JP7287787B2 - 基地局装置、端末装置、通信方法、および、集積回路 - Google Patents
基地局装置、端末装置、通信方法、および、集積回路 Download PDFInfo
- Publication number
- JP7287787B2 JP7287787B2 JP2019002867A JP2019002867A JP7287787B2 JP 7287787 B2 JP7287787 B2 JP 7287787B2 JP 2019002867 A JP2019002867 A JP 2019002867A JP 2019002867 A JP2019002867 A JP 2019002867A JP 7287787 B2 JP7287787 B2 JP 7287787B2
- Authority
- JP
- Japan
- Prior art keywords
- pusch
- slot
- symbols
- terminal device
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1268—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/08—Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/713—Spread spectrum techniques using frequency hopping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/713—Spread spectrum techniques using frequency hopping
- H04B1/7143—Arrangements for generation of hop patterns
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
- H04L1/1671—Details of the supervisory signal the supervisory signal being transmitted together with control information
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Description
ロックの繰り返し送信を含み、前記PUSCHは1つのスロット内で第1の周波数ホップと第
2の周波数ホップからなり、前記Nrepが1の場合、前記第1の周波数ホップはFloor(L/2)シンボルを有し、前記第2の周波数ホップはL-Floor(L/2)シンボルを有し、前記Lは1回の前記繰り返し送信に対応するシンボルの数であり、前記Nrepが1より多い場合、前記第1の周波数ホップは最初のFloor(Nrep/2)回の前記繰り返し送信に対応するシンボルを有
し、前記第2の周波数ホップはNrep-Floor(Nrep/2)回の前記繰り返し送信に対応するシンボルを有する。
ポートブロックの繰り返し送信を含み、前記PUSCHは1つのスロット内で第1の周波数ホ
ップと第2の周波数ホップからなり、前記Nrepが1の場合、前記第1の周波数ホップはFloor(L/2)シンボルを有し、前記第2の周波数ホップはL-Floor(L/2)シンボルを有し、前記Lは1回の前記繰り返し送信に対応するシンボルの数であり、前記Nrepが1より多い場合、前記第1の周波数ホップは最初のFloor(Nrep/2)回の前記繰り返し送信に対応するシンボルを有し、前記第2の周波数ホップはNrep-Floor(Nrep/2)回の前記繰り返し送信に対応するシンボルを有する。
ートブロックの繰り返し送信を含み、前記PUSCHは1つのスロット内で第1の周波数ホッ
プと第2の周波数ホップからなり、前記Nrepが1の場合、前記第1の周波数ホップはFloor(L/2)シンボルを有し、前記第2の周波数ホップはL-Floor(L/2)シンボルを有し、前記Lは1回の前記繰り返し送信に対応するシンボルの数であり、前記Nrepが1より多い場合、前記第1の周波数ホップは最初のFloor(Nrep/2)回の前記繰り返し送信に対応するシンボルを有し、前記第2の周波数ホップはNrep-Floor(Nrep/2)回の前記繰り返し送信に対応するシンボルを有する通信方法。
ポートブロックの繰り返し送信を含み、前記PUSCHは1つのスロット内で第1の周波数ホ
ップと第2の周波数ホップからなり、前記Nrepが1の場合、前記第1の周波数ホップはFloor(L/2)シンボルを有し、前記第2の周波数ホップはL-Floor(L/2)シンボルを有し、前記Lは1回の前記繰り返し送信に対応するシンボルの数であり、前記Nrepが1より多い場合、前記第1の周波数ホップは最初のFloor(Nrep/2)回の前記繰り返し送信に対応するシンボルを有し、前記第2の周波数ホップはNrep-Floor(Nrep/2)回の前記繰り返し送信に対応するシンボルを有する通信方法。
D(Time Division Duplex)方式またはFDD(Frequency Division Duplex)方式が適
用されてもよい。また、TDD方式が適用されるセルとFDD方式が適用されるセルが集約されてもよい。TDD方式はアンペアードスペクトラムオペレーション(Unpaired spectrum operation)と称されてもよい。FDD方式はペアードスペクトラムオペレーション(Paired spectrum operation)と称されてもよい。
・PBCH(Physical Broadcast CHannel)
・PDCCH(Physical Downlink Control CHannel)
・PDSCH(Physical Downlink Shared CHannel)
・PUCCH(Physical Uplink Control CHannel)
・PUSCH(Physical Uplink Shared CHannel)
・PRACH(Physical Random Access CHannel)
PBCHは、端末装置1が必要な重要なシステム情報を含む重要情報ブロック(MIB: Master Information Block、EIB: Essential Information Block、BCH:Broadcast Channel)を報知するために用いられる。
は運ぶ)ために用いられる。ここで、下りリンク制御情報の送信に対して、1つまたは複数のDCI(DCIフォーマットと称してもよい)が定義される。すなわち、下りリンク制御情報に対するフィールドがDCIとして定義され、情報ビットへマップされる。PDCCHは、PDCCH候補において送信される。端末装置1は、サービングセルにおいてPDCCH候補(candidate)のセットをモニタする。モニタすることは、あるDCIフ
ォーマットに応じてPDCCHのデコードを試みることを意味する。
・DCIフォーマット0_1
・DCIフォーマット1_0
・DCIフォーマット1_1
・DCIフォーマット2_0
・DCIフォーマット2_1
・DCIフォーマット2_2
・DCIフォーマット2_3
DCIフォーマット0_0は、あるサービングセルにおけるPUSCHのスケジューリングのために用いられてもよい。DCIフォーマット0_0は、PUSCHのスケジューリング情報(周波数領域リソース割り当て及び時間領域リソース割り当て)を示す情報を含んでよい。DCIフォーマット0_0は、C-RNTI、CS-RNTI、MCS―C-RNTI、および/または、TC-RNTIの内何れかによってスクランブルされるCRCが付加されてもよい。DCIフォーマット0_0は、コモンサーチスペースまたはUE固有サーチスペースにおいてモニタされてもよい。
、C-RNTI、CS-RNTI、および/または、MCS―C-RNTIの内何れかによってスクランブルされるCRCが付加されてもよい。DCIフォーマット1_1は、UE固有サーチスペースにおいてモニタされてもよい。
PC:Transmit Power Control)コマンドの送信のために用いられる。
るDCIを、上りリンクグラント(uplink grant)、または、上りリンクアサインメント(Uplink assignment)とも称する。DCIを、DCIフォーマットとも称してもよい。
られる。ここで、上りリンク制御情報には、下りリンクのチャネルの状態を示すために用いられるチャネル状態情報(CSI: Channel State Information)が含まれてもよい。また、上りリンク制御情報には、UL-SCHリソースを要求するために用いられるスケジューリング要求(SR: Scheduling Request)が含まれてもよい。また、上りリンク制御情報には、HARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)が含まれてもよい。HARQ-ACKは、下りリンクデータ(Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH)に対するHARQ-ACKを示してもよい。
にはシステム情報(SI: System Information)やランダムアクセス応答(RAR: Random Access Response)などの送信にも用いられる。
または上りリンクデータと共にHARQ-ACKおよび/またはCSIを送信するために用いられてもよい。また、CSIのみ、または、HARQ-ACKおよびCSIのみを送信するために用いられてもよい。すなわち、UCIのみを送信するために用いられてもよい。
あってもよい。すなわち、端末装置固有(UEスペシフィック)の情報は、ある端末装置1に対して専用のシグナリングを用いて送信されてもよい。また、PUSCHは、上りリンクにおいてUEの能力(UE Capability)の送信に用いられてもよい。
・同期信号(Synchronization signal: SS)
・参照信号(Reference Signal: RS)
同期信号は、プライマリ同期信号(PSS:Primary Synchronization Signal)およびセカンダリ同期信号(SSS)を含んでよい。PSSとSSSを用いてセルIDが検出されてよい。
用いられる。ここで、同期信号は、端末装置1が基地局装置3によるプリコーディングまたはビームフォーミングにおけるプリコーディングまたはビームの選択に用いられて良い。なお、ビームは、送信または受信フィルタ設定、あるいは空間ドメイン送信フィルタまたは空間ドメイン受信フィルタと呼ばれてもよい。
・CSI-RS(Channel State Information Reference Signal)
・PTRS(Phase Tracking Reference Signal)
・TRS(Tracking Reference Signal)
DMRSは、変調信号を復調するために使用される。なお、DMRSには、PBCHを復調するための参照信号と、PDSCHを復調するための参照信号の2種類が定義されてもよいし、両方をDMRSと称してもよい。CSI-RSは、チャネル状態情報(CSI:Channel State Information)の測定およびビームマネジメントに使用され、周期的またはセミパーシステントまたは非周期のCSI参照信号の送信方法が適用される。CSI-RSには、ノンゼロパワー(NZP:Non-Zero Power)CSI-RSと、送信電力(または受信電力)がゼロである(ゼロパワー(ZP:Zero Power)CSI-RSが定義されてよい。ここで、ZP CSI-RSは送信電力がゼロまたは送信されないCSI-RSリソースと定義されてよい。PTRSは、位相雑音に起因する周波数オフセットを保証する目的で、時間軸で位相をトラックするために使用される。TRSは、高速移動時におけるドップラーシフトを保証するために使用される。なお、TRSはCSI-RSの1つの設定として用いられてよい。例えば、1ポートのCSI-RSがTRSとして無線リソースが設定されてもよい。
・PTRS(Phase Tracking Reference Signal)
・SRS(Sounding Reference Signal)
DMRSは、変調信号を復調するために使用される。なお、DMRSには、PUCCHを復調するための参照信号と、PUSCHを復調するための参照信号の2種類が定義されてもよいし、両方をDMRSと称してもよい。SRSは、上りリンクチャネル状態情報(CSI)の測定、チャネルサウンディング、およびビームマネジメントに使用される。PTRSは、位相雑音に起因する周波数オフセットを保証する目的で、時間軸で位相をトラックするために使用される。
トチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(TB:transport block)および/またはMAC PDU(Protocol Data Unit)とも称する。MAC層においてトランスポートブロック毎にHARQ(Hybrid Automatic Repeat reQuest)の制御が行われる。トランスポートブロックは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理が行われる。
づいて決定されてよい。また、SSバーストセットの開始位置(バウンダリ)は、SFNと周期に基づいて決定されてよい。
・ビーム選択(Beam selection)
・ビーム改善(Beam refinement)
・ビームリカバリ(Beam recovery)
例えば、ビーム選択は、基地局装置3と端末装置1の間の通信においてビームを選択する手続きであってよい。また、ビーム改善は、さらに利得の高いビームの選択、あるいは端末装置1の移動によって最適な基地局装置3と端末装置1の間のビームの変更をする手続きであってよい。ビームリカバリは、基地局装置3と端末装置1の間の通信において遮蔽物や人の通過などにより生じるブロッケージにより通信リンクの品質が低下した際にビームを再選択する手続きであってよい。
・ビーム失敗(beam failure)の検出
・新しいビームの発見
・ビームリカバリリクエストの送信
・ビームリカバリリクエストに対する応答のモニタ
例えば、端末装置1における基地局装置3の送信ビームを選択する際にCSI-RSまたはSS/PBCHブロックに含まれるSSSのRSRP(Reference Signal Received Power)を用いてもよいし、CSIを用いてもよい。また、基地局装置3への報告として
CSI-RSリソースインデックス(CRI:CSI-RS Resource Index)を用いてもよい
し、SS/PBCHブロックに含まれるPBCHおよび/またはPBCHの復調に用いられる復調用参照信号(DMRS)の系列で指示されるインデックスを用いてもよい。
てもよい。ある信号(アンテナポート、同期信号、参照信号など)が別の信号(アンテナポート、同期信号、参照信号など)と「QCLである」または、「QCLの想定が用いられる」とは、ある信号が別の信号と関連付けられていると解釈できる。
角度広がり(Angle Spread、例えばASA(Angle Spread of Arrival)やZSA(Zenith angle Spread of Arrival))、送出角(AoD, ZoDなど)やその角度広がり(Angle Spread、例えばASD(Angle Spread of Departure)やZSD(Zenith angle Spread of Departure))、空間相関(Spatial Correlation)、受信空間パラメータであってもよい。
・タイプB:ドップラーシフト、ドップラースプレッド
・タイプC:平均遅延、ドップラーシフト
・タイプD:受信空間パラメータ
上述のQCLタイプは、RRCおよび/またはMAC層および/またはDCIで1つまたは2つの参照信号とPDCCHやPDSCH DMRSとのQCLの想定を送信設定指示(TCI:Transmission Configuration Indication)として設定および/または指示
してもよい。例えば、端末装置1がPDCCHを受信する際のTCIの1つの状態として、SS/PBCHブロックのインデックス#2とQCLタイプA+QCLタイプBが設定および/または指示された場合、端末装置1は、PDCCH DMRSを受信する際、SS/PBCHブロックインデックス#2の受信におけるドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッド、受信空間パラメータとチャネルの長区間特性とみなしてPDCCHのDMRSを受信して同期や伝搬路推定をしてもよい。このとき、TCIにより指示される参照信号(上述の例ではSS/PBCHブロック)をソース参照信号、ソース参照信号を受信する際のチャネルの長区間特性から推論される長区間特性の影響を受ける参照信号(上述の例ではPDCCH DMRS)をターゲット参照信号と称してよい。また、TCIは、RRCで1つまたは複数のTCI状態と各状態に対してソース参照信号とQCLタイプの組み合わせが設定され、MAC層またはDCIにより端末装置1に指示されてよい。
サブキャリアの数は、セルの下りリンクおよび上りリンクの帯域幅にそれぞれ依存する。リソースグリッド内のエレメントのそれぞれをリソースエレメントと称する。リソースエレメントは、サブキャリアの番号とOFDMシンボルの番号とを用いて識別されてよい。
域において14個の連続するOFDMシンボルと周波数領域において12*Nmax個の連続するサブキャリアとから定義される。Nmaxは、後述するサブキャリア間隔設定μにより決定されるリソースブロックの最大数である。つまり、リソースグリッドは、(14*12*Nmax,μ)個のリソースエレメントから構成される。ECP(Extended CP)の場合、サブキャリア間隔60kHzにおいてのみサポートされるので、1つの物理リソースブロックは、例えば、時間領域において12(1スロットに含まれるOFDMシンボル数)*4(1サブフレームに含まれるスロット数)=48個の連続するOFDMシンボルと、周波数領域において12*Nmax,μ個の連続するサブキャリアとにより定義される。つまり、リソースグリッドは、(48*12*Nmax,μ)個のリソースエレメントから構成される。
FDMシンボル数よりも少ないOFDMシンボルで構成される時間ユニットである。同図はミニスロットが2OFDMシンボルで構成される場合を一例として示している。ミニスロット内のOFDMシンボルは、スロットを構成するOFDMシンボルタイミングに一致してもよい。なお、スケジューリングの最小単位はスロットまたはミニスロットでよい。また、ミニスロットを割り当てることを、ノンスロットベースのスケジューリングと称してもよい。また、ミニスロットをスケジューリングされることを参照信号とデータのスタート位置の相対的な時間位置が固定であるリソースがスケジュールされたと表現されてもよい。下りリンクミニスロットはPDSCHマッピングタイプBと称されてよい。上りリンクミニスロットはPUSCHマッピングタイプBと称されてよい。
・下りリンクシンボル
・フレキシブルシンボル
・上りリンクシンボル
のうち1つまたは複数を含んでよい。なお、これらの割合はスロットフォーマットとして予め定められてもよい。また、スロット内に含まれる下りリンクのOFDMシンボル数またはスロット内のスタート位置および終了位置で定義されてもよい。また、スロット内に含まれる上りリンクのOFDMシンボルまたはDFT-S-OFDMシンボル数またはスロット内のスタート位置および終了位置で定義されてよい。なお、スロットをスケジューリングされることを参照信号とスロット境界の相対的な時間位置が固定であるリソースがスケジュールされたと表現されてもよい。
で構成されてよい。
<MAC entity動作>
活性化されたサービングセルにおいて、常に一つのアクティブな(活性化された)BWPがある。あるサービングセルに対するBWP切り替え(BWP switching)は、インアク
ティブな(非活性化された)BWPを活性化(activate)し、アクティブな(活性化された)BWPを非活性化(deactivate)するために使用される。あるサービングセルに対するBWP切り替え(BWP switching)は、下りリンク割り当てまたは上りリンクグラント
を示すPDCCHによって制御される。あるサービングセルに対するBWP切り替え(BWP switching)は、さらに、BWPインアクティブタイマー(BWP inactivity timer)や、RRCシグナリングによってや、ランダムアクセスプロシージャの開始時にMACエンティティ自身によって制御されてもよい。SpCell(PCellまたはPSCell)の追加または、SCellの活性化において、一つのBWPが、下りリンク割り当てまたは上りリンクグラントを示すPDCCHを受信することなしに第一にアクティブである。第一にアクティブなDL BWP (first active DL BWP) およびUL BWP(first active UL BWP)は、基地局装置3から端末装置1に送られるRRCメッセージで指定されるかもしれない。あるサービングセルに対するアクティブなBWPは、基地局装置3から端末装置1に送られるRRCまたはPDCCHで指定される。また、第一にアクティブなDL BWP (first active DL BWP) およびUL BWP(first active UL BWP)は、メッセージ4に含まれてもよい。アンペアードスペクトラム(Unpaired spectrum)(TDDバンドなど)では、DL BWPとUL BWPはペアされていて、BWP切り替えは、ULとDLに対して共通である。BWPが設定されているアクティベートされたサービングセルのそれぞれに対する、アクティブなBWPにおいて、端末装置1のMACエンティティは、ノーマル処理を適用する。ノーマル処理には、UL-SCHを送信する、RACHを送信する、PDCCHをモニタする、PUCCHを送信する、SRSを送信する、およびDL-SCHを受信することを含む。BWPが設定されているアクティベートされたサービングセルのそれぞれに対する、インアクティブなBWPにおいて、端末装置1のMACエンティティは、UL-SCHを送信しない、RACHを送信しない、PDCCHをモニタしない、PUCCHを送信しない、SRSを送信しない、およびDL-SCHを受信しない。あるサービングセルが非活性化された場合、アクティブなBWPは、存在しないようにしてもよい(例えば、アクティブなBWPは非活性化される)。
<RRC動作>
RRCメッセージ(報知されるシステム情報や、専用RRCメッセージで送られる情報)に含まれるBWPインフォメーションエレメント(IE)は、BWPを設定するために使われる。基地局装置3から送信されたRRCメッセージは、端末装置1によって受信される。それぞれのサービングセルに対して、ネットワーク(基地局装置3など)は、少なくとも下りリンクのBWPと1つ(もしサービングセルが上りリンクの設定された場合など)または2つ(付録のアップリンク(supplementary uplink)が使われる場合など)の上りリンクBWPを含む少なくとも初期BWP(initial BWP)を、端末装置1に対して、設定する。さらに、ネットワークは、追加の上りリンクBWPや下りリンクBWPをあるサービングセルに対して設定するかもしれない。BWP設定は、上りリンクパラメータと下りリンクパラメータに分けられる。また、BWP設定は、共通(common)パラメータと専用(dedicated)パラメータに分けられる。共通パラメータ(BWP上りリンク共通IEやBWP下りリンク共通IEなど)は、セル特有である。プライマリセルの初期BWPの共通パラメータは、システム情報でも提供される。他のすべてのサービングセルに対しては、ネットワークは専用信号で共通パラメータを提供する。BWPは、BWP IDで識別される。初期BWPは、BWP IDが0である。他のBWPのBWP IDは、1から4までの値を取る。
タイプ0PDCCHコモンサーチスペースのためのコントロールリソースセット(CORESET)でのPDCCH受信のために、連続的なPRBの位置と数、サブキャリア間隔、および、サイクリックプレフィックスによって定義されてもよい。該連続的なPRBの位置は、タイプ0PDCCHコモンサーチスペースのためのコントロールリソースセットのPRBの間で、最小インデックスのPRBから始まり、最大インデックスのPRBで終わる。端末装置1に対して上位層のパラメータinitialDownlinkBWPが設定(提供)されている場合、初期DL BWPは上位層のパラメータinitialDownlinkBWPによって示されてもよい。上位層のパラメータinitialDownlinkBWPは、SIB1(systemInformationBlockType1、ServingCellConfigCommonSIB)またはServingCellConfigCommonに含まれてもよい。インフォメーションエレメントServingCellConfigCommonSIBは、SIB1内で端末装置1に対するサービングセルのセル固有パラメータを設定するために使われる。
はinitialUplinkBWPによって提供されてもよい。インフォメーションエレメントinitialUplinkBWPは、初期UL BWPを設定するために使わ
れる。SpCellまたはセカンダリセルでのオペレーションに対して、端末装置1には、上位層のパラメータinitialUplinkBWPによって初期UL BWP(初期アクティブなUL BWP)が設定(提供)されてもよい。端末装置1に対して補足的な上りリンクキャリア(supplementary UL carrier)が設定される場合、端末装置1には、上位層のパラメータsupplementaryUplinkに含まれるinitialUplinkBWPによって、補足的な上りリンクキャリアでの初期UL BWPが設定されてもよい。
報をサーチするための時間および周波数リソースである。CORESETの設定情報には、CORESETの識別子(ControlResourceSetId、CORESET-ID)とCORESETの周波数リソースを特定する情報が含まれる。インフォメーションエレメントControlResourceSetId(CORESETの識別子)は、あるサービングセルにおけるコントロールリソースセットを特定するために使われる。CORESETの識別子は、あるサービングセルにおけるBWP間で使われる。CORESETの識別子は、サービングセルにおけるBWP間でユニークである。各BWPのCORESETの数は、初期CORESETを含めて、3に制限される。あるサービングセルにおいて、CORESETの識別子の値は、0から11までの値を取る。
RESETの識別子で特定するCORESETである。該サーチスペースの設定情報で示されるDCIフォーマットは、関連付けられるCORESETでモニタされる。各サーチスペースは一つのCORESETに関連付けられる。例えば、ランダムアクセス手順のためのサーチスペースの設定情報はra-SearchSpaceによって設定されてもよい。即ち、ra-SearchSpaceと関連付けられるCORESETでRA-RNTIまたはTC-RNTIによってスクランブルされるCRCが付加されたDCIフォーマットがモニタされる。
- タイプ0PDCCHコモンサーチスペースセット(a Type0-PDCCH common search
space set、タイプ0コモンサーチスペース): このサーチスペースセットは、上位層
のパラメータである、MIBで示されるpdcch-ConfigSIB1またはPDCCH-ConfigCommonで示されるサーチスペースSIB1(searchSpaceSIB1)またはPDCCH-ConfigCommonに含まれるサーチスペースゼロ(searchSpaceZero)によって設定される。このサーチスペースは、プライマリセルにおけるSI-RNRIでスクランブルされたCRCのDCIフォーマットのモニタリングのためのものである。
- タイプ0APDCCHコモンサーチスペースセット(a Type0A-PDCCH common search space set、タイプ0Aコモンサーチスペース): このサーチスペースセットは、上位層のパラメータである、PDCCH-ConfigCommonで示されるサーチスペース(searchSpaceOtherSystemInformation)によって設定される。このサーチスペースは、プライマリセルにおけるSI-RNRIでスクランブルされたCRCのDCIフォーマットのモニタリングのためのものである。
- タイプ1PDCCHコモンサーチスペースセット(a Type1-PDCCH common search
space set、タイプ1コモンサーチスペース): このサーチスペースセットは、上位層
のパラメータである、PDCCH-ConfigCommonで示されるランダムアクセス手順のためのサーチスペース(ra-SearchSpace)によって設定される。このサーチスペ
ースは、プライマリセルにおけるRA-RNRIまたはTC-RNTIでスクランブルされたCRCのDCIフォーマットのモニタリングのためのものである。タイプ1PDCCHコモンサーチスペースセットはランダムアクセス手順のためのサーチスペースセットである。
- タイプ2PDCCHコモンサーチスペースセット(a Type2-PDCCH common search
space set、タイプ2コモンサーチスペース): このサーチスペースセットは、上位層
のパラメータである、PDCCH-ConfigCommonで示されるページング手順のためのサーチスペース(pagingSearchSpace)によって設定される。このサーチスペースは、プライマリセルにおけるP-RNTIでスクランブルされたCRCのDCIフォーマットのモニタリングのためのものである。
- タイプ3PDCCHコモンサーチスペースセット(a Type3-PDCCH common search
space set、、タイプ3コモンサーチスペース): このサーチスペースセットは、上位
層のパラメータである、PDCCH-Configで示されるサーチスペースタイプがコモンのサーチスペース(SearchSpace)によって設定される。このサーチスペースは、IN
T-RNTI、SFI-RNTI、TPC-PUSCH-RNTI、TPC-PUCCH-RNTI、またはTPC-SRS-RNTIでスクランブルされたCRCのDCIフォーマットのモニタリングのためのものである。プライマリライセルに対しては、C-RNTI、CS-RNTI(s)、またはMSC-C-RNTIでスクランブルされたCRCのDCIフォーマットのモニタリングのためのものである。
PDSCHに対して割り当てられたSとLの決定は後述する。
り、上位層のパラメータdmrs-TypeA-PositionはPDSCHまたはPUSCHのための最
初のDMRSの位置を示すために用いられる。dmrs-TypeA-Positionは、‘pos2’または
‘pos3’のいずれかにセットされてもよい。例えば、dmrs-TypeA-Positionが‘pos2’に
セットされている場合、PDSCHための最初のDMRSシンボルの位置は、スロット内の3番目のシンボルであってもよい。例えば、dmrs-TypeA-Positionが‘pos3’にセット
されている場合、PDSCHための最初のDMRSシンボルの位置は、スロット内の4番目のシンボルであってもよい。ここで、Sは、dmrs-TypeA-Positionが‘pos3’にセット
されている場合のみに、3の値を取れる。つまり、dmrs-TypeA-Positionが‘pos2’にセ
ットされている場合、Sは0から2までの値を取る。PDSCHマッピングタイプBでは、最初のDMRSシンボルの位置は、割り当てられるPDSCHの最初のシンボルである。
ソース割り当てテーブル内の1つのPDSCH時間領域リソース割り当てコンフィギュレーションを選んでもよい。つまり、基地局装置3は、端末装置1にPDSCHのリソース割り当てを決定し、‘Time domain resource assignment’フィールドの値を生成し、その‘Time domain resource assignment’フィールドを含むDCIを端末装置1に送信する。端末装置1は、‘Time domain resource assignment’フィールドにセットされる値に基づき、PDSCHの時間方向のリソース割り当てを特定する。
ジュールするPDCCHが検出されるスロットである。μPDSCHはPDSCHに対するサブキャリア間隔設定である。μPDCCHはPDCCHに対するサブキャリア間隔設定で
ある。
要素B:DCIが検出されるサーチスペースのタイプ
要素C:そのサーチスペースと関連付けられるCORESETがCORESET#0であるかどうか
要素D:pdsch-ConfigCommonがpdsch-TimeDomainAllocationListを含むかどうか
要素E:pdsch-Configがpdsch-TimeDomainAllocationListを含むかどうか
要素F:SS/PBCHとCORESET多重パータン
要素Aにおいて、DCIに付加されるCRCをスクランブルするRNTIのタイプは、SI-RNTI、RA-RNTI、TC-RNTI、P-RNTI、C-RNTI、MCS-C-RNTI、または、CS-RNTIの内、何れかである。
当てテーブル内の1つのPDSCH時間領域リソース割り当てコンフィギュレーションを選んでもよい。例えば、PDSCH時間領域リソース割り当てに適用するリソース割り当てテーブルがデフォルトテーブルAである場合、‘Time domain resource assignment’
フィールドに示される値mは、デフォルトテーブルAの行インデックス(row index)m
+1を示してもよい。この時、PDSCH時間領域リソース割り当ては、行インデックスm+1から示される時間領域リソース割り当てのコンフィギュレーションである。端末装置1は、行インデックスm+1から示される時間領域リソース割り当てのコンフィギュレーションを想定し、PDSCHを受信する。例えば、‘Time domain resource assignment’フィールドに示される値mが0である場合、端末装置1は、デフォルトテーブルAの行インデックス1のPDSCH時間領域リソース割り当てのコンフィギュレーションを用いて、そのDCIによってスケジュールされるPDSCHの時間方向のリソース割り当てを特定する。
例えば、‘Time domain resource assignment’フィールドに示される値mが0である場
合、端末装置1は、リストpdsch-TimeDomainAllocationListにおける1番目のエレメント(エントリ)を参照してもよい。例えば、‘Time domain resource assignment’フィー
ルドに示される値mが1である場合、端末装置1は、リストpdsch-TimeDomainAllocationListにおける2番目のエレメント(エントリ)を参照してもよい。
(サイズ)について説明する。
ィールドのビット数の決定について説明する。
ドのビット数は、(I)pdsch-ConfigCommonがpdsch-TimeDomainAllocationListを含むかどうか、および/または、(II)pdsch-Configがpdsch-TimeDomainAllocationListを含むかどうか、および/または、(III)事前に定義したデフォルトテーブルに含まれる行の数に少なくとも基づいて、与えられてもよい。本実施形態において、DCIフォーマット1_1は、C-RNTI、MCS-C-RNTI、および、CS-RNTIの内、何れかによってスクランブルされるCRCが付加される。DCIフォーマット1_1は、UE固有サーチスペースにおいて検出されてもよい。本実施形態において、‘pdsch-Configがpdsch-TimeDomainAllocationListを含む’の意味は、‘pdsch-Configでpdsch-TimeDomainAllocationListが提供される’の意味であってもよい。‘pdsch-ConfigCommonがpdsch-TimeDomainAllocationListを含む’の意味は、‘pdsch-ConfigCommonでpdsch-TimeDomainAllocationListが提供される’の意味であってもよい。
末装置1に対してpdsch-TimeDomainAllocationListが設定(提供)される場合、Iの値はpdsch-TimeDomainAllocationListに含まれるエントリの数であってもよい。端末装置1に対してpdsch-TimeDomainAllocationListが設定(提供)されない場合、Iの値はデフォルトテーブル(デフォルトテーブルA)の行の数であってもよい。つまり、端末装置1に対してpdsch-TimeDomainAllocationListが設定される場合、Time domain resource assignment’フィールドのビット数は、pdsch-TimeDomainAllocationListに含まれるエントリの数に基づいて与えられてもよい。端末装置1に対してpdsch-TimeDomainAllocationListが設定されない場合、Time domain resource assignment’フィールドのビット数は、デフォルトテーブル(デフォルトテーブルA)の行の数に基づいて与えられてもよい。具体的に言うと、pdsch-Configがpdsch-TimeDomainAllocationListを含む場合、Iの値はpdsch-Configで提供されるpdsch-TimeDomainAllocationListに含まれるエントリの数であってもよい。また、pdsch-Configがpdsch-TimeDomainAllocationListを含んでおらず、且つ、pdsch-ConfigCommonがpdsch-TimeDomainAllocationListを含む場合、Iの値はpdsch-ConfigCommonで提供されるpdsch-TimeDomainAllocationListに含まれるエントリの数であってもよい。また、pdsch-Configがpdsch-TimeDomainAllocationListを含んでおらず、且つ、pdsch-ConfigCommonがpdsch-TimeDomainAllocationListを含まない場合、Iの値はデフォルトテーブル(例えば、デフォルトテーブルA)に含まれる行の数であってもよい。
、ceiling(log2(I))として与えられてもよい。端末装置1に対してpdsch-TimeDomainAllocationListが設定(提供)されない場合、‘Time domain resource assignment’フィールドのビット数は、固定のビット数であってもよい。例えば、固定のビット数は4ビットであってもよい。
ここで、Iはpdsch-TimeDomainAllocationListに含まれるエントリの数であってもよい。具体的に言うと、pdsch-Configがpdsch-TimeDomainAllocationListを含む場合、Iの値はpdsch-Configで提供されるpdsch-TimeDomainAllocationListに含まれるエントリの数であってもよい。また、pdsch-Configがpdsch-TimeDomainAllocationListを含んでおらず、且つ、pdsch-ConfigCommonがpdsch-TimeDomainAllocationListを含む場合、Iの値はpdsch-ConfigCommonで提供されるpdsch-TimeDomainAllocationListに含まれるエントリの数であってもよい。
ンボルの位置は、スロット内の3番目のシンボルであってもよい。例えば、dmrs-TypeA-Positionが‘pos3’にセットされている場合、PUSCHための最初のDMRSシンボル
の位置は、スロット内の4番目のシンボルであってもよい。PUSCHマッピングタイプBでは、最初のDMRSシンボルの位置は、割り当てられるPUSCHの最初のシンボルであってもよい。
ソース割り当てテーブル内の1つのPUSCH時間領域リソース割り当てコンフィギュレ
ーションを選んでもよい。つまり、基地局装置3は、端末装置1にPUSCHのリソース割り当てを決定し、‘Time domain resource assignment’フィールドの値を生成し、そ
の‘Time domain resource assignment’フィールドを含むDCIを端末装置1に送信す
る。端末装置1は、‘Time domain resource assignment’フィールドにセットされる値
に基づき、PUSCHの時間方向のリソース割り当てを特定する。
サーチスペースにおいてDCIを検出してもよい。検出したDCIは、C-RNTI、MCS-C-RNTI、TC-RNTI、または、CS-RNTIの内、何れかによってスクランブルされるCRCが付加される。そして、端末装置1は、そのDCIによってスケジュールされるPUSCHに適用するリソース割り当てテーブルを決定してもよい。端末装置1に対してpusch-ConfigCommonがpusch-TimeDomainAllocationListを含む場合、端末装置1は、PUSCH時間領域リソース割り当てに適用するリソース割り当てテーブルを
、pusch-ConfigCommonで提供されるpusch-TimeDomainAllocationListから与えられるリソース割り当てテーブルに決定してもよい。また、pusch-ConfigCommonがpusch-TimeDomainAllocationListを含まない場合、端末装置1は、PUSCH時間領域リソース割り当てに適用するリソース割り当てテーブルをPUSCHデフォルトテーブルAに決定してもよい。
して、端末装置1は、そのDCIによってスケジュールされるPUSCHに適用するリソース割り当てテーブルを決定してもよい。端末装置1に対してpusch-Configがpusch-TimeDomainAllocationListを含む場合、端末装置1は、PUSCH時間領域リソース割り当てに適用するリソース割り当てテーブルを、pusch-Configで提供されるpusch-TimeDomainAllocationListから与えられるリソース割り当てテーブルに決定してもよい。つまり、pusch-Configがpusch-TimeDomainAllocationListを含む場合、端末装置1は、pusch-ConfigCommonがpusch-TimeDomainAllocationListを含むか含まないかと関わらず、pusch-Configで提供されるpusch-TimeDomainAllocationListを用いて、PUSCH時間領域リソース割り当ての決定に適用してもよい。また、pusch-Configがpusch-TimeDomainAllocationListを含んでおらず、且つ、pusch-ConfigCommonがpusch-TimeDomainAllocationListを含む場合、端末装置1は、PUSCH時間領域リソース割り当てに適用するリソース割り当てテーブルを、pusch-ConfigCommonで提供されるpusch-TimeDomainAllocationListから与えられるリソース割り当てテーブルに決定してもよい。つまり、端末装置1は、pusch-ConfigCommonで提供されるpusch-TimeDomainAllocationListを用いて、PUSCH時間領域リソース割り当ての決定に適用する。また、pusch-Configがpusch-TimeDomainAllocationListを含んでおらず、且つ、pusch-ConfigCommonがpusch-TimeDomainAllocationListを含まない場合、端末装置1は、PUSCH時間領域リソース割り当てに適用するリソース割り当てテーブルをPUSCHデフォルトテーブルAに決定してもよい。
例えば、‘Time domain resource assignment’フィールドに示される値mが0である場
合、端末装置1は、リストpusch-TimeDomainAllocationListにおける1番目のエレメント(エントリ)を参照してもよい。例えば、‘Time domain resource assignment’フィー
ルドに示される値mが1である場合、端末装置1は、リストpusch-TimeDomainAllocationListにおける2番目のエレメント(エントリ)を参照してもよい。
(サイズ)について説明する。
数であってもよい。例えば、この固定のビット数は4であってもよい。つまり、DCIフォーマット0_0に含まる‘Time domain resource assignment’フィールドのサイズは4ビットである。また、DCIフォーマット0_1に含まる‘Time domain resource assignment’フィールドのサイズは可変のビット数であってもよい。例えば、DCIフォーマット0_1に含まる‘Time domain resource assignment’フィールドのビット数は0、1、2、3、4の内何れかであってもよい。
ィールドのビット数の決定について説明する。
の繰り返し送信(repetition transmission)の回数を示すために用いられる。上位層の
パラメータpusch-AggregationFactorは2、4、8の内何れかの値を示す。基地局装置3
は、データ送信の繰り返しの回数を示す上位層のパラメータpusch-AggregationFactorを
端末装置1に送信してもよい。基地局装置3は、pusch-AggregationFactorを用いて、端
末装置1にトランスポートブロックの送信を所定の回数に繰り返させることができる。端末装置1は、基地局装置3から上位層のパラメータpusch-AggregationFactorを受信し、
該pusch-AggregationFactorに示される繰り返しの回数を用いて、トランスポートブロッ
クの送信を繰り返してもよい。ただし、端末装置1は、基地局装置からpusch-AggregationFactorを受信しない場合に、トランスポートブロックの繰り返し送信の回数が1とみなしてもよい。つまり、この場合に、端末装置1は、PDCCHがスケジュールするそのトランスポートブロックを1回送信してもよい。つまり、端末装置1は、基地局装置からpusch-AggregationFactorを受信しない場合に、PDCCHがスケジュールするそのトランスポートブロックに対して、スロットアグリゲーション送信(マルチスロット送信)を行わなくてもよい。
されるDCIフォーマットを含むPDCCHを受信し、該PDCCHによってスケジュールさ
れるPUSCHを送信してもよい。端末装置1にはpusch-AggregationFactorが設定され
ている場合、端末装置1は、PUSCHが最初に送信されるスロットからの連続的なN個のス
ロットでPUSCHをN回送信してもよい。スロットごとで一回のPUSCH送信(トランスポートブロックの送信)が行われてもよい。つまり、同じトランスポートブロックの送信(繰り返し送信)は1スロット内で1回しか行われない。Nの値はpusch-AggregationFactorから示される。端末装置1にpusch-AggregationFactorが設定されていない場合、Nの値は1であってもよい。PUSCHが最初に送信されるスロットは、前述のような(式4)によって与えられてもよい。PUSCHをスケジュールするPDCCHに基づき与えられたPUSCH時間領域リソース割り当ては連続的なN個のスロットに適用されてもよい。つまり、同じシンボル割り当て(同じスタートシンボルSと同じ連続的な割り当てられるシンボル数L)が連続的なN個のスロットに適用されてもよい。端末装置1は、PUSCHが最初に送信されるスロットからの連続的なN個のスロットにわたってトランスポートブロックを繰り返して送信してもよい。端末装置1は、各スロットにおいて同じシンボル割り当て(シンボルアロゲーション)を用いてトランスポートブロックを繰り返して送信してもよい。上位層のパラメータpusch-AggregationFactorが設定されている場合に端末装置1が行うスロットアグリゲーション送信は、第1のアグリゲーション送信と称してもよい。つまり、上位層のパラメータpusch-AggregationFactorは、第1のアグリゲーション送信のための繰り返し送信(repetition transmission)の回数を示すために用いられる。上位層のパラメータpusch-AggregationFactorは、第1のアグリゲーション送信パラメータとも呼ぶ。
かの値に設定される。n1, n2, n3それぞれの値は、2、4、8であってもよいし、他の値であってもよい。n1, n2, n3は、トランスポートブロックの繰り返し送信の回数を示す。つまり、pusch-AggregationFactor-r16は、1つの繰り返し送信の回数の値を示してもよ
い。トランスポートブロックの繰り返し送信の回数は、スロット内の繰り返し送信回数(Nrepなど)かもしれないし、スロット内およびスロット間を含めた繰り返し送信回数(Ntotalなど)かもしれないし、スロット間の繰り返し送信回数(Ntotalなど)かもしれない。または、基地局装置3は、端末装置1に繰り返し送信の回数をもっと柔軟に設定できるように、1つより多いエレメントを含むpusch-AggregationFactor-r16を端末装置1
に送信してもよい。エレメント(インフォメーションエレメント、エントリ)ごとは、トランスポートブロックの繰り返し送信の回数を示すために用いられてもよい。つまり、pusch-AggregationFactor-r16は、1つより多い複数の繰り返し送信の回数の値を示してもよい。本実施形態において、上位層のパラメータpusch-AggregationFactor-r16が設定されている場合に端末装置1が行うスロットアグリゲーション送信は、第2のアグリゲーション送信と称してもよい。つまり、上位層のパラメータpusch-AggregationFactor-r16は、少なくとも第2のアグリゲーション送信のための繰り返し送信(repetition transmission)の回数を示すために用いられてもよい。上位層のパラメータpusch-AggregationFactor-r16は、第2のアグリゲーション送信パラメータとも呼ぶ。そして、基地局装置3は、トランスポートブロックをスケジュールするDCIに含まれるフィールドを介して、何れかのエレメントを示し、そのトランスポートブロックの繰り返し送信の回数を端末装置1に通知してもよい。具体的手順は後述する。また、基地局装置3は、MAC CE(MAC Control Element)を介して、何れかのエレメントを示し、そのトランスポートブロックの繰り返し送信の回数を端末装置1に通知してもよい。即ち、基地局装置3は、そのDCIに含まれるフィールドおよび/またはMAC CEを介して、何れかのエレメントを示し、動的に繰り返し送信の回数を端末装置1に通知してもよい。端末装置1に動的繰り返し回数の機能が適用されることは、端末装置1が動的に繰り返し送信の回数を基地局装置3から通知されることを意味してもよい。
り多いエレメントを含む場合に、端末装置1は、DCIに含まれる‘Repetition Number
’フィールドを用いて、複数のエレメントの中から1つを選択してもよい(動的繰り返し回数)。DCIに含まれる‘Repetition Number’フィールドは、pusch-AggregationFactor-r16が1つおよび/または1つより多いエレメントを含む場合には、存在し、そうでない場合は、存在しないようにしてもよい。DCIに含まれる‘Repetition Number’フィールドは、pusch-AggregationFactor-r16が設定されていない場合には、存在しないようにしてもよい。そして、選択されたエレメントに示される値は、DCIがスケジュールするトランスポートブロックの繰り返し送信の回数である。そして、端末装置1は、トランスポートブロックを通知された回数に繰り返し送信してもよい。‘Repetition Number’フィールドのビット数は、ceiling(log2(X+1))またはceiling(log2(X))として与えられてもよい。Xは、pusch-AggregationFactor-r16に含まれるエレメントの数である。‘Repetition Number’フィールドのビット数がceiling(log2(X))として与えられた場合に、‘Repetition Number’フィールドに示される値mは、pusch-AggregationFactor-r16に含まれる(m+1)番目のエレメントに対応してもよい。そして、トランスポートブロックの繰り返し送信の回数は、(m+1)番目のエレメントから示される値であってもよい。例えば、‘Repetition Number’フィールドに示される値mが0である場合、端末装置1は、pusch-AggregationFactor-r16に含まれる1番目のエレメントを参照してもよい。エレメントが示す値は、1より大きい値であってもよい。エレメントが示す値は、1と等しい値であってもよい。また、‘Repetition Number’フィールドのビット数がceiling(log2(X+1))として与えられた場合に、‘Repetition Number’フィールドに示される値mは、pusch-AggregationFactor-r16に含まれるm番目のエレメントに対応してもよい。ただし、ここで、mの値は非ゼロの値である。‘Repetition Number’フィールドに示される値mが0の場合、端末装置1は、繰り返し送信の回数を1としてみなしてもよい。各エレメントが示す値は、1より大きい値であってもよい。
pusch-AggregationFactor-r16が設定されている際には、アグリゲーション送信(第2の
アグリゲーション送信)に対して、シンボル割り当て拡張(スタートシンボル拡張および/またはシンボル数拡張)、動的繰り返し回数、および/またはミニスロットアグリゲーション送信の機能が適用される。
)から要素(D)の一部または全部に少なくとも基づいて、あるDCIに‘Repetition Number’フィールドが存在(present)するかどうかを決定してもよい。
要素B:DCIが検出されるサーチスペースのタイプ
要素C:DCIフォーマットのタイプ
要素D:DCIのフィールドで示される情報
要素Aにおいて、DCIに付加されるCRCをスクランブルするRNTIのタイプが、SI-RNTI、RA-RNTI、TC-RNTI、P-RNTI、C-RNTI、MC
S-C-RNTI、または、CS-RNTIの内、何れかである場合、該DCIに‘Repetition Number’フィールドが存在しないようにしてもよい。また、DCIに付加されるCRCをスクランブルするRNTIのタイプがNEW-RNTIである場合、該DCIに含まれる‘Repetition Number’フィールドは、存在するようにしてもよい。
DCIがモニターされるサーチスペースがUE固有サーチスペースである場合に、該DCIに‘Repetition Number’フィールドが存在してもよい。
CIフォーマット0_0がUE固有サーチスペースでモニターされる場合に、該DCIに‘Repetition Number’フィールドが存在するようにしてもよい。また、例えば、DCI
フォーマット0_1がNEW-RNTIによってスクランブルされている場合に、該DCIに‘Repetition Number’フィールドが存在するようにしてもよい。DCIフォーマッ
ト0_1がNEW-RNTI以外のRNTIによってスクランブルされている場合に、該DCIに‘Repetition Number’フィールドが存在しないようにしてもよい。
)から要素(C)の一部または全部に少なくとも基づいて、DCIがスケジュールするPUSCH送信に上記で説明したpusch-AggregationFactor-r16が設定されている際の機能
が適用されるかどうかを決定してもよい。
要素B:DCIが検出されるサーチスペースのタイプ
要素C:DCIフォーマットのタイプ
要素Aにおいて、DCIに付加されるCRCをスクランブルするRNTIのタイプが、SI-RNTI、RA-RNTI、TC-RNTI、P-RNTI、C-RNTI、MCS-C-RNTI、または、CS-RNTIの内、何れかである場合、該DCIがスケジュールするPUSCH送信にpusch-AggregationFactor-r16が設定されている際の機能が適用されなくてもよい。また、DCIに付加されるCRCをスクランブルするRNTIのタイプがNEW-RNTIである場合、該DCIがスケジュールするPUSCH送信にpusch-AggregationFactor-r16が設定されている際の機能が適用されてもよい。
タイプ0コモンサーチスペース、タイプ1コモンサーチスペース、タイプ2コモンサーチスペースを含む。DCIがモニターされるサーチスペースがコモンサーチスペースである場合に、該DCIがスケジュールするPUSCH送信にpusch-AggregationFactor-r16が
設定されている際の機能が適用されなくてもよい。DCIがモニターされるサーチスペースがUE固有サーチスペースである場合に、該DCIがスケジュールするPUSCH送信にpusch-AggregationFactor-r16が設定されている際の機能が適用されてもよい。
定されている際の機能が適用されなくてもよい。DCIフォーマット0_0がUE固有サーチスペースでモニターされる場合に、該DCIがスケジュールするPUSCH送信にpusch-AggregationFactor-r16が設定されている際の機能が適用されてもよい。
い場合では、もしpusch-AggregationFactorが設定されている場合に、そのDCIでスケジュールされるPUSCH送信では第1のアグリゲーション送信が行われてもよい。つまり、端末装置1は、トランスポートブロックを連続的なN個のスロットでN回繰り返し送信してもよい。Nの値はpusch-AggregationFactorによって与えられてもよい。N個のスロットでは同じシンボルアロケーションが適用されてもよい。また、pusch-AggregationFactor-r16が設定されている際の機能が適用されない場合では、もしpusch-AggregationFactorが設定されていない場合に、そのDCIでスケジュールされるPUSCH送信が1回行われてもよい。つまり、端末装置1は、トランスポートブロックを1回送信してもよい。
ト内で行われてもよいし、連続的な利用可能なスロットにわたって行われてもよい。該スケジュールされるPUSCH繰り返し送信には、スロット(利用可能なスロット)内のPUSCH繰り返し送信に利用可能なシンボルに基づいて、各スロット内で行われる繰り返し送信の回数は異なってもよい。つまり、ミニスロットアグリゲーション送信では、1つのスロット(1つの利用可能なスロット)内で同じトランスポートブロックの繰り返し送信の回数が1回または1回より多くてもよい。つまり、ミニスロットアグリゲーション送信では、端末装置1は、1つのスロット内で同じトランスポートブロックの1回以上の繰り返し送信を基地局装置3に送信することができる。つまり、ミニスロットアグリゲーション送信は、スロット内アグリゲーションをサポートするモードのことを意味するとも言える。ミニスロットアグリゲーション送信に、上記で説明したシンボル割り当て拡張(スタートシンボル拡張および/またはシンボル数拡張)、および/または動的繰り返し回数、が適用されてもよい。
送信の繰り返し送信の回数を示すために用いられてもよい。pusch-AggregationFactor-r16は第2のスロットアグリゲーション送信および/またはミニスロットアグリゲーション送信の繰り返し送信の回数を示すために用いられてもよい。pusch-AggregationFactor-r16は、第2のスロットアグリゲーション送信および/またはミニスロットアグリゲーション送信に対して、共通のパラメータであってもよい。端末装置1にpusch-AggregationFactor-r16が設定されている場合、端末装置1に対して第2のスロットアグリゲーション送信および/またはミニスロットアグリゲーション送信が適用されてもよい。
ゲーション送信またはミニスロットアグリゲーション送信の内何れが適用されるかを決定してもよい。前述のように、‘Time domain resource assignment’フィールドはPUS
CH時間領域リソース割り当てを示すために用いられる。端末装置1は、‘Time domain resource assignment’フィールドに基づき得られた連続的な割り当てられるシンボル数
Lが所定の値を超えているかどうかに基づいて、スロットアグリゲーション送信またはミニスロットアグリゲーション送信の内何れが適用されるかを決定してもよい。端末装置1は、シンボル数Lが所定の値を超えている場合に、スロットアグリゲーション送信が適用されることを決定してもよい。また、端末装置1は、シンボル数Lが所定の値を超えていない場合に、ミニスロットアグリゲーション送信が適用されることを決定してもよい。所定の値は、上位層のパラメータから示された値であってもよい。所定の値は、仕様書などで事前に定義された値であってもよい。例えば、所定の値は7シンボルであってもよい。
装置1に通知してもよい。例えば、基地局装置3は、第2のスロットアグリゲーション送信とミニスロットアグリゲーション送信のそれぞれに対して、繰り返し送信の回数を示す上位層のパラメータを個別に設定してもよい。例えば、pusch-AggregationFactor-r16は
第2のスロットアグリゲーション送信の繰り返し送信の回数を示すために用いられてもよい。pusch-MiniAggregationFactor-r16はミニスロットアグリゲーション送信の繰り返し
送信の回数を示すために用いられてもよい。基地局装置3は、端末装置1に第2のスロットアグリゲーション送信とミニスロットアグリゲーション送信の内何れかを設定しようとする場合に、対応する上位層のパラメータを送信してもよい。つまり、基地局装置3がpusch-AggregationFactor-r16を端末装置1に送信する場合、端末装置1は、第1のスロットアグリゲーション送信が適用されることをみなしてもよい。基地局装置3がpusch-MiniAggregationFactor-r16を端末装置1に送信する場合、端末装置1は、ミニスロットアグリゲーション送信が適用されることをみなしてもよい。
れたPUSCHマッピングタイプに基づいて、スロットアグリゲーション送信またはミニスロットアグリゲーション送信の内何れが適用されるかを決定してもよい。具体的に言うと、第2のスロットアグリゲーション送信および/またはミニスロットアグリゲーション送信が適用される場合に、端末装置1は、‘Time domain resource assignment’フィー
ルドに基づき得られたPUSCHマッピングタイプがPUSCHマッピングタイプAである場合に、第2のスロットアグリゲーション送信および/またはミニスロットアグリゲーション送信が適用されないこととみなしてもよい。そして、もしpusch-AggregationFactorが基地局装置3から送信されているならば、端末装置1は、上りリンクグラントがスケジュールするPUSCH送信に第1のスロットアグリゲーション送信が適用されることを決定してもよい。そのスロットアグリゲーション送信の繰り返し送信の回数は、pusch-AggregationFactorによって示される。もしpusch-AggregationFactorが基地局装置3から送信されないならば、端末装置1は、上りリンクグラントがスケジュールするPUSCHを1回送信してもよい。別の言い方で、端末装置1および基地局装置3は、第1の条件を満たす場合、pusch-AggregationFactorが設定されている場合に、それぞれのスロットでは同じシンボルアロケーション(シンボル割り当て)を適用して、トランスポートブロックを連続的なN個のスロットでN回繰り返し送信し、pusch-AggregationFactorが設定されていない場合に、トランスポートブロックを1回送信し、第2の条件を満たす場合、前述のような第2のアグリゲーション送信を適用してトランスポートブロックを送信してもよい。ここで、第1の条件は、PUSCH送信をスケジュールするDCIで、PUSCHマッピングタイプがタイプAに示されることを少なくとも含む。第2の条件は、PUSCH送信をスケジュールするDCIで、PUSCHマッピングタイプがタイプBに示されることを少なくとも含む。Nの値はpusch-AggregationFactorに与えられる。つまり、第2のスロットアグリゲーション送信および/またはミニスロットアグリゲーション送信が適用されるPUSCHのマッピングタイプは、タイプBであってもよい。第1のスロットアグリゲーション送信が適用されるPUSCHのマッピングタイプは、タイプAであってもよいし、タイプBであってもよい。
ンクグラントでスケジュールされる1つまたは複数のPUSCH数である。端末装置1は、Nrepを確定してもよい。Nrepは、スロット内で同じトランスポートブロックが繰り返し送信される回数(繰り返し送信されるPUSCH数)である。別の言い方で、Nrepは、1つの上りリンクグラントでスケジュールされる1つまたは複数のPUSCHに対して有るスロット内に配置される1つまたは複数のPUSCH数である。端末装置1は、Nslotsを確定してもよい。Nslotsは、1つの上りリンクグラントでスケジュールされる同じトランスポートブロックが繰り返し送信されるスロット数である。別の言い方で、Nslotsは、1つの上りリンクグラントでスケジュールされる1つまたは複数のPUSCHに対
して使われるスロット数である。端末装置1は、NtotalをNrepとNslotsから導出して
もよい。端末装置1は、NrepをNtotalとNslotsから導出してもよい。端末装置1は、
NslotsをNrepとNtotalから導出してもよい。Nslotsは、1または2かもしれない。Nrepは、スロット間で異なる値かもしれない。Nrepは、スロット間で同じ値かもしれない。
端末装置1には上位層のパラメータfrequencyHoppingが設定(提供)されてもよい。上位層のパラメータfrequencyHoppingは、‘intraSlot’と‘interSlot’の内何れかにセットされてもよい。frequencyHoppingが‘intraSlot’にセットされている場合、端末装置1
は、スロット内周波数ホッピングを伴うPUSCH送信を実行してもよい。すなわち、端末装置1にスロット内周波数ホッピングが設定されることは、frequencyHoppingが‘intraSlot’にセットされ、且つ、そのPUSCHをスケジュールするDCIに含まれる‘Frequency hopping flag’フィールドの値が1にセットされることを意味してもよい。frequencyHoppingが‘interSlot’にセットされている場合、端末装置1は、スロット間周波数ホッピングを伴うPUSCH送信を実行してもよい。すなわち、端末装置1にスロット間周波数ホッピングが設定されることは、frequencyHoppingが‘interSlot’にセットされ、且つ、そのPUSCHをスケジュールするDCIに含まれる‘Frequency hopping flag’フィールドの値が1にセットされることを意味してもよい。また、基地局装置3がfrequencyHoppingを端末装置1に送信しない場合、端末装置1は周波数ホッピングなしPUSCH送信を実行してもよい。すなわち、端末装置1には周波数ホッピングが設定されないことは、frequencyHoppingが送信されないことを含んでもよい。また、端末装置1には周波数ホッピングが設定されないことは、frequencyHoppingが送信されても、そのPUSCHをスケジュールするDCIに含まれる‘Frequency hopping flag’フィールドの値が0にセットされることを含んでもよい。
において、第1の周波数ホップ(first frequency hop、第1のホップ、第1の周波数単
位)と第2の周波数ホップ(second frequency hop、第1のホップ、第2の周波数単位)から成る。第1の周波数ホップのシンボル数はFloor(NPUSCH,s symb/2)によって与えられてもよい。第2の周波数ホップのシンボル数はNPUSCH,s symb-Floor(NPUSCH,s symb/2)によって与えられてもよい。NPUSCH,s symbは、1つのスロット内のOFDMシンボルにおける1つのPUSCH送信の長さである。つまり、NPUSCH,s symbは、1つのスロット内のスケジュールされる1つのPUSCHに使われるOFDMシンボルの数であってもよい。NPUSCH,s symbの値は、DCIフォーマットまたはRAR ULグラントに含まれるフィールドに示されてもよい。NPUSCH,s symbは、該トランスポートブロックの送信をスケジュールする上りリンクグラントに含まれる‘Time domain resource assignment’フィールドに基づき得られた連続的な割り当てられるシンボル数であってもよい。第1の周波数ホップの開始RB(starting RB)と第1の周波数ホップの開始RB間のリソースブロックの差RBoffsetをリソースブロックの周波数オフセットと称してもよい。つまり、RBoffsetは2つの周波数ホップ間のRBの周波数オフセットである。また、RBoffsetを第2の周波数ホップのための周波数オフセットと称してもよい。例えば、第1の周波数ホップの開始RBをRBstartと称する。第2の周波数ホップの開始RBは、(式5)(RBstart+RBoffset) mod Nsize BWPによって与えられてもよい。RBstartはPUSCHをスケジュールするDCIに含まれる周波数リソース割り当てフィールドによって与えられてもよい。Nsize BWPはアクテイベーされているBWPのサイズ(物理リソースブロックの数)である。関数(A) mod (B)は、AとBの割り算をし、割り切れない余りの数字をを出力する。周波数オフセットRBoffsetの値は、PUSCH-Configに含まれる上位層のパラメータfrequencyHoppingOffsetListsによって設定される。上位層のパラメータfrequencyHoppingOffsetListsは、周波数ホッピングが適用される時に、周波数オフセット(周波数ホッピングオフセット)値のセットを示すために用いられる。図8(b)において、スロット内周波数ホッピングはシングルスロットPUSCH送信および/またはマルチスロット(スロットアグリゲーション)PUSCH送信に適用されてもよい。
て与えられてもよい。RBstartはPUSCHをスケジュールするDCIに含まれる周波数リソー
ス割り当てフィールドによって与えられてもよい。図8(c)において、端末装置1は、同じトランスポートブロックを連続的な2つのスロットで繰り返し送信する。
図9(a)は、周波数ホッピングが設定されておらず、スロットアグリゲーションが設定されていない、または、スロットアグリゲーション送信回数が1、かつミニスロットアグリゲーション送信回数が4の場合を示している。この時、Nrep=4、Ntotal=1、Nslots=1である。
トアグリゲーション送信は,該スロットにおいて、第1の周波数ホップと第2の周波数ホ
ップからなる。第1の周波数ホップが含む繰り返し送信の回数はFloor(Nrep/2)によって与えられてもよい。第2の周波数ホップが含む繰り返し送信の回数はNrep―Floor(Nrep/2)によって与えられてもよい。Nrepは該スロット内で同じトランスポートブロック
が繰り返し送信される回数である。そして、第1の周波数ホップの開始RB(starting RB)と第1の周波数ホップの開始RB間のリソースブロックの差RBoffsetをリソースブロ
ックの周波数オフセットと称してもよい。つまり、RBoffsetは2つの周波数ホップ間のRB
の周波数オフセットである。また、RBoffsetを第2の周波数ホップのための周波数オフセットと称してもよい。例えば、第1の周波数ホップの開始RBをRBstartと称する。第
2の周波数ホップの開始RBは、(式5)(RBstart+RBoffset) mod Nsize BWPによって与えられてもよい。RBstartは周波数リソース割り当てフィールドによって
与えられてもよい。関数(A) mod (B)は、AとBの割り算をし、割り切れない余りの数字をを出力する。Nrepが1の場合、周波数ホップの数は1であってもよい。つまり、frequencyHoppingが‘intraSlot’にセットされている場合、端末装置1はスロット内周波数ホッピングなしPUSCH送信を行ってもよい。スロット内周波数ホッピングなしPUSCH送信の開始RBは、(式5)(RBstart+RBoffset)mod Nsize BWPによって与
えられてもよい。また、Nrepが1の場合であっても、周波数ホップの数が2とみなして
もよい。すなわち、第1の周波数ホップのシンボル数は0であってもよい。第2の周波数ホップのシンボル数はNrep*NPUSCH,s symbであってもよい。
は4です。そのトータル繰り返し送信の回数Ntotalは、上位層のパラメータ、および/
または、そのトランスポートブロック送信をスケジュールするDCI内のフィールドによっ
て通知されてもよい。図9(b)において、Ntotal回のトランスポートブロック繰り返
し送信(NtotalのPUSCH送信)は1つのスロット内で行われる。図9(b)におい
て、1つのスロット内でNrep=4PUSCH送信がNrep=4回の同じトランスポートブロッ
クの繰り返し送信を含んでもよい。第1の周波数ホップは最初の(Floor(Nrep/2)=2)回の繰り返し送信を含む。第2の周波数ホップは(Nrep―Floor(Nrep/2)=2)回
の繰り返し送信を含む。第1の周波数ホップは最初の2回の繰り返し送信に対応するシンボルを含む。第2の周波数ホップは最後の2回の繰り返し送信に対応するシンボルを含む。このとき、Nrep=4、Ntotal=1、Nslots=1である。
は7です。Ntotalは、上位層のパラメータ、および/または、そのトランスポートブロ
ック送信をスケジュールするDCI内のフィールドによって通知されてもよい。図9(c)
において、Ntotal回のトランスポートブロック繰り返し送信は2つのスロット内で行わ
れる。そして、端末装置1は、トランスポートブロックの繰り返し送信が行われるスロットのそれぞれに対して、スロット内周波数ホッピングを行ってもよい。図9(c)において、最初の1つのスロット内でPUSCH送信がNrep=4回の同じトランスポートブロックの繰り返し送信を含んでもよい。第1の周波数ホップは最初の(Floor(Nrep/2)=2)回の繰り返し送信を含む。第2の周波数ホップは(Nrep―Floor(Nrep/2)=2)回の繰
り返し送信を含む。第1の周波数ホップはスロット内の最初の2回の繰り返し送信に対応するシンボルを含む。第2の周波数ホップはスロット内の最後の2回の繰り返し送信に対応するシンボルを含む。次のスロット内でPUSCH送信がNrep=3回の同じトランスポートブロックの繰り返し送信を含んでもよい。第1の周波数ホップは最初の(Floor(Nrep/
2)=1)回の繰り返し送信を含む。第2の周波数ホップは(Nrep―Floor(Nrep/2)=2)回の繰り返し送信を含む。第1の周波数ホップはスロット内の最初の1回の繰り返し送信に対応するシンボルを含む。第2の周波数ホップはスロット内の最後の2回の繰り返し送信に対応するシンボルを含む。スロットAでの1回の繰り返し送信に対応するシンボ
ルは、スロットBでの1回の繰り返し送信に対応するシンボルと同一でもよいし、異なっ
てもよい。スロットAまたはスロットBでの繰り返し送信のそれぞれに対応するシンボルは同一でもよいし、異なってもよい。このとき、スロットAでのNrep=4、スロットBでの
Nrep=3、Ntotal=7、Nslots=2である。
は7です。Ntotal回のトランスポートブロック繰り返し送信は2つのスロット内で行わ
れる。そして、端末装置1は、トランスポートブロックの繰り返し送信が行われるスロット間周波数ホッピングを行ってもよい。RBoffsetは2つの周波数ホップ間のRBの周波数オ
フセットである。あるスロットで送信されるPUSCHの開始RBは、該スロットの番号nu sに基づいて決定されてもよい。nu s mod 2が0である場合に、該スロット内のPUSCHの
開始RBはRBstartである。nu s mod 2が1である場合に、該スロット内のPUSCHの開始
RBは、(式5)(RBstart+RBoffset) mod Nsize BWPによって与えられてもよい。RBstartはPUSCHをスケジュールするDCIに含まれる周波数リソース割り当てフィ
ールドによって与えられてもよい。このとき、スロットAでのNrep=4、スロットBでの
Nrep=3、Ntotal=7、Nslots=2である。
えられてもよい。また、この場合、スロット内周波数ホッピングが適用されることとみなし、図9(b)の示すようなスロット内周波数ホッピングを行ってもよい。このとき、スロットAでのNrep=4、スロットBでのNrep=0、Ntotal=4、Nslots=1である。
じトランスポートブロックの繰り返し送信の回数が1より多い場合に、該スロット内の周波数ホップの数をNrepとして決定してもよい。Nrepは該スロット内で同じトランスポートブロックが繰り返し送信された回数であってもよい。すなわち、1つのスロット
内で同じトランスポートブロックの繰り返し送信の回数が1より多い場合、該スロット内の周波数ホップの数はNrepの値であってもよい。第1の周波数ホップは1回目のトランスポートブロックの繰り返し送信に対応してもよい。第2の周波数ホップは2回目のトランスポートブロックの繰り返し送信に対応してもよい。第iの周波数ホップは、i回目のトランスポートブロックの繰り返し送信に対応してもよい。第Nrepの周波数ホップはNrep回目のトランスポートブロックの繰り返し送信に対応してもよい。つまり、iは1からNrepまでの値を取る。第((i-1)mod2=0)の周波数ホップの開始RBは、RBstartであってもよい。第((i-1)mod2=1)の周波数ホップの開
始RBは、(式5)(RBstart+RBoffset)modNsize BWPによって与えられ
てもよい。前述のように、RBstartはPUSCHをスケジュールするDCIに含まれる
周波数リソース割り当てフィールドによって与えられてもよい。RBoffsetは、上位層のパラメータから示される2つの周波数ホップ間のRBの周波数オフセットである。すなわち、RBoffsetは第1の周波数ホップと第2の周波数ホップ間のRBの周波数オフセットである。すなわち、RBoffsetは第iの周波数ホップと第(i+1)の周波数ホップ間のRBの周波数オフセットである。図20は本実施形態における繰り返し送信の回数と周波数ホッピングの他の一例を示す図である。図20で示すような周波数ホッピングはミニスロットアグリゲーション送信に適用されてもよい。図20はスロット内周波数ホッピングを伴うスロット内ミニスロット送信を適用したPUSCH送信の一例である。または、図20で示すような周波数ホッピングは1つのスロット内で繰り返し送信の回数が1より多いミニスロットアグリゲーション送信に適用されてもよい。
、端末装置1は、トランスポートブロックの繰り返し送信が行われるスロット内周波数ホッピングを行ってもよい。第1の周波数ホップは1回目のトランスポートブロックの繰り返し送信に対応してもよい。第2の周波数ホップは2回目のトランスポートブロックの繰り返し送信に対応してもよい。第3の周波数ホップは3回目のトランスポートブロックの繰り返し送信に対応してもよい。第4の周波数ホップは4回目のトランスポートブロックの繰り返し送信に対応してもよい。第1の周波数ホップと第3の周波数ホップの開始RBは、RBstartであってもよい。第2と第4の周波数ホップの開始RBは、前述のような(式5)によって与えられてもよい。
グなしでスロット内ミニスロット送信を適用したPUSCH送信の一例である。図18(b)は周波数ホッピングなしでスロット間ミニスロット送信を適用したPUSCH送信の一例である。図18(c)はスロット内周波数ホッピング(intra-slot frequency hopping)を伴うスロット内ミニスロット送信を適用したPUSCH送信の一例である。図18(d)はスロット間周波数ホッピング(inter-slot frequency hopping)を伴うスロット間ミニスロット送信を適用したPUSCH送信の一例である。図18は、第2のアグリゲーション送信が設定されている場合に適用されてもよい。図18で示すような周波数ホッピングはミニスロットアグリゲーション送信に適用されてもよい。または、図18で示すような周波数ホッピングは1つのスロット内で繰り返し送信の回数が1より多いミニスロットアグリゲーション送信に適用されてもよい。
図18(a)は、Nrep=2、Ntotal=2、Nslots=1である。例えば、端末装置1は
、Ntotalを、上位層のパラメータ、および/または、そのトランスポートブロック送信
をスケジュールするDCI内のフィールドによって受信してもよい。端末装置1は、Nrepを、上位層のパラメータ、および/または、そのトランスポートブロック送信をスケジュールするDCI内のフィールドによって受信してもよい。第1のPUSCHのスタートシンボルSは、基地局装置3から端末装置1に送信されるPDCCHに基づいて与えられる。第1のPUSCHの連続的な割り当てられるシンボル数Lは、基地局装置3から端末装置1に送信されるPDCCHに基づいて与えられる。第2のPUSCHのスタートシンボルSは、第1のPUSCHの後の最初の利用可能なシンボルであってもよい。第2のPUSCHのスタートシンボルSは、第1のPUSCHに連続した最初のシンボルであってもよい。第2のPUSCHの連続的な割り当てられるシンボル数Lは、基地局装置3から端末装置1に送信されるPDCCHに基づいて与えられる。ただし、第2のPUSCHの連続的な割り当てられるシンボルは、第2のPUSCHのスタートシンボルSからスロットの最後のシンボルまでのシンボルであって、次のスロットまでまたがらない。よって、第2のPUSCHのスタートシンボルSからLシンボルがスロットの最後のシンボル番号を超える場合は、Lは、第2のPUSCHのスタートシンボルSからそのスロットの最後のシンボル番号までのシンボル数となる。すなわち、端末装置1および基地局装置3は、第2のPUSCHのシンボル数Lを、PDCCHに基づいて与えられるスタートシンボルS、PDCCHに基づいて与えられるシンボル数L、およびスロットのシンボル数の1つ、複数、または全部に基づいて決定してもよい。すなわち、第2のPUSCHに対しては、ミニスロットアグリゲーション、スタートシンボル拡張およびシンボル数拡張が適用されていると言える。端末装置1および基地局装置3は、Nslots=1であることを、Nrep、Ntotal、PDCCHに基づいて与えられるスタートシンボルS、PDCCHに基づいて与えられるシンボル数L、およびスロットのシンボル数の1つ、複数、または全部に基づいて決定してもよい。別の方法として、端末装置1は、基地局装置3からNslots=1であることを示す情報を受信してもよい。
図18(b)は、スロットAでのNrep=1、スロットBでのNrep=1、Ntotal=2、Nslots=2である。例えば、端末装置1は、Ntotalを、上位層のパラメータ、および/ま
たは、そのトランスポートブロック送信をスケジュールするDCI内のフィールドによって
受信してもよい。端末装置1は、Nrepを、上位層のパラメータ、および/または、その
トランスポートブロック送信をスケジュールするDCI内のフィールドによって受信しても
よい。第1のPUSCHのスタートシンボルSは、基地局装置3から端末装置1に送信されるPDCCHに基づいて与えられる。第1のPUSCHの連続的な割り当てられるシンボル数Lは、基地局装置3から端末装置1に送信されるPDCCHに基づいて与えられる。ただし、第1のPUSCHの連続的な割り当てられるシンボルは、PDCCHに基づいて与えられる第1のPUSCHのスタートシンボルSからスロットの最後のシンボルまでのシンボルであって、次のスロットまでまたがらない。よって、第1のPUSCHのスタートシンボルSからLシンボルがスロットの最後のシンボル番号を超える場合は、Lは、第1のPUSCHのスタートシンボルSからそのスロットの最後のシンボル番号までのシンボル数となる。すなわち、端末装置1および基地局装置3は、第1のPUSCHのシンボル数Lを、PDCCHに基づいて与えられるスタートシンボルS、PDCCHに基づいて与えられるシンボル数L、およびスロットのシンボル数の1つ、複数、または全部に基づいて決定してもよい。ミニスロットアグリゲーションを適用しない場合は通常、基地局装置は、スロットをまたがらないような値のシンボル数Lを、通知するようにしておけば、特別な処理は必要ないが、図18(b)の場合、PDCCHに基づいて与えられるLは、2スロットを考慮した値であるかもしれないため上記のような処理が有効になる。
第2のPUSCHのスタートシンボルSは、スロットBの最初の利用可能なシンボルであってもよい。第2のPUSCHのスタートシンボルSは、第1のPUSCHに連続した最初のシンボルであってもよい。第2のPUSCHの連続的な割り当てられるシンボル数Lは、基地局装置3から端末装置1に送信されるPDCCHに基づいて与えられる。ただし、第2のPUSCHの連続的な割り当てられるシンボルは、第1のPUSCH送信に使用された残りのシンボル数であってもよい。すなわち、PDCCHに基づいて与えられるLから、第1のPUSCHシンボル数Lを引いたものを、第2のPUSCHのシンボル数Lとしてもよい。すなわち、端末装置1および基地局装置3は、第2のPUSCHのシンボル数Lを、PDCCHに基づいて与えられるスタートシンボルS、PDCCHに基づいて与えられるシンボル数L、スロットのシンボル数、および第1のPUSCHで使用されるシンボル数の1つ、複数、または全部に基づいて決定してもよい。すなわち、第2のPUSCHに対しては、スタートシンボル拡張およびシンボル数拡張が適用されていると言える。端末装置1および基地局装置3は、Nslots=2であることを、Nrep、Ntotal、P
DCCHに基づいて与えられるスタートシンボルS、PDCCHに基づいて与えられるシンボル数L、およびスロットのシンボル数の1つ、複数、または全部に基づいて決定してもよい。別の方法として、端末装置1は、基地局装置3からNslots=2であることを示
す情報を受信してもよい。
図18(b)は、スロットAでのNrep=1、スロットBでのNrep=1、であるため、スロットアグリゲーションとしても考えられる。すなわち、図18(b)は、第2のアグリゲーションにおけるシンボル割り当て拡張(スタートシンボル拡張および/またはシンボル数拡張)であってもよい。
図18(c)は、図18(a)に対して、スロット内周波数ホッピングを適用している。Nrep=2、Ntotal=2、Nslots=1であるから、第1の周波数ホップは最初の(Floor(Nrep/2)=1)回の繰り返し送信を含む。第2の周波数ホップは(Nrep―Floor(Nrep/2)=1)回の繰り返し送信を含む。
図18(d)は、図18(b)に対して、スロット間周波数ホッピングを適用している。端末装置1および基地局装置3は、スロット間周波数ホッピングを適用するか、スロット内周波数ホッピングを適用するかは、Nslotsに基づいて決定してもよい。例えば、Nslot=1の場合は、スロット内周波数ホッピングを適用し、Nslots=2の場合は、スロット内周波数ホッピングを適用する。
グなしでスロット内ミニスロット送信を適用したPUSCH送信の一例である。図19(b)は周波数ホッピングなしでスロット間ミニスロット送信を適用したPUSCH送信の一例である。図19(c)はスロット内周波数ホッピング(intra-slot frequency hopping)を伴うスロット内ミニスロット送信を適用したPUSCH送信の一例である。図19(d)はスロット間周波数ホッピング(inter-slot frequency hopping)を伴うスロット間ミニスロット送信を適用したPUSCH送信の一例である。図19は、第2のアグリゲーション送信が設定されている場合に適用されてもよい。図19で示すような周波数ホッピングはミニスロットアグリゲーション送信に適用されてもよい。または、図19で示すような周波数ホッピングは1つのスロット内で繰り返し送信の回数が1より多いミニスロットアグリゲーション送信に適用されてもよい。
図19(a)は、Nrep=4、Ntotal=4、Nslots=1である。例えば、端末装置1は
、Ntotalを、上位層のパラメータ、および/または、そのトランスポートブロック送信
をスケジュールするDCI内のフィールドによって受信してもよい。端末装置1は、Nrepを、上位層のパラメータ、および/または、そのトランスポートブロック送信をスケジュールするDCI内のフィールドによって受信してもよい。第1のPUSCHのスタートシンボルSは、基地局装置3から端末装置1に送信されるPDCCHに基づいて与えられる。第1のPUSCHの連続的な割り当てられるシンボル数Lは、基地局装置3から端末装置1に送信されるPDCCHに基づいて与えられる。第2のPUSCHのスタートシンボルSは、第1のPUSCHの後の最初の利用可能なシンボルであってもよい。第2のPUSCHのスタートシンボルSは、第1のPUSCHに連続した最初のシンボルであってもよい。第2のPUSCHの連続的な割り当てられるシンボル数Lは、基地局装置3から端末装置1に送信されるPDCCHに基づいて与えられる。同様に、X番目のPUSCHのスタートシンボルSは、X-1番目のPUSCHの後の最初の利用可能なシンボルであってもよい。X番目のPUSCHのスタートシンボルSは、X-1番目のPUSCHに連続した最初のシンボルであってもよい。X番目のPUSCHの連続的な割り当てられるシンボル数Lは、基地局装置3から端末装置1に送信されるPDCCHに基づいて与えられる。
ただし、X番目のPUSCHの連続的な割り当てられるシンボルは、X番目のPUSCHのスタートシンボルSからスロットの最後のシンボルまでのシンボルであって、次のスロットまでまたがらない。よって、X番目のPUSCHのスタートシンボルSからLシンボルがスロットの最後のシンボル番号を超える場合は、Lは、第2のPUSCHのスタートシンボルSからそのスロットの最後のシンボル番号までのシンボル数となる。また、X+1番目のPUSCH送信は、次のスロットで行われる。または、X+1番目のPUSCH送信は、次のスロットで行われない。X+1番目のPUSCH送信が、行われるかどうかは、Nslotsに基づいて決定してもよい。例えば、Nslots=1の場合は、X+1番目のPUSCH送信は、行われない。Nslots=2の場合は、X+1番目のPUSCHは、次の
スロットで行われる。別の方法として、X+1番目のPUSCH送信が、行われるかどうかは、Nrepに基づいて決定してもよい。即ち、Nrep+1番目のPUSCH送信は行われない。別の方法として、X+1番目のPUSCH送信が、行われるかどうかは、Ntotal
基づいて決定してもよい。即ち、Ntotal+1番目のPUSCH送信は行われない。すな
わち、端末装置1および基地局装置3は、X番目のPUSCHのシンボル数Lを、PDCCHに基づいて与えられるスタートシンボルS、PDCCHに基づいて与えられるシンボル数L、スロットのシンボル数、Ntotal、NrepおよびNslotsの1つ、複数、または全
部に基づいて決定してもよい。また、X+1番目のPUSCH送信が、行われるかどうかは、Ntotal、NrepおよびNslotsの1つ、複数、または全部に基づいて決定してもよい。すなわち、図19(a)のPUSCH送信に対しては、ミニスロットアグリゲーション、スタートシンボル拡張およびシンボル数拡張が適用されていると言える。端末装置1および基地局装置3は、Nslots=1であることを、Nrep、Ntotal、PDCCHに基づいて与えられるスタートシンボルS、PDCCHに基づいて与えられるシンボル数L、およびスロットのシンボル数の1つ、複数、または全部に基づいて決定してもよい。別の方法として、端末装置1は、基地局装置3からNslots=1であることを示す情報を受信してもよい。
スポートブロックの繰り返し送信のX回目の繰り返し送信である。第2のトランスミッションオケージョンのスタートシンボルSは、第1のトランスミッションオケージョンの後の最初の利用可能なシンボルであってもよい。第2のトランスミッションオケージョンのスタートシンボルSは、第1のトランスミッションオケージョンに連続した最初のシンボルであってもよい。第2のトランスミッションオケージョンのスタートシンボルSは、最も近く送信されたPUSCHの後の最初の利用可能なシンボルであってもよい。第2のトランスミッションオケージョンのスタートシンボルSは、最も近く送信されたPUSCHに連続した最初のシンボルであってもよい。第2のトランスミッションオケージョンでは、最も近く送信されたPUSCHが第1のPUSCHである。第2のトランスミッションオケージョンの連続的な割り当てられるシンボル数Lは、基地局装置3から端末装置1に送信されるPDCCHに基づいて与えられる。第2のトランスミッションオケージョンで送信された第2のPUSCHはトランスポートブロックの2回目の繰り返し送信である。同様に、X番目のトランスミッションオケージョンのスタートシンボルSは、X-1番目のトランスミッションオケージョンの後の最初の利用可能なシンボルであってもよい。X番目のトランスミッションオケージョンのスタートシンボルSは、X-1番目のトランスミッションオケージョンに連続した最初のシンボルであってもよい。X番目のトランスミッションオケージョンのスタートシンボルSは、最も近く送信されたPUSCHの後の最初の利用可能なシンボルであってもよい。X番目のトランスミッションオケージョンのスタートシンボルSは、最も近く送信されたPUSCHに連続した最初のシンボルであってもよい。X番目のトランスミッションオケージョンの連続的な割り当てられるシンボル数Lは、基地局装置3から端末装置1に送信されるPDCCHに基づいて与えられる。X番目のトランスミッションオケージョンのシンボルは、利用可能なシンボルであってもよい。また、X番目のトランスミッションオケージョンの一部または全部のシンボルは、利用可能なシンボルではないかもしれない。すなわち、そのトランスミッションオケージョンに含まれる全部のシンボルは、PUSCHの送信に用いられることができない。このとき、もしそのトランスミッションオケージョンにおける連続的な利用可能なシンボルの数(最大の数)が第1の値より等しいまたは多い場合、端末装置1は、該連続的な利用可能なシンボルでPUSCHを基地局装置3へ送信してもよい。もしそのトランスミッションオケージョンにおける連続的な利用可能なシンボルの数(最大の数)が第1の値より少ない場合、端末装置1は、該トランスミッションオケージョンでPUSCHを基地局装置3へ送信しなくてもよい。ここで、第1の値は、上位層のパラメータから示されてもよい。第1の値は、PDCCHに基づいて与えられるシンボルLに少なくとも基づいて決定されてもよい。例えば、第1の値は、ceiling(L*F)によって与えられてもよい。Fは1より小さい値であってもよい。また、第1の値は、(L-T)によって与えられてもよい。Tは1より等しいまたは大きい値であってもよい。FまたはTの値は、上位層のパラメータから示されてもよい。FまたはTの値は、異なるLのそれぞれに対して異なる値に対応してもよい。
上述の各PUSCHのスタートシンボルおよびシンボル数の決定方法は、スロットアグリ
ゲーションにおいても使用されてもよい。図21は本実施形態におけるスロットアグリゲーション送信(第2のアグリゲーション送信)の一例を示す図である。例えば、図21は、Nrep=1、Ntotal=3、Nslot=3の場合を示している。第1のトランスミッションオケージョンのスタートシンボルSは、基地局装置3から端末装置1に送信されるPDCCHに基づいて与えられる。第1のトランスミッションオケージョン(スロット)の連続的な割り当てられるシンボル数Lは、基地局装置3から端末装置1に送信されるPDCCHに基づいて与えられる。すなわち、第1のトランスミッションオケージョン(スロット)は第1のPUSCHの送信に用いられる。端末装置1は第1のトランスミッションオケージョン(スロット)で第1のPUSCHを基地局装置3へ送信してもよい。第1のPUSCHがトランスポートブロックの1回目の繰り返し送信である。PUSCHが1回送信されると、トランスポートブロックの繰り返し送信の回数が1つインクリメントされてもよい。すなわち、第XのPUSCH(X番目のPUSCH)がトランスポートブロックの繰り返し送信のX回目の繰り返し送信である。第2のトランスミッションオケージョン(スロット)のスタートシンボルSは、第1のトランスミッションオケージョン(スロット)の次のスロットの最初の利用可能なシンボルであってもよい。第2のトランスミッションオケージョン(スロット)の連続的な割り当てられるシンボル数Lは、基地局装置3から端末装置1に送信されるPDCCHに基づいて与えられる。第2のトランスミッションオケージョンで送信された第2のPUSCHはトランスポートブロックの2回目の繰り返し送信である。同様に、X番目のトランスミッションオケージョン(スロット)のスタートシンボルSは、X-1番目のトランスミッションオケージョン(スロット)の次のスロットの最初の利用可能なシンボルであってもよい。X番目のトランスミッションオケージョン(スロット)の連続的な割り当てられるシンボル数Lは、基地局装置3から端末装置1に送信されるPDCCHに基づいて与えられる。X番目のトランスミッションオケージョン(スロット)のシンボルは、利用可能なシンボルであってもよい。また、X番目のトランスミッションオケージョン(スロット)の一部または全部のシンボルは、利用可能なシンボルではないかもしれない。すなわち、そのトランスミッションオケージョン(スロット)に含まれる全部のシンボルは、PUSCHの送信に用いられることができない。このとき、もしそのトランスミッションオケージョン(スロット)における連続的な利用可能なシンボルの数(最大の数)が第1の値より等しいまたは多い場合、端末装置1は、該連続的な利用可能なシンボルでPUSCHを基地局装置3へ送信してもよい。もしそのトランスミッションオケージョン(スロット)における連続的な利用可能なシンボルの数(最大の数)が第1の値より少ない場合、端末装置1は、該トランスミッションオケージョン(スロット)でPUSCHを基地局装置3へ送信しなくてもよい。ここで、第1の値は、上位層のパラメータから示されてもよい。第1の値は、PDCCHに基づいて与えられるシンボルLに少なくとも基づいて決定されてもよい。例えば、第1の値は、ceiling(L*F)によって与えられてもよい。Fは1より小さい値であってもよい。また、第1の値は、(L-T)によって与えられてもよい。Tは1より等しいまたは大きい値であってもよい。FまたはTの値は、上位層のパラメータから示されてもよい。FまたはTの値は、異なるLのそれぞれに対して異なる値に対応してもよい。
また、スロットアグリゲーション送信が行われるスロットでは、2つまたは2つより多い利用可能なシンボルのバーストを含んでもよい。例えば、図21(B)において、スロッ
トBは利用可能なシンボルのバースト201と利用可能なシンボルのバースト202を有
する。利用可能なシンボルのバーストは、スロット内の連続的な利用可能なシンボルからなる。バースト201とバースト202の間では、利用不可能なシンボルが存在する。端末装置1は、バースト201とバースト202の何れかを用いて、スロットBでPUSC
H(第2の)を基地局装置3へ送信してもよい。バースト202に含まれるシンボルの数は、バースト201に含まれるシンボルの数より多い。端末装置1は、複数のバーストの内、最大の長さ(最大の利用可能なシンボルの数)を持つバーストを用いて、PUSCHを基
地局装置3へ送信してもよい。すなわち、端末装置1は、バースト202でPUSCHを基地
局装置3へ送信してもよい。また、端末装置1は、複数のバーストの内、一番早いバース
トを用いて、PUSCHを基地局装置3へ送信してもよい。すなわち、端末装置1は、バース
ト201でPUSCHを基地局装置3へ送信してもよい。また、端末装置1は、同じ長さの複
数のバーストの内、一番早いバーストを用いて、PUSCHを基地局装置3へ送信してもよい
。すなわち、バースト201に含まれるシンボルの数とバースト202に含まれるシンボルの数が同一である場合、端末装置1は、バースト201でPUSCHを基地局装置3へ送信
してもよい。また、端末装置1は、複数のバーストの内、前述のような第1の値より等しいまたは多い一番早いバーストを用いて、PUSCHを基地局装置3へ送信してもよい。つま
り、スロットBで送信されるPUSCHのスタートシンボルSは、送信に用いられるバーストの最初のシンボル(最初の利用可能なシンボル)であってもよい。スロットBで送信されるPUSCHの連続的な割り当てられるシンボル数は、基地局装置3から端末装置1に送信されるPDCCHに基づいて与えられる連続的な割り当てられるシンボル数Lであってもよい。
よって、送信に用いられるバーストの最初のシンボルからLシンボルがそのバーストの最後のシンボル番号を超える場合は、Lは、送信に用いられるバーストの最初のシンボルからそのバーストの最後のシンボル番号までのシンボル数となる。または、スロットBで送
信されるPUSCHの連続的な割り当てられるシンボル数は、送信に用いられるバーストの長
さであってもよい。即ち、スロットBで送信されるPUSCHの連続的な割り当てられるシンボル数は、送信に用いられるバーストの最初のシンボルからバースト最後のシンボルまでのシンボルであって、該バーストをまたがらない。端末装置1および基地局装置3は、送信されるPUSCHのシンボル数Lを、PDCCHに基づいて与えられるスタートシンボルS、PDCCHに基づいて与えられるシンボル数L、スロットのシンボル数、バーストの数、バースト内のシンボルの数、Ntotal、NrepおよびNslotsの1つ、複数、または全
部に基づいて決定してもよい。この方法は、一般化して、スロットA、スロットB,および
/またはスロットCに使われてもよい。
図19(b)は、スロットAでのNrep=2、スロットBでのNrep=2、Ntotal=4、Nslots=2である。図19(a)と同様にして、端末装置1および基地局装置3は、X番目のPUSCHのシンボル数Lを、PDCCHに基づいて与えられるスタートシンボルS、PDCCHに基づいて与えられるシンボル数L、スロットのシンボル数、Ntotal、NrepおよびNslotsの1つ、複数、または全部に基づいて決定してもよい。また、X+1番目
のPUSCH送信が、行われるかどうかは、Ntotal、NrepおよびNslotsの1つ、複数
、または全部に基づいて決定してもよい。
図19(c)は、図19(a)に対して、スロット内周波数ホッピングを適用している。Nrep=4、Ntotal=4、Nslots=1であるから、第1の周波数ホップは最初の(Floor(Nrep/2)=2)回の繰り返し送信を含む。第2の周波数ホップは(Nrep―Floor(Nrep/2)=2)回の繰り返し送信を含む。
図19(d)は、図19(b)に対して、スロット間周波数ホッピングを適用している。端末装置1および基地局装置3は、スロット間周波数ホッピングを適用するか、スロット内周波数ホッピングを適用するかは、Nslotsに基づいて決定してもよい。例えば、Nslot=1の場合は、スロット内周波数ホッピングを適用し、Nslots=2の場合は、スロット内周波数ホッピングを適用する。
数の代わりに、ceiling関数を利用してもよい。一例として、式Floor(Nrep/2)には、Floor関数の代わりに、ceiling関数を利用し、Floor(Nrep/2)をceiling(Nrep/2)に
変更してもよい。
ただし、利用可能なシンボルは、少なくとも上位層のパラメータssb-PositionsInBurstによって示されるシンボルではない。ssb-PositionsInBurstは、基地局装置3に送信されるSS/PBCHブロックの時間領域位置を示すために用いられる。すなわち、端末装置1は、ssb-PositionsInBurstによってSS/PBCHブロックが送信されるシンボルの位置を知る。SS/PBCHブロックが送信されるシンボルは、SS/PBCHブロックシンボルと称してもよい。すなわち、利用可能なシンボルは、SS/PBCHブロックシンボルではない。
ただし、利用可能なシンボルは、少なくともpdcch-ConfigSIB1によって示されるシンボルではない。すなわち、利用可能なシンボルは、タイプ0PDCCHコモンサーチスペースセットのCORESETのためのpdcch-ConfigSIB1によって示されるシンボルではない。pdcch-ConfigSIB1はMIBまたはServingCellConfigCommonに含まれてもよい。
スバンド部13を含んで構成される。上位層処理部14は、媒体アクセス制御層処理部15、無線リソース制御層処理部16を含んで構成される。無線送受信部10を送信部、受信部、モニタ部、または、物理層処理部とも称する。上位層処理部14を測定部、選択部または制御部14とも称する。
スロット内およびスロット間を含めた同じトランスポートブロックの繰り返し送信回数で
あってもよい。第2の数は、スロット内での同じトランスポートブロックの繰り返し送信回数であってもよい。
部12は、処理をしたアナログ信号をベースバンド部に出力する。
Prefix)に相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。
スロット内およびスロット間を含めた同じトランスポートブロックの繰り返し送信回数であってもよい。第2の数は、スロット内での同じトランスポートブロックの繰り返し送信回数であってもよい。
なう。無線リソース制御層処理部36は、端末装置1にリソースの割当情報を含む下りリンク制御情報(上りリンクグラント、下りリンクグラント)を生成する。無線リソース制御層処理部36は、下りリンク制御情報、物理下りリンク共用チャネルに配置される下りリンクデータ(トランスポートブロック、ランダムアクセス応答)、システム情報、RRCメッセージ、MAC CE(Control Element)などを生成し、又は上位ノードから取
得し、無線送受信部30に出力する。また、無線リソース制御層処理部36は、端末装置1各々の各種設定情報/パラメータの管理をする。無線リソース制御層処理部36は、上位層の信号を介して端末装置1各々に対して各種設定情報/パラメータをセットしてもよい。すなわち、無線リソース制御層処理部36は、各種設定情報/パラメータを示す情報を送信/報知する。無線リソース制御層処理部36は、あるセルにおける1つまたは複数の参照信号の設定を特定するための情報を送信/報知してもよい。
ールされるPUSCHを受信する受信部30と、を備え、第1の条件を満たす場合、第2のア
グリゲーション送信パラメータが設定されている場合に、それぞれのスロットでは同じシンボルアロケーションを適用して、トランスポートブロックを連続的なN個のスロットでN回繰り返し受信し、前記Nの値は前記第2のアグリゲーション送信パラメータに示され、
前記第2のアグリゲーション送信パラメータが設定されていない場合に、トランスポートブロックを1回受信し、第2の条件を満たす場合、ミニスロットアグリゲーション送信を適用してトランスポートブロックを受信する。
、PUSCHマッピングタイプがタイプAに示されることを少なくとも含む。
、PUSCHマッピングタイプがタイプBに示されることを少なくとも含む。
ランスポートブロックの繰り返し送信を含み、前記PUSCHは1つのスロット内で第1の周
波数ホップと第2の周波数ホップからなり、前記Nrepが1の場合、前記第1の周波数ホップはFloor(L/2)シンボルを有し、前記第2の周波数ホップはL-Floor(L/2)シンボルを有
し、前記Lは1回の前記繰り返し送信に対応するシンボルの数であり、前記Nrepが1より
多い場合、前記第1の周波数ホップは最初のFloor(Nrep/2)回の前記繰り返し送信に対応
するシンボルを有し、前記第2の周波数ホップはNrep-Floor(Nrep/2)回の前記繰り返し送信に対応するシンボルを有する。
トランスポートブロックの繰り返し送信を含み、前記PUSCHは1つのスロット内で第1の
周波数ホップと第2の周波数ホップからなり、前記Nrepが1の場合、前記第1の周波数ホップはFloor(L/2)シンボルを有し、前記第2の周波数ホップはL-Floor(L/2)シンボルを有し、前記Lは1回の前記繰り返し送信に対応するシンボルの数であり、前記Nrepが1より多い場合、前記第1の周波数ホップは最初のFloor(Nrep/2)回の前記繰り返し送信に対応するシンボルを有し、前記第2の周波数ホップはNrep-Floor(Nrep/2)回の前記繰り返し送信に対応するシンボルを有する。
信パラメータは、第1の繰り返し回数に関する情報を含み、前記DCIのフィールドは、第
1の数を含み、前記第1の数に基づいて、第2の数を算出し、前記受信部は、第1の繰り返し回数に関する情報、前記第1の数、および、第2の数に基づいて、アグリゲーション送信でPUSCHを受信することを特徴とする。
3 基地局装置
4 送受信点(TRP)
10 無線送受信部
11 アンテナ部
12 RF部
13 ベースバンド部
14 上位層処理部
15 媒体アクセス制御層処理部
16 無線リソース制御層処理部
30 無線送受信部
31 アンテナ部
32 RF部
33 ベースバンド部
34 上位層処理部
35 媒体アクセス制御層処理部
36 無線リソース制御層処理部
50 送信ユニット(TXRU)
51 位相シフタ
52 アンテナエレメント
Claims (4)
- 下りリンク制御情報(DCI)フォーマットを伴う物理下りリンク制御チャネルを受信する受信部と、
前記DCIフォーマットによってスケジュールされるトランスポートブロックを複数のスロットにおける一つまたは複数の物理上りリンク共用チャネル(PUSCH)で繰り返し送信する送信部と、
を備え、
前記DCIフォーマットに含まれる時間領域リソース割り当てのためのフィールドの値に基づいて第1のスロット内の第1のPUSCHのスタートシンボルおよび前記スタートシンボルから連続する第1のシンボル数を決定し、
前記スタートシンボルから連続する第1のシンボル数がスロットの最後のシンボルを超える場合に、前記第1のスロットの次のスロットを前記複数のスロット内の一つとして決定し、
前記第1のスロットにおける第1のPUSCHおよび決定した前記次のスロットにおける第2のPUSCHを決定し、
前記第1のPUSCHのシンボル数は、前記第1のスロット内のスタートシンボルから前記第1のスロットの最後のシンボルまでの第2のシンボル数であり、
前記第2のPUSCHのシンボル数は、前記第1のシンボル数から前記第2のシンボル数を引いたシンボル数であり、
前記第1のPUSCHまたは前記第2のPUSCHにおける連続的に利用可能なシンボル数が所定の値を超えている場合に、前記第1のPUSCHまたは前記第2のPUSCHで前記トランスポートブロックを繰り返し送信し、
前記第1のPUSCHまたは前記第2のPUSCHにおける連続的に利用可能なシンボル数が前記所定の値を超えていない場合に、前記第1のPUSCHまたは前記第2のPUSCHで前記トランスポートブロックを繰り返し送信しない、
端末装置。 - 下りリンク制御情報(DCI)フォーマットを伴う物理下りリンク制御チャネルを送信する送信部と、
前記DCIフォーマットによってスケジュールされるトランスポートブロックを複数のスロットにおける一つまたは複数の物理上りリンク共用チャネル(PUSCH)で繰り返し受信する受信部と、
を備え、
前記DCIフォーマットに含まれる時間領域リソース割り当てのためのフィールドの値に基づいて第1のスロット内の第1のPUSCHのスタートシンボルおよび前記スタートシンボルから連続する第1のシンボル数が決定され、
前記スタートシンボルから連続する第1のシンボル数がスロットの最後のシンボルを超える場合に、前記第1のスロットの次のスロットが前記複数のスロット内の一つとして決定され、
前記第1のスロットにおける第1のPUSCHおよび決定した前記次のスロットにおける第2のPUSCHを決定し、
前記第1のPUSCHのシンボル数は、前記第1のスロット内のスタートシンボルから前記第1のスロットの最後のシンボルまでの第2のシンボル数であり、
前記第2のPUSCHのシンボル数は、前記第1のシンボル数から前記第2のシンボル数を引いたシンボル数であり、
前記第1のPUSCHまたは前記第2のPUSCHにおける連続的に利用可能なシンボル数が所定の値を超えている場合に、前記第1のPUSCHまたは前記第2のPUSCHで前記トランスポートブロックを繰り返し受信し、
前記第1のPUSCHまたは前記第2のPUSCHにおける連続的に利用可能なシンボル数が前記所定の値を超えていない場合に、前記第1のPUSCHまたは前記第2のPUSCHで前記トランスポートブロックを繰り返し受信しない、
基地局装置。 - 端末装置に用いられる通信方法であって、前記端末装置のコンピュータが、
下りリンク制御情報(DCI)フォーマットを伴う物理下りリンク制御チャネルを受信する受信過程と、
前記DCIフォーマットによってスケジュールされるトランスポートブロックを複数のスロットにおける一つまたは複数の物理上りリンク共用チャネル(PUSCH)で繰り返し送信する送信過程と、
を有し、
前記DCIフォーマットに含まれる時間領域リソース割り当てのためのフィールドの値に基づいて第1のスロット内の第1のPUSCHのスタートシンボルおよび前記スタートシンボルから連続する第1のシンボル数を決定し、
前記スタートシンボルから連続する第1のシンボル数がスロットの最後のシンボルを超える場合に、前記第1のスロットの次のスロットを前記複数のスロット内の一つとして決定し、
前記第1のスロットにおける第1のPUSCHおよび決定した前記次のスロットにおける第2のPUSCHを決定し、
前記第1のPUSCHのシンボル数は、前記第1のスロット内のスタートシンボルから前記第1のスロットの最後のシンボルまでの第2のシンボル数であり、
前記第2のPUSCHのシンボル数は、前記第1のシンボル数から前記第2のシンボル数を引いたシンボル数であり、
前記第1のPUSCHまたは前記第2のPUSCHにおける連続的に利用可能なシンボル数が所定の値を超えている場合に、前記第1のPUSCHまたは前記第2のPUSCHで前記トランスポートブロックを繰り返し送信し、
前記第1のPUSCHまたは前記第2のPUSCHにおける連続的に利用可能なシンボル数が前記所定の値を超えていない場合に、前記第1のPUSCHまたは前記第2のPUSCHで前記トランスポートブロックを繰り返し送信しない、
通信方法。 - 基地局装置に用いられる通信方法であって、前記基地局装置のコンピュータが、
下りリンク制御情報(DCI)フォーマットを伴う物理下りリンク制御チャネルを送信する送信過程と、
前記DCIフォーマットによってスケジュールされるトランスポートブロックを複数のスロットにおける一つまたは複数の物理上りリンク共用チャネル(PUSCH)で繰り返し受信する受信過程と、
を有し、
前記DCIフォーマットに含まれる時間領域リソース割り当てのためのフィールドの値に基づいて第1のスロット内の第1のPUSCHのスタートシンボルおよび前記スタートシンボルから連続する第1のシンボル数が決定され、
前記スタートシンボルから連続する第1のシンボル数がスロットの最後のシンボルを超える場合に、前記第1のスロットの次のスロットが前記複数のスロット内の一つとして決定され、
前記第1のスロットにおける第1のPUSCHおよび決定した前記次のスロットにおける第2のPUSCHを決定し、
前記第1のPUSCHのシンボル数は、前記第1のスロット内のスタートシンボルから前記第1のスロットの最後のシンボルまでの第2のシンボル数であり、
前記第2のPUSCHのシンボル数は、前記第1のシンボル数から前記第2のシンボル数を引いたシンボル数であり、
前記第1のPUSCHまたは前記第2のPUSCHにおける連続的に利用可能なシンボル数が所定の値を超えている場合に、前記第1のPUSCHまたは前記第2のPUSCHで前記トランスポートブロックを繰り返し受信し、
前記第1のPUSCHまたは前記第2のPUSCHにおける連続的に利用可能なシンボル数が前記所定の値を超えていない場合に、前記第1のPUSCHまたは前記第2のPUSCHで前記トランスポートブロックを繰り返し受信しない、
通信方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019002867A JP7287787B2 (ja) | 2019-01-10 | 2019-01-10 | 基地局装置、端末装置、通信方法、および、集積回路 |
US17/421,425 US12150117B2 (en) | 2019-01-10 | 2020-01-10 | Base station apparatus, terminal apparatus, and communication method |
CN202080008553.5A CN113366903A (zh) | 2019-01-10 | 2020-01-10 | 基站装置、终端装置以及通信方法 |
EP20738305.0A EP3911074A4 (en) | 2019-01-10 | 2020-01-10 | BASE STATION DEVICE, TERMINAL DEVICE AND COMMUNICATION METHOD |
PCT/JP2020/000546 WO2020145368A1 (ja) | 2019-01-10 | 2020-01-10 | 基地局装置、端末装置、および、通信方法 |
PH1/2021/551637A PH12021551637A1 (en) | 2019-01-10 | 2020-01-10 | Base station device, terminal device, and communication method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019002867A JP7287787B2 (ja) | 2019-01-10 | 2019-01-10 | 基地局装置、端末装置、通信方法、および、集積回路 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2020113882A JP2020113882A (ja) | 2020-07-27 |
JP2020113882A5 JP2020113882A5 (ja) | 2021-05-06 |
JP7287787B2 true JP7287787B2 (ja) | 2023-06-06 |
Family
ID=71520281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019002867A Active JP7287787B2 (ja) | 2019-01-10 | 2019-01-10 | 基地局装置、端末装置、通信方法、および、集積回路 |
Country Status (6)
Country | Link |
---|---|
US (1) | US12150117B2 (ja) |
EP (1) | EP3911074A4 (ja) |
JP (1) | JP7287787B2 (ja) |
CN (1) | CN113366903A (ja) |
PH (1) | PH12021551637A1 (ja) |
WO (1) | WO2020145368A1 (ja) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12200714B2 (en) * | 2018-08-10 | 2025-01-14 | Telefonaktiebolaget Lm Ericsson (Publ) | One downlink control information, DCI, for scheduling multiple transport blocks, TBS |
BR112021013536A2 (pt) * | 2019-01-10 | 2021-09-14 | Sharp Kabushiki Kaisha | Equipamento de usuário e estações-base que alcançam repetições baseadas em mini-intervalos |
JP7273071B2 (ja) * | 2019-02-14 | 2023-05-12 | 株式会社Nttドコモ | 端末、無線通信方法、基地局及びシステム |
EP3997938A4 (en) * | 2019-07-08 | 2023-05-31 | Telefonaktiebolaget Lm Ericsson (Publ) | METHOD, TERMINAL AND BASE STATION FOR RANDOM ACCESS METHOD |
WO2021162264A1 (ko) * | 2020-02-10 | 2021-08-19 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 채널 반복 전송 방법 및 장치 |
US20230076328A1 (en) * | 2020-02-13 | 2023-03-09 | Ntt Docomo, Inc. | Terminal and base station |
CN115428553A (zh) * | 2020-02-21 | 2022-12-02 | 株式会社Ntt都科摩 | 终端、无线通信方法以及基站 |
CN115211182A (zh) * | 2020-03-12 | 2022-10-18 | 高通股份有限公司 | 用于nr-u中的探测参考信号传输的循环前缀扩展 |
BR112022026031A2 (pt) * | 2020-06-24 | 2023-01-10 | Nec Corp | Equipamento de usuário e método para um equipamento de usuário |
CN111972013B (zh) * | 2020-07-07 | 2023-09-12 | 北京小米移动软件有限公司 | 定位方法、装置、通信设备及存储介质 |
CN116097603A (zh) * | 2020-09-30 | 2023-05-09 | Oppo广东移动通信有限公司 | 频域位置确定方法、装置、设备及存储介质 |
US20220030606A1 (en) * | 2020-10-15 | 2022-01-27 | Gang Xiong | Enhanced repetition mechanism for physical uplink control channel |
EP4278791B1 (en) * | 2021-01-14 | 2024-05-15 | Telefonaktiebolaget LM Ericsson (publ) | Collision handling, uplink control information multiplexing and repetition for single transport block transmission on a multi-slot physical uplink shared channel |
US11895685B2 (en) * | 2021-03-15 | 2024-02-06 | Qualcomm Incorporated | Modifications to configured grants and semi-persistent scheduling configurations based on time domain patterns |
CN117561766A (zh) * | 2021-04-01 | 2024-02-13 | Tcl 通讯(宁波)有限公司 | 用于增强pusch重复传输的发送器 |
US20220330295A1 (en) * | 2021-04-13 | 2022-10-13 | Qualcomm Incorporated | Multi-slot transmissions for multi-transmission reception points |
CN118202742A (zh) * | 2021-11-05 | 2024-06-14 | 苹果公司 | 用于在上行链路覆盖增强的情况下进行上行链路多传输接收点操作的方法 |
GB2629021A (en) * | 2023-04-14 | 2024-10-16 | Nokia Technologies Oy | Methods, apparatuses and computer-readable mediums for wireless transmission and scheduling |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9973303B2 (en) * | 2013-12-20 | 2018-05-15 | Samsung Electronics Co., Ltd. | Determining timing for transmission or reception of signaling in a coverage enhanced operating mode |
US10708938B2 (en) * | 2016-10-31 | 2020-07-07 | Samsung Electronics Co., Ltd. | Transmission of UL control channels with dynamic structures |
KR102288629B1 (ko) * | 2017-05-04 | 2021-08-11 | 삼성전자 주식회사 | 무선 통신 시스템에서 상향 제어 채널 전송 방법 및 장치 |
JP2019002867A (ja) | 2017-06-19 | 2019-01-10 | 三菱電機株式会社 | 表示制御装置および表示制御プログラム |
CN113597004A (zh) * | 2017-11-16 | 2021-11-02 | 华为技术有限公司 | 发送和接收信息的方法及装置 |
CN110474736B (zh) * | 2018-05-11 | 2021-07-16 | 华为技术有限公司 | 通信方法和通信装置 |
CN110830183B (zh) * | 2018-08-09 | 2023-09-19 | 北京三星通信技术研究有限公司 | 上行传输方法、用户设备、基站和计算机可读介质 |
CN118555044A (zh) * | 2018-08-10 | 2024-08-27 | 瑞典爱立信有限公司 | 用于时隙边界处物理共享信道拆分的方法和装置 |
US20210314982A1 (en) * | 2018-08-10 | 2021-10-07 | Apple Inc. | Physical uplink shared channel enhancements for new radio ultra-reliable low-latency communication |
CN110913481B (zh) * | 2018-09-17 | 2023-02-10 | 华为技术有限公司 | 数据传输方法及通信装置 |
-
2019
- 2019-01-10 JP JP2019002867A patent/JP7287787B2/ja active Active
-
2020
- 2020-01-10 WO PCT/JP2020/000546 patent/WO2020145368A1/ja unknown
- 2020-01-10 EP EP20738305.0A patent/EP3911074A4/en active Pending
- 2020-01-10 CN CN202080008553.5A patent/CN113366903A/zh active Pending
- 2020-01-10 PH PH1/2021/551637A patent/PH12021551637A1/en unknown
- 2020-01-10 US US17/421,425 patent/US12150117B2/en active Active
Non-Patent Citations (3)
Title |
---|
Ericsson,Enhancement of Configured Grant for NR URLLC[online],3GPP TSG RAN WG1 #95 R1-1812162,2018年11月3日アップロード,インターネット<URL:https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_95/Docs/R1-1812162.zip> |
Ericsson,PUSCH Enhancements for NR URLLC[online],3GPP TSG RAN WG1 #95 R1-1812155,2018年11月3日アップロード,インターネット<URL:https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_95/Docs/R1-1812155.zip> |
Nokia, Nokia Shanghai Bell,Summary of 7.2.6.1.3 potential enhancements for PUSCH for NR URLLC[online],3GPP TSG RAN WG1 #95 R1-1814098,2018年11月15日アップロード,インターネット<URL:https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_95/Docs/R1-1814098.zip> |
Also Published As
Publication number | Publication date |
---|---|
US12150117B2 (en) | 2024-11-19 |
CN113366903A (zh) | 2021-09-07 |
US20220159682A1 (en) | 2022-05-19 |
EP3911074A4 (en) | 2022-10-12 |
WO2020145368A1 (ja) | 2020-07-16 |
JP2020113882A (ja) | 2020-07-27 |
EP3911074A1 (en) | 2021-11-17 |
PH12021551637A1 (en) | 2022-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7287787B2 (ja) | 基地局装置、端末装置、通信方法、および、集積回路 | |
JP7246874B2 (ja) | 基地局装置、端末装置、および、通信方法 | |
JP7249785B2 (ja) | 端末装置、基地局装置、および通信方法 | |
JP7313839B2 (ja) | 基地局装置、端末装置、通信方法、および、集積回路 | |
JP7286288B2 (ja) | 基地局装置、端末装置、通信方法、および、集積回路 | |
JP7240843B2 (ja) | 基地局装置、端末装置、通信方法、および、集積回路 | |
US11778603B2 (en) | Base station apparatus, terminal apparatus, and communication method | |
JP7390111B2 (ja) | 基地局装置、端末装置、および、通信方法 | |
US20220369297A1 (en) | Terminal apparatus, base station apparatus, and communication method | |
JP6963586B2 (ja) | 基地局装置、端末装置、および通信方法 | |
US12185326B2 (en) | Base station apparatus, terminal apparatus, and communication method | |
WO2020203427A1 (ja) | 基地局装置、端末装置、および、通信方法 | |
WO2020091046A1 (ja) | 基地局装置、端末装置、および、通信方法 | |
WO2020218348A1 (ja) | 基地局装置、端末装置、通信方法、および、集積回路 | |
JP2022025801A (ja) | 端末装置、基地局装置、および、通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210324 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210324 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20210324 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20210324 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20210423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210511 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210811 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211011 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20211109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220309 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20220309 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20220316 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20220322 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20220415 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20220419 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220712 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20221004 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20221223 |
|
C28A | Non-patent document cited |
Free format text: JAPANESE INTERMEDIATE CODE: C2838 Effective date: 20221223 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230315 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20230411 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230525 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7287787 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |