JP7271917B2 - Copper electrolytic refining method - Google Patents
Copper electrolytic refining method Download PDFInfo
- Publication number
- JP7271917B2 JP7271917B2 JP2018221076A JP2018221076A JP7271917B2 JP 7271917 B2 JP7271917 B2 JP 7271917B2 JP 2018221076 A JP2018221076 A JP 2018221076A JP 2018221076 A JP2018221076 A JP 2018221076A JP 7271917 B2 JP7271917 B2 JP 7271917B2
- Authority
- JP
- Japan
- Prior art keywords
- anode
- passivation
- copper
- grade
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Electrolytic Production Of Metals (AREA)
Description
本発明は、銅電解精製方法に関し、特に、アノードにおける不働態現象の発生を防止することが可能な銅電解精製方法に関する。 TECHNICAL FIELD The present invention relates to a copper electrolytic refining method, and more particularly to a copper electrolytic refining method capable of preventing the occurrence of a passivation phenomenon in an anode.
銅の製錬法は乾式法と湿式法に大別することができ、前者の乾式法は、一般的に図1に示すように銅精鉱からアノードを作製する乾式製錬工程と、得られたアノードから電気銅を作製する電解精製工程とから構成される。具体的には、先ず乾式製錬工程において、浮遊選鉱で得た銅精鉱に対して自熔炉での溶解と、その後段の転炉での酸化とにより粗銅を生成し、これを精製炉で精製して純度99%程度の精製粗銅を得る。この精製粗銅を鋳造機に流し込んで銅電解精製用の陽極板(以下、アノードと称する)を鋳造する。 Copper smelting methods can be broadly divided into dry and wet processes. The former dry process generally comprises a dry smelting process for producing an anode from a copper concentrate as shown in FIG. and an electrolytic refining process to produce electrolytic copper from the anode. Specifically, first, in the pyrometallurgical process, copper concentrate obtained by flotation is melted in a flash furnace and then oxidized in a converter to produce blister copper, which is then processed in a refining furnace. Refined crude copper with a purity of about 99% is obtained. This purified blister copper is poured into a casting machine to cast an anode plate (hereinafter referred to as an anode) for electrolytic copper refining.
次に、電解精製工程において、上記鋳造で得た複数のアノードと、別途用意した複数の陰極板(以下、カソードと称する)とを、銅電解液を入れた電解槽内に互いに一定間隔をあけて一枚ずつ交互に配置する。そして、これらアノード及びカソードに通電することで、アノードから電解液中に銅イオンを溶出させると共にこれをカソードに電着させて銅品位99.99%以上の電気銅を作製する。 Next, in the electrorefining step, a plurality of anodes obtained by the above casting and a plurality of separately prepared cathode plates (hereinafter referred to as cathodes) are placed in an electrolytic bath containing a copper electrolyte solution at regular intervals. alternately one by one. By energizing the anode and cathode, copper ions are eluted from the anode into the electrolytic solution and are electrodeposited on the cathode to produce electrolytic copper having a copper grade of 99.99% or more.
上記のアノードには、Ni、Sn、As、Sb、Bi等の不純物金属が含まれているため、上記電解の進行に伴って、これら不純物金属のイオンも銅イオンと同様に電解液中に溶出する。しかしながら、アノード中の不純物品位が高い場合や、電解液中の銅濃度や硫酸濃度が高い場合は、アノード表面に導電性のない酸化銅や硫酸銅結晶が析出し、その結果、アノード表面からの金属イオンの溶出を防げる現象(以下、アノード不働態化又は単に不働態化と称する)が発生することがあった。 Since the anode contains impurity metals such as Ni, Sn, As, Sb, and Bi, ions of these impurity metals are eluted into the electrolytic solution as well as copper ions as the electrolysis proceeds. do. However, when the grade of impurities in the anode is high, or when the concentration of copper or sulfuric acid in the electrolyte is high, non-conductive copper oxide or copper sulfate crystals are deposited on the surface of the anode. A phenomenon that prevents the elution of metal ions (hereinafter referred to as anode passivation or simply passivation) may occur.
上記のアノード中の不純物によるアノード不働態化への影響を調べるため、該不純物の種類や量、それらの共存状態等について従来数多くの研究がなされてきた。例えば特許文献1には、銅電解精製工程におけるアノード不働態化に影響を及ぼすアノード中の不純物として、Ag、As、Pb、Bi、Sb、Sn、Se、Oが挙げられており、これらの各々の不純物品位に基づいてアノード不働態化が発生する可能性を評価する方法が提案されている。 In order to investigate the effect of the impurities in the anode on the passivation of the anode, many studies have been conducted on the types and amounts of the impurities, their coexistence states, and the like. For example, Patent Literature 1 lists Ag, As, Pb, Bi, Sb, Sn, Se, and O as impurities in the anode that affect anode passivation in a copper electrorefining process. A method has been proposed to assess the likelihood of anode passivation occurring based on the impurity grades of .
また、特許文献2には、高電流密度で粗銅の電解精製を行うに際して、電解液の銅濃度を高くしてもアノード不働態化が容易に発生しないようにするため、電解液中の銅濃度と硫酸根濃度と電流密度とをかけ合わせた値が所定の値以下となるように該硫酸根濃度を調整する技術が開示されている。 In addition, in Patent Document 2, when performing electrolytic refining of blister copper at a high current density, even if the copper concentration of the electrolyte is increased, anodic passivation does not easily occur, so that the copper concentration in the electrolyte is A technique is disclosed for adjusting the sulfate group concentration so that the product of the sulfate group concentration and the current density is equal to or less than a predetermined value.
上記特許文献1や2の技術により、銅の電解精製工程においてアノード不働態化の発生をある程度抑制することができると考えられるものの、高電流密度での電解操業などの高負荷の電解条件下では依然としてアノード不働態化が生じることがあった。本発明はかかる実情に鑑みてなされたものであり、高電流密度での電解操業等の高負荷電解条件下においてもアノード不働態化の発生を抑制することが可能な銅電解精製方法を提供することを目的とする。 Although it is believed that the techniques of Patent Documents 1 and 2 can suppress the occurrence of anode passivation to some extent in the copper electrorefining process, under high-load electrolysis conditions such as electrolysis operation at high current density, Anodic passivation could still occur. The present invention has been made in view of such circumstances, and provides a copper electrolytic refining method capable of suppressing the occurrence of anode passivation even under high load electrolysis conditions such as electrolysis operation at high current density. for the purpose.
本発明者らは高電流密度での電解操業等の高負荷電解条件下においてもアノード不働態化の発生を抑制する方法について鋭意検討を重ねた結果、アノード不働態化の発生は、アノードの不純物品位だけではなく、電解液の組成等の電解条件の影響を受けるとの知見を得た。例えば、電解液中の銅濃度や硫酸濃度が高ければ、アノード近傍では溶出した銅の影響で電解液中の硫酸銅が飽和溶解度に達し、その結果、硫酸銅結晶が析出してアノード不働態化が発生すると考えられる。 The present inventors have extensively studied methods for suppressing the occurrence of anode passivation even under high load electrolysis conditions such as electrolysis operation at a high current density. It was found that not only the grade but also the electrolysis conditions such as the composition of the electrolytic solution affected the electrolysis conditions. For example, if the concentration of copper or sulfuric acid in the electrolyte is high, copper sulfate in the electrolyte reaches saturation solubility due to the eluted copper in the vicinity of the anode, and as a result, copper sulfate crystals precipitate and passivate the anode. is thought to occur.
そこで、アノード不働態化の発生を抑制しながら高電流密度下で安定した電解操業を継続するため、アノードの不純物品位及び電解液の物性の双方を調整すること、具体的にはアノードの不純物品位から算出した不働態化抑止度Pと電解液比重Sとをパラメータとして用いた管理指標に基づいて電解精製の操作条件を調整することで、上記高負荷条件下でも良好にアノード不働態化の発生を抑えうることを見出し本発明を完成するに至った。 Therefore, in order to continue stable electrolysis operation under high current density while suppressing the occurrence of anode passivation, it is necessary to adjust both the impurity grade of the anode and the physical properties of the electrolyte. By adjusting the operating conditions for electrolytic refining based on the control index using the passivation inhibition degree P and the electrolyte specific gravity S calculated from The present invention has been completed by finding that it is possible to suppress the
すなわち、本発明に係る銅電解精製方法は、アノード中のCu品位、酸素品位、Se品位、Ag品位、及びAs品位に基づいて下記式1から算出した不働態化抑止度Pと、電解液の比重Sとをパラメータとして下記式2から算出した不働態化発生度Qが0.005以下となるように該電解液の比重Sを調整すると共に、電流密度を350A/m
2
以上400A/m
2
以下で操業する銅電解精製方法であって、前記電解液の比重Sの調整は、該電解液の銅濃度、硫酸濃度、及びニッケル濃度のうちの少なくともいずれかを、該電解液の銅濃度は47~51g/Lの範囲内、該電解液の硫酸濃度は150~210g/Lの範囲内、及び該電解液のニッケル濃度は17~23g/Lの範囲内で調整することで行なうことを特徴としている。
[式1]
P=([As]-0.5・[Ag]Free)/([Cu2O]+n・[Cu2Se]+X)
[式2]
Q=S-0.0025×P-1.23
(但し、As/Seが0.2未満の場合、[Ag]Free=0、X=0.5・[Ag]、n=0とし、As/Seが0.2以上0.5未満の場合、[Ag]Free=0、X=0、n=0.5とし、As/Seが0.5以上1.0未満の場合、[Ag]Free=0.25、X=0、n=0.5とし、As/Seが1.0以上1.7未満の場合、[Ag]Free=([Ag]-[Se])、X=0、n=0.5とし、As/Seが1.7以上の場合、[Ag]Free=([Ag]-2・[Se])、X=0、n=1.0とする。ここで[A]は前記アノード中に含まれる物質Aの品位をその分子量で除した値であり、As/Seは該アノード中のAs品位をSe品位で除した値である。)
That is, the copper electrolytic refining method according to the present invention includes the passivation suppression degree P calculated from the following formula 1 based on the Cu grade, oxygen grade, Se grade, Ag grade, and As grade in the anode, and The specific gravity S of the electrolytic solution is adjusted so that the passivation occurrence rate Q calculated from the following formula 2 using the specific gravity S as a parameter is 0.005 or less , and the current density is 350 A / m 2 or more and 400 A / m 2 In the copper electrorefining method operated below, the adjustment of the specific gravity S of the electrolytic solution is performed by adjusting at least one of the copper concentration, sulfuric acid concentration, and nickel concentration of the electrolytic solution, and the copper concentration of the electrolytic solution is within the range of 47 to 51 g/L, the sulfuric acid concentration of the electrolyte within the range of 150 to 210 g/L, and the nickel concentration of the electrolyte within the range of 17 to 23 g/L. and
[Formula 1]
P=([As]−0.5·[Ag] Free )/([Cu 2 O]+n·[Cu 2 Se]+X)
[Formula 2]
Q = S - 0.0025 x P - 1.23
(However, when As/Se is less than 0.2, [Ag] Free = 0, X = 0.5 · [Ag], n = 0, and when As/Se is 0.2 or more and less than 0.5 , [Ag] Free = 0, X = 0, n = 0.5, and when As/Se is 0.5 or more and less than 1.0, [Ag] Free = 0.25, X = 0, n = 0 .5, and when As/Se is 1.0 or more and less than 1.7, [Ag] Free = ([Ag] - [Se]), X = 0, n = 0.5, and As/Se is 1 .7 or more, [Ag] Free = ([Ag]-2·[Se]), X = 0, n = 1.0, where [A] is the amount of material A contained in the anode. is the value obtained by dividing the grade by its molecular weight, and As/Se is the value obtained by dividing the As grade by the Se grade in the anode.)
本発明によれば、高電流密度での電解操業等の高負荷電解条件下においてもアノード不働態化の発生を抑制することができるので、安定した操業を継続することができる。 According to the present invention, the occurrence of anode passivation can be suppressed even under high-load electrolysis conditions such as electrolysis operation at high current density, so that stable operation can be continued.
以下、本発明の銅電解精製方法の実施形態として、例えば高電流密度操業等の高負荷の電解条件下においてもアノード不働態化の発生を抑制することが可能な電解精製方法について説明する。先ず不働態化抑止度Pについて説明し、次に該不働態化抑止度P及び電解液の比重Sをパラメータとして算出する不働態化発生度Qについて説明する。 Hereinafter, as an embodiment of the copper electrolytic refining method of the present invention, an electrolytic refining method capable of suppressing the occurrence of anode passivation even under high load electrolysis conditions such as high current density operation will be described. First, the degree of inhibition of passivation P will be explained, and then the degree of occurrence of passivation Q calculated using the degree of inhibition of passivation P and the specific gravity S of the electrolyte as parameters will be explained.
銅電解精製における不働態化現象は、電解槽中の電解液のうちアノードの近傍に存在する電解液でCuイオンが飽和状態となり、その結果、アノードからのCuの溶出が困難になるために生ずる。すなわち、銅電解精製が進むと、アノード近傍の電解液においては該アノードから溶出したCuイオンによって、Cuイオンの濃度勾配が生じる。また、アノード中の不純物の一部は溶出せずにアノード表面にスライム層を形成する。このスライム層はCuイオンの電解液中の拡散を防げるので、アノード近傍の電解液のCuイオン濃度は時間の経過に伴って徐々に増加する。 The passivation phenomenon in copper electrorefining occurs because Cu ions become saturated in the electrolytic solution existing in the vicinity of the anode among the electrolytic solutions in the electrolytic bath, and as a result, Cu elution from the anode becomes difficult. . That is, as the copper electrolytic refining progresses, the concentration gradient of Cu ions is generated in the electrolytic solution in the vicinity of the anode due to the Cu ions eluted from the anode. Also, some of the impurities in the anode do not elute and form a slime layer on the surface of the anode. Since this slime layer can prevent Cu ions from diffusing in the electrolyte, the Cu ion concentration in the electrolyte near the anode gradually increases over time.
そして、このCuイオン濃度の増加によって電解液中のCuSO4の濃度が飽和濃度に達すれば、非溶解性で導電性のないCuSO4・5H2O結晶が不働態化層としてアノード表面に析出し、アノードの有効表面積が減少する。その結果、実質的な電流密度の上昇が生じるので、電解槽電圧の上昇や電極表面温度の上昇などの現象となって現れる不働態化が発生する。従って、上記不働態化現象の発現を防止するためには、当該アノードの近傍に存在する電解液においてCuイオンが飽和又は過飽和にならない条件を維持すれば良いことになる。 When the concentration of CuSO 4 in the electrolyte reaches the saturation concentration due to the increase in the Cu ion concentration, insoluble and non-conductive CuSO 4 .5H 2 O crystals are deposited on the anode surface as a passivation layer. , the effective surface area of the anode is reduced. As a result, a substantial increase in current density occurs, causing passivation that appears as phenomena such as an increase in electrolytic cell voltage and an increase in electrode surface temperature. Therefore, in order to prevent the occurrence of the passivation phenomenon, it is sufficient to maintain the condition that Cu ions do not become saturated or supersaturated in the electrolytic solution existing in the vicinity of the anode.
また、アノード表面上に生成されるスライム層がCuイオンの拡散を妨げない性状を有していることが好ましい。このスライム層の性状は、アノード中のAs、Ag、酸素などの成分の影響を受けるので、アノード中のこれらAs、Ag、酸素などの成分が、不働態化現象の発現に間接的に影響を及ぼすことになる。更に、アノード表面上に生成したスライム層中にCu粒子が多く含まれていると不働態化現象が生じやすくなる。その理由は、スライム中のCu粒子の多くが一価Cuイオンから生成することから考えると、アノード中に一価Cu粒子が多ければ、間接的に電解液中のCuSO4の濃度が飽和濃度に達しやすくなり、不働態化層を形成するCuSO4・5H2Oが多く生成されることになるからである。 Moreover, it is preferable that the slime layer formed on the surface of the anode has properties that do not hinder the diffusion of Cu ions. Since the properties of this slime layer are affected by components such as As, Ag and oxygen in the anode, the components such as As, Ag and oxygen in the anode indirectly affect the manifestation of the passivation phenomenon. will have an effect. Furthermore, if the slime layer formed on the anode surface contains many Cu particles, the passivation phenomenon is likely to occur. The reason for this is that most of the Cu particles in the slime are generated from monovalent Cu ions . This is because it becomes easier to reach, and a large amount of CuSO 4 .5H 2 O forming a passivation layer is generated.
従って、アノード中の不純物にできるだけ一価Cuを生成するものが存在しないようにできれば、不働態化現象の発現を抑制できることになる。アノード中の不純物のうち、上記一価Cuイオン(Cu+)に影響するものとして、O、Ag、Pb、Sb、Bi、Sn、As、及びSeを挙げることができる。すなわち、アノード中に存在する酸素(O)は、その一部が一価Cuイオンと結合してCu2Oの形態で存在するため、アノード中のCu2Oの濃度が高くなればなるほど、上記不働態化層の生成用の一価Cuイオンがより多く供給されることになる。 Therefore, if impurities in the anode that generate monovalent Cu can be eliminated as much as possible, the occurrence of the passivation phenomenon can be suppressed. Among the impurities in the anode, O, Ag, Pb, Sb, Bi, Sn, As, and Se can be cited as those that affect the monovalent Cu ions (Cu + ). That is, since oxygen (O) present in the anode is partly combined with monovalent Cu ions and exists in the form of Cu 2 O, the higher the concentration of Cu 2 O in the anode, the more the above More monovalent Cu ions for the formation of the passivation layer will be supplied.
Agが溶解して生ずるAg+は、アノード中のセレン化物であるCu2SeやCuAgSeと反応することにより一価Cuイオンを生ずる。従ってアノード中のAgのモル量からSeのモル量を減じた値、又はAgのモル量からSeのモル量の2倍量を減じた値が高いと、上記不働態化層の生成用として供給される一価Cuイオンの量が増大する。 Ag + generated by dissolving Ag reacts with Cu 2 Se and CuAgSe, which are selenides in the anode, to generate monovalent Cu ions. Therefore, if the value obtained by subtracting the mole amount of Se from the mole amount of Ag in the anode, or the value obtained by subtracting the mole amount of Se from the mole amount of Ag, is high, it can be used for forming the passivation layer. the amount of monovalent Cu ions absorbed increases.
一方、Pb、Sb、Bi、及びSnは、アノード中で酸化物として酸素を固定する。従って、アノード中のこれらの不純物のモル量が多いと、上記不働態化層の生成用として供給される一価Cuイオンの量を抑制することができる。すなわち、アノードの単位質量当たりのCu2Oのモル量は下記に示す酸素バランスの式から導き出すことができる。
[Cu2O]=[OAnode]-([PbO]+[SbO]+[BiO]+[SnO])
Pb, Sb, Bi, and Sn, on the other hand, fix oxygen as oxides in the anode. Therefore, high molar amounts of these impurities in the anode can suppress the amount of monovalent Cu ions supplied for the formation of the passivation layer. That is, the molar amount of Cu 2 O per unit mass of the anode can be derived from the oxygen balance equation shown below.
[Cu 2 O]=[O Anode ]−([PbO]+[SbO]+[BiO]+[SnO])
なお、本明細書中において[A]とは、不純物元素等の物質Aのアノード中の品位をその分子量で除した値である。また、OAnodeは、アノード中の全酸素を意味している。上記酸素バランスの式のように、Pb、Sb、Bi、及びSnは通常はアノード中で酸化物として存在しているので、アノードを定量分析して得たこれら元素の品位から換算したそれらの酸化物の品位をそれぞれの分子量で除することで上記の酸化物のモル量を算出することができる。 In this specification, [A] is a value obtained by dividing the grade of substance A such as an impurity element in the anode by its molecular weight. Also, O Anode means all oxygen in the anode. As shown in the oxygen balance formula above, Pb, Sb, Bi, and Sn are usually present as oxides in the anode. The molar amount of the above oxides can be calculated by dividing the grade of the product by each molecular weight.
Asはアノードから溶出してV価まで酸化されることで発生するH+イオンによりCu2Oの溶解を促進する。従って、アノード中のAsの品位が高いと、上記不働態化層として供給される一価Cuイオンの量を抑制することができる。前述したように、Seはアノード中でCu2Se又はCuAgSeの形態で存在するため、一価Cuイオンを供給する。従って、アノード中のSeのモル濃度が高いと、上記不働態化層として供給される一価Cuイオンの量が増大する。なお、アノード中に存在するNi及びFeは不働態化にほとんど影響を及ぼさないので無視することができる。 As is eluted from the anode and oxidized to the V valence to generate H + ions, thereby promoting the dissolution of Cu 2 O. Therefore, when the grade of As in the anode is high, the amount of monovalent Cu ions supplied as the passivation layer can be suppressed. As previously mentioned, Se is present in the anode in the form of Cu 2 Se or CuAgSe, thus providing monovalent Cu ions. Therefore, a higher molar concentration of Se in the anode increases the amount of monovalent Cu ions supplied as the passivation layer. It should be noted that Ni and Fe present in the anode have little effect on passivation and can be ignored.
上記にて説明したように、不働態化現象の発現の原因となる一価Cuイオンを供給するものとして、アノード中のCu2O、Cu2Se、CuAgSe及びAgを挙げることができる。一方、不働態化現象の発現を抑制するものとして、Pb、Sb、Bi、Snに代表されるアノード内において酸素を固定するもの、及びアノード中のAsを挙げることができる。 As explained above, Cu 2 O, Cu 2 Se, CuAgSe and Ag in the anode can be mentioned as sources of monovalent Cu ions responsible for the development of the passivation phenomenon. On the other hand, substances that fix oxygen in the anode, such as Pb, Sb, Bi, and Sn, and As in the anode can be cited as substances that suppress the expression of the passivation phenomenon.
上記の各種不純物のうち、Agのアノード中の固定形態は該アノード中のAg及びSeのモル比Ag/Seにより変化することが知られていることから、他の元素に支配されてないいわゆるフリーAgの形態のAgのモル量[Ag]Freeは、アノード中のAgのモル量からSeのモル量を減じた値、又はAgのモル量からSeのモル量の2倍を減じた値として求めることができる。一方、セレンは前述したようにセレン化物であるCu2SeやCuAgSeとして存在することが知られているため、セレン化物がAgの溶解を支配し、ひいては不働態化の原因となる一価Cuの発生量に関係することとなる。更に、Asは自身の酸化により一価のCuを溶解し不働態化の発生を抑止すると考えられる。 Among the various impurities described above, the fixed form of Ag in the anode is known to change depending on the molar ratio Ag/Se of Ag and Se in the anode. The molar amount of Ag in the form of Ag [Ag] Free is determined as the molar amount of Ag minus the molar amount of Se in the anode, or the molar amount of Ag minus twice the molar amount of Se. be able to. On the other hand, as described above, selenium is known to exist as selenides such as Cu 2 Se and CuAgSe. It is related to the amount of generation. Furthermore, it is believed that As dissolves monovalent Cu by oxidizing itself and suppresses the occurrence of passivation.
そこで上記の各不純物元素又は化合物による一価Cuイオンの供給又は抑制を考慮に入れて、不働態化現象の生じにくさを表す指標として下記式1に示す不働態化抑止度Pを導入する。すなわち、銅電解精製に用いるアノードに含まれる不純物元素の品位をICP発光分光分析法等の定量分析法で求め、得られた値から算出した下記式1に示す不働態化抑止度Pができるだけ大きくなるように不純物濃度を管理するのが好ましい。
[式1]
P=([As]-0.5・[Ag]Free)/([Cu2O]+n・[Cu2Se]+X)
Therefore, considering the supply or suppression of monovalent Cu ions by each impurity element or compound, the passivation suppression degree P shown in the following formula 1 is introduced as an index representing the difficulty of occurrence of the passivation phenomenon. That is, the grade of the impurity element contained in the anode used for copper electrolytic refining is determined by a quantitative analysis method such as ICP emission spectrometry, and the passivation suppression degree P shown in the following formula 1 calculated from the obtained value is as large as possible. It is preferable to manage the impurity concentration so that
[Formula 1]
P=([As]−0.5·[Ag] Free )/([Cu 2 O]+n·[Cu 2 Se]+X)
但し、As/Seが0.2未満の場合、[Ag]Free=0、X=0.5・[Ag]、n=0とし、As/Seが0.2以上0.5未満の場合、[Ag]Free=0、X=0、n=0.5とし、As/Seが0.5以上1.0未満の場合、[Ag]Free=0.25、X=0、n=0.5とし、As/Seが1.0以上1.7未満の場合、[Ag]Free=([Ag]-[Se])、X=0、n=0.5とし、As/Seが1.7以上の場合、[Ag]Free=([Ag]-2・[Se])、X=0、n=1.0とする。ここで、[A]は前記アノード中に含まれる物質Aの品位をその分子量で除した値であり、As/Seは該アノード中のAs品位をSe品位で除した値である。また、[Cu2O]は前述した酸素バランスの式から求めることができ、アノード中のSeはほぼ全てがCu2Seとして存在するのでSeのモル濃度をそのままCu2Seの濃度として用いることができる。 However, when As/Se is less than 0.2, [Ag] Free = 0, X = 0.5 · [Ag], n = 0, and when As/Se is 0.2 or more and less than 0.5, [Ag] Free = 0, X = 0, n = 0.5, and when As/Se is 0.5 or more and less than 1.0, [Ag] Free = 0.25, X = 0, n = 0.5. 5, and when As/Se is 1.0 or more and less than 1.7, [Ag] Free = ([Ag] - [Se]), X = 0, n = 0.5, and As/Se is 1.7. In the case of 7 or more, [Ag] Free = ([Ag]-2·[Se]), X = 0, n = 1.0. Here, [A] is the value obtained by dividing the grade of substance A contained in the anode by its molecular weight, and As/Se is the value obtained by dividing the As grade by the Se grade in the anode. Further, [Cu 2 O] can be obtained from the oxygen balance formula described above, and almost all Se in the anode exists as Cu 2 Se, so the molar concentration of Se can be used as it is as the concentration of Cu 2 Se. can.
本発明の実施形態の銅電解精製方法においては、上記にて求めたアノードの不働態化抑止度P及び電解液の比重Sをパラメータとして用いて算出した下記式2で示す不働態化発生度Qが、0.005以下となるように該電解液の比重S又は不働態化抑止度Pを調整する。これにより、不働態化現象の発生を抑えることができる。
[式2]
Q=S-0.0025×P-1.23
In the copper electrolytic refining method of the embodiment of the present invention, the passivation occurrence rate Q shown in the following equation 2 calculated using the anode passivation inhibition degree P and the specific gravity S of the electrolyte solution obtained above as parameters is adjusted to 0.005 or less. This can suppress the occurrence of the passivation phenomenon.
[Formula 2]
Q = S - 0.0025 x P - 1.23
上記の電解液の比重Sの調整は、例えば電解液の銅濃度、硫酸濃度、ニッケル濃度などのうちの少なくともいずれかにより調整することができるが、その際、電解の操業効率を悪化させないように、通常設定される条件の範囲内で調整するのが好ましい。具体的には、電解液の銅濃度は、後述する高電流密度での電解では47~51g/Lが望ましい。電解液の硫酸濃度は、高い方が電解液の浴抵抗が下がるため好ましいが、硫酸濃度が高すぎるとアノードの不働態化や電気銅の品質悪化を生じる惧れがあるので150~210g/Lが望ましい。電解液のニッケル濃度は、高すぎると電解液の浴抵抗を増大させる上、硫酸ニッケル結晶が析出してスケーリング等のトラブルを生じる惧れがあるのでなるべく低い方が好ましい。浄液装置の能力、目標アノード品位、浄液コスト等が各電解設備によって異なるので最適値は異なるものの、一般的には17~23g/Lが好ましい。 The specific gravity S of the electrolytic solution can be adjusted, for example, by adjusting at least one of the copper concentration, sulfuric acid concentration, nickel concentration, etc. of the electrolytic solution. , is preferably adjusted within the range of normally set conditions. Specifically, the copper concentration of the electrolytic solution is desirably 47 to 51 g/L for electrolysis at a high current density, which will be described later. The sulfuric acid concentration of the electrolytic solution is preferably as high as possible because the bath resistance of the electrolytic solution is lowered. is desirable. If the nickel concentration of the electrolytic solution is too high, the bath resistance of the electrolytic solution may increase, and nickel sulfate crystals may precipitate, causing problems such as scaling. Since the capacity of the liquid purifier, the target anode grade, the liquid purification cost, etc., differ depending on the electrolysis equipment, the optimum value differs, but generally 17 to 23 g/L is preferable.
本発明の実施形態の銅の電解精製において採用する電流密度は、電解槽など設備の数、必要な生産量、稼働率など電解操業条件から適宜決定することができる。工業的には、200~400A/m2の範囲が好適に採用されるが、上記の不働態化発生度Qを0.005以下に抑えることにより、より好適な280~400A/m2の範囲内、更に好適な350A/m2以上400A/m2以下の範囲内の電流密度においても不働態化現象の発生を抑えることができる。 The current density employed in the electrolytic refining of copper according to the embodiment of the present invention can be appropriately determined from the number of facilities such as electrolytic cells, the required production volume, and the operating conditions for electrolysis such as operating rate. Industrially, the range of 200 to 400 A/m 2 is preferably adopted, but by suppressing the passivation generation rate Q to 0.005 or less, the range of 280 to 400 A/m 2 is more preferable. Among them, the occurrence of the passivation phenomenon can be suppressed even at a current density within the more preferable range of 350 A/m 2 or more and 400 A/m 2 or less.
電解液の液温は一般に高い方が好ましいが、工業的には、電解槽に使用できる材質の耐熱温度や操業時の安全性、使用するエネルギー効率などを考慮すると、電解液の温度は約60~65℃が実用的な温度であり、80℃を超える高温で行う実用的な利点はほとんどない。なお、液温が50℃未満では銅の溶解度がきわめて低下し、不働態化が著しく加速されるので好ましくない。 In general, it is preferable that the temperature of the electrolyte is high, but industrially, considering the heat resistance temperature of the material that can be used for the electrolytic cell, the safety during operation, the energy efficiency to be used, etc., the temperature of the electrolyte is about 60. ~65°C is a practical temperature and there is little practical advantage in doing higher temperatures above 80°C. If the liquid temperature is less than 50° C., the solubility of copper is extremely lowered, and the passivation is remarkably accelerated, which is not preferable.
不純物品位がそれぞれ異なる12種類のアノード試料1~12を用意し、それらの各々に対して、ICP発光分光分析装置を用いて不純物の品位を求めた。そして、各アノードの単位質量当たりのCu2Oのモル量を前述した酸素バランスの式から導き出すと共に、前述した式1を用いて不働態化抑止度Pを計算した。その計算結果を表1に示す。 Twelve types of anode samples 1 to 12 with different impurity grades were prepared, and the impurity grades were determined for each of them using an ICP emission spectrometer. Then, the molar amount of Cu 2 O per unit mass of each anode was derived from the oxygen balance equation described above, and the passivation inhibition degree P was calculated using Equation 1 described above. Table 1 shows the calculation results.
次に、各々のアノードを用いて、電解液比重Sを1.23~1.24g/cm3、電流密度183~358A/m2、電解液温度60~66℃、電解液組成として、Cuが41~50g/L、H2SO4が150~205g/L、Niが0.6~22g/Lの範囲内で銅電解を行った。その結果、試料3のアノードを用いた銅電解では電槽電圧が500mVを超えたため、不働態化現象発生したと考えられるが、それ以外の試料1~2、及び4~12のアノードを用いた銅電解では電槽電圧が500mVを超えることはなかった。これら試料1~12のアノードの各々を用いて行った銅電解における不働態化抑止度P及び電解液比重Sを式2に代入して算出した不働態化発生度Qを電解条件と共に下記表2に示す。 Next, using each anode, the specific gravity S of the electrolyte is 1.23 to 1.24 g/cm 3 , the current density is 183 to 358 A/m 2 , the temperature of the electrolyte is 60 to 66° C., and the composition of the electrolyte is Cu. Copper electrolysis was performed within the range of 41-50 g/L, 150-205 g/L of H 2 SO 4 and 0.6-22 g/L of Ni. As a result, in the copper electrolysis using the anode of sample 3, the cell voltage exceeded 500 mV, so it is thought that the passivation phenomenon occurred, but the anodes of samples 1 to 2 and 4 to 12 other than that were used. The cell voltage never exceeded 500 mV in copper electrolysis. The passivation suppression degree P and the electrolyte specific gravity S in the copper electrolysis performed using each of the anodes of these samples 1 to 12 were substituted into Equation 2 to calculate the passivation generation degree Q, together with the electrolysis conditions, in Table 2 below. shown in
上記表2の結果から分かるように、試料1~2、4~12は不働態化発生度Qが0.005よりも小さいので、アノード不働態化が発生しなかった。一方、試料3は不働態化発生度Qが0.005よりも大きいので、アノード不働態化が発生した。すなわち、高電流密度下でのアノード不働態化を防止するために、アノードの不純物品位から求められる不働態化抑止度Pと、電解液比重Sとをパラメータとして算出した不働態化発生度Qを用いて電解条件を調整することにより、高電流密度操業においてもアノード不働態化の発生を効果的に抑制して安定した操業を継続できることが分かる。 As can be seen from the results in Table 2 above, samples 1 to 2 and 4 to 12 did not undergo anodic passivation because the degree of passivation Q was less than 0.005. On the other hand, in sample 3, the passivation occurrence rate Q was greater than 0.005, so anodic passivation occurred. That is, in order to prevent anode passivation under high current density, the passivation occurrence rate Q calculated using the passivation suppression degree P obtained from the impurity grade of the anode and the electrolyte specific gravity S as parameters is It can be seen that by adjusting the electrolysis conditions using , the occurrence of anode passivation can be effectively suppressed even in high current density operation, and stable operation can be continued.
Claims (1)
[式1]
P=([As]-0.5・[Ag]Free)/([Cu2O]+n・[Cu2Se]+X)
[式2]
Q=S-0.0025×P-1.23
(但し、As/Seが0.2未満の場合、[Ag]Free=0、X=0.5・[Ag]、n=0とし、As/Seが0.2以上0.5未満の場合、[Ag]Free=0、X=0、n=0.5とし、As/Seが0.5以上1.0未満の場合、[Ag]Free=0.25、X=0、n=0.5とし、As/Seが1.0以上1.7未満の場合、[Ag]Free=([Ag]-[Se])、X=0、n=0.5とし、As/Seが1.7以上の場合、[Ag]Free=([Ag]-2・[Se])、X=0、n=1.0とする。ここで[A]は前記アノード中に含まれる物質Aの品位をその分子量で除した値であり、As/Seは該アノード中のAs品位をSe品位で除した値である。) It was calculated from the following equation 2 using the passivation inhibition degree P calculated from the following equation 1 based on the Cu grade, oxygen grade, Se grade, Ag grade, and As grade in the anode and the specific gravity S of the electrolyte as parameters. A copper electrolytic refining method in which the specific gravity S of the electrolytic solution is adjusted so that the degree of passivation Q is 0.005 or less, and the current density is 350 A/m 2 or more and 400 A/m 2 or less, The adjustment of the specific gravity S of the electrolytic solution is performed by adjusting at least one of the copper concentration, sulfuric acid concentration, and nickel concentration of the electrolytic solution, and the copper concentration of the electrolytic solution is within the range of 47 to 51 g / L. a sulfuric acid concentration in the range of 150 to 210 g/L, and a nickel concentration in the electrolytic solution in the range of 17 to 23 g/L.
[Formula 1]
P=([As]−0.5·[Ag] Free )/([Cu 2 O]+n·[Cu 2 Se]+X)
[Formula 2]
Q = S - 0.0025 x P - 1.23
(However, when As/Se is less than 0.2, [Ag] Free = 0, X = 0.5 · [Ag], n = 0, and when As/Se is 0.2 or more and less than 0.5 , [Ag] Free = 0, X = 0, n = 0.5, and when As/Se is 0.5 or more and less than 1.0, [Ag] Free = 0.25, X = 0, n = 0 .5, and when As/Se is 1.0 or more and less than 1.7, [Ag] Free = ([Ag] - [Se]), X = 0, n = 0.5, and As/Se is 1 .7 or more, [Ag] Free = ([Ag]-2·[Se]), X = 0, n = 1.0, where [A] is the amount of material A contained in the anode. is the value obtained by dividing the grade by its molecular weight, and As/Se is the value obtained by dividing the As grade by the Se grade in the anode.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018221076A JP7271917B2 (en) | 2018-11-27 | 2018-11-27 | Copper electrolytic refining method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018221076A JP7271917B2 (en) | 2018-11-27 | 2018-11-27 | Copper electrolytic refining method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020084273A JP2020084273A (en) | 2020-06-04 |
JP7271917B2 true JP7271917B2 (en) | 2023-05-12 |
Family
ID=70906721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018221076A Active JP7271917B2 (en) | 2018-11-27 | 2018-11-27 | Copper electrolytic refining method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7271917B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000054181A (en) | 1998-08-06 | 2000-02-22 | Sumitomo Metal Mining Co Ltd | Method for electrolytically refining copper |
CN105040035A (en) | 2015-09-17 | 2015-11-11 | 阳谷祥光铜业有限公司 | Parallel jetting electrolysis technology and device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3158684B2 (en) * | 1992-07-03 | 2001-04-23 | 住友金属鉱山株式会社 | Copper electrorefining method |
-
2018
- 2018-11-27 JP JP2018221076A patent/JP7271917B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000054181A (en) | 1998-08-06 | 2000-02-22 | Sumitomo Metal Mining Co Ltd | Method for electrolytically refining copper |
CN105040035A (en) | 2015-09-17 | 2015-11-11 | 阳谷祥光铜业有限公司 | Parallel jetting electrolysis technology and device |
Non-Patent Citations (4)
Title |
---|
GLOBAL SURVEY OF COPPER ELECTROREFINING OPERATIONS AND PRACTICES,COPPER 2013 DECEMVER 1-4,20213-SANTIAGO, CHILE. International Copper Conference, VOLUME V BOOK 2,pp.67-107 |
梅津 良昭 他,銅電解液の密度および粘性に及ぼす共存硫酸塩の影響,資源と素材,1989年,105 巻 9 号,p. 693-699,DOI https://doi.org/10.2473/shigentosozai.105.693 |
渡 健太 他,銅電解精製におけるアノードの不動態化に及ぼす液組成の影響,Journal of MMIJ,2017年, 133 巻 10 号, p. 250-255,DOI https://doi.org/10.2473/journalofmmij.133.250 |
阿部 辰一郎 他,銅溶液中の硫酸濃度の陽極不働態化に及ぼす影響 銅陽極不働態化の研究 (第6報),日本鉱業会誌,1981年,98 巻 1127 号, p. 41-45,DOIhttps://doi.org/10.2473/shigentosozai1953.98.1127_41 |
Also Published As
Publication number | Publication date |
---|---|
JP2020084273A (en) | 2020-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4298712B2 (en) | Method for electrolytic purification of copper | |
MX2010013510A (en) | Electrorecovery of gold and silver from thiosulfate solutions. | |
JP2013511623A (en) | Method for cleaning anode slime from electrolytic lead-bismuth alloy | |
US4364807A (en) | Method of electrolytically recovering zinc | |
Nan et al. | Hydrometallurgical process for extracting bismuth from by-product of lead smelting based on methanesulfonic acid system | |
CN114134538A (en) | A zinc electrodeposition system suitable for high current density | |
González-Domínguez et al. | The refining of lead by the Betts process | |
Li et al. | Energy-efficient fluorine-free electro-refining of crude lead in a green methanesulfonic acid system | |
US4053377A (en) | Electrodeposition of copper | |
JP7271917B2 (en) | Copper electrolytic refining method | |
WO2006037999A2 (en) | Electro-reduction process | |
US2742415A (en) | Electrodeposition of arsenic from acid electrolytes | |
JP2000054181A (en) | Method for electrolytically refining copper | |
US3036961A (en) | Electrolytic refinement of metals | |
JP7089862B2 (en) | Copper electrorefining method | |
Markovic et al. | Treatment of Waste Copper Electrolytes Using Insoluble and Soluble Anodes | |
JP2017214612A (en) | Method for electrolytic purification of copper | |
JP2019026866A (en) | Electrorefining method of copper | |
JP5804920B2 (en) | Electrolytic extraction of metals | |
JP3809558B2 (en) | Aluminum alloy for cathode | |
RU2444093C1 (en) | Anode for chemical source of current, method to manufacture anode, chemical source of current | |
Maatgi | The Influence of Different Parameters on the Electro Refining of Copper | |
US1006330A (en) | Obtaining zinc and/or copper from complex ores or the like. | |
JP3552512B2 (en) | Method for controlling dissolved oxygen in copper electrolyte and method for electrolytic purification of copper | |
Popov et al. | Electrorefining |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220620 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220902 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230410 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7271917 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |