑制することや、コア部から拡散してきたMgがAl2O3を分解する際に酸化皮膜が破壊され易くなる効果をもつ。0.1%未満では効果が不十分となり、1.0%超では効果が飽和し、さらに多くなると機械的に脆くなり製造性が低下するため、下限を0.1%、上限を1.0%とする。
Fe: 0.1-1.0%
Fe hardly dissolves in Al, and exists as a single substance or an intermetallic compound with Al, Mn, Si, or the like in the surface layer. Since these particles present on the surface of the material become defects in the oxide film, they suppress the growth of the oxide film that inhibits bonding, and are oxidized when Mg diffused from the core decomposes Al 2 O 3 . It has the effect of making the film easier to destroy. If it is less than 0.1%, the effect is insufficient, and if it exceeds 1.0%, the effect saturates. %.
(表層部厚さ)
ろう付昇温過程ではコア部に添加されたMgが表層部に拡散するが、ろう溶融温度以下の早い段階で材料表面にMgが到達すると雰囲気中の酸素と反応してMgO皮膜が成長し易くなり接合が阻害されるため、表層部の厚みを一定以上にすることでMgO皮膜の成長を抑制する。本理由により表層部の厚さは30μm以上が望ましい。
(Surface layer thickness)
Mg added to the core part diffuses to the surface layer in the brazing temperature rising process, but if Mg reaches the surface of the material at an early stage below the brazing melting temperature, it reacts with oxygen in the atmosphere and easily grows a MgO film. Therefore, the growth of the MgO film is suppressed by setting the thickness of the surface layer to a certain value or more. For this reason, the thickness of the surface layer is preferably 30 μm or more.
(表層部Si粒子)
本発明を実施するにあたっては、表層部ろう材表面に比較的粗大なSi粒子が存在していることが好ましい。通常、アルミニウム材料表面には緻密なAl2O3等の酸化皮膜が存在し、ろう付け熱処理過程ではこれがさらに成長し厚膜となる。酸化皮膜の厚みが増すほど、酸化皮膜の破壊作用を阻害する傾向が強くなるのが一般的な見解である。本発明では、表層部ろう材表面に粗大なSi粒子が存在することで、粗大Si粒子表面にはアルミニウムの緻密な酸化皮膜が成長せず、この部位がアルミニウム材料表面の酸化皮膜欠陥として働く。すなわち、アルミニウム材料表面の酸化皮膜がろう付熱処理中に厚膜となっても、Si粒子部分からろう材の染み出し等が発生し、この部位を起点に酸化皮膜破壊作用が進んでいくものと考えられる。ここで言うSi粒子とは、組成上Si単体成分によるSi粒子、及び、例えば、Fe-Si系化合物や、Fe-Siを主成分とするAl-Fe-Si系の金属間化合物等をも含むものとする。本発明の説明においては、これらを便宜的にSi粒子と表記する。具体的には、ろう材表面のSi粒子を円相当径でみなし、0.8μm以上のSi粒子数をカウントした場合に、1.75μm以上のものの数の割合が10%以上存在すると、この効果が十分に得られる。本発明においてSi粒子の密度には言及していないが、合金組成や製造条件の範囲によって、10000μm2視野における0.8μm以上のSi粒子数は数十~数千個の範囲に及ぶと考えられ、その規定は難しいことから、本発明においては、このSi粒子数範囲で、1.75μm径以上のものの数の割合が10%以上存在すれば、効果を得られることを確認し上記規定を望ましいものとした。
(Surface portion Si particles)
In carrying out the present invention, it is preferable that relatively coarse Si particles are present on the surface of the surface brazing material. Normally, a dense oxide film such as Al 2 O 3 exists on the surface of an aluminum material, and this film grows further during the brazing heat treatment process to form a thick film. It is a general opinion that the greater the thickness of the oxide film, the stronger the tendency to inhibit the destructive action of the oxide film. In the present invention, since coarse Si particles are present on the surface of the brazing filler metal in the surface layer, a dense oxide film of aluminum does not grow on the surface of the coarse Si particles, and this portion acts as an oxide film defect on the surface of the aluminum material. In other words, even if the oxide film on the surface of the aluminum material becomes thick during the brazing heat treatment, the brazing filler material will seep out from the Si particle portion, and the oxide film breaking action will proceed starting from this portion. Conceivable. The Si particles referred to here include Si particles composed of a single component of Si in terms of composition, and also include, for example, Fe—Si compounds and Al—Fe—Si based intermetallic compounds containing Fe—Si as a main component. shall be taken. In the description of the present invention, these are referred to as Si particles for convenience. Specifically, when Si particles on the surface of the brazing filler metal are regarded as equivalent circle diameters and the number of Si particles of 0.8 μm or more is counted, if the proportion of Si particles of 1.75 μm or more is 10% or more, this effect is sufficiently obtained. Although the density of Si particles is not mentioned in the present invention, it is believed that the number of Si particles of 0.8 μm or more in a 10000 μm 2 field of view ranges from several tens to several thousands, depending on the range of alloy composition and manufacturing conditions. , Since it is difficult to define it, in the present invention, it is confirmed that if the ratio of the number of Si particles with a diameter of 1.75 μm or more is 10% or more in this Si particle number range, the above definition is desirable. I assumed.
(コア部Si粒子)
さらに、本発明を実施するにあたっては、コア部ろう材中のSi粒子が細かく分散している状態が好ましい。本発明では、ろう付昇温過程でMgを添加したコア部ろう材が固相線温度に達すると、Mg2Si粒子などを起点に溶融が始まり、表層部ろう材にMgの拡散が進み易くなるが、コア部ろう材中のSi粒子が粗大で粗に分布していると、表層部ろう材へのMgの拡散が不均一となるため、表層部ろう材表面でのMgによる酸化皮膜(Al2O3等)の分解作用も不均一となり接合状態が不安定となる。ここで言うSi粒子とは、組成上Si単体成分によるSi粒子、及び、例えば、Mg2Si化合物等の金属間化合物も含むものとする。本発明の説明においては、これらを便宜的にSi粒子と表記する。具体的には、コア部ろう材断面から見たSi粒子を円相当径でみなし、0.25μm以上のSi粒子が10000μm2当たり3,000個未満とすることにより効果が得られる。Si粒子は、上記を満たす範囲で粒子径がより細かく密に分散していることが望ましい。
なお、Si粒子を細かくする手段としては、鋳造時の超音波印加や凝固速度制御(0.1~500℃/sec)、焼鈍時の温度条件により調整することや、ろう材中Si粒子の微細化効果があるSrなどを添加することが挙げられるが、その方法が限定されるものではない。
(Core portion Si particles)
Furthermore, in carrying out the present invention, it is preferable that the Si particles in the core brazing material are finely dispersed. In the present invention, when the Mg-added core brazing filler metal reaches the solidus temperature during the brazing temperature rising process, Mg 2 Si particles and the like begin to melt, and Mg diffuses easily into the surface layer brazing filler metal. However, if the Si particles in the core brazing filler metal are coarse and roughly distributed, the diffusion of Mg to the surface brazing filler metal becomes uneven, resulting in an oxide film ( Al 2 O 3 , etc.) also becomes non-uniform and the joining state becomes unstable. The Si particles referred to here include Si particles composed of a single component of Si, and intermetallic compounds such as Mg 2 Si compounds, for example. In the description of the present invention, these are referred to as Si particles for convenience. Specifically, the Si particles viewed from the cross section of the brazing filler metal in the core are regarded as circle-equivalent diameters, and the Si particles having a diameter of 0.25 μm or more are less than 3,000 per 10,000 μm 2 to obtain the effect. It is desirable that the Si particles have finer particle diameters and are densely dispersed within the range that satisfies the above.
As a means for making Si particles finer, it is possible to apply ultrasonic waves during casting, control the solidification rate (0.1 to 500 ° C./sec), adjust the temperature conditions during annealing, and make fine Si particles in the brazing material. For example, adding Sr, etc., which has a quenching effect, is an example, but the method is not limited.
(液相線温度差)
コア部ろう材は、Mg添加により表層部のAl-Siろう材よりも固相線温度が低いため、ろう付昇温過程では表層部ろう材よりも早く溶融が始まり、液相線温度に近づくほど液相率が高くなり表層部ろう材へのMg拡散量が増加する。しかし、コア部ろう材の液相線温度が表層部ろう材よりも低過ぎると、ワイヤー端部などからコア部ろう材が流出し、材料表面のAl2O3皮膜を分解するのに十分なMg量が不足することや、接合部に流入する有効な流動ろうが不足する。また、逆に表層部ろう材の液相線温度がコア部ろう材の液相線温度よりも低すぎると表層部ろう材表面のAl2O3皮膜を分解するのに十分なMg量がコア部ろう材から拡散する前に表層部ろう材の液相率が高まり活性となるため、最表面の再酸化や不安定なろう流動によりろう付性が低下する。このため、コア部ろう材と表層部ろう材の液相線温度差は、60℃以下とすることが望ましい。さらに、同様の理由で35℃未満とすることがより望ましい。
(liquidus temperature difference)
Due to the addition of Mg, the solidus temperature of the core brazing filler metal is lower than that of the Al-Si brazing filler metal in the surface layer. Therefore, in the process of raising the brazing temperature, the core brazing filler metal begins to melt earlier than the surface layer brazing filler metal and approaches the liquidus temperature. The higher the liquid fraction, the greater the amount of Mg diffused into the brazing filler metal in the surface layer. However, if the liquidus temperature of the core brazing filler metal is much lower than that of the surface layer brazing filler metal, the core brazing filler metal will flow out from the wire ends, etc., and the temperature will be sufficient to decompose the Al 2 O 3 film on the surface of the material. Insufficient amount of Mg and insufficient flow of effective braze flowing into the joint. Conversely, if the liquidus temperature of the surface layer brazing material is too lower than the liquidus temperature of the core part brazing material, the amount of Mg sufficient to decompose the Al 2 O 3 film on the surface layer part brazing material is insufficient for the core. Since the liquid phase ratio of the surface brazing filler metal increases and becomes active before it diffuses from the brazing filler metal, the brazeability deteriorates due to reoxidation of the outermost surface and unstable brazing flow. Therefore, it is desirable that the liquidus temperature difference between the core brazing material and the surface layer brazing material is 60° C. or less. Furthermore, for the same reason, it is more desirable to set the temperature to less than 35°C.
(ろう付条件)
酸素濃度100ppmを超えると接合部における再酸化が進みやすくなり、接合性が低下するので、酸素濃度を限定するのが望ましい。
上記ろう材ワイヤーは、酸素濃度100ppm以下の非酸化性ガス雰囲気において、フラックスフリーでろう付を行うことができる。
ろう付炉内雰囲気の圧力は常圧を基本とするが、例えば、製品内部のガス置換効率を向上させるためにろう材溶融前の温度域で100kPa~0.1Pa程度の中低真空とすることや、炉内への外気(大気)混入を抑制するために大気圧よりも5~100Pa程度陽圧としてもよい。
非酸化性ガス雰囲気としては、窒素ガス、或いは還元性ガスもしくはこれらの混合ガスが挙げられる。使用する置換ガスの種類としては、アルミニウム材の接合を得るにあたり特に限定されるものではないが、コストの観点より、窒素ガス、不活性ガスとしてはアルゴン、還元性ガスとしては水素、アンモニアを用いることが好適である。雰囲気中の酸素濃度管理範囲としては、100ppm以下が望ましい。100ppm超では被ろう付部材の再酸化が進みやすくなる。同様の理由で30ppm以下とするのが望ましく、さらに、10ppm以下とするのが一層望ましい。
(Brazing conditions)
If the oxygen concentration exceeds 100 ppm, re-oxidation at the joint tends to proceed, resulting in deterioration of the bondability. Therefore, it is desirable to limit the oxygen concentration.
The brazing wire can be flux-free brazed in a non-oxidizing gas atmosphere with an oxygen concentration of 100 ppm or less.
The pressure of the atmosphere in the brazing furnace is basically normal pressure, but for example, in order to improve the gas replacement efficiency inside the product, it is set to a medium-low vacuum of about 100 kPa to 0.1 Pa in the temperature range before melting the brazing material. Alternatively, the pressure may be about 5 to 100 Pa higher than the atmospheric pressure to suppress outside air (atmosphere) from entering the furnace.
The non-oxidizing gas atmosphere includes nitrogen gas, reducing gas, or mixed gas thereof. The type of replacement gas to be used is not particularly limited for bonding aluminum materials, but from the viewpoint of cost, nitrogen gas, argon as an inert gas, and hydrogen and ammonia as a reducing gas are used. is preferred. The oxygen concentration control range in the atmosphere is desirably 100 ppm or less. If it exceeds 100 ppm, the reoxidation of the brazed member is likely to proceed. For the same reason, it is preferably 30 ppm or less, and more preferably 10 ppm or less.
すなわち、本発明によれば、表層部をMg無添加ろう材とし、コア部をMg添加ろう材とすることで、ろう付昇温過程の材料表面でのMgO皮膜成長を抑制しつつ、さらに、各ろう材層のSi粒子分布を最適化することでろう材溶融時には、Al酸化皮膜(Al2O3)を分解するMgを効率的に材料表面に供給することができるため、接合部表面で溶融ろう材が濡れ拡がり易くなり、開放部を有する継手においても良好な接合状態が得られる。
本発明により実用的な酸素濃度管理下で開放部を有する継手で良好な接合状態が得られるため、ラジエータ、コンデンサ、エバポレータ、ヒータコア、インタークーラなどのチューブ根付部において従来ろう付方法と同等以上の接合部強度や耐久性が確保される。
That is, according to the present invention, the surface layer portion is made of Mg-free brazing material and the core portion is made of Mg-added brazing material, thereby suppressing the growth of MgO film on the surface of the material during the process of brazing temperature rise, and further, By optimizing the Si particle distribution of each brazing material layer, Mg, which decomposes the Al oxide film (Al 2 O 3 ), can be efficiently supplied to the material surface when the brazing material is melted. The molten brazing filler metal is easily wetted and spread, and a good joining state can be obtained even in a joint having an open portion.
With the present invention, it is possible to obtain a good joint condition with a joint having an open part under practical oxygen concentration control, so that it is equivalent to or better than the conventional brazing method for tube root parts such as radiators, condensers, evaporators, heater cores, and intercoolers. The joint strength and durability are ensured.
以下に、本発明の一実施形態のアルミニウム合金のフラックスフリーろう付用ろう材ワイヤーについて説明する。
質量で、Si:4~13%、または、Si:1~4%未満、および、Mg:0.1~5.0%を含有し、所望によりBi:0.01~0.5%を含有するアルミニウム合金を溶製し、コア部用の合金材を得る。溶製方法としては、半連続鋳造法や連続鋳造法を用いることができる。
さらに、質量%で、Si:2~13%を含有し、所望によりFe:0.1~1.0%、Bi:0.01~0.1%の1種または2種を含有するAl-Si系合金を溶製し、表層部用の合金材を得る。
A brazing wire for flux-free brazing of an aluminum alloy according to one embodiment of the present invention will be described below.
By mass, Si: 4 to 13%, or Si: less than 1 to 4%, Mg: 0.1 to 5.0%, and optionally Bi: 0.01 to 0.5% The aluminum alloy is melted to obtain an alloy material for the core portion. As a melting method, a semi-continuous casting method or a continuous casting method can be used.
Furthermore, in mass%, Si: 2 to 13%, optionally Fe: 0.1 to 1.0%, Bi: Al- containing one or two of 0.01 to 0.1% A Si-based alloy is melted to obtain an alloy material for the surface layer.
また、コア部、表層部ろう材用アルミニウム合金としては、その他に、質量%で、Cu:0.05~2.0、Mn:0.05~2.5、Ca:0.001~0.5、Li:0.001~0.5、Be:0.001~0.1などを含有してもよい。Cuはろう材溶融温度の調整、Mnは溶融ろうの流動性の調整、Ca、Li、Beはろう付時の材料表面の酸化皮膜分解を促進する元素として適宜選択し、上記範囲にて添加することができる。 In addition, as the aluminum alloy for the core part and the surface layer part brazing material, Cu: 0.05-2.0, Mn: 0.05-2.5, Ca: 0.001-0. 5, Li: 0.001 to 0.5, Be: 0.001 to 0.1, and the like. Cu adjusts the melting temperature of the brazing material, Mn adjusts the fluidity of the molten brazing material, and Ca, Li, and Be are appropriately selected as elements that promote decomposition of the oxide film on the surface of the material during brazing and are added within the above ranges. be able to.
これらの合金に対し、例えば、コア部と表層部の2重構造からなるビレットを作製し、後方押出しなどの押出加工により本発明のろう材ワイヤーが得られる。ろう材ワイヤーの製造方法は特に限定されるものではなく、その他に、コア部合金単体を押出してワイヤーを製作した後、溶融させた表層部合金をディッピングや溶射などでコア部合金ワイヤーに被覆して製造する方法がある。また、コア部合金と表層部合金を熱間圧延でクラッドして2重構造の板材とした後、適宜冷間圧延を行い、さらに、板材をロールフォーミングなどで表層部合金が表側になるように中空のワイヤー状に加工することでも製造できる。なお、ワイヤー状に加工した後、径や寸法精度を調整するため、引抜き加工などを加えても良い。
上記のような方法により本発明のろう材ワイヤーを得る。
図1は、ろう材ワイヤー1の断面図を示す図であり、コア部1Aの周囲に表層部1Bが周回して位置している。
For these alloys, for example, a billet having a double structure of a core portion and a surface layer portion is produced, and the brazing wire of the present invention is obtained by extrusion processing such as backward extrusion. The method of manufacturing the brazing wire is not particularly limited. In addition, after manufacturing a wire by extruding the core alloy alone, the core alloy wire is coated with the melted surface alloy by dipping or thermal spraying. There is a method of manufacturing In addition, after the core alloy and surface alloy are clad by hot rolling to form a sheet material with a double structure, cold rolling is performed as appropriate, and the sheet material is roll-formed so that the surface layer alloy is on the front side. It can also be manufactured by processing into a hollow wire shape. In addition, after working into a wire shape, a drawing process or the like may be added in order to adjust the diameter and dimensional accuracy.
The brazing wire of the present invention is obtained by the method described above.
FIG. 1 is a cross-sectional view of a
得られたろう材ワイヤーでは、コア部に含まれるSi粒子は、ろう材の断面観察において、円相当径0.25μm以上のSi粒子が10000μm2あたり3000個未満となっている。さらに、表層部に含まれるSi粒子は、表層面方向の観察において、円相当径で0.8μm以上の径を持つ粒子の数のうち、1.75μm以上の径を持つ粒子の割合が10%以上となっている。そして、表層部の厚さは30μm以上が確保されている。 In the obtained brazing wire, the Si particles contained in the core portion were less than 3,000 Si particles per 10,000 μm 2 having an equivalent circle diameter of 0.25 μm or more as a result of cross-sectional observation of the brazing material. Furthermore, when observing the Si particles contained in the surface layer in the surface direction, the proportion of particles having a diameter of 1.75 μm or more among the number of particles having an equivalent circle diameter of 0.8 μm or more is 10%. That's it. The thickness of the surface layer is ensured to be 30 μm or more.
ろう付対象のアルミニウム部材は、特に限定されるわけではないが、例えば、以下のようなものが適用できる。
ろう材合金として、質量%で、Si:4~12%、Mg:0.1~5.0%を含有し、所望により、Bi:0.01~0.5%を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金を溶製し、芯材用アルミニウム合金として、質量%で、Mn:0.1~3.0%、Si:0.1~1.2%、Cu:0.1~3.0%、Mg:0.2~1.0%、を含有し、残部がAlと不可避不純物からなる組成に調製する。ろう材合金と芯材合金を熱間圧延でクラッドしてブレージングシートとし、プレス成形などで熱交換器部材の形状に加工する。ろう材用アルミニウム合金としては、その他に、Fe、Cu、Zn、Mn、Ca、Li、Be、芯材用アルミニウム合金としては、その他に、Fe、Zn、Ca、Li、Beなどを既知の量で含有してもよい。また、Znが添加されたアルミニウム合金を犠牲防食層として何れかのクラッド層間、または、ろう材がクラッドされていない芯材表面にクラッドしてもよい。
Although the aluminum member to be brazed is not particularly limited, for example, the following can be applied.
The brazing alloy contains Si: 4 to 12%, Mg: 0.1 to 5.0%, optionally Bi: 0.01 to 0.5%, and the balance is Al. And an aluminum alloy consisting of inevitable impurities is melted, and as an aluminum alloy for core material, in mass%, Mn: 0.1 to 3.0%, Si: 0.1 to 1.2%, Cu: 0.1 ~3.0%, Mg: 0.2 to 1.0%, and the balance is Al and unavoidable impurities. A brazing sheet is formed by cladding a brazing alloy and a core alloy by hot rolling, and is processed into the shape of a heat exchanger member by press forming or the like. The brazing aluminum alloy may also contain Fe, Cu, Zn, Mn, Ca, Li, and Be, and the core aluminum alloy may contain Fe, Zn, Ca, Li, Be, etc. in known amounts. may be contained in Alternatively, an aluminum alloy to which Zn is added may be clad as a sacrificial anticorrosion layer between any of the clad layers or on the surface of the core material that is not clad with brazing material.
また、上記の芯材用アルミニウム合金は、ベア材のまま圧延による板材や押出による棒状に加工し、その後、プレスや切削により熱交換器部材に加工して用いても良い。
本発明としては、ろう付対象のアルミニウム部材の合金組成は特に限定されるものではないが、Mg2Siなどを微細析出させることで材料の大幅な高強度化が図れるため、MgとSiを積極添加した合金を好適に用いることができる。従来のフッ化物系フラックスを用いるろう付方法は、フラックスがMgと反応して高融点のフッ化Mgを生成し不活性化するためろう付性が低下することや、この反応によりMgを消費するため高強度Mg添加合金に適用することが難しかったが、フラックスフリーろう付では高強度Mg添加合金が利用可能となる。
Moreover, the aluminum alloy for the core material may be processed into a plate material by rolling or into a rod shape by extrusion as a bare material, and then processed into a heat exchanger member by pressing or cutting.
In the present invention, the alloy composition of the aluminum member to be brazed is not particularly limited. An added alloy can be preferably used. In the conventional brazing method using a fluoride-based flux, the flux reacts with Mg to generate Mg fluoride with a high melting point, which inactivates the flux. Therefore, it was difficult to apply to high-strength Mg-added alloys, but high-strength Mg-added alloys can be used in flux-free brazing.
上記により例えばラジエータの熱交換器部材を加工し、製品形状となるように組み付ける。その際に、継手のクリアランスが大きいチューブ根付などには、本発明のろう材ワイヤーを設置する。ワイヤーは、必要に応じてリング状に加工したもの、U字型に曲げたもの、棒状ワイヤーを1周以上巻き付けるなどの設置方法が適宜選択できる。ろう付条件は特に限定されないが、例えば、酸素濃度30ppmの窒素ガス雰囲気中で600℃まで加熱するろう付を行うことができる。
ろう付により得られた熱交換器製品は、クリアランスが大きい継手を含む全ての接合部で十分なフィレットが形成され、自動車などの使用環境において優れた耐久性や熱交換性能が発揮される。
For example, a heat exchanger member of a radiator is processed as described above and assembled into a product shape. At that time, the brazing wire of the present invention is installed in the tube netting where the clearance of the joint is large. As for the wire, it is possible to appropriately select an installation method such as one that is processed into a ring shape, one that is bent into a U-shape, or one that is wound with a rod-shaped wire more than once. Although the brazing conditions are not particularly limited, for example, brazing can be performed by heating to 600° C. in a nitrogen gas atmosphere with an oxygen concentration of 30 ppm.
A heat exchanger product obtained by brazing has a sufficient fillet formed at all joints, including joints with large clearances, and exhibits excellent durability and heat exchange performance in a usage environment such as automobiles.
図2は、上記ろう材ワイヤー1を用いて、アルミニウム合金製のフィン2とアルミニウム合金製のチューブ3とを継手5においてろう付けし、チューブ3をヘッダプレート4の根付部6でろう付け接合している。これら接合によってアルミニウム製自動車用熱交換器10が得られている。根付部6は、クリアランスが大きくなりやすい継ぎ手である。
また、上記実施形態では、本発明の適用用途として自動車用熱交換器について説明したが、自動車用以外の熱交換器でもよく、さらに本発明の用途が熱交換器に限定されるものではない。
In FIG. 2, using the
Further, in the above embodiments, the heat exchanger for automobiles is described as an application of the present invention, but heat exchangers other than those for automobiles may be used, and the application of the present invention is not limited to heat exchangers.
表1に示す組成(残部がAlと不可避不純物)の表層部ろう材、および、表2に示す組成(残部がAlと不可避不純物)のコア部ろう材のビレットを半連続鋳造で溶製した後、表層部ろう材の厚みを変量するため、表層部ろう材内部を切削して各種内径を有する中空ビレットに加工し、さらに、コア部ろう材の外側を切削して各種外径を有するコア部ろう材ビレットを準備した。その後、中空ビレットの内径と同等の外径を有するコア部ろう材ビレットを組み付けて2重構造のビレットとし、後方押出しにより各種組成を有する外径10mmの丸棒を作製した。その後、丸棒を引抜き加工し、外径1.0mmの各種ワイヤーろう材を作製した。 After the billets of the surface brazing filler metal having the composition shown in Table 1 (the balance being Al and unavoidable impurities) and the core brazing filler metal having the composition shown in Table 2 (the balance being Al and unavoidable impurities) were melted by semi-continuous casting. , In order to change the thickness of the surface layer brazing material, the inside of the surface layer brazing material is cut to form a hollow billet with various inner diameters, and the core part is cut from the outside of the core part brazing material to have various outer diameters. A braze billet was prepared. Thereafter, a core brazing material billet having an outer diameter equal to the inner diameter of the hollow billet was assembled to form a double-structured billet, and a round bar having an outer diameter of 10 mm having various compositions was produced by backward extrusion. After that, the round bar was drawn to prepare various wire brazing filler metals having an outer diameter of 1.0 mm.
板厚1.5mmで質別O材のJIS A3003プレートに7.5~8.5mmの穴加工を行い、外径7.0mm、内径6.0mmのJIS A3003パイプを図3のように組付け、根付部には各種ワイヤーろう材を内径約7.02mmのリング状に加工したものを設置した。
各種組付け体を酸素濃度10ppmの窒素ガス雰囲気中で到達温度600℃、保持時間3minのろう付を行い、以下の基準でろう付性の評価を行い、その結果を表3~5に示した。
A JIS A3003 plate with a plate thickness of 1.5 mm and tempered O material is drilled with a hole of 7.5 to 8.5 mm, and a JIS A3003 pipe with an outer diameter of 7.0 mm and an inner diameter of 6.0 mm is assembled as shown in Fig. 3. , Various wire brazing materials processed into a ring shape with an inner diameter of about 7.02 mm were installed in the root portion.
Various assembled bodies were brazed in a nitrogen gas atmosphere with an oxygen concentration of 10 ppm at a reaching temperature of 600 ° C. for a holding time of 3 minutes, and the brazability was evaluated according to the following criteria. The results are shown in Tables 3 to 5. .
ろう付性評価方法
◎:プレート穴径8.5mmのクリアランスを埋めることができたもの
○:プレート穴径8.0mmのクリアランスを埋めることができたもの
△:プレート穴径7.5mmのクリアランスを埋めることができたもの
×:プレート穴径7.5mmのクリアランスを埋めることができなかったもの
Brazeability evaluation method ◎: The clearance of the plate hole diameter 8.5 mm was filled ○: The clearance of the plate hole diameter 8.0 mm was filled △: The clearance of the plate hole diameter 7.5 mm was filled Those that could be filled ×: Those that could not fill the clearance of the plate hole diameter 7.5 mm
以上、本発明について上記実施形態および実施例に基づいて説明をしたが、本発明は上記説明の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは前記実施形態に対する適宜の変更が可能である。 Although the present invention has been described above based on the above embodiments and examples, the present invention is not limited to the contents of the above description, and appropriate modifications to the above embodiments can be made without departing from the scope of the present invention. is possible.
1 ろう材ワイヤー
1A コア部
1B 表層部
2 フィン
3 チューブ
4 ヘッダープレート
5 継手
6 根付部
10 アルミニウム製自動車用熱交換器
REFERENCE SIGNS
Claims (7)
コア部が、質量%で4~13%のSiおよび0.1~5.0%のMgを含有するAl-Si-Mg系合金からなり、表層部が、質量%で2~13%Siを含有するAl-Si系合金からなり、
前記コア部に含まれるSi粒子が、断面観察において、円相当径0.25μm以上のSi粒子が10000μm2当たり3,000個未満であり、かつ、前記表層部に含まれるSi粒子が、表層面方向の観察において、円相当径で0.8μm以上の径をもつものの数の内、1.75μm以上の径のものの数の割合が10%以上であり、
前記表層部の厚さが30μm以上であり、
前記コア部のAl-Si-Mg系合金と、前記表層部のAl-Si系合金の液相線温度差が、前記表層部のAl-Si系合金の液相線温度-前記コア部のAl-Si-Mg系合金の液相線温度において、-60℃~71℃であることを特徴とするフラックスフリーろう付用ワイヤーろう材。 A flux-free brazing brazing wire for use in flux-free brazing of an aluminum member, wherein a surface layer portion is laminated on a core portion,
The core portion is made of an Al-Si-Mg alloy containing 4 to 13% by mass of Si and 0.1 to 5.0% by mass of Mg, and the surface layer portion is composed of 2 to 13% by mass of Si. Consists of an Al-Si alloy containing
Si particles contained in the core portion have less than 3,000 Si particles having an equivalent circle diameter of 0.25 μm or more per 10000 μm 2 in cross-sectional observation, and the Si particles contained in the surface layer portion are on the surface layer surface In observation of the direction, the ratio of the number of objects having a diameter of 1.75 μm or more in the number of objects having an equivalent circle diameter of 0.8 μm or more is 10% or more,
The thickness of the surface layer portion is 30 μm or more,
The liquidus temperature difference between the Al—Si—Mg-based alloy in the core portion and the Al—Si-based alloy in the surface layer portion is the liquidus temperature of the Al—Si-based alloy in the surface layer portion−Al in the core portion. - A wire brazing material for flux-free brazing, characterized in that the liquidus temperature of the Si--Mg alloy is -60°C to 71°C.
コア部が、質量%で1%以上4%未満のSiおよび0.1~5.0%のMgを含有するAl-Si-Mg系合金からなり、表層部が、質量%で2~13%Siを含有するAl-Si系合金からなり、
前記コア部は、含まれるSi粒子が、断面観察において、円相当径0.25μm以上のSi粒子が10000μm 2 当たり3,000個未満であり、かつ、前記表層部に含まれるSi粒子が、表層面方向の観察において、円相当径で0.8μm以上の径をもつものの数の内、1.75μm以上の径のものの数の割合が10%以上であり、
前記表層部は、厚さが30μm以上であり、
前記コア部のAl-Si-Mg系合金と、前記表層部のAl-Si系合金の液相線温度差が60℃以下であることを特徴とするフラックスフリーろう付用ワイヤーろう材。 A flux-free brazing brazing wire for use in flux-free brazing of an aluminum member, wherein a surface layer portion is laminated on a core portion,
The core part is made of an Al-Si-Mg alloy containing 1% or more and less than 4% by mass of Si and 0.1 to 5.0% of Mg, and the surface layer part is 2 to 13% by mass. Made of an Al-Si alloy containing Si,
The core portion contains less than 3,000 Si particles with an equivalent circle diameter of 0.25 μm or more per 10000 μm 2 when observed in a cross section, and the Si particles contained in the surface layer portion are on the surface. When observed in the layer surface direction, the ratio of the number of particles having an equivalent circle diameter of 0.8 μm or more to the number of particles having a diameter of 1.75 μm or more is 10% or more,
The surface layer portion has a thickness of 30 μm or more,
A wire brazing material for flux-free brazing, wherein a liquidus temperature difference between the Al--Si--Mg-based alloy in the core portion and the Al--Si-based alloy in the surface layer portion is 60.degree. C. or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019128367A JP7311337B2 (en) | 2019-07-10 | 2019-07-10 | Brazing wire for flux-free brazing and flux-free brazing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019128367A JP7311337B2 (en) | 2019-07-10 | 2019-07-10 | Brazing wire for flux-free brazing and flux-free brazing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021013935A JP2021013935A (en) | 2021-02-12 |
JP7311337B2 true JP7311337B2 (en) | 2023-07-19 |
Family
ID=74531152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019128367A Active JP7311337B2 (en) | 2019-07-10 | 2019-07-10 | Brazing wire for flux-free brazing and flux-free brazing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7311337B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010082599A1 (en) | 2009-01-19 | 2010-07-22 | 株式会社日本スペリア社 | Wire solder, method of feeding the same and apparatus therefor |
JP2016112585A (en) | 2014-12-15 | 2016-06-23 | 株式会社Uacj | Brazing filler material sheet for surface joint |
JP2016150355A (en) | 2015-02-17 | 2016-08-22 | 株式会社Uacj | Fillet forming brazing material sheet |
JP2018001266A (en) | 2016-06-23 | 2018-01-11 | 三菱アルミニウム株式会社 | Brazing sheet for flux-free brazing, flux-free brazing method and flux-free brazing method for heat exchanger |
JP2018103260A (en) | 2016-12-27 | 2018-07-05 | 三菱アルミニウム株式会社 | Flux-free soldering blazing sheet, flux-free soldering method and heat exchanger manufacturing method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5684116A (en) * | 1979-12-07 | 1981-07-09 | Sumitomo Electric Ind Ltd | Manufacture of composite wire |
JPH03114691A (en) * | 1989-09-28 | 1991-05-15 | Showa Alum Corp | Composite filler metal |
-
2019
- 2019-07-10 JP JP2019128367A patent/JP7311337B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010082599A1 (en) | 2009-01-19 | 2010-07-22 | 株式会社日本スペリア社 | Wire solder, method of feeding the same and apparatus therefor |
JP2016112585A (en) | 2014-12-15 | 2016-06-23 | 株式会社Uacj | Brazing filler material sheet for surface joint |
JP2016150355A (en) | 2015-02-17 | 2016-08-22 | 株式会社Uacj | Fillet forming brazing material sheet |
JP2018001266A (en) | 2016-06-23 | 2018-01-11 | 三菱アルミニウム株式会社 | Brazing sheet for flux-free brazing, flux-free brazing method and flux-free brazing method for heat exchanger |
JP2018103260A (en) | 2016-12-27 | 2018-07-05 | 三菱アルミニウム株式会社 | Flux-free soldering blazing sheet, flux-free soldering method and heat exchanger manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2021013935A (en) | 2021-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3459676B1 (en) | Brazing sheet for flux-free brazing, flux-free brazing method and method for producing heat exchanger | |
JP4547032B1 (en) | Fluxless brazing method of aluminum material and aluminum clad material for fluxless brazing | |
JP5809728B2 (en) | Tube for heat exchanger | |
EP3563968B1 (en) | Brazing sheet for flux-free brazing, method for flux-free brazing, and method for heat manufacturing heat exchanger | |
CN113330131B (en) | Aluminum alloy for brazing and aluminum brazing sheet | |
JP5115963B2 (en) | Aluminum heat exchanger member with excellent corrosion resistance and method for producing aluminum heat exchanger with excellent corrosion resistance | |
JP6726370B1 (en) | Aluminum brazing sheet for flux-free brazing | |
JP5334086B2 (en) | Aluminum heat exchanger having excellent corrosion resistance and method for producing the same | |
JP6405020B1 (en) | Flux-free brazing method for aluminum material and aluminum alloy member for flux-free brazing | |
JP2009058167A (en) | Aluminum heat exchanger using tube having superior corrosion resistance and its manufacturing method | |
JP4023760B2 (en) | Aluminum alloy clad material for heat exchangers with excellent brazing and corrosion resistance | |
JP5614883B2 (en) | Fluxless brazing method of aluminum material, aluminum alloy brazing sheet for fluxless brazing, and aluminum alloy brazing material for fluxless brazing | |
US11229978B2 (en) | Brazing sheet for flux-free brazing, method for flux-free brazing and method for manufacturing heat exchanger | |
JP7311337B2 (en) | Brazing wire for flux-free brazing and flux-free brazing method | |
CN114423563A (en) | Fluxless brazing method for aluminum brazing sheet and aluminum member | |
JP2009162450A (en) | Aluminum heat exchanger and its manufacturing method | |
JP2012052160A (en) | Member for flux-less brazing, excellent in blazing property, and method for flux-less brazing aluminum member | |
JPH08104936A (en) | Aluminum alloy clad fin material for heat exchanger | |
JP6184804B2 (en) | Brazing method of aluminum alloy material and manufacturing method of brazing structure | |
JP2024064688A (en) | Aluminum alloy brazing sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220308 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20220607 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230113 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230404 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230421 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20230421 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20230502 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230704 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230706 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7311337 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |