JP7279702B2 - 芳香族ヒドロキシ化合物の製造方法 - Google Patents
芳香族ヒドロキシ化合物の製造方法 Download PDFInfo
- Publication number
- JP7279702B2 JP7279702B2 JP2020507882A JP2020507882A JP7279702B2 JP 7279702 B2 JP7279702 B2 JP 7279702B2 JP 2020507882 A JP2020507882 A JP 2020507882A JP 2020507882 A JP2020507882 A JP 2020507882A JP 7279702 B2 JP7279702 B2 JP 7279702B2
- Authority
- JP
- Japan
- Prior art keywords
- compound
- group
- aromatic hydroxy
- carbon atoms
- aromatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/60—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by oxidation reactions introducing directly hydroxy groups on a =CH-group belonging to a six-membered aromatic ring with the aid of other oxidants than molecular oxygen or their mixtures with molecular oxygen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C39/00—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
- C07C39/02—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
- C07C39/08—Dihydroxy benzenes; Alkylated derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
芳香族ヒドロキシ化合物を製造する方法として、フェノールと過酸化水素とを反応させることにより、ピロカテコール及びハイドロキノンを製造する方法が知られている(例えば、特許文献1)。芳香族ヒドロキシ化合物の収率を向上させるために、ケトン化合物存在下で芳香族ヒドロキシ化合物を製造する方法が知られている(例えば、特許文献2及び特許文献3)。また、TS-1触媒を用いて芳香族ヒドロキシ化合物を製造する方法(例えば、特許文献4)、TS-1触媒及びアルコール等の存在下で、芳香族ヒドロキシ化合物を製造する方法も知られている(例えば、特許文献5~7)。
前記文献ではピロカテコール及びハイドロキノンを製造する際にフェノールの酸化剤として過酸化水素が用いられているが、特許文献1~3では、生成物である異性体のピロカテコールとハイドロキノンとの質量比(ピロカテコール/ハイドロキノン)が0.9より大きい。
また、特許文献4では、得られる芳香族ヒドロキシ化合物の過酸化水素基準の収率が40~80%と高く維持されているが、生成物である異性体のピロカテコールとハイドロキノンとの質量比は0.6程度であり、該質量比の制御は溶剤の添加により行われている。実施例における溶剤の使用量は、反応原料である芳香族化合物に対し30重量%である。しかしながら通常、反応溶媒とは異なる種類の溶剤を用いると、後処理工程で蒸留により分離精製する際に異なる条件が必要になり、簡便な方法とは言えない。
さらにまた、特許文献5~7では、アルコール化合物やエーテル化合物等の溶剤を用いて、芳香族ヒドロキシ化合物の異性体の生成比の制御を行っているが、実施例における溶剤の使用量は、製造原料である芳香族化合物に対し約50重量%である。特許文献5~7では過酸化水素基準の収率が40~80%と高く維持されているものの、前記と同様に、溶剤量が多いため後処理工程が煩雑になり、簡便な方法とは言えない。
本発明は以下の事項に関する。
[1]芳香族ヒドロキシ化合物の製造方法であって、チタノシリケート存在下で、下記式(1)で示される芳香族化合物(A)と、炭化水素化合物(b1)、ケトン化合物(b2)、及びエステル化合物(b3)からなる群から選ばれる少なくとも1種の添加剤(B)と、過酸化物(C)とを混合して、該芳香族化合物(A)と過酸化物(C)とを反応させる工程を含む、下記式(2)で示される芳香族ヒドロキシ化合物の製造方法。
(式中、R1は、水素原子、又は炭素数1~8のアルキル基である。)
(式中、R1は、前記と同義である。)
[2]前記式(2)で示される芳香族ヒドロキシ化合物がハイドロキノンを含む、上記[1]に記載の芳香族ヒドロキシ化合物の製造方法。
[3]上記[2]に記載のハイドロキノンを用いた重合防止剤。
本発明の製造方法により得られた芳香族ヒドロキシ化合物は、種々の有機合成中間体又は製造原料として有用であり、還元剤、ゴム薬、染料、医薬、農薬、重合防止剤、酸化抑制剤などの分野に利用される。
本発明は、チタノシリケート存在下で、下記式(1)で示される芳香族化合物(A)と、炭化水素化合物(b1)、ケトン化合物(b2)、及びエステル化合物(b3)からなる群から選ばれる少なくとも1種の添加剤(B)と、過酸化物(C)とを混合して、該芳香族化合物(A)と過酸化物(C)とを反応させる工程を含む、下記式(2)で示される芳香族ヒドロキシ化合物の製造方法に関する。
(式中、R1は、水素原子、又は炭素数1~8のアルキル基である。)
(式中、R1は、前記と同義である。)
本発明の芳香族ヒドロキシ化合物の製造方法(以下、単に「本発明の製造方法」ともいう)は、チタノシリケートを触媒として前記芳香族化合物(A)と過酸化物(C)とを反応させて芳香族化合物(A)のヒドロキシ化反応を行う際に、上記所定の添加剤(B)を混合することにより、良好な収率を維持しながら、芳香族ヒドロキシ化合物の異性体の生成比を工業的に好適な方法により制御することができ、例えば、パラ位に置換基を有する芳香族ヒドロキシ化合物(以下「パラ異性体」ともいう)の生成比を向上させることができる。
本発明の製造方法において、チタノシリケートは前記芳香族化合物(A)と過酸化物(C)とを反応させる際の触媒として用いられる。
本発明で触媒として用いるチタノシリケートの組成は、(SiO2)x・(TiO2)(1-x)で示される構造のものを指す。この場合、x/(1-x)の値の範囲は、好ましくは5~1000、より好ましくは10~500である。
チタノシリケートは公知の方法により製造することができる。公知の方法としては、例えば、触媒調製ハンドブック(岩本正和監修、株式会社NTS、2011年4月25日発行、212ページ)やCatalysis Letters 38 (1996)251-254、特許第4917549号公報に記載されている。
具体的には、例えば、オルトチタン酸ブチル等のチタン源、オルトケイ酸エチル等のシリカ源、水酸化テトラプロピルアンモニウムなどの構造規定剤を水中で混合し、室温から加熱下で撹拌した後、原料によっては加水分解等により生じることがあるエタノール等を除去する。得られた母液を高温で長時間加熱し、遠心分離やろ過等により得られた固体を高温で長時間焼成し、必要に応じて酸処理等をすることにより、チタノシリケートを得ることができる。
なお、TS-1はMFI構造を有し、ケイ素のみからなるシリカライト-1のSiの一部をTiに置き換えたチタノシリケートであり、特公平1-42889号公報、特許第4917549号公報にその詳細が記載されている。また、TS-2はMEL構造を有するチタノシリケートを示す。
上記のうち、チタノシリケートとして好ましくはTS-1及びTS-2からなる群から選ばれる少なくとも1種、より好ましくはTS-1が挙げられる。本発明にこのようなチタノシリケートを用いることで、より高収率で芳香族ヒドロキシ化合物を製造することができ、例えば、パラ異性体の生成比を向上させることができる。
本発明で用いるチタノシリケートは、複数種のチタノシリケートの混合物であっても、単一種のチタノシリケートであってもよいが、触媒として繰り返し使用し、再現性よく芳香族ヒドロキシ化合物を製造する観点から単一種のチタノシリケートであることが好ましい。
炭素数1~8のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、1-メチルプロピル基、1-メチルブチル基、2-メチルヘキシル基、2-エチルヘキシル基、3-メチルヘキシル基、3-エチルヘキシル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。
R1は、水素原子又は炭素数1~3のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることがさらに好ましい。この芳香族化合物を使用することで、より高収率で芳香族ヒドロキシ化合物を製造することができる。また、得られる芳香族ヒドロキシ化合物の異性体の生成比を制御でき、例えば、パラ異性体の生成比を向上させることができる。
なお、R1が水素原子の化合物はフェノール、R1がメチル基の化合物はアニソールである。すなわち芳香族化合物(A)は、より好ましくはフェノール又はアニソールであり、さらに好ましくはフェノールである。
本発明で使用される添加剤(B)は、炭化水素化合物(b1)、ケトン化合物(b2)、及びエステル化合物(b3)からなる群から選ばれる少なくとも1種である。チタノシリケート存在下で前記芳香族化合物(A)と後述する過酸化物(C)とを混合して反応させる際に、さらに所定の添加剤(B)を混合することで、より高収率で芳香族ヒドロキシ化合物を製造することができる。また簡便な方法により、得られる芳香族ヒドロキシ化合物の異性体の生成比を制御できる。
本発明の効果をより有効に得る観点、特に、パラ異性体の生成比を向上させる観点から、添加剤(B)は、ケトン化合物(b2)及びエステル化合物(b3)からなる群から選ばれる少なくとも1種の化合物であることが好ましく、ケトン化合物(b2)であることがより好ましい。また添加剤(B)は、2種以上の化合物の混合物でもよいが、反応の再現性の向上や添加剤の分解等により生成する不純物の低減、及び反応後の添加剤の回収容易性の観点から、1種の化合物であることが好ましい。
添加剤(B)が、ケトン化合物(b2)及びエステル化合物(b3)からなる群から選ばれる少なくとも1種の化合物である場合の当該化合物の全炭素数は、4~8が好ましく、4~7がより好ましく、5~6がさらに好ましく、5がよりさらに好ましい。
炭化水素化合物(b1)は、好ましくは炭素数1~8の炭化水素化合物であり、当該炭素数は、より好ましくは5~8である。当該炭化水素化合物としては、炭素数1~8の、直鎖状、分岐鎖状、又は環状の脂肪族炭化水素化合物、及び、炭素数5~8の芳香族炭化水素化合物が挙げられる。これらの中でも、本発明の効果を得る観点からは炭素数5~8の脂肪族炭化水素化合物がより好ましい。
当該炭化水素化合物(b1)としては、具体的には、例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、ベンゼン、トルエン、及びキシレンからなる群から選ばれる少なくとも1種が挙げられ、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、シクロヘプタン、及びシクロオクタンからなる群から選ばれる少なくとも1種であることが好ましい。
R3における炭素数1~6のアルキル基は、直鎖状、分岐鎖状、又は環状のいずれでもよい。当該アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、1-メチルプロピル基、1-メチルブチル基、1-メチルペンチル基、1-エチルプロピル基、2-メチルブチル基、2-メチルプロピル基、2-エチルブチル基、3-メチルブチル基、3-メチルペンチル基、4-メチルペンチル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
炭素数4~6のポリエン基としては、2以上のエチレン結合(-CH=CH-)を有する炭化水素基を示し、具体的には、1,3-ブタジエニル基、1,3-ペンタジエニル基、1,3,5-ヘキサトリエニル基等が挙げられる。
好ましいケトン化合物(b2)としては、メチルエチルケトン、2-ペンタノン、3-ペンタノン、3-メチル-2-ブタノン、シクロペンタノン、2-メチル-3-ペンタノン、メチルイソブチルケトン、2-ヘキサノン、3-ヘキサノン、及びシクロヘキサノンからなる群から選ばれる少なくとも1種が挙げられ、より好ましくはメチルエチルケトン、2-ペンタノン、3-ペンタノン、3-メチル-2-ブタノン、2-メチル-3-ペンタノン、2-ヘキサノン、及び3-ヘキサノンからなる群から選ばれる少なくとも1種が挙げられ、さらに好ましくは2-ペンタノン、3-ペンタノン、及び2-ヘキサノンからなる群から選ばれる少なくとも1種が挙げられ、よりさらに好ましくは2-ペンタノン及び3-ペンタノンからなる群から選ばれる少なくとも1種が挙げられる。
好ましいエステル化合物(b3)としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、酪酸プロピル、及び酪酸ブチルからなる群から選ばれる少なくとも1種が挙げられ、より好ましくは、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、及び酪酸メチルからなる群から選ばれる少なくとも1種が挙げられ、さらに好ましくは、酢酸エチル、プロピオン酸エチルが挙げられる。
添加剤(B)の好ましい範囲は、炭化水素化合物(b1)が炭素数1~8の炭化水素化合物であり、ケトン化合物(b2)が前記式(3)で示される化合物であり、エステル化合物(b3)が前記式(4)で示される化合物である。
添加剤(B)のより好ましい範囲は、炭化水素化合物(b1)の炭素数が5~8であり、ケトン化合物(b2)における前記式(3)中のR2とR3の炭素数の和が3~6であり、エステル化合物(b3)における前記式(4)中のR4が炭素数1~3のアルキル基又は炭素数2~3のアルケニル基であり、R5が炭素数1~4のアルキル基又は炭素数2~4のアルケニル基である。
また、添加剤(B)のさらに好ましい範囲は、炭化水素化合物(b1)が、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、ベンゼン、トルエン及びキシレンからなる群から選ばれる少なくとも1種であり、ケトン化合物(b2)が、メチルエチルケトン、2-ペンタノン、3-ペンタノン、3-メチル-2-ブタノン、シクロペンタノン、2-メチル-3-ペンタノン、メチルイソブチルケトン、2-ヘキサノン、3-ヘキサノン、及びシクロヘキサノンからなる群から選ばれる少なくとも1種であり、エステル化合物(b3)が、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、酪酸プロピル、及び酪酸ブチルからなる群から選ばれる少なくとも1種である。
特にハイドロキノンの生成量を多くする観点から、添加剤(B)の使用量は、前記芳香族化合物(A)に対し、好ましくは0.1~5質量%、より好ましくは0.5~5質量%、さらにより好ましくは0.5~4質量%、さらにより好ましくは1~4質量%、さらにより好ましくは2~4質量%であり、使用する添加剤の使用量を低減する観点から、さらにより好ましくは1~3質量%である。
また、添加剤(B)の使用量を上記範囲とすることで、簡便な方法により高収率で芳香族ヒドロキシ化合物を製造することができる。また、得られる芳香族ヒドロキシ化合物の異性体の生成比を制御でき、例えば、パラ異性体の生成比を向上させることができる。この場合、芳香族化合物(A)としてフェノールを用いると、ピロカテコールに対するハイドロキノンの生成比が向上する。さらに、反応の再現性を向上させることができ、添加剤の分解等により生成する不純物を低減することもできる。
本発明で使用される過酸化物(C)は酸化剤として作用し、前記芳香族化合物(A)との反応により芳香族化合物(A)をヒドロキシ化し、前記式(2)で示される芳香族ヒドロキシ化合物を製造するために用いられる。
当該過酸化物としては、無機過酸化物及び有機過酸化物のいずれも用いることができる。これらの中でも無機過酸化物が好ましい。
無機過酸化物としては、例えば、過酸化水素;過硫酸、過硫酸水素ナトリウム、過硫酸水素カリウム等の過硫酸化合物等が挙げられる。有機過酸化物としては、例えば、t-ブチルハイドロペルオキシド、メタクロロ過安息香酸、過ギ酸、過酢酸、過プロピオン酸等が挙げられる。上記の中でも、好ましくは、過酸化水素、過硫酸、過硫酸水素ナトリウム、及び過硫酸水素カリウムからなる群から選ばれる少なくとも1種であり、より好ましくは過酸化水素である。
前記過酸化物は単独で使用しても、2種類以上を混合して使用してもよい。
また前記過酸化物は、そのまま使用してもよく、水、アルコール等の有機溶媒、又はこれらの混合溶媒に溶解又は懸濁させて使用してもよい。過酸化物を溶媒に溶解又は懸濁させて使用する場合、過酸化物の濃度には特に制限はなく、使用する過酸化物の種類に応じて適宜調整できる。例えば過酸化物(C)として過酸化水素を用いる場合、水溶液(過酸化水素水)として用いることが好ましく、その水溶液濃度には特に制限はないが、好ましくは10~90質量%水溶液、より好ましくは30~80質量%水溶液であり、さらに好ましくは40~70質量%水溶液である。
前記芳香族化合物(A)1モルに対する過酸化物(C)の使用量が1モル以下であれば、過剰に使用した過酸化物が分解して酸素が発生し、該酸素と、製造に用いる反応溶媒や芳香族化合物(A)の蒸気とで引火性、爆発性を有する混合気体を形成するなどして製造時の安全性が損なわれるのを回避できる。また、芳香族化合物(A)1モルに対する過酸化物(C)の使用量が0.01モル以上であれば、芳香族化合物(A)との反応が効率よく進行し、未反応の芳香族化合物(A)が多く残存して精製が困難になり、また分解や副反応が起こりやすくなるなどの不具合を回避できる。
前記式(2)で示される芳香族ヒドロキシ化合物の具体的な構造は、下記式(5)、(6)、(7)で示される化合物であり、順に、オルト位、パラ位、メタ位に置換基を有する芳香族ヒドロキシ化合物である。下記式(5)、(6)、(7)において、R1が水素原子の化合物は、順に、カテコール又はピロカテコール、ハイドロキノン又はヒドロキノン、レゾルシノールと呼ばれる。
上記質量比[式(5)/式(6)]は、具体的には実施例に記載の方法で求めることができる。
本発明の製造方法は、チタノシリケート存在下で、芳香族化合物(A)と、添加剤(B)と、過酸化物(C)とを混合して、該芳香族化合物(A)と過酸化物(C)とを反応させる工程(以下「反応工程」ともいう)を含む。当該反応工程において芳香族化合物(A)がヒドロキシ化されて前記式(2)で示される芳香族ヒドロキシ化合物が生成する。
当該反応工程においては、無溶媒で反応を行ってもよく、反応溶媒を使用してもよい。反応溶媒を使用する場合、その種類としては、例えば、水;ギ酸;酢酸、プロピオン酸、トリフルオロ酢酸等の脂肪族カルボン酸類;メタンスルホン酸、トリフルオロメタンスルホン酸等の有機スルホン酸類;メタノール、エタノール、イソプロピルアルコール、t-ブチルアルコール、エチレングリコール、トリエチレングリコール等のアルコール類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;N,N’-ジメチルイミダゾリジノン等の尿素類;ジエチルエーテル、ジイソプロピルエーテル、1,2-メチレンジオキシベンゼン等の鎖状エーテル類;テトラヒドロフラン、ジオキサン等の環状エーテル類;クロロベンゼン、1,2-ジクロロベンゼン、1,3-ジクロロベンゼン、1,4-ジクロロベンゼン等のハロゲン化芳香族炭化水素類;ニトロベンゼン等のニトロ化芳香族炭化水素類;塩化メチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン化脂肪族炭化水素類;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル類;ジメチルスルホキシド等のスルホキシド類;スルホラン等のスルホン類等が挙げられ、好ましくは水、ギ酸、脂肪族カルボン酸類、有機スルホン酸類、アミド類、鎖状エーテル類、ハロゲン化芳香族炭化水素類、ニトロ化芳香族炭化水素類、ハロゲン化脂肪族炭化水素類、ニトリル類、スルホキシド類、スルホン類等が挙げられる。なお、これらの反応溶媒は、単独で又は2種以上を混合して使用してもよい。
上記の中でも、反応溶媒としては水を使用することが好ましい。なお、過酸化物(C)として過酸化水素水を用いる場合は、該過酸化水素水に含まれる水を反応溶媒としてもよい。
反応溶媒として水を使用する場合、反応溶媒中に含まれる水の含有量は、全反応溶媒中、好ましくは90~100質量%、より好ましくは95~100質量%、さらに好ましくは98.5~100質量%、よりさらに好ましくは99~100質量%、よりさらに好ましくは99.5~100質量%、よりさらに好ましくは100質量%である。
特に反応溶媒として水を使用する場合、その使用量は、芳香族化合物(A)に対して、好ましくは0.01~100質量倍、より好ましくは、0.05~10質量倍、さらに好ましくは0.1~1質量倍、よりさらに好ましくは0.1~0.8質量倍であり、0.2~0.5質量倍である。
特に反応溶媒として水を使用する場合、その使用量は、芳香族化合物(A)に対して、好ましくは1~10000質量倍、より好ましくは、5~1000質量倍、さらに好ましくは5~100質量倍、よりさらに好ましくは10~80質量倍である。
反応溶媒を使用する場合は、予め反応器に反応溶媒を仕込んでもよく、芳香族化合物(A)、添加剤(B)、及び過酸化物(C)からなる群から選ばれる少なくとも1種の成分と混合して使用してもよい。
当該反応工程における反応温度は、反応効率、及び(A)~(C)成分の熱分解抑制の観点から、好ましくは30~130℃、より好ましくは40~120℃、さらにこのましくは40~100℃、よりさらに好ましくは50~100℃、よりさらに好ましくは60~100℃の範囲である。
当該反応工程における反応圧力は特に制限されない。
反応時間は、反応温度や反応圧力、反応スケール、使用する装置等により適宜調節されるが、通常0.1~10時間、好ましくは0.5~5時間である。なお本発明において当該反応時間の始点は、チタノシリケート存在下での(A)成分と(C)成分との混合開始時である。
上記範囲以外の反応時間、反応温度及び反応圧力でも反応は進行するが、良好な収率を維持しながら、例えば、芳香族ヒドロキシ化合物のパラ異性体の生成比を向上させ、さらに後述する精製処理等を効率よく実施するためには、反応時間、反応温度及び反応圧力は上記範囲であることが好ましい。
当該反応工程における反応形式にも特に制限はなく、バッチ式又はセミバッチ式で反応を行ってもよいし、連続式で反応を行ってもよい。連続式で反応を行う場合は、例えば、反応器として懸濁式の均一混合槽、管型反応槽、固定床流通式の反応槽等を用いることができ、複数の反応器を直列及び/又は並列に接続してもよい。複数の反応器を使用する場合は、それらに前記過酸化物(C)を分割して添加してもよい。
触媒であるチタノシリケートの充填方式としては、固定床、流動床、懸濁床、棚段固定床等の方式が挙げられる。本発明においては前記反応を懸濁床で行うことが好ましい。
本発明の製造方法は、前記反応を懸濁床で行い、かつ、得られた反応混合物からチタノシリケートを分離する触媒分離工程を含むことがより好ましい。
チタノシリケートの分離には、沈降分離、遠心ろ過器、加圧ろ過器、フィルタープレス、リーフフィルター、ロータリーフィルター、ベルトフィルターなどが用いられる。ろ過方式としては、デットエンドろ過以外に、クロスフローろ過を用いることもできる。
乾燥処理には、箱型乾燥機、バンド乾燥機、回転乾燥機、噴霧乾燥器、気流乾燥機などが用いられる。乾燥処理は、窒素等の不活性ガス雰囲気下、空気雰囲気下、不活性ガスで希釈した空気雰囲気下、水蒸気雰囲気下、不活性ガスで希釈した水蒸気雰囲気下等で行うことができる。
乾燥処理温度は好ましくは50~200℃、より好ましくは50~150℃、さらに好ましくは70~150℃である。この温度であれば、チタノシリケートの触媒性能を著しく損なうことなく、その表面に付着した溶媒等を減少させることができる。また、異なる複数の温度域を組み合わせて乾燥処理を行うこともできる。
乾燥処理時間は、乾燥処理温度や使用する装置に応じて適宜調整されるが、通常0.5~24時間、好ましくは1~20時間、より好ましくは1.5~15時間である。また、この乾燥処理時間や乾燥温度等に応じて、乾燥時の圧力も適宜調整される。
焼成処理温度は好ましくは200℃超900℃以下、より好ましくは250~800℃、さらに好ましくは300~700℃である。
前記焼成温度における焼成処理時間は、焼成処理温度や使用する装置に応じて適宜調整されるが、通常0.5~24時間、好ましくは1~20時間、より好ましくは1.5~15時間である。
前記触媒分離工程で分離したチタノシリケートを好ましくは上記条件で焼成処理することにより、チタノシリケート表面の溶媒や有機物を除去して触媒性能を再活性化させ、前記反応に再使用することができる。
上記蒸留及び再使用の具体的方法については以下の精製処理において説明する。
前記触媒分離工程においてチタノシリケートを分離した後の反応混合物に対し、精製処理を行ってもよい。精製処理は、チタノシリケートを分離した後の反応混合物(以下「分離液」ともいう)から未反応原料である芳香族化合物(A)、添加剤(B)、必要に応じ反応溶媒及び副生成物等を除去して、前記式(2)で示される芳香族ヒドロキシ化合物を高純度で得るために行われる。
精製処理方法としては、例えば、油水分離、抽出、蒸留、晶析、分離膜による精製及びこれらの組み合わせが挙げられる。精製処理手順は特に限定されず、分離液中に含まれる芳香族ヒドロキシ化合物の含有量、異性体の生成比、及び芳香族ヒドロキシ化合物の用途等に応じて適宜選択される。例えば以下の方法により、前記式(2)で示される芳香族ヒドロキシ化合物を含む分離液の精製処理が可能である。
触媒分離工程後の分離液から、水等の反応溶媒、芳香族化合物(A)、及び前記式(2)で示される芳香族ヒドロキシ化合物を蒸留で分離した後(一段目の蒸留という)、前記式(5)及び式(6)で示される化合物を分離するために再度蒸留精製(二段目の蒸留という)を行ってもよい。一段目及び二段目の蒸留は複数回行ってもよい。
また、触媒分離工程後の分離液から蒸留によって分離された、未反応の芳香族化合物(A)、添加剤(B)、及び水等の反応溶媒は、その一部又は全部を前記反応に再使用してもよい。なお、前記反応溶媒として水を使用した場合、添加剤(B)は、水と共沸することが一般に知られているので、用いる添加剤(B)の種類によっては、水と未反応の芳香族化合物(A)の分離を促進し、芳香族化合物(A)が蒸留後に廃棄される量を低減することもできる。
蒸留温度は分離液に含まれる成分の種類及び量等によって適宜選択することができるが、好ましくは40~300℃、より好ましくは50~250℃、さらに好ましくは60~230℃である。この範囲とすることで、効率よく芳香族ヒドロキシ化合物とその他の成分とを分離することができる。
蒸留圧力は、蒸留温度や、分離液に含まれる成分の種類及び量等によって適宜選択することができるが、例えば、0.01~30kPaA、好ましくは0.05~20kPaAである。この範囲とすることで、効率よく芳香族ヒドロキシ化合物とその他の成分とを分離することができる。
芳香族ヒドロキシ化合物の結晶は、誘導体の溶解度や結晶構造等に応じて公知の方法により得ることができる。例えば、昇華により再結晶する方法、芳香族ヒドロキシ化合物の溶液を減圧濃縮することにより再結晶する方法、芳香族ヒドロキシ化合物の溶液に対し溶解度の低い溶媒を滴下することにより再結晶する方法、溶液中室温下で長時間放置することにより再結晶する方法、芳香族ヒドロキシ化合物の飽和溶液に対し種晶を添加することにより再結晶する方法等が知られている。芳香族ヒドロキシ化合物は種々の溶媒に可溶であることから、用いる溶媒を適宜調節しながら、芳香族ヒドロキシ化合物を結晶化させることができる。
再結晶に使用される溶媒は、芳香族ヒドロキシ化合物の溶解度や結晶構造等に応じて適宜選択することができ、単一の溶媒を用いてもよく、複数種の溶媒を混合して使用してもよい。上記の中でも、芳香族炭化水素類や脂肪族炭化水素類が好ましい。
前述したように、本発明において前記式(1)で示される芳香族化合物(A)としてフェノールを用いると、前記式(5)にてR1が水素原子である化合物であるピロカテコール及び前記式(6)にてR1が水素原子である化合物であるハイドロキノンが主生成物として得られるが、他の化合物も生成する。
精製処理後に得られる芳香族ヒドロキシ化合物中の当該他の化合物の含有量は、精製方法や精製条件により異なる。
前記精製処理後に得られるハイドロキノンは、例えば下記組成を有する。なお、下記において「0%」とは、検出限界以下であることを示す。また下記%は、ガスクロマトグラフィーや高速液体クロマトグラフィー等を用いて精製処理後の各化合物の含有量を定量した値、又はガスクロマトグラフィーの面積%値である。
ハイドロキノン:97.5%~99.9%、
ピロカテコール:0%~0.3%
p-ベンゾキノン:0.05%~1.0%
ピロガロール:0.01%~0.1%
ピロカテコール:97.5%~99.9%
ハイドロキノン:0%~0.3%
p-ベンゾキノン:0.05%~1.0%
ピロガロール:0.01%~0.1%
本発明の製造方法により得られる芳香族ヒドロキシ化合物は、種々の有機合成中間体又は製造原料として有用であり、還元剤、ゴム薬、染料、医薬、農薬、重合防止剤、酸化抑制剤などの分野に利用される。
例えば、本発明の製造方法により得られる前記式(2)で示される芳香族ヒドロキシ化合物がハイドロキノンを含む場合、当該ハイドロキノンは、好ましくは重合防止剤として使用される。
さらに本発明は、本発明の製造方法により得られたハイドロキノンを用いた重合防止剤も提供する。
本実施例において、反応転化率、選択率、収率及びピロカテコール/ハイドロキノン比(質量比)は下記方法により求めた。
各例において得られた反応混合物中の残存過酸化水素はヨウ化物イオンの酸化とチオ硫酸ナトリウムによる電位差滴定で定量した。反応に使用した過酸化水素を基準として、反応転化率、選択率、及び収率を下記式から算出した。
反応転化率(%)=転化した過酸化水素モル数/導入した過酸化水素モル数
選択率(%)=生成したピロカテコール(CL)とハイドロキノン(HQ)のモル数の和/転化した過酸化水素モル数
収率(%)=生成したCLとHQのモル数の和/導入した過酸化水素モル数
各例において得られた反応混合物中のハイドロキノン及びピロカテコールの量を、高速液体クロマトグラフィー(HPLC)を用いて下記測定条件にて定量し、ここからピロカテコール/ハイドロキノン比(質量比)を算出した。
分析用サンプルの調製は次のようにして行った。測定する試料0.2gに、水/アセトニトリル=75/25(体積比)の水溶液(以下「希釈液」と称する)40g、内部標準物質として4-メトキシフェノールを0.2g入れた。この溶液を0.2g取り出し、更に希釈液40gを足し、得られた溶液を分析に使用した。
<液体クロマトグラフィー測定条件>
装置:株式会社島津製作所製HPLC装置
カラム:GLサイエンス株式会社製「Inertsil ODS-35μm×4.6mm×250mm」
カラムオーブン温度:40℃
溶離液:水/アセトニトリル/ギ酸=75/25/0.1(体積比)
流速:1.0ml/分
検出器:UV検出器
測定波長:280nm
サンプル注入量:20μl
ジムロート冷却器を備えた200mlのガラス製セパラブルフラスコに、芳香族化合物(A)である124.0gのフェノール(試薬特級)、49.6gの超純水、2.5gのチタノシリケート(TS-1)、添加剤(B)である1.2gの2-ヘキサノン(試薬)を加え、窒素雰囲気下において65℃のオイルバス中で攪拌を行い混合した。そこへ、過酸化物(C)である、12mlの60質量%濃度の過酸化水素水をシリンジで1時間掛けて加え、混合した後、1時間加熱攪拌を継続した。反応終了後、室温まで冷却し、チタノシリケートを桐山ロートでろ別することにより分離し、反応混合物を得た。反応混合物中の残存過酸化水素をヨードメトリーで定量し、使用した過酸化水素基準での反応転化率、選択率、及び収率を算出した。また反応混合物中のハイドロキノン及びピロカテコールの量を液体クロマトグラフィーによって定量した。結果を表1に示す。
2-ヘキサノンの代わりに、添加剤(B)として1.2gの酢酸エチルを使用した以外は実施例1と同様にして反応混合物を調製し、分析を行った。結果を表1に示す。
2-ヘキサノンの代わりに、添加剤(B)として1.2gのn-ヘプタンを使用した以外は実施例1と同様にして反応混合物を調製し、分析を行った。結果を表1に示す。
2-ヘキサノンの代わりに、添加剤(B)としてプロピオン酸エチルを用い、フェノールに対して、それぞれ1質量%、5質量%となるようにプロピオン酸エチルを使用した以外は実施例1と同様にして反応混合物を調製し、分析を行った。結果を表1に示す。
2-ヘキサノンの代わりに、添加剤(B)として3-ペンタノン(ジエチルケトン)を用い、フェノールに対して、それぞれ0.1質量%、0.5質量%、1質量%、3質量%となるように3-ペンタノンを使用した以外は実施例1と同様にして反応混合物を調製し、分析を行った。結果を表1に示す。
2-ヘキサノンの代わりに、添加剤(B)として2-ペンタノンを用い、フェノールに対して、それぞれ0.1質量%、0.5質量%、1質量%、3質量%、5質量%となるように2-ペンタノンを使用した以外は実施例1と同様にして反応混合物を調製し、分析を行った。結果を表1に示す。
2-ヘキサノンを使用しなかったこと以外は実施例1と同様にして反応混合物を調製し、分析を行った。結果を表1に示す。
2-ヘキサノンの代わりに、1.2gのアセトンを使用した以外は実施例1と同様にして反応混合物を調製し、分析を行った。結果を表1に示す。
2-ヘキサノンの代わりに、1.2gのt-ブチルアルコールを使用した以外は実施例1と同様にして反応混合物を調製し、分析を行った。結果を表1に示す。
<チタノシリケートの乾燥処理、焼成処理及び再使用>
実施例1でろ別したチタノシリケートを減圧下、80℃で2時間乾燥処理し、含液率を10%以下とした。その後、空気雰囲気下、500℃で1.5時間焼成処理し、当該チタノシリケートを反応に使用した以外は実施例1と同様にして反応混合物を調製し、分析を行った。その結果、芳香族ヒドロキシ化合物の収率は85.2%、ピロカテコール/ハイドロキノン比は0.59となった。結果を表2に示す。
実施例15において、焼成処理温度を300℃とした以外は実施例15と同様にして反応混合物を調製し、分析を行った。結果を表2に示す。
実施例15において、焼成処理温度を700℃とした以外は実施例15と同様にして反応混合物を調製し、分析を行った。結果を表2に示す。
実施例1でチタノシリケートをろ別した後の反応混合物からフェノール、添加剤、及び水を単蒸留で除去し、得られた粗生成物(ピロカテコール31%、ハイドロキノン63%含有)を蒸留塔で精製した。蒸留装置は0.5Lのフラスコ付き蒸留塔(スルーザーラボパッキンEX Φ20mm×高さ250mm)を用い、前記粗生成物270gを仕込んだ。還流比3(30~80torr、ボトム200~220℃)で精留し、初留でピロカテコールを20g(純度>99%)取得し、その後中間留分(ピロカテコールとハイドロキノンの混合留分)を60g取得し、ハイドロキノン留分(純度86%、ピロカテコール13%含有)を29g取得した。残りは残留物として回収した。ハイドロキノン留分はピロカテコールを更に精製できれば純度99%以上での取得が見込める。蒸留推算ソフト(Aspen Plus)を用いた推算では、前記ハイドロキノン留分(純度86%、ピロカテコール13%含有)を理論段数20段、還流比2(30torr、ボトム185℃)で精留した場合、塔頂よりピロカテコール留分(純度93%)、塔底よりハイドロキノン留分(純度>99%)を取得できることを確認した。
ジムロート冷却器を備えた200mlのガラス製セパラブルフラスコに、芳香族化合物(A)である124.0gのフェノール(試薬特級)、49.6gの超純水、6.2gのチタノシリケート(TS-1)、添加剤(B)である3.7gの3-ペンタノン(試薬)を加え、窒素雰囲気下において65℃のオイルバス中で攪拌を行い混合した。そこへ、過酸化物(C)である、24mlの60質量%濃度の過酸化水素水をシリンジで1.5時間掛けて加え、混合した後、1時間加熱攪拌を継続した。その後、実施例1と同様にして反応混合物を調製し、分析を行った結果、過酸化水素基準の反応転化率は99.6%、過酸化水素基準の反応収率は81.7%、ピロカテコール/ハイドロキノンの比は0.55であった。
本発明の製造方法により得られた芳香族ヒドロキシ化合物は、種々の有機合成中間体又は製造原料として有用であり、還元剤、ゴム薬、染料、医薬、農薬、重合防止剤、酸化抑制剤などの分野に利用される。
Claims (22)
- 芳香族ヒドロキシ化合物の製造方法であって、
チタノシリケート存在下で、下記式(1)で示される芳香族化合物(A)と、炭化水素化合物(b1)、ケトン化合物(b2)、及びエステル化合物(b3)からなる群から選ばれる少なくとも1種の添加剤(B)と、過酸化物(C)とを混合して、該芳香族化合物(A)と過酸化物(C)とを反応させる工程を含む、下記式(2)で示される芳香族ヒドロキシ化合物の製造方法であって、
前記炭化水素化合物(b1)が炭素数1~8の炭化水素化合物であり、前記ケトン化合物(b2)が下記式(3)で示される化合物であり、前記エステル化合物(b3)が下記式(4)で示される化合物であり、
該式(2)で示される芳香族ヒドロキシ化合物が、下記式(5)で示される化合物及び下記式(6)で示される化合物を含み、該式(6)で示される化合物に対する該式(5)で示される化合物の質量比[式(5)/式(6)]が0.40~0.90である、
芳香族ヒドロキシ化合物の製造方法。
(式中、R1は、水素原子、又は炭素数1~8のアルキル基である。)
(式中、R1は、前記と同義である。)
(式中のR 2 は炭素数2~6のアルキル基、炭素数2~6のアルケニル基、炭素数4~6のポリエン基、又は炭素数5~10の芳香族基を示す。R 3 は炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数4~6のポリエン基、又は炭素数5~10の芳香族基を示す。R 2 とR 3 は結合し環を形成していてもよい。)
(式中のR 4 及びR 5 はそれぞれ独立に、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数4~6のポリエン基、又は炭素数5~10の芳香族基を示す。R 4 とR 5 は結合し環を形成していてもよい。)
(式中、R 1 は、前記と同義である。)
(式中、R 1 は、前記と同義である。) - 前記炭化水素化合物(b1)の炭素数が5~8であり、前記ケトン化合物(b2)における前記式(3)中のR2とR3の炭素数の和が3~6であり、前記エステル化合物(b3)における前記式(4)中のR4が炭素数1~3のアルキル基又は炭素数2~3のアルケニル基であり、R5が炭素数1~4のアルキル基又は炭素数2~4のアルケニル基である、請求項1に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記炭化水素化合物(b1)が、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、ベンゼン、トルエン及びキシレンからなる群から選ばれる少なくとも1種であり、
前記ケトン化合物(b2)が、メチルエチルケトン、2-ペンタノン、3-ペンタノン、3-メチル-2-ブタノン、シクロペンタノン、2-メチル-3-ペンタノン、メチルイソブチルケトン、2-ヘキサノン、3-ヘキサノン、及びシクロヘキサノンからなる群から選ばれる少なくとも1種であり、
前記エステル化合物(b3)が、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、酪酸プロピル、及び酪酸ブチルからなる群から選ばれる少なくとも1種である、請求項1又は2に記載の芳香族ヒドロキシ化合物の製造方法。 - 前記添加剤(B)が、前記ケトン化合物(b2)及び前記エステル化合物(b3)からなる群から選ばれる少なくとも1種の化合物である、請求項1~3のいずれか一項に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記ケトン化合物(b2)及び前記エステル化合物(b3)からなる群から選ばれる化合物の全炭素数が、4~7である、請求項4に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記添加剤(B)の使用量が、前記芳香族化合物(A)に対して0.1~30質量%である、請求項1~5のいずれか一項に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記芳香族化合物(A)が、フェノール又はアニソールである、請求項1~6のいずれか一項に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記チタノシリケートが、TS-1及びTS-2からなる群から選ばれる少なくとも1種である、請求項1~7のいずれか一項に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記チタノシリケートの使用量が、前記芳香族化合物(A)に対して0.1~30質量%である、請求項1~8のいずれか一項に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記過酸化物(C)が、過酸化水素、過硫酸、過硫酸水素ナトリウム、及び過硫酸水素カリウムからなる群から選ばれる少なくとも1種である、請求項1~9のいずれか一項に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記式(6)で示される化合物に対する前記式(5)で示される化合物の質量比[式(5)/式(6)]が0.40~0.55である、請求項1~10のいずれか一項に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記反応において、反応溶媒を使用する、請求項1~11のいずれか一項に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記反応溶媒の使用量が、添加剤(B)に対して、1~10000質量倍である、請求項12に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記反応溶媒として水を使用する、請求項12又は13に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記反応溶媒中に含まれる水の含有量が、全反応溶媒中、90~100質量%である、請求項14に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記反応を懸濁床で行い、かつ、得られた反応混合物からチタノシリケートを分離する触媒分離工程を含む、請求項1~15のいずれか一項に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記触媒分離工程で分離したチタノシリケートを乾燥処理し、前記反応に再使用する、請求項16に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記チタノシリケートの乾燥処理後、さらに焼成処理し、前記反応に再使用する、請求項17に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記乾燥処理を50~200℃、前記焼成処理を200℃超900℃以下で行う、請求項18に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記触媒分離工程でチタノシリケートを分離した後の反応混合物から、未反応の前記芳香族化合物(A)、前記添加剤(B)、及び水を蒸留で分離し、その一部又は全部を前記反応に再使用する、請求項16~19のいずれか一項に記載の芳香族ヒドロキシ化合物の製造方法。
- 前記式(2)で示される芳香族ヒドロキシ化合物がハイドロキノンを含む、請求項1~20のいずれか一項に記載の芳香族ヒドロキシ化合物の製造方法。
- 請求項21に記載の製造方法により得られた芳香族ヒドロキシ化合物を用いた重合防止剤の製造方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018056863 | 2018-03-23 | ||
JP2018056863 | 2018-03-23 | ||
PCT/JP2019/011798 WO2019182035A1 (ja) | 2018-03-23 | 2019-03-20 | 芳香族ヒドロキシ化合物の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019182035A1 JPWO2019182035A1 (ja) | 2021-03-25 |
JP7279702B2 true JP7279702B2 (ja) | 2023-05-23 |
Family
ID=67986208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020507882A Active JP7279702B2 (ja) | 2018-03-23 | 2019-03-20 | 芳香族ヒドロキシ化合物の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7279702B2 (ja) |
WO (1) | WO2019182035A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7581666B2 (ja) | 2020-06-23 | 2024-11-13 | Ube株式会社 | ヒドロキノンのフレーク群 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001158756A (ja) | 1999-12-03 | 2001-06-12 | Mitsui Chemicals Inc | 芳香族ジヒドロキシ化合物の製造方法 |
JP2001206714A (ja) | 1999-12-24 | 2001-07-31 | China Petro Chem Corp | チタンシリカライトモレキュラーシーブおよびその製造方法 |
JP2002187861A (ja) | 2000-12-20 | 2002-07-05 | Mitsui Chemicals Inc | 芳香族ジヒドロキシ化合物の製造方法 |
KR100394582B1 (ko) | 1995-11-03 | 2003-11-20 | 삼성종합화학주식회사 | 카테콜과히드로퀴논의제조방법 |
WO2015041137A1 (ja) | 2013-09-20 | 2015-03-26 | 三井化学株式会社 | 芳香族ジヒドロキシ化合物の製造方法 |
JP2015511945A (ja) | 2012-02-17 | 2015-04-23 | ローディア オペレーションズ | 芳香族化合物のヒドロキシル化のための方法、ヒドロキシル化触媒および触媒を調製するための方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001204714A (ja) * | 2000-01-28 | 2001-07-31 | Nissan Motor Co Ltd | メンタルストレス判定装置 |
KR20110101691A (ko) * | 2010-03-09 | 2011-09-16 | 한국화학연구원 | 페놀 및 과산화수소로부터 카테콜과 히드로퀴논의 개선된 제조방법 |
-
2019
- 2019-03-20 JP JP2020507882A patent/JP7279702B2/ja active Active
- 2019-03-20 WO PCT/JP2019/011798 patent/WO2019182035A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100394582B1 (ko) | 1995-11-03 | 2003-11-20 | 삼성종합화학주식회사 | 카테콜과히드로퀴논의제조방법 |
JP2001158756A (ja) | 1999-12-03 | 2001-06-12 | Mitsui Chemicals Inc | 芳香族ジヒドロキシ化合物の製造方法 |
JP2001206714A (ja) | 1999-12-24 | 2001-07-31 | China Petro Chem Corp | チタンシリカライトモレキュラーシーブおよびその製造方法 |
JP2002187861A (ja) | 2000-12-20 | 2002-07-05 | Mitsui Chemicals Inc | 芳香族ジヒドロキシ化合物の製造方法 |
JP2015511945A (ja) | 2012-02-17 | 2015-04-23 | ローディア オペレーションズ | 芳香族化合物のヒドロキシル化のための方法、ヒドロキシル化触媒および触媒を調製するための方法 |
WO2015041137A1 (ja) | 2013-09-20 | 2015-03-26 | 三井化学株式会社 | 芳香族ジヒドロキシ化合物の製造方法 |
Non-Patent Citations (1)
Title |
---|
THANGARAJ, A. et al.,Catalytic Properties of Crystalline Titanium Silicalites. II. Hydroxylation of Phenol with Hydrogen Peroxide over TS-1 Zeolites,Journal of Catalysis,1991年,Vol. 131, No. 1,pp. 294-297 |
Also Published As
Publication number | Publication date |
---|---|
WO2019182035A1 (ja) | 2019-09-26 |
JPWO2019182035A1 (ja) | 2021-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6789989B6 (ja) | 3−メチルシクロペンタデカン−1,5−ジオンを製造するための方法 | |
JP5734538B1 (ja) | 芳香族ジヒドロキシ化合物の製造方法 | |
JP6183369B2 (ja) | 不飽和酸及び/又は不飽和酸エステルの製造方法 | |
CN101535248B (zh) | 将乙苯液相氧化成乙苯氢过氧化物的方法 | |
JP7279702B2 (ja) | 芳香族ヒドロキシ化合物の製造方法 | |
RU2185368C2 (ru) | Способ окисления ароматических соединений до гидроксиароматических соединений | |
RU2340591C2 (ru) | Объединенный способ получения фенола из бензола с рециклом побочных продуктов | |
JP5734182B2 (ja) | ビニルエーテルの製造方法 | |
JP5585445B2 (ja) | ラウロラクタムの製造方法 | |
CN106946841A (zh) | 高纯度酚类化合物的制造方法 | |
EA035035B1 (ru) | Способ получения 2,6-диметилбензохинона | |
JP6836745B2 (ja) | ヒドロキシピバルアルデヒドの製造方法 | |
JP5442001B2 (ja) | 高純度末端オレフィン化合物の製造方法 | |
EP1970369B1 (en) | Method for producing purified formylcyclopropane compound and intermediate of such formylcyclopropane compound | |
EP0299893A2 (fr) | Procédé d'hydroxylation de phénols et d'éthers de phénols | |
JP2952027B2 (ja) | シクロヘキセンオキシドの製造方法 | |
JP5105825B2 (ja) | 4−ヒドロキシ−2−アダマンタノン化合物の製造方法 | |
CN111484407B (zh) | 一种1-卤代-2-甲基-4-取代羰基氧基-2-丁烯的制备方法 | |
JP2018177715A (ja) | アルコキシフェノール類の製造方法 | |
JP3832837B2 (ja) | 3,3’,5,5’−テトラアルキル−4,4’−ビフェノールの製造方法 | |
EP0145554A2 (fr) | Procédé de préparation de dérivés éthyléniques chlorés | |
RU2331627C2 (ru) | Способ получения 7,7-диметоксибицикло[2.2.1]-гептадиена-2,5 | |
JPS6113694B2 (ja) | ||
WO2023080193A1 (ja) | インドール化合物の製造方法 | |
EP3947337A1 (en) | Processes for producing carboxylic acids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230411 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230424 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7279702 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |