[go: up one dir, main page]

JP7283347B2 - Room-temperature curing organopolysiloxane composition for long-life coolant seals, cured silicone rubber for cooling coolant oil seals, and cooling coolant oil seals - Google Patents

Room-temperature curing organopolysiloxane composition for long-life coolant seals, cured silicone rubber for cooling coolant oil seals, and cooling coolant oil seals Download PDF

Info

Publication number
JP7283347B2
JP7283347B2 JP2019193477A JP2019193477A JP7283347B2 JP 7283347 B2 JP7283347 B2 JP 7283347B2 JP 2019193477 A JP2019193477 A JP 2019193477A JP 2019193477 A JP2019193477 A JP 2019193477A JP 7283347 B2 JP7283347 B2 JP 7283347B2
Authority
JP
Japan
Prior art keywords
group
mass
parts
groups
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019193477A
Other languages
Japanese (ja)
Other versions
JP2021066816A (en
Inventor
晃 打它
隆文 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2019193477A priority Critical patent/JP7283347B2/en
Publication of JP2021066816A publication Critical patent/JP2021066816A/en
Application granted granted Critical
Publication of JP7283347B2 publication Critical patent/JP7283347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、室温硬化性オルガノポリシロキサン組成物に関し、特に、金属及び樹脂に対して接着性を有し、エンジンオイルやロングライフクーラントに対する耐薬品性を有し、かつ良好なゴム物性を有する硬化物を与えるロングライフクーラントシール用室温硬化性オルガノポリシロキサン組成物及び冷却クーラントオイルシール用シリコーンゴム硬化物並びに冷却クーラントオイルシールに関する。
TECHNICAL FIELD The present invention relates to a room-temperature-curable organopolysiloxane composition, and in particular, it has adhesiveness to metals and resins, chemical resistance to engine oil and long-life coolants, and cured rubber having good physical properties. The present invention relates to a room temperature curable organopolysiloxane composition for a long-life coolant seal , a silicone rubber cured product for a cooling coolant oil seal, and a cooling coolant oil seal .

自動車用のエンジンやエンジンコントロールユニットなどの電装部材周辺のシールについては、従来、コルク、有機ゴム、アスベストなどで作られた耐薬品性のガスケット、パッキング材が使用されているが、これらには在庫管理及び作業工程が煩雑であるという不利があり、更に、それらのシール性能には信頼性がないという欠点がある。そのため、この種の用途には液体ガスケットとして室温硬化性オルガノポリシロキサン組成物を利用したFIPG方式(Formed In Place Gasket)が採用されている。 Conventionally, chemical-resistant gaskets and packing materials made of cork, organic rubber, asbestos, etc. are used for sealing around electrical components such as automobile engines and engine control units, but these are not available in stock. They have the disadvantage that their management and work processes are cumbersome, and furthermore that their sealing performance is unreliable. Therefore, for this type of application, the FIPG system (Formed In Place Gasket) using a room temperature curable organopolysiloxane composition is adopted as a liquid gasket.

近年、自動車の燃費向上・軽量化の観点から、自動車エンジンや各種電装部材に使用する金属を一部樹脂化する試みが行われている。それらの部材として採用される樹脂は、一般的に機械特性やエンジンオイル、ロングライフクーラントに対する耐久試験に対し変化率が少ない樹脂、即ち力学的及び化学的に非常に安定な樹脂が選択される。化学的に安定性が高い樹脂は、活性基を有していない、もしくは非常に少ないため、良好な接着性を得ること、更にはその接着性を安定して保持することが難しいとされている。樹脂への接着性を改善させる手法としては、室温硬化性オルガノポリシロキサン組成物に、アミノシランカップリング剤のオリゴマーを添加する方法(特許第3714861号公報:特許文献1)などが知られているが、アミノシランカップリング剤のオリゴマーを耐エンジンオイル、耐ロングライフクーラントを必要とする用途の組成物に配合すると、耐薬品性が劣ることから使用することができなかった。また、脱アルコールタイプの室温硬化性オルガノポリシロキサン組成物の充填材を選定する方法(特開2004-292724号公報:特許文献2)や、硬化触媒として使用するチタン触媒の構造を選定する方法(特許第4438937号公報、特許第4530136号公報、特許第4658654号公報、特許第4530177号公報:特許文献3~6)が知られているが、これらの組成物は脱アルコールタイプの組成物であるため、硬化物を得るために時間を要することや、耐薬品性能が従来から使用されているFIPGと比較すると劣る問題があった。また、各種被着体に対する接着向上手法として、芳香族化合物にアルコキシシリル基を導入してポリブチレンテレフタレートやハイインパクトポリスチロールに対する接着性を向上させた報告があるが、より難接着であるポリフェニレンサルファイドに対する接着性や耐薬品性については報告されていない(特許第3518399号公報:特許文献7)。 BACKGROUND ART In recent years, from the viewpoint of improving fuel efficiency and reducing the weight of automobiles, attempts have been made to partially resinify metals used in automobile engines and various electrical components. Resins employed for these members are generally selected from resins that show little change in mechanical properties, engine oil, and durability tests against long-life coolants, that is, resins that are mechanically and chemically very stable. Resins with high chemical stability do not have active groups or have very few active groups, so it is difficult to obtain good adhesiveness and to maintain that adhesiveness stably. . As a technique for improving adhesion to resins, a method of adding an oligomer of an aminosilane coupling agent to a room-temperature-curable organopolysiloxane composition (Japanese Patent No. 3714861: Patent Document 1) is known. However, when an oligomer of an aminosilane coupling agent is blended into a composition for applications requiring resistance to engine oil and long-life coolant, it cannot be used because of poor chemical resistance. In addition, a method of selecting a filler for a dealcoholization type room-temperature-curable organopolysiloxane composition (Japanese Patent Application Laid-Open No. 2004-292724: Patent Document 2) and a method of selecting the structure of a titanium catalyst used as a curing catalyst ( Japanese Patent No. 4438937, Japanese Patent No. 4530136, Japanese Patent No. 4658654, Japanese Patent No. 4530177: Patent Documents 3 to 6) are known, but these compositions are dealcoholization type compositions. Therefore, there are problems that it takes a long time to obtain a cured product, and that the chemical resistance performance is inferior to that of FIPG that has been used conventionally. In addition, as a method of improving adhesion to various adherends, there are reports of introducing an alkoxysilyl group into an aromatic compound to improve adhesion to polybutylene terephthalate and high-impact polystyrene, but polyphenylene sulfide, which is more difficult to adhere to, has been reported. No report has been made on the adhesiveness and chemical resistance to the adhesive (Patent No. 3518399: Patent Document 7).

特許第3714861号公報Japanese Patent No. 3714861 特開2004-292724号公報JP 2004-292724 A 特許第4438937号公報Japanese Patent No. 4438937 特許第4530136号公報Japanese Patent No. 4530136 特許第4658654号公報Japanese Patent No. 4658654 特許第4530177号公報Japanese Patent No. 4530177 特許第3518399号公報Japanese Patent No. 3518399

本発明は、上記事情に鑑みなされたもので、金属及び樹脂に対して接着性を有し、エンジンオイルやロングライフクーラントに対する耐薬品性を有し、かつ良好なゴム物性を有する硬化物を与えるロングライフクーラントシール用室温硬化性オルガノポリシロキサン組成物及び冷却クーラントオイルシール用シリコーンゴム硬化物並びに該硬化物を有する冷却クーラントオイルシールを提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a cured product having adhesiveness to metals and resins, chemical resistance to engine oil and long-life coolant, and good rubber physical properties. An object of the present invention is to provide a room-temperature-curable organopolysiloxane composition for long-life coolant seals , a silicone rubber cured product for cooling coolant oil seals, and a cooling coolant oil seal containing the cured product.

本発明者らは、上記目的を達成するため鋭意研究を重ねた結果、窒素原子、硫黄原子及び酸素原子から選ばれるいずれか一つ以上の原子を含むグアニジル基以外の官能性基を少なくとも1個有するシランカップリング剤及び/又はその部分加水分解縮合物と、分子内にビスフェノール骨格を有するシラン化合物及び/又はその部分加水分解縮合物とを特定の組み合わせで使用することで、得られる硬化物が良好な樹脂接着性とエンジンオイルやロングライフクーラントへの耐薬品性に優れた室温硬化性オルガノポリシロキサン組成物が得られることを見出し、本発明をなすに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that at least one functional group other than a guanidyl group containing at least one atom selected from a nitrogen atom, a sulfur atom and an oxygen atom A cured product obtained by using a specific combination of a silane coupling agent and / or a partial hydrolysis condensate thereof and a silane compound having a bisphenol skeleton in the molecule and / or a partial hydrolysis condensate thereof The inventors have found that a room-temperature curable organopolysiloxane composition having good resin adhesion and excellent chemical resistance to engine oils and long-life coolants can be obtained, and have completed the present invention.

即ち、本発明は、下記のロングライフクーラントシール用室温硬化性オルガノポリシロキサン組成物及び冷却クーラントオイルシール用シリコーンゴム硬化物並びに冷却クーラントオイルシールを提供するものである。
〔1〕
(A)下記一般式(1)で示される23℃における粘度が2,000mPa・s以上のオルガノポリシロキサン:100質量部、
HO-(SiR1 2O)a-H (1)
(式中、R1は炭素数1~10の非置換又は置換一価炭化水素基であり、R1は互いに同一であっても異種の基であってもよい。aは100以上の整数である。)
(B)無機質充填剤:1~500質量部、
(C)(D)、(E)成分以外の、一分子中にケイ素原子に結合した加水分解可能な基を少なくとも3個有する有機ケイ素化合物及び/又はその部分加水分解縮合物:0.1~50質量部、
(D)下記一般式()で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:0.01~5質量部、

Figure 0007283347000001
(式中、R 8 、R 9 は、それぞれ独立に、炭素数1~10の非置換一価炭化水素基であり、R 10 は炭素数1~10の二価炭化水素基であり、R 11 は芳香環を含む炭素数7~10の二価炭化水素基であり、eは1~3の整数である。但し、NH基及びNH 2 基の少なくとも一方はR 11 の芳香環に直結していない。)
(E)下記一般式(3)で示される分子内にビスフェノール骨格を有するシラン化合物及び/又はその部分加水分解縮合物:0.01~5質量部、
Figure 0007283347000002
(式中、R5はそれぞれ独立に、水素原子もしくは炭素数1~8の非置換一価炭化水素基であり、R6、R7は、それぞれ独立に、炭素数1~10の非置換又は置換一価炭化水素基であり、nは1~3の整数であり、dはケイ素原子毎に独立に2又は3である。)
(F)硬化触媒:0.01~3質量部
を含有することを特徴とするロングライフクーラントシール用室温硬化性オルガノポリシロキサン組成物。
〔2〕
(B)成分の無機質充填剤が、表面処理剤により処理された、炭酸カルシウム、煙霧質シリカ、沈降性シリカ、カーボンブラック及び酸化アルミニウムから選択される少なくとも1種である〔1〕記載の室温硬化性オルガノポリシロキサン組成物。
〔3〕
上記一般式(3)において、n=1のとき、R 5 がフェニル基である〔1〕又は〔2〕記載の室温硬化性オルガノポリシロキサン組成物。
〔4〕
〔1〕~〔3〕のいずれかに記載の室温硬化性オルガノポリシロキサン組成物を硬化してなる冷却クーラントオイルシール用シリコーンゴム硬化物。
〔5〕
〔4〕に記載の硬化物を有する冷却クーラントオイルシール
That is, the present invention provides the following room-temperature-curable organopolysiloxane composition for long-life coolant seals , cured silicone rubber for cooling coolant oil seals, and cooling coolant oil seals .
[1]
(A) an organopolysiloxane represented by the following general formula (1) and having a viscosity of 2,000 mPa s or more at 23° C.: 100 parts by mass;
HO—(SiR 12 O ) a —H (1)
(In the formula, R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and R 1 may be the same or different groups. a is an integer of 100 or more; be.)
(B) inorganic filler: 1 to 500 parts by mass,
(C) Organosilicon compounds other than components (D) and (E), having at least three hydrolyzable groups bonded to silicon atoms in one molecule and/or partial hydrolytic condensates thereof: 0.1- 50 parts by mass,
(D) a hydrolyzable organosilane compound represented by the following general formula ( 4 ) and/or a partial hydrolytic condensate thereof: 0.01 to 5 parts by mass;
Figure 0007283347000001
(wherein R 8 and R 9 are each independently an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, R 10 is a divalent hydrocarbon group having 1 to 10 carbon atoms, R 11 is a divalent hydrocarbon group containing an aromatic ring and having 7 to 10 carbon atoms, and e is an integer of 1 to 3, provided that at least one of the NH group and the NH 2 group is directly linked to the aromatic ring of R 11 ; do not have.)
(E) a silane compound having a bisphenol skeleton in the molecule represented by the following general formula (3) and/or a partial hydrolysis condensate thereof: 0.01 to 5 parts by mass;
Figure 0007283347000002
(wherein R 5 is each independently a hydrogen atom or an unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 6 and R 7 are each independently an unsubstituted or is a substituted monovalent hydrocarbon group, n is an integer of 1 to 3, and d is independently 2 or 3 for each silicon atom.)
(F) Curing catalyst: A room temperature curable organopolysiloxane composition for long-life coolant seals, characterized by containing 0.01 to 3 parts by mass .
[2]
Room temperature curing according to [1], wherein the inorganic filler of component (B) is at least one selected from calcium carbonate, fumed silica, precipitated silica, carbon black and aluminum oxide treated with a surface treatment agent. organopolysiloxane composition.
[3]
The room-temperature-curable organopolysiloxane composition according to [1] or [2], wherein in formula (3), when n=1, R 5 is a phenyl group.
[4]
A cured silicone rubber for a cooling coolant oil seal, obtained by curing the room temperature curable organopolysiloxane composition according to any one of [1] to [3].
[5]
A cooling coolant oil seal comprising the cured product according to [4].

本発明によれば、特に、金属及び樹脂に対する接着性に優れると共に、優れたゴム物性を有し、かつ良好な耐薬品性を有する硬化物を与える室温硬化性オルガノポリシロキサン組成物及びその硬化物並びに該硬化物を有する物品を得ることができる。 According to the present invention, there is provided a room-temperature-curable organopolysiloxane composition that provides a cured product having particularly excellent adhesion to metals and resins, excellent rubber physical properties, and good chemical resistance, and a cured product thereof. Also, an article having the cured product can be obtained.

以下、本発明につき更に詳細に説明する。 The present invention will be described in more detail below.

[(A)成分]
本発明の室温硬化性オルガノポリシロキサン組成物の(A)成分は、下記一般式(1)で示される、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がケイ素原子に結合した水酸基(シラノール基)で封鎖されている23℃における粘度が2,000mPa・s以上の直鎖状のジオルガノポリシロキサンであり、本発明組成物の主剤(ベースポリマー)として作用するものである。
HO-(SiR1 2O)a-H (1)
(式中、R1は炭素数1~10の非置換又は置換一価炭化水素基であり、R1は互いに同一であっても異種の基であってもよい。aは100以上の整数である。)
[(A) component]
Component (A) of the room-temperature-curable organopolysiloxane composition of the present invention has a main chain composed of repeating diorganosiloxane units represented by the following general formula (1), and both ends of the molecular chain are bonded to silicon atoms. It is a linear diorganopolysiloxane blocked with hydroxyl groups (silanol groups) and having a viscosity of 2,000 mPa·s or more at 23° C., and acts as the main ingredient (base polymer) of the composition of the present invention.
HO—(SiR 12 O ) a —H (1)
(In the formula, R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and R 1 may be the same or different groups. a is an integer of 100 or more; be.)

上記式(1)中、R1は炭素数1~10、特に炭素数1~6の非置換又は置換一価炭化水素基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基等のアリール基;ベンジル基、フェニルエチル基等のアラルキル基、あるいはこれらの基の水素原子が部分的に塩素、フッ素、臭素等のハロゲン原子で置換された基、例えばトリフルオロプロピル基などが挙げられ、メチル基、フェニル基が好ましく、メチル基が特に好ましい。このR1は同一の基であっても異種の基であってもよい。 In the above formula (1), R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl Alkyl groups such as groups, isobutyl groups, sec-butyl groups, tert-butyl groups, pentyl groups, hexyl groups, heptyl groups, octyl groups, and 2-ethylhexyl groups; cycloalkyl groups such as cyclohexyl groups; vinyl groups, allyl groups, alkenyl groups such as propenyl group, isopropenyl group, butenyl group, isobutenyl group and hexenyl group; aryl groups such as phenyl group and tolyl group; aralkyl groups such as benzyl group and phenylethyl group; Examples thereof include groups substituted with halogen atoms such as chlorine, fluorine, and bromine, such as trifluoropropyl group, preferably methyl group and phenyl group, and particularly preferably methyl group. This R 1 may be the same group or different groups.

また、式(1)中のaは100以上(通常、100~2,000)、好ましくは150~1,000、より好ましくは200~800程度の整数であり、このオルガノポリシロキサンの23℃における粘度は2,000mPa・s以上であり、通常、2,000~500,000mPa・sの範囲、好ましくは3,000~500,000mPa・sの範囲、特に5,000~100,000mPa・sの範囲となることが好ましい。なお、本発明において、粘度は回転粘度計(例えば、BL型、BH型、BS型、コーンプレート型等)により測定した値である。また、本発明において、重合度(又は分子量)は、例えば、トルエン、テトラヒドロフラン(THF)等を展開溶媒としたゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めることができる。
(A)成分のオルガノポリシロキサンは、1種でもよく、2種以上を併用してもよい。
In addition, a in formula (1) is an integer of 100 or more (usually 100 to 2,000), preferably 150 to 1,000, and more preferably about 200 to 800. The viscosity is 2,000 mPa s or more, usually in the range of 2,000 to 500,000 mPa s, preferably in the range of 3,000 to 500,000 mPa s, particularly in the range of 5,000 to 100,000 mPa s. A range is preferred. In the present invention, viscosity is a value measured by a rotational viscometer (eg, BL type, BH type, BS type, cone plate type, etc.). Further, in the present invention, the degree of polymerization (or molecular weight) is, for example, the number average degree of polymerization (or number average molecular weight) in terms of polystyrene in gel permeation chromatography (GPC) analysis using toluene, tetrahydrofuran (THF) or the like as a developing solvent. etc.
The (A) component organopolysiloxane may be used alone or in combination of two or more.

[(B)成分]
次に、(B)成分である無機質充填剤は、本組成物にゴム物性を付与するための補強性、非補強性充填剤である。本充填剤としては、表面処理又は無処理の、焼成シリカ、煙霧質シリカ等の乾式シリカ、沈降性シリカ、ゾル-ゲル法シリカ等の湿式シリカなどのシリカ系充填剤、カーボンブラック、タルク、ベントナイト、炭酸カルシウム、炭酸亜鉛、炭酸マグネシウム、酸化カルシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、水酸化アルミニウム等が例示され、その中でも炭酸カルシウム、煙霧質シリカ、沈降性シリカ、カーボンブラック、酸化アルミニウムが好ましく、より好ましくは無機質充填剤の表面が疎水化処理された、炭酸カルシウム、煙霧質シリカ、沈降性シリカ、カーボンブラック、酸化アルミニウムである。この場合、これら無機質充填剤は、水分量が少ないことが好ましい。
なお、該表面処理剤の種類、量や処理方法等については特に制限はないが、代表的には、クロロシラン、アルコキシシラン、オルガノシラザン等の有機ケイ素化合物や、脂肪酸、パラフィン、シランカップリング剤、チタンカップリング剤等の処理剤が適用できる。
[(B) component]
Next, the inorganic filler, which is the component (B), is a reinforcing or non-reinforcing filler for imparting rubber properties to the present composition. Examples of fillers include surface-treated or untreated silica-based fillers such as pyrogenic silica, dry silica such as fumed silica, precipitated silica, wet silica such as sol-gel silica, carbon black, talc, and bentonite. , calcium carbonate, zinc carbonate, magnesium carbonate, calcium oxide, zinc oxide, magnesium oxide, aluminum oxide, aluminum hydroxide, etc. Among them, calcium carbonate, fumed silica, precipitated silica, carbon black, and aluminum oxide are preferred. , and more preferably calcium carbonate, fumed silica, precipitated silica, carbon black, and aluminum oxide in which the surface of the inorganic filler is hydrophobized. In this case, these inorganic fillers preferably have a low water content.
Although there are no particular restrictions on the type, amount, treatment method, etc. of the surface treatment agent, typical examples include organosilicon compounds such as chlorosilanes, alkoxysilanes and organosilazanes, fatty acids, paraffins, silane coupling agents, A treatment agent such as a titanium coupling agent can be applied.

(B)成分の無機質充填剤は、1種でもよく、2種以上を併用してもよい。
(B)成分の配合量は、(A)成分のオルガノポリシロキサン100質量部に対して1~500質量部の範囲、好ましくは20~300質量部の範囲である。1質量部未満では十分なゴム強度が得られないため、使用用途に適さないという問題が生じ、500質量部を超えるとカートリッジからの吐出性が悪化し、並びに保存安定性が低下するほか、得られるゴム物性の機械特性も低下してしまう。
The (B) component inorganic filler may be used alone or in combination of two or more.
Component (B) is added in an amount of 1 to 500 parts by mass, preferably 20 to 300 parts by mass, per 100 parts by mass of organopolysiloxane (A). If the amount is less than 1 part by mass, a sufficient rubber strength cannot be obtained, resulting in the problem of unsuitability for the intended use. The mechanical properties of the rubber physical properties to be used also deteriorate.

[(C)成分]
本発明の室温硬化性オルガノポリシロキサン組成物に用いる(C)成分は、架橋剤(硬化剤)として作用するものであり、一分子中にケイ素原子に結合した加水分解可能な基を少なくとも3個有する、上述した(A)成分、及び後述する(D)成分及び(E)成分以外の、有機ケイ素化合物及び/又はその部分加水分解縮合物であり、該有機ケイ素化合物としては、下記一般式(5)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物(即ち、該オルガノシラン化合物を部分的に加水分解縮合して生成する分子中に残存加水分解性基を少なくとも2個、好ましくは3個以上有するオルガノシロキサンオリゴマー)が好ましい。
12 fSiR13 4-f (5)
(式中、R12は一価炭化水素基であり、R13は加水分解性基である。fは0又は1であり、好ましくは1である。)
[(C) component]
The component (C) used in the room-temperature-curable organopolysiloxane composition of the present invention acts as a cross-linking agent (curing agent) and has at least three silicon-bonded hydrolyzable groups in one molecule. It is an organosilicon compound and/or a partial hydrolysis condensate thereof other than the above-described component (A) and the components (D) and (E) described later, and the organosilicon compound has the following general formula ( The hydrolyzable organosilane compound represented by 5) and/or a partial hydrolytic condensate thereof (that is, the molecule formed by partially hydrolyzing and condensing the organosilane compound has at least two remaining hydrolyzable groups. , preferably three or more organosiloxane oligomers).
R12fSiR134 - f ( 5)
(In the formula, R 12 is a monovalent hydrocarbon group, R 13 is a hydrolyzable group, f is 0 or 1, preferably 1.)

一般式(5)中、加水分解性基R13としては、例えば、ケトオキシム基、アルコキシ基、アシロキシ基、アルケニルオキシ基等が挙げられる。具体的には、ジメチルケトオキシム基、メチルエチルケトオキシム基、メチルイソブチルケトオキシム基等の炭素数3~8のケトオキシム基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、メトキシメトキシ基、メトキシエトキシ基、エトキシメトキシ基、エトキシエトキシ基等の炭素数1~4、特に1又は2の、非置換又はアルコキシ置換のアルコキシ基、アセトキシ基、プロピオノキシ基等の炭素数2~4のアシロキシ基、ビニルオキシ基、アリルオキシ基、プロペノキシ基、イソプロペノキシ基等の炭素数2~4のアルケニルオキシ基などが例示できる。
また、加水分解性基以外のケイ素原子に結合した残余の基R12は、一価炭化水素基、特には非置換の一価炭化水素基であれば特に限定されるものではないが、具体的には、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、ビニル基等のアルケニル基、フェニル基等のアリール基などの炭素数1~10の一価炭化水素基が例示される。これらの中でも、メチル基、エチル基、ビニル基、フェニル基が好ましい。
In general formula (5), the hydrolyzable group R 13 includes, for example, a ketoxime group, an alkoxy group, an acyloxy group, an alkenyloxy group and the like. Specifically, ketoxime groups having 3 to 8 carbon atoms such as dimethylketoxime group, methylethylketoxime group and methylisobutylketoxime group, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec -butoxy group, tert-butoxy group, methoxymethoxy group, methoxyethoxy group, ethoxymethoxy group, ethoxyethoxy group and other unsubstituted or alkoxy-substituted alkoxy groups, acetoxy groups, having 1 to 4 carbon atoms, particularly 1 or 2 carbon atoms, Examples include acyloxy groups having 2 to 4 carbon atoms such as propionoxy group, alkenyloxy groups having 2 to 4 carbon atoms such as vinyloxy group, allyloxy group, propenoxy group and isopropenoxy group.
In addition, the residual group R 12 bonded to the silicon atom other than the hydrolyzable group is not particularly limited as long as it is a monovalent hydrocarbon group, particularly an unsubstituted monovalent hydrocarbon group. is exemplified by monovalent hydrocarbon groups having 1 to 10 carbon atoms such as alkyl groups such as methyl group, ethyl group, propyl group and butyl group, alkenyl groups such as vinyl group and aryl groups such as phenyl group. Among these, a methyl group, an ethyl group, a vinyl group, and a phenyl group are preferred.

このような(C)成分の具体例としては、テトラキス(メチルエチルケトオキシム)シラン、メチルトリス(ジメチルケトオキシム)シラン、メチルトリス(メチルエチルケトオキシム)シラン、エチルトリス(メチルエチルケトオキシム)シラン、メチルトリス(メチルイソブチルケトオキシム)シラン、ビニルトリス(メチルエチルケトオキシム)シランなどのケトオキシムシラン類、メチルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、テトラメトキシシラン、ビニルトリエトキシシラン、テトラエトキシシラン、ビニルトリス(イソプロポキシ)シランなどのアルコキシシラン類、メチルトリアセトキシシラン、ビニルトリアセトキシシランなどのアセトキシシラン類、及びメチルトリイソプロペノキシシラン、ビニルトリイソプロペノキシシラン、フェニルトリイソプロペノキシシランなどのイソプロペノキシシラン類、並びにこれらシランの部分加水分解縮合物などが挙げられる。これらは1種を単独で又は2種以上を併用してもよい。
なお、(C)成分は、分子中に(SiR1 2O)a等で示される直鎖状のジオルガノシロキサン単位の繰り返し構造を有さないものである点で前記(A)成分とは明確に差別化されるものであり、また、分子中に、窒素、酸素、硫黄等のヘテロ原子を含有する官能性基を有する一価炭化水素基及びビスフェノール骨格を有さないものである点で後述する(D)、(E)成分とも明確に差別化されるものである。
Specific examples of such component (C) include tetrakis(methylethylketoxime)silane, methyltris(dimethylketoxime)silane, methyltris(methylethylketoxime)silane, ethyltris(methylethylketoxime)silane, and methyltris(methylisobutylketoxime)silane. , ketooxime silanes such as vinyltris(methylethylketoxime)silane, methyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, tetramethoxysilane, vinyltriethoxysilane, tetraethoxysilane, vinyltris(isopropoxy)silane, etc. Acetoxysilanes such as alkoxysilanes, methyltriacetoxysilane and vinyltriacetoxysilane, and isopropenoxysilanes such as methyltriisopropenoxysilane, vinyltriisopropenoxysilane and phenyltriisopropenoxysilane, and these A partially hydrolyzed condensate of silane and the like can be mentioned. These may be used alone or in combination of two or more.
Component (C) is distinct from component (A) in that it does not have a repeating structure of linear diorganosiloxane units represented by (SiR 12 O) a in the molecule. Also, in the molecule, it does not have a monovalent hydrocarbon group and a bisphenol skeleton having a functional group containing a heteroatom such as nitrogen, oxygen, sulfur, etc. Both the (D) and (E) components are clearly differentiated.

(C)成分の配合量は、(A)成分100質量部に対して0.1~50質量部の範囲、好ましくは5~30質量部の範囲で使用される。0.1質量部未満では十分な架橋が得られず、目的とするゴム弾性を有する組成物が得難く、50質量部を超えると得られる硬化物は機械特性が低下し易い。 Component (C) is used in an amount of 0.1 to 50 parts by weight, preferably 5 to 30 parts by weight, per 100 parts by weight of component (A). If the amount is less than 0.1 part by mass, sufficient cross-linking cannot be obtained, making it difficult to obtain a composition having the desired rubber elasticity.

[(D)成分]
次に、(D)成分は、下記一般式(2)で示されるシランカップリング剤(即ち、官能性基含有一価炭化水素基を有する加水分解性オルガノシラン化合物)及び/又はその部分加水分解縮合物であり、本組成物に良好な接着性を発現させるための必須成分である。
24 cSi(OR33-c (2)
(式中、R2は、窒素原子、硫黄原子及び酸素原子から選ばれるいずれか一つ以上の原子を含むグアニジル基以外の官能性基を少なくとも1個有する炭素数1~20の一価炭化水素基である。R3、R4は、それぞれ独立に、炭素数1~10の非置換又は置換一価炭化水素基であり、cは0、1又は2であり、好ましくは0又は1である。)
[(D) component]
Next, the component (D) is a silane coupling agent represented by the following general formula (2) (i.e., a hydrolyzable organosilane compound having a functional group-containing monovalent hydrocarbon group) and/or its partial hydrolysis. It is a condensate and an essential component for exhibiting good adhesiveness in the present composition.
R2R4cSi ( OR3 ) 3 -c (2)
(In the formula, R 2 is a monovalent hydrocarbon having 1 to 20 carbon atoms and having at least one functional group other than a guanidyl group containing one or more atoms selected from nitrogen, sulfur and oxygen atoms. R 3 and R 4 are each independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and c is 0, 1 or 2, preferably 0 or 1 .)

上記式(2)中、R2は窒素原子、硫黄原子及び酸素原子から選ばれるいずれか一つ以上の原子を含むグアニジル基以外の官能性基(例えば、非置換又は置換アミノ基、非置換又は置換イミノ基、アミド基、ウレイド基、メルカプト基、エポキシ基、(メタ)アクリロキシ基、イソシアネート基等)を少なくとも1個有する炭素数1~20の一価炭化水素基であり、具体的には、β-(2,3-エポキシシクロヘキシル)エチル基、β-(3,4-エポキシシクロヘキシル)エチル基、γ-グリシドキシプロピル基、γ-メタクリロキシプロピル基、γ-アクリロキシプロピル基、N-β(アミノエチル)-γ-アミノプロピル基、γ-アミノプロピル基、N-フェニル-γ-アミノプロピル基、γ-ウレイドプロピル基、γ-メルカプトプロピル基、γ-イソシアネートプロピル基、γ-(2-ブタンイミノ)プロピル基、γ-ホルムアミノプロピル基等の窒素原子、硫黄原子及び酸素原子から選ばれる原子の少なくとも1つを含む炭素数3~20、特に炭素数8~14の一価炭化水素基が挙げられる。
また、R3、R4は、それぞれ独立に、炭素数1~10、特に炭素数1~6の非置換又は置換一価炭化水素基であり、上述した式(1)のR1と同様のものが例示でき、特にメチル基、エチル基、プロピル基、イソプロピル基が好ましい。
In the above formula (2), R 2 is a functional group other than a guanidyl group containing one or more atoms selected from a nitrogen atom, a sulfur atom and an oxygen atom (e.g., an unsubstituted or substituted amino group, an unsubstituted or a substituted imino group, amido group, ureido group, mercapto group, epoxy group, (meth)acryloxy group, isocyanate group, etc.) is a monovalent hydrocarbon group having 1 to 20 carbon atoms, specifically, β-(2,3-epoxycyclohexyl)ethyl group, β-(3,4-epoxycyclohexyl)ethyl group, γ-glycidoxypropyl group, γ-methacryloxypropyl group, γ-acryloxypropyl group, N- β (aminoethyl)-γ-aminopropyl group, γ-aminopropyl group, N-phenyl-γ-aminopropyl group, γ-ureidopropyl group, γ-mercaptopropyl group, γ-isocyanatopropyl group, γ-(2 -Butaneimino)propyl group, γ-formaminopropyl group, etc. Monovalent hydrocarbon group with 3 to 20 carbon atoms, especially 8 to 14 carbon atoms, containing at least one atom selected from nitrogen atom, sulfur atom and oxygen atom is mentioned.
R 3 and R 4 are each independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms, and are the same as R 1 in formula (1) above. are exemplified, and methyl group, ethyl group, propyl group and isopropyl group are particularly preferred.

式(2)で示されるシランカップリング剤として、具体的には、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリプロポキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-(2-ブタンイミノ)プロピルトリメトキシシラン、γ-(2-ブタンイミノ)プロピルトリエトキシシラン、γ-ホルムアミノプロピルトリメトキシシラン、γ-ホルムアミノプロピルトリエトキシシラン等が例示できる。 Specific examples of the silane coupling agent represented by formula (2) include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltripropoxysilane, N-β (aminoethyl)- γ-Aminopropyltrimethoxysilane, N-β(Aminoethyl)-γ-Aminopropyltriethoxysilane, γ-Acryloxypropyltrimethoxysilane, γ-Acryloxypropyltriethoxysilane, γ-Glycidoxypropyltrimethoxysilane Silane, γ-glycidoxypropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-isocyanatopropyltrimethoxysilane Silane, γ-isocyanatopropyltriethoxysilane, γ-(2-butaneimino)propyltrimethoxysilane, γ-(2-butaneimino)propyltriethoxysilane, γ-formaminopropyltrimethoxysilane, γ-formaminopropyltriethoxysilane Silane etc. can be illustrated.

(D)成分のシランカップリング剤及びその部分加水分解縮合物としては、窒素原子、硫黄原子及び酸素原子から選ばれるいずれか一つ以上の原子を含むグアニジル基以外の官能性基を少なくとも1個有する炭素数1~20の一価炭化水素基を1つ含み、オルガノオキシ基を1~3個含むシラン化合物及びその部分加水分解縮合物であれば、いずれのものも使用可能であるが、その中でも下記一般式(4)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物を使用すると、接着性及び耐薬品性が更に向上するため好ましい。

Figure 0007283347000003
(式中、R8、R9は、それぞれ独立に、炭素数1~10の非置換一価炭化水素基であり、R10は炭素数1~10の二価炭化水素基であり、R11は芳香環を含む炭素数7~10の二価炭化水素基であり、eは1~3の整数である。但し、NH基及びNH2基の少なくとも一方はR11の芳香環に直結していない。) Component (D), the silane coupling agent and its partial hydrolysis condensate, has at least one functional group other than a guanidyl group containing at least one atom selected from nitrogen, sulfur and oxygen atoms. Any silane compound and its partial hydrolysis condensate containing one monovalent hydrocarbon group having 1 to 20 carbon atoms and 1 to 3 organooxy groups can be used. Among them, a hydrolyzable organosilane compound represented by the following general formula (4) and/or a partial hydrolyzed condensate thereof is preferably used because the adhesiveness and chemical resistance are further improved.
Figure 0007283347000003
(wherein R 8 and R 9 are each independently an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, R 10 is a divalent hydrocarbon group having 1 to 10 carbon atoms, R 11 is a divalent hydrocarbon group containing an aromatic ring and having 7 to 10 carbon atoms, and e is an integer of 1 to 3, provided that at least one of the NH group and the NH 2 group is directly linked to the aromatic ring of R 11 ; do not have.)

上記式(4)で示される加水分解性オルガノシラン化合物は、NH基(イミノ基)とNH2基(アミノ基)とを有し、NH基とNH2基との間に芳香環を含み、更にNH基とNH2基の少なくとも一方が芳香環を構成する炭素原子に直結していないようなアルコキシシラン化合物であり、詳しくは特開平5-105689号公報に記載されている。 The hydrolyzable organosilane compound represented by the above formula (4) has an NH group (imino group) and an NH2 group (amino group), contains an aromatic ring between the NH group and the NH2 group, Furthermore, it is an alkoxysilane compound in which at least one of the NH group and the NH 2 group is not directly bonded to a carbon atom constituting an aromatic ring, which is described in detail in JP-A-5-105689.

上記式(4)中、R8、R9の炭素数1~10、特に炭素数1~8の非置換一価炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基等のアリール基;ベンジル基、フェニルエチル基等のアラルキル基などが挙げられ、R8としては、メチル基又はエチル基が好ましく、R9としては、メチル基が好ましい。 In the above formula (4), the unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, particularly 1 to 8 carbon atoms, for R 8 and R 9 includes a methyl group, an ethyl group, a propyl group, a butyl group and a hexyl group. Cycloalkyl groups such as cyclohexyl groups; Alkenyl groups such as vinyl groups, allyl groups, propenyl groups, butenyl groups and hexenyl groups; Aryl groups such as phenyl groups and tolyl groups; An aralkyl group and the like can be mentioned, and R 8 is preferably a methyl group or an ethyl group, and R 9 is preferably a methyl group.

また、R10の炭素数1~10の二価炭化水素基としては、メチレン基、エチレン基、プロピレン基、テトラメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基、2-メチルプロピレン基等のアルキレン基、フェニレン基等のアリーレン基、これらアルキレン基とアリーレン基とが結合した基などが挙げられるが、好ましくはメチレン基、エチレン基、プロピレン基であり、特に好ましくはプロピレン基である。 The divalent hydrocarbon group having 1 to 10 carbon atoms for R 10 includes methylene group, ethylene group, propylene group, tetramethylene group, hexamethylene group, octamethylene group, decamethylene group, 2-methylpropylene group and the like. Examples thereof include an alkylene group, an arylene group such as a phenylene group, and a group in which these alkylene groups and an arylene group are bonded. Among them, a methylene group, an ethylene group and a propylene group are preferred, and a propylene group is particularly preferred.

また、R11の芳香環を含む炭素数7~10の二価炭化水素基としては、フェニレン基とアルキレン基とが結合した基が好ましく、例えば下記式で示されるものが挙げられる。
-C64-CH2
-C64-CH2-CH2
-C64-CH2-CH2-CH2
-CH2-C64
-CH2-C64-CH2
-CH2-C64-CH2-CH2
-CH2-C64-CH2-CH2-CH2
-CH2-CH2-C64
-CH2-CH2-C64-CH2
-CH2-CH2-C64-CH2-CH2
-CH2-CH2-CH2-C64
-CH2-CH2-CH2-C64-CH2
これらの中で、特に好ましくは-CH2-C64-CH2-である。
The divalent hydrocarbon group of 7 to 10 carbon atoms containing an aromatic ring for R 11 is preferably a group in which a phenylene group and an alkylene group are bonded, and examples thereof include those represented by the following formulae.
-C6H4 - CH2-
-C6H4 - CH2 - CH2-
-C6H4 - CH2 - CH2 - CH2-
-CH2 - C6H4-
-CH2 - C6H4 - CH2-
-CH2 - C6H4 - CH2 - CH2-
-CH2 - C6H4 - CH2 - CH2 - CH2-
-CH2 - CH2 - C6H4-
-CH2 - CH2 - C6H4 - CH2-
-CH2 - CH2 - C6H4 - CH2 - CH2-
-CH2 - CH2 - CH2 - C6H4-
-CH2 - CH2 - CH2 - C6H4 - CH2-
Among these, -CH 2 -C 6 H 4 -CH 2 - is particularly preferred.

この場合、フェニレン基の右側(式(4)においてNH2側)に結合するアルキレン基(アルキレン基がない場合は-NH2基となる)は、オルト位、メタ位、パラ位であってもよい。 In this case, the alkylene group bonded to the right side of the phenylene group (the NH2 side in formula (4)) (the -NH2 group if there is no alkylene group) may be in the ortho, meta, or para positions. good.

上記式(4)で示される加水分解性オルガノシラン化合物としては、下記のものが例示される。

Figure 0007283347000004
Figure 0007283347000005
Figure 0007283347000006
Figure 0007283347000007
Figure 0007283347000008
Figure 0007283347000009
Figure 0007283347000010
Figure 0007283347000011
Figure 0007283347000012
Figure 0007283347000013
Figure 0007283347000014
Figure 0007283347000015
Figure 0007283347000016
Figure 0007283347000017
Figure 0007283347000018
Figure 0007283347000019
Figure 0007283347000020
Figure 0007283347000021
Figure 0007283347000022
Figure 0007283347000023
Figure 0007283347000024
Figure 0007283347000025
Figure 0007283347000026
Figure 0007283347000027
Examples of the hydrolyzable organosilane compound represented by the above formula (4) are given below.
Figure 0007283347000004
Figure 0007283347000005
Figure 0007283347000006
Figure 0007283347000007
Figure 0007283347000008
Figure 0007283347000009
Figure 0007283347000010
Figure 0007283347000011
Figure 0007283347000012
Figure 0007283347000013
Figure 0007283347000014
Figure 0007283347000015
Figure 0007283347000016
Figure 0007283347000017
Figure 0007283347000018
Figure 0007283347000019
Figure 0007283347000020
Figure 0007283347000021
Figure 0007283347000022
Figure 0007283347000023
Figure 0007283347000024
Figure 0007283347000025
Figure 0007283347000026
Figure 0007283347000027

(D)成分のシランカップリング剤及び/又はその部分加水分解縮合物は、1種でもよく、2種以上を併用してもよい。但し、本発明の室温硬化性オルガノポリシロキサン組成物において、後述する接着性付与剤の一つである(E)成分が後述する一般式(3)において、n=1で、かつ、R5が水素原子又はメチル基である場合には、(D)成分は上記一般式(4)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物である必要がある。 The (D) component silane coupling agent and/or its partial hydrolysis condensate may be used alone or in combination of two or more. However, in the room-temperature-curable organopolysiloxane composition of the present invention, the (E) component, which is one of the adhesiveness-imparting agents described later, has n = 1 and R 5 is When it is a hydrogen atom or a methyl group, the component (D) must be a hydrolyzable organosilane compound represented by the general formula (4) and/or a partial hydrolyzed condensate thereof.

上記(D)成分の配合量は、(A)成分のオルガノポリシロキサン100質量部に対して0.01~5質量部であり、好ましくは0.1~3質量部である。0.01質量部未満では、硬化物が十分な接着性能を示さないものとなり、5質量部を超えて配合すると、硬化後のゴム強度が低下したり、硬化性が低下したりする。 Component (D) is added in an amount of 0.01 to 5 parts by mass, preferably 0.1 to 3 parts by mass, per 100 parts by mass of organopolysiloxane (A). If the amount is less than 0.01 parts by mass, the cured product will not exhibit sufficient adhesion performance, and if the amount exceeds 5 parts by mass, the strength of the rubber after curing will be lowered and the curability will be lowered.

[(E)成分]
次に、(E)成分である下記一般式(3)で示される分子内にビスフェノール骨格を有するシラン化合物及び/又はその部分加水分解縮合物は、ビスフェノール骨格と被着体との相互作用により、本発明の室温硬化性オルガノポリシロキサン組成物に、良好な樹脂接着性を与え、アミノ基等の高活性な官能基を有していないことから良好な耐薬品性を組成物に与える。

Figure 0007283347000028
(式中、R5はそれぞれ独立に、水素原子もしくは炭素数1~8の非置換一価炭化水素基であり、R6、R7は、それぞれ独立に、炭素数1~10の非置換又は置換一価炭化水素基であり、nは1~3の整数であり、dはケイ素原子毎に独立に2又は3である。) [(E) component]
Next, the silane compound having a bisphenol skeleton in the molecule represented by the following general formula (3) and/or its partial hydrolysis condensate, which is the component (E), interacts with the bisphenol skeleton and the adherend. The room-temperature-curable organopolysiloxane composition of the present invention is endowed with good resin adhesion, and since it does not have a highly active functional group such as an amino group, it is endowed with good chemical resistance.
Figure 0007283347000028
(wherein R 5 is each independently a hydrogen atom or an unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 6 and R 7 are each independently an unsubstituted or is a substituted monovalent hydrocarbon group, n is an integer of 1 to 3, and d is independently 2 or 3 for each silicon atom.)

なお、(E)成分が上記一般式(3)において、n=1で、かつ、R5=水素原子又はメチル基である場合には、上述した(D)成分は上記一般式(4)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物である必要がある。(E)成分の一般式(3)において、n=1で、かつ、R5が水素原子又はメチル基である場合、(D)成分として上記一般式(4)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物以外のシランカップリング剤(例えばアミノシラン)及び/又はその部分加水分解縮合物を用いると、組成物を硬化してなる硬化物が十分な樹脂接着性や耐薬品性を発現できない場合がある。 In addition, when the component (E) in the above general formula (3) is n=1 and R 5 is a hydrogen atom or a methyl group, the above component (D) is represented by the above general formula (4) hydrolyzable organosilane compounds and/or partial hydrolytic condensates thereof. In the general formula (3) of the component (E), when n=1 and R 5 is a hydrogen atom or a methyl group, the hydrolyzable organosilane represented by the above general formula (4) as the component (D) When a silane coupling agent (e.g., aminosilane) and/or a partial hydrolytic condensate thereof other than the compound and/or its partial hydrolytic condensate is used, the cured product obtained by curing the composition has sufficient resin adhesion and resistance. May not exhibit drug properties.

上記式(3)中、R5は水素原子もしくは炭素数1~8の非置換一価炭化水素基であり、炭素数1~8の非置換一価炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基等のアリール基などが挙げられ、R5としては、水素原子、メチル基又はフェニル基が好ましい。 In the above formula (3), R 5 is a hydrogen atom or an unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and the unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms includes a methyl group and an ethyl group. Alkyl groups such as , propyl, butyl, and hexyl groups; Cycloalkyl groups such as cyclohexyl groups; Alkenyl groups such as vinyl, allyl, propenyl, butenyl, and hexenyl groups; Aryl groups such as phenyl and tolyl groups etc., and R 5 is preferably a hydrogen atom, a methyl group or a phenyl group.

また、上記式(3)中、R6、R7の炭素数1~10、特に炭素数1~8の非置換一価炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基等のアリール基;ベンジル基、フェニルエチル基等のアラルキル基などが挙げられ、R6としては、メチル基又はエチル基が好ましく、R7としては、メチル基が好ましい。 In the above formula (3), the unsubstituted monovalent hydrocarbon groups having 1 to 10 carbon atoms, particularly 1 to 8 carbon atoms, for R 6 and R 7 include methyl group, ethyl group, propyl group, butyl group, Alkyl groups such as hexyl group; Cycloalkyl groups such as cyclohexyl group; Alkenyl groups such as vinyl group, allyl group, propenyl group, butenyl group and hexenyl group; Aryl groups such as phenyl group and tolyl group; R 6 is preferably a methyl group or an ethyl group, and R 7 is preferably a methyl group.

(E)成分の具体例としては、以下の構造の化合物が例示できる。

Figure 0007283347000029
Figure 0007283347000030
Figure 0007283347000031
Figure 0007283347000032
Figure 0007283347000033
Specific examples of component (E) include compounds having the following structures.
Figure 0007283347000029
Figure 0007283347000030
Figure 0007283347000031
Figure 0007283347000032
Figure 0007283347000033

上記式(3)で示される分子内にビスフェノール骨格を有するシラン化合物の製造方法は、詳しくは特許第3518399号公報に記載されている。また、特許第3518399号公報において、例えば、ビスフェノールAジアリルエーテルを、ビスフェノールPジアリルエーテルやビスフェノールBPジアリルエーテルに代えて、3-メルカプトプロピルトリメトキシシラン等のメルカプト基含有ケイ素化合物と付加反応させることによっても製造することができる。 A method for producing the silane compound having a bisphenol skeleton in the molecule represented by the formula (3) is described in detail in Japanese Patent No. 3518399. Further, in Japanese Patent No. 3518399, for example, bisphenol A diallyl ether is subjected to an addition reaction with a mercapto group-containing silicon compound such as 3-mercaptopropyltrimethoxysilane instead of bisphenol P diallyl ether or bisphenol BP diallyl ether. can also be manufactured.

(E)成分の配合量は、(A)成分のオルガノポリシロキサン100質量部に対して0.01~5質量部であり、好ましくは0.1~3質量部である。配合量が上記範囲未満では目的とする硬化物(シリコーンゴム)の接着性やゴム物性(硬度、伸び、強度等の機械特性)が得られない可能性があり、上記範囲を超えるとコストの増加やゴム物性の低下を招くおそれがある。 Component (E) is added in an amount of 0.01 to 5 parts by mass, preferably 0.1 to 3 parts by mass, per 100 parts by mass of organopolysiloxane (A). If the compounding amount is less than the above range, the desired adhesion of the cured product (silicone rubber) and rubber properties (mechanical properties such as hardness, elongation, strength, etc.) may not be obtained, and if the above range is exceeded, the cost will increase. and deterioration of rubber physical properties.

[(F)成分]
次に、(F)成分の硬化触媒は、本組成物と空気中の水分との加水分解反応を促進させるために使用される、一般的に硬化触媒と呼ばれるものである。これは当業界でよく知られている湿分の存在下で硬化するシリコーン樹脂組成物に使用されているものと同様の成分の使用が好ましい。
[(F) component]
Next, the curing catalyst of component (F) is generally called a curing catalyst, which is used to accelerate the hydrolysis reaction between the present composition and moisture in the air. It is preferred to use ingredients similar to those used in silicone resin compositions which cure in the presence of moisture well known in the art.

(F)成分としては、硬化触媒である。硬化触媒としては、湿気(縮合)硬化型組成物の硬化促進剤として従来から一般的に使用されている縮合触媒を使用できる。例えば、ジブチルスズメトキサイド、ジブチルスズジアセテート、ジブチルスズジオクテート、ジブチルスズジラウレート、ジオクチルスズジラウレート、ジオクチルスズジオクテート、ジオクチルスズジバーサテート、ジメチルスズジメトキサイド、ジメチルスズジアセテート等の有機スズ化合物;テトラプロピルチタネート、テトラブチルチタネート、テトラ-2-エチルヘキシルチタネート、ジメトキシチタンジアセチルアセトナート等の有機チタン化合物;ヘキシルアミン、テトラメチルグアニジルプロピルトリメトキシシラン等のグアニジン化合物やこれらの塩などが挙げられ、これらの1種を単独で又は2種以上を組み合わせて使用することができる。 Component (F) is a curing catalyst. As the curing catalyst, condensation catalysts that have been generally used as curing accelerators for moisture (condensation) curable compositions can be used. organic tin compounds such as, for example, dibutyltin methoxide, dibutyltin diacetate, dibutyltin dioctate, dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diversate, dimethyltin dimethoxide, dimethyltin diacetate; organic titanium compounds such as tetrapropyl titanate, tetrabutyl titanate, tetra-2-ethylhexyl titanate, dimethoxytitanium diacetylacetonate; guanidine compounds such as hexylamine, tetramethylguanidylpropyltrimethoxysilane, and salts thereof; , these can be used alone or in combination of two or more.

(F)成分の配合量は、(A)成分のオルガノポリシロキサン100質量部に対して0.01~3質量部の範囲であり、好ましくは0.03~1質量部の範囲である。0.01質量部未満であると良好な硬化性を得ることができず、組成物が硬化するのに時間がかかる。3量部を超える量になると、組成物の保存性が悪化し、容器内で組成物が経時でゲル化してしまうおそれがある。 Component (F) is added in an amount of 0.01 to 3 parts by mass, preferably 0.03 to 1 part by mass, per 100 parts by mass of organopolysiloxane (A). If the amount is less than 0.01 parts by mass, good curability cannot be obtained, and it takes a long time to cure the composition. If the amount exceeds 3 parts by weight, the storage stability of the composition may deteriorate, and the composition may gel over time in the container.

また、本発明の組成物には、上記成分以外に一般に知られている添加剤を本発明の目的を損なわない範囲で使用しても差し支えない。添加剤としては、チクソ性向上剤としてのポリエーテル、可塑剤としてのシリコーンオイル、イソパラフィン等が挙げられ、必要に応じて顔料、染料、蛍光増白剤等の着色剤、防かび剤、抗菌剤、海洋生物忌避剤等の生理活性添加剤、ブリードオイルとしてのフェニルシリコーンオイル、フロロシリコーンオイル、シリコーンと非相溶の有機液体等の表面改質剤、トルエン、キシレン、溶剤揮発油、シクロヘキサン、メチルシクロヘキサン、低沸点イソパラフィン等の溶剤も添加できる。 In addition to the above components, generally known additives may be used in the composition of the present invention as long as they do not impair the purpose of the present invention. Additives include polyether as a thixotropic agent, silicone oil, isoparaffin as a plasticizer, and optionally pigments, dyes, colorants such as fluorescent brighteners, antifungal agents, and antibacterial agents. , bioactive additives such as marine organism repellents, phenyl silicone oil as bleed oil, fluorosilicone oil, surface modifiers such as organic liquids incompatible with silicone, toluene, xylene, solvent volatile oil, cyclohexane, methyl Solvents such as cyclohexane and low boiling isoparaffins can also be added.

本発明の室温硬化性オルガノポリシロキサン組成物は、室温硬化性の組成物であり、その硬化条件としては、例えば、組成物(室温硬化性オルガノポリシロキサン組成物)を2mmの型枠に流し込み、23℃、50%RHで7日間養生(静置)することによって厚さ2mmの硬化物(シリコーンゴムシート)を得ることができる。 The room-temperature-curable organopolysiloxane composition of the present invention is a room-temperature-curable composition, and the curing conditions include, for example, pouring the composition (room-temperature-curable organopolysiloxane composition) into a 2 mm mold, A cured product (silicone rubber sheet) having a thickness of 2 mm can be obtained by curing (standing) at 23° C. and 50% RH for 7 days.

また、本発明の室温硬化性オルガノポリシロキサン組成物は、金属及び樹脂に対する接着性を有し、エンジンオイルやロングライフクーラントに対する耐薬品性を有し、かつ良好なゴム物性を有する硬化物を与えるものである。 In addition, the room-temperature-curable organopolysiloxane composition of the present invention has adhesiveness to metals and resins, chemical resistance to engine oils and long-life coolants, and gives cured products having good rubber physical properties. It is.

本発明の室温硬化性オルガノポリシロキサン組成物を硬化してなる硬化物を有する物品としては、例えば、自動車エンジン用オイルシール、トランスミッション用オイルシール、冷却クーラント用オイルシール、パワーコントロールユニットやエンジンコントロールユニット、バッテリーパックなどの電装部品用気密シール等が挙げられる。 Examples of articles having a cured product obtained by curing the room-temperature-curable organopolysiloxane composition of the present invention include automobile engine oil seals, transmission oil seals, cooling coolant oil seals, power control units, and engine control units. , airtight seals for electrical components such as battery packs, and the like.

以下、実施例、参考例及び比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、実施例、参考例及び比較例はすべて適切な混合機として、プラネタリミキサー((株)井上製作所製)を用いた。また、下記例中、特に記載のない粘度(回転粘度計による測定値)などの物性値は、23℃での値を示す。
EXAMPLES The present invention will be specifically described below with reference to examples , reference examples , and comparative examples, but the present invention is not limited to the following examples. In the examples , reference examples and comparative examples, a planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.) was used as an appropriate mixer. Further, in the following examples, physical property values such as viscosity (measured by a rotational viscometer), which are not particularly described, are values at 23°C.

本発明に使用する、分子内にビスフェノール骨格を有するシラン化合物の合成例について以下に示す。なお、合成された化合物は1H-NMRにて同定を行い、合成を確認した。 Synthesis examples of the silane compound having a bisphenol skeleton in the molecule used in the present invention are shown below. The synthesized compound was identified by 1 H-NMR to confirm its synthesis.

[合成例1]
撹拌機、温度計、減圧濃縮装置を備えた4つ口フラスコにビスフェノールA44.5g(0.2mol)、臭化アリル60.5g(0.5mol)、炭酸カリウム69.1g(0.5mol)、アセトン150mlを仕込み、60℃に加温して8時間アセトン還流下で反応させた。濾過により塩及び過剰量の炭酸カリウムを除いたのち、100℃、1000Paで1時間減圧濃縮することで、ビスフェノールAジアリルエーテルを得た(収量53g、収率86%)。
1H-NMR(400MHz,CDCl3)δ6.94(-CC6 4 O-,m,8H),δ6.12(-C=CH2,m,2H),δ5.48(-CH=C 2 ,m,4H),δ4.51(-OC 2 -,t,4H),δ1.62(-CCH 3 ,s,6H)
[Synthesis Example 1]
44.5 g (0.2 mol) of bisphenol A, 60.5 g (0.5 mol) of allyl bromide, 69.1 g (0.5 mol) of potassium carbonate, 150 ml of acetone was charged, heated to 60° C., and reacted under reflux of acetone for 8 hours. After removing salts and excess potassium carbonate by filtration, the solution was concentrated under reduced pressure at 100° C. and 1000 Pa for 1 hour to obtain bisphenol A diallyl ether (yield: 53 g, yield: 86%).
1 H-NMR (400 MHz, CDCl 3 ) δ 6.94 (-CC 6 H 4 O-, m, 8H), δ 6.12 ( -CH =CH 2 , m, 2H), δ 5.48 (-CH= C H 2 , m, 4H), δ4.51 (-OC H 2 -, t, 4H), δ1.62 (-C CH 3 , s, 6H)

[合成例2]
撹拌機、温度計、減圧濃縮装置を備えた4つ口フラスコにビスフェノールP69.2g(0.2mol)、臭化アリル60.5g(0.5mol)、炭酸カリウム69.1g(0.5mol)、アセトン150mlを仕込み、60℃に加温して8時間アセトン還流下で反応させた。濾過により塩及び過剰量の炭酸カリウムを除いたのち、100℃、1000Paで1時間減圧濃縮することで、ビスフェノールPジアリルエーテルを得た(収量70g、収率82%)。
1H-NMR(400MHz,CDCl3)δ7.25(-CC6 4 C-,s,4H),δ6.94(-CC6 4 O-,m,8H),δ6.12(-C=CH2,m,2H),δ5.48(-CH=C 2 ,m,4H),δ4.51(-OC 2 -,t,4H),δ1.62(-CCH 3 ,s,12H)
[Synthesis Example 2]
69.2 g (0.2 mol) of bisphenol P, 60.5 g (0.5 mol) of allyl bromide, 69.1 g (0.5 mol) of potassium carbonate, 150 ml of acetone was charged, heated to 60° C., and reacted under reflux of acetone for 8 hours. After removing salt and excess potassium carbonate by filtration, the solution was concentrated under reduced pressure at 100° C. and 1000 Pa for 1 hour to obtain bisphenol P diallyl ether (yield: 70 g, yield: 82%).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.25 (-CC 6 H 4 C-, s, 4H), δ 6.94 (-CC 6 H 4 O-, m, 8H), δ 6.12 (-C H = CH 2 , m, 2H), δ5.48 (-CH=C H 2 , m, 4H), δ4.51 (-OC H 2 -, t, 4H), δ1.62 (-C CH 3 , s, 12H)

[合成例3]
撹拌機、温度計、減圧濃縮装置を備えた4つ口フラスコにビスフェノールBP70g(0.2mol)、臭化アリル60.5g(0.5mol)、炭酸カリウム69.1g(0.5mol)、アセトン150mlを仕込み、60℃に加温して8時間アセトン還流下で反応させた。濾過により塩及び過剰量の炭酸カリウムを除いたのち、100℃、1000Paで1時間減圧濃縮することで、ビスフェノールBPジアリルエーテルを得た(収量68g、収率79%)。
1H-NMR(400MHz,CDCl3)δ7.35(-CC6 5 ,s,10H),δ6.94(-CC6 4 O-,m,8H),δ6.12(-C=CH2,m,2H),δ5.48(-CH=C 2 ,m,4H),δ4.51(-OC 2 -,t,4H)
[Synthesis Example 3]
70 g (0.2 mol) of bisphenol BP, 60.5 g (0.5 mol) of allyl bromide, 69.1 g (0.5 mol) of potassium carbonate, and 150 ml of acetone were placed in a four-necked flask equipped with a stirrer, thermometer, and vacuum concentrator. was charged, heated to 60° C., and reacted under reflux of acetone for 8 hours. After removing salts and excess potassium carbonate by filtration, the solution was concentrated under reduced pressure at 100° C. and 1000 Pa for 1 hour to obtain bisphenol BP diallyl ether (yield: 68 g, yield: 79%).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.35 (-CC 6 H 5 , s, 10H), δ 6.94 (-CC 6 H 4 O-, m, 8H), δ 6.12 (-C H = CH 2 , m, 2H), δ5.48 (-CH=C H 2 , m, 4H), δ4.51 (-OC H 2 -, t, 4H)

[合成例4]
撹拌機、温度計、窒素流路、減圧濃縮装置を備えた4つ口フラスコに、合成例1で得られたビスフェノールAジアリルエーテル30.8g(0.1mol)、3-メルカプトプロピルトリメトキシシラン43.2g(0.22mol)、トルエン30gを仕込み、窒素フロー下で90℃まで昇温したのち、2,2’-アゾビス(2-メチルブチロニトリル)を0.3g添加し、90℃で3時間反応させた。次に150℃、300paで1時間減圧濃縮を行い、下記一般式(6)に示す構造の化合物(A)を得た(収量69g、収率98%)。
1H-NMR(400MHz,CDCl3)δ6.94(-CC6 4 O-,m,8H),δ4.08(-OC 2 -,t,4H),δ3.52(-SiOCH 3 ,s,18H),δ2.61(-C 2 2 SC 2 -,m,12H),δ1.75(-C 2 -CH2-Si,t,4H),δ1.62(-CCH 3 ,s,6H),δ0.69(-CH 2 -Si,t,4H)

Figure 0007283347000034
[Synthesis Example 4]
30.8 g (0.1 mol) of the bisphenol A diallyl ether obtained in Synthesis Example 1, 3-mercaptopropyltrimethoxysilane 43 and 2 g (0.22 mol) and 30 g of toluene were charged, and the temperature was raised to 90°C under nitrogen flow, then 0.3 g of 2,2'-azobis(2-methylbutyronitrile) was added and reacted over time. Next, concentration under reduced pressure was carried out at 150° C. and 300 pa for 1 hour to obtain a compound (A) having a structure represented by the following general formula (6) (yield: 69 g, yield: 98%).
1 H-NMR (400 MHz, CDCl 3 ) δ 6.94 (-CC 6 H 4 O-, m, 8H), δ 4.08 (-OC H 2 -, t, 4H), δ 3.52 (-SiO CH 3 , s, 18H), δ2.61 (--CH 2 CH 2 SC H 2 --, m, 12H), δ 1.75 (--CH 2 --CH 2 --Si, t, 4H), δ 1.62 ( —C CH 3 , s, 6H), δ0.69 ( —CH 2 —Si, t, 4H)
Figure 0007283347000034

[合成例5]
撹拌機、温度計、窒素流路、減圧濃縮装置を備えた4つ口フラスコに、合成例2で得られたビスフェノールPジアリルエーテル42.6g(0.1mol)、3-メルカプトプロピルトリメトキシシラン43.2g(0.22mol)、トルエン30gを仕込み、窒素フロー下で90℃まで昇温したのち、2,2’-アゾビス(2-メチルブチロニトリル)を0.3g添加し、90℃で3時間反応させた。次に150℃、300paで1時間減圧濃縮を行い、下記一般式(7)に示す構造の化合物(B)を得た(収量78g、収率95%)。
1H-NMR(400MHz,CDCl3)δ7.25(-CC6 4 C-,s,4H),δ6.94(-CC6 4 O-,m,8H),δ4.04(-OC 2 -,t,4H),δ3.52(-SiOCH 3 ,s,18H),δ2.61(-C 2 2 SC 2 -,m,12H),δ1.75(-C 2 -CH2-Si,t,4H),δ1.62(-CCH 3 ,s,12H),δ0.69(-CH 2 -Si,t,4H)

Figure 0007283347000035
[Synthesis Example 5]
42.6 g (0.1 mol) of the bisphenol P diallyl ether obtained in Synthesis Example 2, 3-mercaptopropyltrimethoxysilane 43 and 2 g (0.22 mol) and 30 g of toluene were charged, and the temperature was raised to 90°C under nitrogen flow, then 0.3 g of 2,2'-azobis(2-methylbutyronitrile) was added and reacted over time. Next, vacuum concentration was carried out at 150° C. and 300 pa for 1 hour to obtain a compound (B) having a structure represented by the following general formula (7) (yield: 78 g, yield: 95%).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.25 (-CC 6 H 4 C-, s, 4H), δ 6.94 (-CC 6 H 4 O-, m, 8H), δ 4.04 (-OC H 2 -, t, 4H), δ 3.52 (-SiO CH 3 , s, 18H), δ 2.61 (-CH 2 CH 2 SC H 2 - , m, 12H), δ 1.75 (-C H 2 —CH 2 —Si, t, 4H), δ1.62 (—C CH 3 , s, 12H), δ0.69 ( —CH 2 —Si, t, 4H)
Figure 0007283347000035

[合成例6]
撹拌機、温度計、窒素流路、減圧濃縮装置を備えた4つ口フラスコに、合成例3で得られたビスフェノールBPジアリルエーテル43.2g(0.1mol)、3-メルカプトプロピルトリメトキシシラン43.2g(0.22mol)、トルエン30gを仕込み、窒素フロー下で90℃まで昇温したのち、2,2‘-アゾビス(2-メチルブチロニトリル)を0.3g添加し、90℃で3時間反応させた。次に150℃、300paで1時間減圧濃縮を行い、下記一般式(8)に示す構造の化合物(C)を得た(収量77g、収率94%)。
1H-NMR(400MHz,CDCl3)δ7.35(-CC6 5 ,s,10H),δ6.94(-CC6 4 O-,m,8H),δ4.01(-OC 2 -,t,4H),δ3.52(-SiOCH 3 ,s,18H),δ2.61(-C 2 2 SC 2 -,m,12H),δ1.75(-C 2 -CH2-Si,t,4H),δ0.69(-CH 2 -Si,t,4H)

Figure 0007283347000036
[Synthesis Example 6]
43.2 g (0.1 mol) of the bisphenol BP diallyl ether obtained in Synthesis Example 3, 3-mercaptopropyltrimethoxysilane 43 and 2 g (0.22 mol) and 30 g of toluene were charged, and the temperature was raised to 90°C under nitrogen flow, then 0.3 g of 2,2'-azobis(2-methylbutyronitrile) was added and reacted over time. Next, concentration under reduced pressure was carried out at 150° C. and 300 pa for 1 hour to obtain a compound (C) having a structure represented by the following general formula (8) (yield: 77 g, yield: 94%).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.35 (-CC 6 H 5 , s, 10H), δ 6.94 (-CC 6 H 4 O-, m, 8H), δ 4.01 ( -OCH 2 -, t, 4H), δ3.52 (-SiO CH 3 , s, 18H), δ2.61 (-CH 2 CH 2 SC H 2 - , m, 12H), δ 1.75 ( -CH 2 —CH 2 —Si, t, 4H), δ0.69 ( —CH 2 —Si, t, 4H)
Figure 0007283347000036

[実施例1]
(A)23℃における粘度が20,000mPa・sの分子鎖両末端がシラノール基(又はヒドロキシジメチルシリル基)で封鎖されたジメチルポリシロキサン(式(1)においてa=約600、以下、同じ。)100質量部に、(B)表面がパラフィンにて処理された重質炭酸カルシウム(商品名;MCコートP-20、丸尾カルシウム(株)製)100質量部と、(B)表面がジメチルジクロロシランにて処理された煙霧質シリカ10質量部を加えて混合した後、(C)ビニルトリス(メチルエチルケトオキシム)シラン10質量部を加え、減圧下で混合した。次に(D)キシリレンジアミンと3-クロロプロピルトリメトキシシランの脱塩酸反応により得られた化合物(式(4)において、R8=メチル基、e=3,R10=-(CH23-、R11=キシリレン基(-CH2-C64-CH2-)に該当する加水分解性オルガノシラン化合物、商品名;CF-73、信越化学工業(株)製、以下、同じ。)1質量部と、(E)上記合成例4で得た化合物(A)1質量部と、(F)ジオクチルスズジバーサテート0.1質量部とを加え、減圧下で完全に混合し、組成物1を得た。
[Example 1]
(A) A dimethylpolysiloxane having a viscosity of 20,000 mPa·s at 23° C. and having both ends of the molecular chain blocked with silanol groups (or hydroxydimethylsilyl groups) (a=about 600 in formula (1), hereinafter the same. ) to 100 parts by mass, (B) 100 parts by mass of paraffin-treated heavy calcium carbonate (trade name: MC Coat P-20, manufactured by Maruo Calcium Co., Ltd.); After adding 10 parts by mass of chlorosilane-treated fumed silica and mixing, (C) 10 parts by mass of vinyltris(methylethylketoxime)silane was added and mixed under reduced pressure. Next, (D) a compound obtained by a dehydrochlorination reaction of xylylenediamine and 3-chloropropyltrimethoxysilane (in formula (4), R 8 =methyl group, e = 3, R 10 =-(CH 2 ) 3 -, R 11 = hydrolyzable organosilane compound corresponding to a xylylene group (-CH 2 -C 6 H 4 -CH 2 -), trade name: CF-73, manufactured by Shin-Etsu Chemical Co., Ltd., hereinafter the same .) 1 part by mass, (E) 1 part by mass of compound (A) obtained in Synthesis Example 4 above, and (F) 0.1 part by mass of dioctyltin diversatate were added and thoroughly mixed under reduced pressure. , to obtain composition 1.

[実施例2]
(A)23℃における粘度が20,000mPa・sの分子鎖両末端がシラノール基(又はヒドロキシジメチルシリル基)で封鎖されたジメチルポリシロキサン100質量部に、(B)表面がパラフィンにて処理された重質炭酸カルシウム(商品名;MCコートP-20、丸尾カルシウム(株)製)100質量部と、(B)表面がジメチルジクロロシランにて処理された煙霧質シリカ10質量部を加えて混合した後、(C)ビニルトリス(メチルエチルケトオキシム)シラン10質量部を加え、減圧下で混合した。次に(D)キシリレンジアミンと3-クロロプロピルトリメトキシシランの脱塩酸反応により得られた化合物(商品名;CF-73、信越化学工業(株)製)1質量部と、(E)上記合成例5で得た化合物(B)1質量部と、(F)ジオクチルスズジバーサテート0.1質量部とを加え、減圧下で完全に混合し、組成物2を得た。
[Example 2]
(A) 100 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa s at 23° C. and having both molecular chain ends blocked with silanol groups (or hydroxydimethylsilyl groups); 100 parts by mass of heavy calcium carbonate (trade name: MC Coat P-20, manufactured by Maruo Calcium Co., Ltd.) and (B) 10 parts by mass of fumed silica whose surface was treated with dimethyldichlorosilane were added and mixed. After that, (C) 10 parts by mass of vinyltris(methylethylketoxime)silane was added and mixed under reduced pressure. Next, (D) 1 part by mass of a compound obtained by a dehydrochlorination reaction of xylylenediamine and 3-chloropropyltrimethoxysilane (trade name: CF-73, manufactured by Shin-Etsu Chemical Co., Ltd.), and (E) the above 1 part by mass of compound (B) obtained in Synthesis Example 5 and 0.1 part by mass of (F) dioctyltin diversatate were added and thoroughly mixed under reduced pressure to obtain composition 2.

[実施例3]
(A)23℃における粘度が20,000mPa・sの分子鎖両末端がシラノール基(又はヒドロキシジメチルシリル基)で封鎖されたジメチルポリシロキサン100質量部に、(B)表面がパラフィンにて処理された重質炭酸カルシウム(商品名;MCコートP-20、丸尾カルシウム(株)製)100質量部と、(B)表面がジメチルジクロロシランにて処理された煙霧質シリカ10質量部を加えて混合した後、(C)ビニルトリス(イソプロポキシ)シラン8質量部を加え、減圧下で混合した。次に(D)キシリレンジアミンと3-クロロプロピルトリメトキシシランの脱塩酸反応により得られた化合物(商品名;CF-73、信越化学工業(株)製)1質量部と、(E)上記合成例6で得た化合物(C)1質量部と、(F)テトラメチルグアニジルプロピルトリメトキシシラン0.5質量部とを加え、減圧下で完全に混合し、組成物3を得た。
[Example 3]
(A) 100 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa s at 23° C. and having both molecular chain ends blocked with silanol groups (or hydroxydimethylsilyl groups); 100 parts by mass of heavy calcium carbonate (trade name: MC Coat P-20, manufactured by Maruo Calcium Co., Ltd.) and (B) 10 parts by mass of fumed silica whose surface was treated with dimethyldichlorosilane were added and mixed. After that, (C) 8 parts by mass of vinyltris(isopropoxy)silane was added and mixed under reduced pressure. Next, (D) 1 part by mass of a compound obtained by a dehydrochlorination reaction of xylylenediamine and 3-chloropropyltrimethoxysilane (trade name: CF-73, manufactured by Shin-Etsu Chemical Co., Ltd.), and (E) the above 1 part by mass of compound (C) obtained in Synthesis Example 6 and 0.5 part by mass of (F) tetramethylguanidylpropyltrimethoxysilane were added and completely mixed under reduced pressure to obtain composition 3. .

参考例1
(A)23℃における粘度が20,000mPa・sの分子鎖両末端がシラノール基(又はヒドロキシジメチルシリル基)で封鎖されたジメチルポリシロキサン100質量部に、(B)表面がパラフィンにて処理された重質炭酸カルシウム(商品名;MCコートP-20、丸尾カルシウム(株)製)100質量部と、(B)表面がジメチルジクロロシランにて処理された煙霧質シリカ10質量部を加えて混合した後、(C)ビニルトリス(イソプロポキシ)シラン8質量部を加え、減圧下で混合した。次に(D)γ-アミノプロピルトリメトキシシラン(商品名;KBM-903信越化学工業(株)製)1質量部と、(E)上記合成例6で得た化合物(C)1質量部と、(F)テトラメチルグアニジルプロピルトリメトキシシラン0.5質量部とを加え、減圧下で完全に混合し、組成物4を得た。
[ Reference example 1 ]
(A) 100 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa s at 23° C. and having both molecular chain ends blocked with silanol groups (or hydroxydimethylsilyl groups); 100 parts by mass of heavy calcium carbonate (trade name: MC Coat P-20, manufactured by Maruo Calcium Co., Ltd.) and (B) 10 parts by mass of fumed silica whose surface was treated with dimethyldichlorosilane were added and mixed. After that, (C) 8 parts by mass of vinyltris(isopropoxy)silane was added and mixed under reduced pressure. Next, (D) 1 part by mass of γ-aminopropyltrimethoxysilane (trade name; KBM-903, manufactured by Shin-Etsu Chemical Co., Ltd.), and (E) 1 part by mass of compound (C) obtained in Synthesis Example 6 above. , and (F) 0.5 parts by mass of tetramethylguanidylpropyltrimethoxysilane were added and thoroughly mixed under reduced pressure to obtain composition 4.

[比較例1]
(A)23℃における粘度が20,000mPa・sの分子鎖両末端がシラノール基(又はヒドロキシジメチルシリル基)で封鎖されたジメチルポリシロキサン100質量部に、(B)表面がパラフィンにて処理された重質炭酸カルシウム(商品名;MCコートP-20、丸尾カルシウム(株)製)100質量部と、(B)表面がジメチルジクロロシランにて処理された煙霧質シリカ10質量部を加えて混合した後、(C)ビニルトリス(メチルエチルケトオキシム)シラン10質量部を加え、減圧下で混合した。次に(D)キシリレンジアミンと3-クロロプロピルトリメトキシシランの脱塩酸反応により得られた化合物(商品名;CF-73、信越化学工業(株)製)1質量部と、(F)ジオクチルスズジバーサテート0.1質量部とを加え、減圧下で完全に混合し、組成物5を得た。
[Comparative Example 1]
(A) 100 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa s at 23° C. and having both molecular chain ends blocked with silanol groups (or hydroxydimethylsilyl groups); 100 parts by mass of heavy calcium carbonate (trade name: MC Coat P-20, manufactured by Maruo Calcium Co., Ltd.) and (B) 10 parts by mass of fumed silica whose surface was treated with dimethyldichlorosilane were added and mixed. After that, (C) 10 parts by mass of vinyltris(methylethylketoxime)silane was added and mixed under reduced pressure. Next, (D) 1 part by mass of a compound obtained by a dehydrochlorination reaction of xylylenediamine and 3-chloropropyltrimethoxysilane (trade name: CF-73, manufactured by Shin-Etsu Chemical Co., Ltd.), and (F) dioctyl 0.1 part by mass of tin versatate was added and thoroughly mixed under reduced pressure to obtain composition 5.

[比較例2]
(A)23℃における粘度が20,000mPa・sの分子鎖両末端がシラノール基(又はヒドロキシジメチルシリル基)で封鎖されたジメチルポリシロキサン100質量部に、(B)表面がパラフィンにて処理された重質炭酸カルシウム(商品名;MCコートP-20、丸尾カルシウム(株)製)100質量部と、(B)表面がジメチルジクロロシランにて処理された煙霧質シリカ10質量部を加えて混合した後、(C)ビニルトリス(メチルエチルケトオキシム)シラン10質量部を加え、減圧下で混合した。次に(E)上記合成例4で得た化合物(A)1質量部と、(F)ジオクチルスズジバーサテート0.1質量部とを加え、減圧下で完全に混合し、組成物6を得た。
[Comparative Example 2]
(A) 100 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa s at 23° C. and having both molecular chain ends blocked with silanol groups (or hydroxydimethylsilyl groups); 100 parts by mass of heavy calcium carbonate (trade name: MC Coat P-20, manufactured by Maruo Calcium Co., Ltd.) and (B) 10 parts by mass of fumed silica whose surface was treated with dimethyldichlorosilane were added and mixed. After that, (C) 10 parts by mass of vinyltris(methylethylketoxime)silane was added and mixed under reduced pressure. Next, (E) 1 part by mass of compound (A) obtained in Synthesis Example 4 above and 0.1 part by mass of (F) dioctyltin diversatate were added and thoroughly mixed under reduced pressure to obtain composition 6. Obtained.

[比較例3]
(A)23℃における粘度が20,000mPa・sの分子鎖両末端がシラノール基(又はヒドロキシジメチルシリル基)で封鎖されたジメチルポリシロキサン100質量部に、(B)表面がパラフィンにて処理された重質炭酸カルシウム(商品名;MCコートP-20、丸尾カルシウム(株)製)100質量部と、(B)表面がジメチルジクロロシランにて処理された煙霧質シリカ10質量部を加えて混合した後、(C)ビニルトリス(メチルエチルケトオキシム)シラン10質量部を加え、減圧下で混合した。次に(D)γ-アミノプロピルトリメトキシシラン(商品名;KBM-903信越化学工業(株)製)1質量部と、(F)ジオクチルスズジバーサテート0.1質量部とを加え、減圧下で完全に混合し、組成物7を得た。
[Comparative Example 3]
(A) 100 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa s at 23° C. and having both molecular chain ends blocked with silanol groups (or hydroxydimethylsilyl groups); 100 parts by mass of heavy calcium carbonate (trade name: MC Coat P-20, manufactured by Maruo Calcium Co., Ltd.) and (B) 10 parts by mass of fumed silica whose surface was treated with dimethyldichlorosilane were added and mixed. After that, (C) 10 parts by mass of vinyltris(methylethylketoxime)silane was added and mixed under reduced pressure. Next, (D) 1 part by mass of γ-aminopropyltrimethoxysilane (trade name; KBM-903, manufactured by Shin-Etsu Chemical Co., Ltd.) and (F) 0.1 part by mass of dioctyltin diversatate were added, and the pressure was reduced. After mixing thoroughly below, composition 7 was obtained.

[比較例4]
(A)23℃における粘度が20,000mPa・sの分子鎖両末端がシラノール基(又はヒドロキシジメチルシリル基)で封鎖されたジメチルポリシロキサン100質量部に、(B)表面がパラフィンにて処理された重質炭酸カルシウム(商品名;MCコートP-20、丸尾カルシウム(株)製)100質量部と、(B)表面がジメチルジクロロシランにて処理された煙霧質シリカ10質量部を加えて混合した後、(C)ビニルトリス(メチルエチルケトオキシム)シラン10質量部を加え、減圧下で混合した。次に(D)γ-アミノプロピルトリメトキシシラン(商品名;KBM-903信越化学工業(株)製)1質量部と(E)上記合成例4で得た化合物(A)1質量部と、(F)ジオクチルスズジバーサテート0.1質量部とを加え、減圧下で完全に混合し、組成物8を得た。
[Comparative Example 4]
(A) 100 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa s at 23° C. and having both molecular chain ends blocked with silanol groups (or hydroxydimethylsilyl groups); 100 parts by mass of heavy calcium carbonate (trade name: MC Coat P-20, manufactured by Maruo Calcium Co., Ltd.) and (B) 10 parts by mass of fumed silica whose surface was treated with dimethyldichlorosilane were added and mixed. After that, (C) 10 parts by mass of vinyltris(methylethylketoxime)silane was added and mixed under reduced pressure. Next, (D) 1 part by mass of γ-aminopropyltrimethoxysilane (trade name; KBM-903, manufactured by Shin-Etsu Chemical Co., Ltd.) and (E) 1 part by mass of the compound (A) obtained in Synthesis Example 4 above, (F) 0.1 part by mass of dioctyltin diversatate was added and thoroughly mixed under reduced pressure to obtain composition 8.

得られた組成物の配合組成を表1、2に示す。 Tables 1 and 2 show the composition of the resulting composition.

Figure 0007283347000037
Figure 0007283347000037

Figure 0007283347000038
Figure 0007283347000038

[試験方法]
上記実施例、参考例、比較例で調製された組成物(室温硬化性オルガノポリシロキサン組成物)を2mmの型枠に流し込み、23℃、50%RHで7日間養生して2mm厚のゴムシートを得た。JIS K 6249に準じて2mm厚シートよりゴム物性(硬さ、切断時伸び、引張強度)を測定した。
[Test method]
The compositions (room temperature curable organopolysiloxane compositions) prepared in the above Examples, Reference Examples, and Comparative Examples were poured into a 2 mm mold and cured at 23° C. and 50% RH for 7 days to form a 2 mm thick rubber sheet. got Rubber physical properties (hardness, elongation at break, tensile strength) were measured from a 2 mm thick sheet according to JIS K 6249.

また、この組成物より、幅25mm、長さ100mmのアルミニウム及び自動車エンジン用樹脂として有力視されているナイロン66(PA66)(商品名;ザイデル80G33HS1L、デュポン(株)製)、ポリブチレンテレフタラート(PBT)(商品名;ジュラネックス3300、ポリプラスチック(株)製)、ポリフェニレンサルファイド(PPS)(商品名;サースティールGS-40、東ソー(株)製)を用いて接着面積2.5mm2、接着厚さ1mmのせん断接着試験体を作製し、23℃、50%RHで7日間養生した。この試験体を用いてアルミニウム及び各樹脂に対するせん断接着力と凝集破壊率をJIS K 6249に規定する方法に準じて測定し、凝集破壊率を比較した。 Further, from this composition, aluminum having a width of 25 mm and a length of 100 mm, nylon 66 (PA66) (trade name: Seidel 80G33HS1L, manufactured by DuPont), which is considered to be a promising resin for automobile engines, polybutylene terephthalate ( PBT) (trade name: DURANEX 3300, manufactured by Polyplastics Co., Ltd.) and polyphenylene sulfide (PPS) (trade name: Thirsteel GS-40, manufactured by Tosoh Corporation) were used to bond with a bonding area of 2.5 mm 2 . A 1 mm-thick shear adhesion test specimen was prepared and cured at 23° C. and 50% RH for 7 days. Using this test piece, the shear adhesive strength and cohesive failure rate to aluminum and each resin were measured according to the method specified in JIS K 6249, and the cohesive failure rates were compared.

また、耐薬品性(耐エンジンオイル性)能を確認するため、得られた硬化後のシリコーンゴムシート及びせん断接着試験体をエンジンオイル[商品名:トヨタキャッスルオイル SN 0W-20]に浸漬し、120℃にて10日間放置して、その後製造初期と同様の試験を行うことで、耐薬品性の確認試験を行った。 In addition, in order to confirm the chemical resistance (engine oil resistance) performance, the obtained cured silicone rubber sheet and shear adhesion test specimen were immersed in engine oil [trade name: Toyota Castle Oil SN 0W-20]. After standing at 120° C. for 10 days, the same test as in the initial stage of production was conducted to confirm chemical resistance.

更に、耐薬品性(耐LLC性)能を確認するため、得られた硬化後のシリコーンゴムシート及びせん断接着試験体をLLCと水道水の50質量%溶液[商品名:トヨタスーパーロングライフクーラント]に浸漬し、100℃にて10日間放置して、その後製造初期と同様の試験を行うことで、耐薬品性の確認試験を行った。
なお、ゴム物性(硬さ、切断時伸び、引張強度)、せん断接着力、凝集破壊率の各試験結果は3回の試験結果(N=3)の平均値を示す。
Furthermore, in order to confirm the chemical resistance (LLC resistance) performance, the cured silicone rubber sheet and the shear adhesion test specimen were treated with a 50% by mass solution of LLC and tap water [trade name: Toyota Super Long Life Coolant]. and allowed to stand at 100° C. for 10 days, and then the same test as in the initial stage of production was conducted to confirm the chemical resistance.
The test results of rubber physical properties (hardness, elongation at break, tensile strength), shear adhesive strength, and cohesive failure rate are the average values of three test results (N=3).

これらの結果を表3に示す。 These results are shown in Table 3.

Figure 0007283347000039
Figure 0007283347000039

本発明の室温硬化性オルガノポリシロキサン組成物を用いた実施例1~3、参考例1では、アルミニウム、PA66、PBT、PPSに対して初期から良好な接着性を示した。更に耐エンジンオイル及び耐LLC試験後も良好な接着性を維持した。耐LLC試験後のPBTに関しては被着体の劣化が大きく、被着体破壊となった。一方、比較例1、3では(E)成分を含まないためPBT、PPSへの接着性に乏しく、また耐LLC試験後のアルミニウム、PA66に対する接着力低下が大きい。比較例2では(D)成分を添加していないため、耐薬品性に優れるものの、初期のアルミニウム、PA66に対する接着性に乏しい結果となった。また、比較例4では(D)成分と(E)成分が特定の組み合わせではないため、樹脂接着性や耐薬品性の向上が十分ではない結果であった。
以上の結果より、本発明による室温硬化性オルガノポリシロキサン組成物が有効であることがわかる。


Examples 1 to 3 and Reference Example 1 using the room temperature curable organopolysiloxane composition of the present invention exhibited good adhesion to aluminum, PA66, PBT and PPS from the initial stage. Furthermore, good adhesion was maintained after engine oil resistance and LLC resistance tests. Regarding PBT after the LLC resistance test, the deterioration of the adherend was large, resulting in destruction of the adherend. On the other hand, in Comparative Examples 1 and 3, since component (E) was not included, the adhesiveness to PBT and PPS was poor, and the adhesiveness to aluminum and PA66 after the LLC resistance test decreased significantly. In Comparative Example 2, since the component (D) was not added, although the chemical resistance was excellent, the initial adhesiveness to aluminum and PA66 was poor. Further, in Comparative Example 4, since the component (D) and the component (E) are not in a specific combination, the resin adhesiveness and chemical resistance are not sufficiently improved.
From the above results, it can be seen that the room temperature curable organopolysiloxane composition according to the present invention is effective.


Claims (5)

(A)下記一般式(1)で示される23℃における粘度が2,000mPa・s以上のオルガノポリシロキサン:100質量部、
HO-(SiR1 2O)a-H (1)
(式中、R1は炭素数1~10の非置換又は置換一価炭化水素基であり、R1は互いに同一であっても異種の基であってもよい。aは100以上の整数である。)
(B)無機質充填剤:1~500質量部、
(C)(D)、(E)成分以外の、一分子中にケイ素原子に結合した加水分解可能な基を少なくとも3個有する有機ケイ素化合物及び/又はその部分加水分解縮合物:0.1~50質量部、
(D)下記一般式()で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:0.01~5質量部、
Figure 0007283347000040
(式中、R 8 、R 9 は、それぞれ独立に、炭素数1~10の非置換一価炭化水素基であり、R 10 は炭素数1~10の二価炭化水素基であり、R 11 は芳香環を含む炭素数7~10の二価炭化水素基であり、eは1~3の整数である。但し、NH基及びNH 2 基の少なくとも一方はR 11 の芳香環に直結していない。)
(E)下記一般式(3)で示される分子内にビスフェノール骨格を有するシラン化合物及び/又はその部分加水分解縮合物:0.01~5質量部、
Figure 0007283347000041
(式中、R5はそれぞれ独立に、水素原子もしくは炭素数1~8の非置換一価炭化水素基であり、R6、R7は、それぞれ独立に、炭素数1~10の非置換又は置換一価炭化水素基であり、nは1~3の整数であり、dはケイ素原子毎に独立に2又は3である。)
(F)硬化触媒:0.01~3質量部
を含有することを特徴とするロングライフクーラントシール用室温硬化性オルガノポリシロキサン組成物。
(A) an organopolysiloxane represented by the following general formula (1) and having a viscosity of 2,000 mPa s or more at 23° C.: 100 parts by mass;
HO—(SiR 12 O ) a —H (1)
(In the formula, R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and R 1 may be the same or different groups. a is an integer of 100 or more; be.)
(B) inorganic filler: 1 to 500 parts by mass,
(C) Organosilicon compounds other than components (D) and (E), having at least three hydrolyzable groups bonded to silicon atoms in one molecule and/or partial hydrolytic condensates thereof: 0.1- 50 parts by mass,
(D) a hydrolyzable organosilane compound represented by the following general formula ( 4 ) and/or a partial hydrolytic condensate thereof: 0.01 to 5 parts by mass;
Figure 0007283347000040
(wherein R 8 and R 9 are each independently an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, R 10 is a divalent hydrocarbon group having 1 to 10 carbon atoms, R 11 is a divalent hydrocarbon group containing an aromatic ring and having 7 to 10 carbon atoms, and e is an integer of 1 to 3, provided that at least one of the NH group and the NH 2 group is directly linked to the aromatic ring of R 11 ; do not have.)
(E) a silane compound having a bisphenol skeleton in the molecule represented by the following general formula (3) and/or a partial hydrolysis condensate thereof: 0.01 to 5 parts by mass;
Figure 0007283347000041
(wherein R 5 is each independently a hydrogen atom or an unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 6 and R 7 are each independently an unsubstituted or is a substituted monovalent hydrocarbon group, n is an integer of 1 to 3, and d is independently 2 or 3 for each silicon atom.)
(F) Curing catalyst: A room temperature curable organopolysiloxane composition for long-life coolant seals, characterized by containing 0.01 to 3 parts by mass .
(B)成分の無機質充填剤が、表面処理剤により処理された、炭酸カルシウム、煙霧質シリカ、沈降性シリカ、カーボンブラック及び酸化アルミニウムから選択される少なくとも1種である請求項1記載の室温硬化性オルガノポリシロキサン組成物。 2. The room temperature curing method according to claim 1, wherein the inorganic filler of component (B) is at least one selected from calcium carbonate, fumed silica, precipitated silica, carbon black and aluminum oxide treated with a surface treating agent. organopolysiloxane composition. 上記一般式(3)において、n=1のとき、RIn the above general formula (3), when n = 1, R 5Five がフェニル基である請求項1又は2記載の室温硬化性オルガノポリシロキサン組成物。is a phenyl group. 請求項1~3のいずれか1項に記載の室温硬化性オルガノポリシロキサン組成物を硬化してなる冷却クーラントオイルシール用シリコーンゴム硬化物。 A cured silicone rubber for cooling coolant oil seals, obtained by curing the room temperature curable organopolysiloxane composition according to any one of claims 1 to 3. 請求項4に記載の硬化物を有する冷却クーラントオイルシール A cooling coolant oil seal comprising the cured product according to claim 4.
JP2019193477A 2019-10-24 2019-10-24 Room-temperature curing organopolysiloxane composition for long-life coolant seals, cured silicone rubber for cooling coolant oil seals, and cooling coolant oil seals Active JP7283347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019193477A JP7283347B2 (en) 2019-10-24 2019-10-24 Room-temperature curing organopolysiloxane composition for long-life coolant seals, cured silicone rubber for cooling coolant oil seals, and cooling coolant oil seals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019193477A JP7283347B2 (en) 2019-10-24 2019-10-24 Room-temperature curing organopolysiloxane composition for long-life coolant seals, cured silicone rubber for cooling coolant oil seals, and cooling coolant oil seals

Publications (2)

Publication Number Publication Date
JP2021066816A JP2021066816A (en) 2021-04-30
JP7283347B2 true JP7283347B2 (en) 2023-05-30

Family

ID=75638148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019193477A Active JP7283347B2 (en) 2019-10-24 2019-10-24 Room-temperature curing organopolysiloxane composition for long-life coolant seals, cured silicone rubber for cooling coolant oil seals, and cooling coolant oil seals

Country Status (1)

Country Link
JP (1) JP7283347B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2024162022A1 (en) * 2023-01-31 2024-08-08

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265062A (en) 1999-03-12 2000-09-26 Shin Etsu Chem Co Ltd Room temperature-curable organopolysiloxane composition
JP2007009072A (en) 2005-06-30 2007-01-18 Shin Etsu Chem Co Ltd Silicone composition for release film
JP2011236289A (en) 2010-05-07 2011-11-24 Shin-Etsu Chemical Co Ltd Silicone composition for release film
JP2016008228A (en) 2014-06-23 2016-01-18 信越化学工業株式会社 Method for producing resin adhesive organopolysiloxane composition for oil seal and automobile oil seal
WO2018037682A1 (en) 2016-08-26 2018-03-01 信越化学工業株式会社 Dealcoholization room-temperature curable organopolysiloxane composition, and article sealed by cured product of same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2538152B2 (en) * 1991-10-15 1996-09-25 信越化学工業株式会社 Organic silicon compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265062A (en) 1999-03-12 2000-09-26 Shin Etsu Chem Co Ltd Room temperature-curable organopolysiloxane composition
JP2007009072A (en) 2005-06-30 2007-01-18 Shin Etsu Chem Co Ltd Silicone composition for release film
JP2011236289A (en) 2010-05-07 2011-11-24 Shin-Etsu Chemical Co Ltd Silicone composition for release film
JP2016008228A (en) 2014-06-23 2016-01-18 信越化学工業株式会社 Method for producing resin adhesive organopolysiloxane composition for oil seal and automobile oil seal
WO2018037682A1 (en) 2016-08-26 2018-03-01 信越化学工業株式会社 Dealcoholization room-temperature curable organopolysiloxane composition, and article sealed by cured product of same

Also Published As

Publication number Publication date
JP2021066816A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
JP7574861B2 (en) Room temperature curable organopolysiloxane composition and article, hydrolyzable organosilane compound and method for producing same
JP6922917B2 (en) Dealcohol-type room temperature curable organopolysiloxane composition and articles sealed with the cured product of the composition
JP6828654B2 (en) Room temperature curable organopolysiloxane composition and its manufacturing method, and automobile long life coolant sealant
US7754799B2 (en) Magnesium alloy-bonding organopolysiloxane composition having improved chemical resistance
US12098279B2 (en) Method for manufacturing room-temperature-curable organopolysiloxane composition, room-temperature-curable organopolysiloxane composition, and article
JP6128065B2 (en) Process for producing organopolysiloxane composition for resin adhesive oil seal and automobile oil seal
JP7283347B2 (en) Room-temperature curing organopolysiloxane composition for long-life coolant seals, cured silicone rubber for cooling coolant oil seals, and cooling coolant oil seals
JP2015131938A (en) Method for producing low-foaming room temperature curing organo polysiloxane composition and automobile oil seal
US20230250287A1 (en) Two-component type room temperature fast-curing organopolysiloxane composition, cured product thereof and article
JP7626099B2 (en) Room temperature curable organopolysiloxane compositions and articles
JP7110722B2 (en) FLUORINE-CONTAINING ORGANOSILIC COMPOUND AND METHOD FOR PRODUCING THEREOF, ROOM-TEMPERATURE-CURABLE FLUORINE-CONTAINING RUBBER COMPOSITION AND ITS CURED MATERIAL AND ARTICLES
US11834556B2 (en) Organopolysiloxane composition, and organic silicon compound and production method therefor
JP6753354B2 (en) Room temperature curable organopolysiloxane composition for automobile long life coolant seal, and automobile long life coolant seal material
JP7552485B2 (en) Room temperature curable organopolysiloxane composition, cured product thereof, and article
JP7351264B2 (en) Room temperature curable organopolysiloxane compositions and articles
JP7509146B2 (en) Room temperature curable organopolysiloxane composition and long-life automotive coolant sealant
US8791170B2 (en) Photocurable organopolysiloxane composition
JP6988736B2 (en) Organopolysiloxane composition
JP6699743B2 (en) Organopolysiloxane composition for resin adhesive oil seal and oil seal for automobile
US20240352196A1 (en) Organopolysiloxane compound, room temperature-curable organopolysiloxane composition, and article
JP2025011419A (en) Room temperature curable organopolysiloxane composition for automobile long-life coolant seal, automobile long-life coolant sealant, and automobile long-life coolant sealant material
JP2025025932A (en) Room temperature curable organopolysiloxane composition, cured product thereof and article
JP2643725B2 (en) Curable composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230501

R150 Certificate of patent or registration of utility model

Ref document number: 7283347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150