JP7269674B2 - 地熱発電システム - Google Patents
地熱発電システム Download PDFInfo
- Publication number
- JP7269674B2 JP7269674B2 JP2021155052A JP2021155052A JP7269674B2 JP 7269674 B2 JP7269674 B2 JP 7269674B2 JP 2021155052 A JP2021155052 A JP 2021155052A JP 2021155052 A JP2021155052 A JP 2021155052A JP 7269674 B2 JP7269674 B2 JP 7269674B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- pipe
- medium
- heat medium
- hot water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Thermal Insulation (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
また、特許文献1に見られるように地下の熱だけを利用して発電を行う方法は、環境によく温泉水への湯量や化学物質等への懸念も考慮する必要がないため有効である。
そのため、地中から得られた熱媒体を有効に利用するために、作業性能も考慮しながら熱媒体の移送途中で熱媒体の熱が奪われずに、地上にある分離器又は熱交換器まで移送する技術が必要になってきた。
え、回収した前記媒体の熱を利用して発電する地熱発電システムであって、
前記媒体を前記熱媒体移送管内で循環させるために、前記媒体の流路を切り替える切替
弁と、媒体の状態を変化させずに圧力を所定の圧力に保ったまま前記媒体を循環させる圧
力調整手段と、を備え、
前記媒体の温度が低下した際に、前記切替弁と前記圧力調整手段とを駆動し、前記媒体
の温度が回復するまで前記熱媒体移送管内で前記媒体を循環させることを特徴とする。
第1実施形態にかかる地熱発電システム1を、図1を参照して説明する。図1は、第1実施形態にかかる本発明の地熱発電システム1の構成を示す概要図である。
地熱発電システム1は、加圧給水ポンプ3から地中の最深部に媒体注入管50によって供給される媒体としての水を熱交換し、熱水となった水を加圧しながら熱媒体取出管80によって地上に移送する。移送された熱水L3は、圧力調整弁PV1により減圧沸騰させ気水分離器Fに移送される。気水分離器Fにて蒸気と熱水を分離し、発生した蒸気V1は、蒸気タービンTに供給される。
蒸気タービンTは、タービン形式だけでなくスクリュー形式のもの等であってもよく、蒸気によって発電可能なものであればよい。蒸気タービンTに供給される蒸気V1は、熱水L3を減圧沸騰させて気水分離器Fにて熱水と蒸気に分離される。
次に、図2乃至図10を参照し熱媒体移送管10を説明する。図2は、第1実施形態にかかる本発明の熱媒体移送管10の一部を現した斜視図である。図3は、第1実施形態にかかる本発明の媒体注入管50を分解した一部を現した斜視図である。図4は、第1実施形態にかかる本発明の媒体注入管50の一部の縦断面図である。図5は、第1実施形態にかかる本発明の保温管60の斜視図である。図6は、第1実施形態にかかる本発明の媒体注入管50の一部の縦断面図である。図7は、第1実施形態にかかる本発明の熱媒体移送管50の一部の縦断面である。図8は、第1実施形態にかかる本発明の熱媒体取出管80の一部の縦断面図である。図9は、第1実施形態にかかる本発明の水の状態変化の概要図である。図10は、第1実施形態にかかる本発明の地熱発電システム1の熱媒体移送管10の深度と熱水の温度分布の関係を示す関係図である。
先ず、図2乃至図7を参照し媒体注入管50を説明する。図2は、断熱材70を除いた媒体注入管50の斜視図であり、媒体注入管50は、注入管40と、管ねじ継ぎ手51、図5に示す保温管60及び断熱材70から構成されている。媒体注入管50は、注入管40を管ねじ継ぎ手51により連結し、最深部Uまで長い管状を形成する。
図4及び図6に示すように注入管40は、僅かにテーパ状をなした両端の外面に、ネジ溝を形成した雄ネジ部42を備えている。尚、図4、図6及び図7の図では雌ネジ部52及び雄ネジ部42を斜線で示している。把持部47は、媒体注入管50をチャッキングし、管ねじ継ぎ手51をトルク管理しながら、ねじ込む際や媒体注入管50自体を保持するために金属の剥き出した状態で設けられており、被覆層46を構成していない部分である。被覆層46を設けると把持する力を阻害する恐れがあるからである。
以上の構造のため、媒体注入管50の接続は、管ねじ継ぎ手51をねじ嵌めした後、保温管60の挿入管61を注入管40の内部に挿入し、上方から他の注入管40を管ねじ継ぎ手51にネジ締めし連結する。
出願人は、図11に示すように本発明の媒体注入管50と従来の媒体注入管101と断熱性能を比較するために模式図のように各ポイント(P1からP8)における温度を測定し、温度勾配を求めた。両方の管(101、50)の内部にはヒータを挿入し、ヒータにより暖めた水と管の外部には常温の水が満たされている。媒体注入管101と比較して、媒体注入管50は、保温管60と被覆層46を付加して備えている。
また、従来の媒体注入管101のP3-P4間は、3420℃/mとなり、本発明の媒体注入管50のP7-P8間は、9790℃/mを示し、本発明の媒体注入管50は、従来の媒体注入管101よりも大きく温度差があることを示し、被覆層46により断熱性能が向上していることが確認できる。
以上により、本発明は断熱性能を向上させた熱媒体移送管10を備えることができる。
熱媒体取出管80aは、地中深くの熱を熱水により回収し地上に輸送し、圧力調整弁PV1(図1)にて蒸気を発生させ蒸気発電に熱を利用するために設けられている。熱媒体取出管80aは、媒体注入管50の内部に位置し、取出管81aと、管ねじ継ぎ手55及び保温管91で構成されている。
以上の構造により、取出管81aの接続は、管ねじ継ぎ手55をねじ嵌めした後、保温管91を取出管81aの内部に挿入し、上方から他の取出管81aを管ねじ継ぎ手55にねじ締めし連結する。
以上のように、保温管91は両端を取出管81aの間に保持されているために上下の方向に脱落することはなく。
図1に示す気水分離器Fは、円筒状の圧力容器となっており、気水分離器F内に設けられたノズルは、先端から熱水L3を噴出し、容器内にて蒸気V1及び熱水L4を分離させている。また、気水分離器Fの内外のいずれかに圧力(蒸気発生量)を調整する圧力調整弁PV1が設けられている。また、ドレインL4を回収する温水サービスタンク4に至る通路には圧力調整弁PV2が設けられており、気水分離器FからタービンTへ向かう蒸気圧力を調整し、気水分離器FからタービンTへ向かう蒸気量の制御にも活用が可能である。
次に、温水サービスタンク4について図1を参照して説明する。温水サービスタンク4は、円筒状の圧力容器となっている。温水サービスタンク4に接続される主な配管は、復水ユニット17から送られる復水L6を取り入れる配管と、給水ユニットから補給される脱気水L7を取り入れる配管と、加圧給水ポンプ3に接続され温水サービスタンク4から温水L8を送るポンプ配管と、気水分離器Fから送られるドレンL4を取り入れるドレン注入管及び温水サービスタンク4にてプール沸騰により生成した蒸気V2を排出する蒸気排出管とが設けられている。
給水ユニット18は、川の水や水道水等の原水16から工業用の軟水生成装置9を使用して軟水を生成する。そして、生成された軟水は補給水タンク8に貯留される。貯留された軟水は、脱酸装置又は脱酸剤を使用することで溶存酸素を除去している。
窒素等はマイクロバブル発生装置を利用して水に溶存し易くした後、その溶存した水を注入することにより酸素との置換が起こりやすくなる。
次に、復水ユニット17について説明する。復水ユニット17は、タービンTから排気された蒸気V3を凝縮させて水に戻す機能を持っており、主に復水器6、復水タンク14及び冷却塔CTから構成されている。復水器6で受けた蒸気V3は、冷却塔CTで冷やされ、凝縮し温水L10に戻り、復水器6を経由し復水タンク14に貯留される。貯留された温水L6は、復水ポンプ5により温水サービスタンク4に送られ、温水サービスタンク4に貯留される。
尚、冷却塔CTによる冷却方法は、空冷式、川の水や海水等を利用した水冷式又は地中にて熱交換を行う地中熱置換式等がある。
図1、図9及び図10を参照して発電方法を説明すると、地上にて温度200℃前後の蒸気を得るためにボーリングにより開けられた穴の深度は、地中700mから2000m~3000m程度までの深さに達している。この深さは深ければ深いほど高い温度が得られると考えられるが、掘削費用との兼ね合いにより決められ、地熱帯Uは、200℃から300℃の温度があれば最もよく、地熱帯Uの最深部付近から得られる温度によって適宜以下の値も変化する。
生成した蒸気(V1)は、温水サービスタンク4で生成された蒸気(V2)と気水分離器F内で合流する。合流した蒸気は(V1+V2)は、蒸気タービンTの回転により発電機Gを駆動させ発電する。この蒸気(V1+V2)により発電される発電量は、効率を80%とすると約112kWhの出力が得られる。
そして、温水サービスタンク4の130℃前後の温水(L1)は、再び加圧給水ポンプ3により6MPaに加圧され熱媒体移送管10の媒体注入管50に流量55t/hで送られ、地中深くの地熱帯Uまで移送される。
一点鎖線を境界とし、上方の断熱領域22は、媒体注入管50の有効熱伝導率が0.1W/m・K以下の材質を採用した断熱効果が優れた配管を使用している。また一点鎖線を境界とし、下方の吸収領域26は、媒体注入管50の有効熱伝導率が50W/m・K以上の材質を採用した熱吸収が優れた配管を使用している。
また、斜線で示す加圧領域23は、熱水L3が蒸気とならない圧力の領域を示しており、加圧給水ポンプ3は、圧力損失を考慮して圧力値を設定する。
そして、地熱帯Uで熱せられた沸点以上の熱水は、冷めないようにし気水分離器Fまで運ぶことにより熱損失が少なくなる。熱損失を少なくするには、上述したように図13の蒸発曲線27よりも高い圧力を保つ必要がある。
第2実施形態にかかる地熱発電システム200を、図12を参照して説明する。図12は、第2実施形態にかかる本発明の地熱発電システム200の構成を示す概要図である。尚、第1実施形態と同じ箇所には同じ符号が付してあり、上述した記載については省略する。
バイナリー発電装置Bを、図12を参照して説明すると、バイナリー発電装置Bは、主に加圧水発電装置1bと接続される熱交換部150と、蒸気タービンT2と、発電機G2、受電設備TF2、冷却器154及び循環ポンプ155とで構成されている。
受電設備TFは、電気を供給し、送電網を介して電力会社等に電気を供給するものである。ここで作動媒体Mは、可燃性や毒性のない不活不活性ガスのHFC-245fa、R245fa等や沸点の低い媒体(水とアンモニアの混合物等、炭化水素(ペンタン))等が使用される。
第3実施形態にかかる地熱発電システム300を、図13を参照して説明する。図13は、第3実施形態にかかる本発明の地熱発電システム300の構成を示す概要図である。尚、第1実施形態及び第2実施形態と同じ箇所には同じ符号が付してあり、上述した記載については省略する。
バイナリー発電装置Cを、図13を参照して説明すると、バイナリー発電装置Cは、加圧水発電装置1bと接続される第1熱交換部150c、第2熱交換部156c、蒸気タービンT2、蒸気タービンT3と、発電機G2、発電機G3、受電設備TF2、冷却器164c、第1循環ポンプ155c及び第2循環ポンプ165c、とで構成されている。
この第1熱交換部150cの部分で熱せられた作動媒体M1は、蒸発して蒸気タービンT2を回転させ、発電機G2により発電を行っている。
また、第2熱交換部154cの第2熱交換器153cによって熱交換が行われ、第2熱交換部164cにて熱せられた作動媒体M21は、蒸発して蒸気タービンT3を回転させ、発電機G3により発電を行っている。
冷却水157c、158cを加圧水発電装置1cの給水ユニット18に設けられる原水16に配管し、熱交換することで、原水16は温められ冷却水157c、158cは冷やされるため地熱発電システム300の全系において熱の有効な置換が行われる。原水16は、暖められることにより温水サービスタンク4に復水ユニット17を介さず直接投入することが可能となる。
第4実施形態にかかる地熱発電システム100を、図14を参照して説明する。図14は、第4実施形態にかかる本発明の地熱発電システム100の構成を示す概要図である。尚、第1実施形態乃至第3実施形態と同じ箇所には同じ符号が付してあり、上述した記載については省略する。
バイナリー発電装置Bを、図14を参照して説明すると、バイナリー発電装置Bは、主に加圧水熱交換装置1aと接続される熱交換部150と、蒸気タービンT2と、発電機G2、受電設備TF2、冷却器154及び循環ポンプ155とで構成されている。
受電設備TFは、電気を供給し送電網を介して電力会社等に電気を供給するものである。ここで作動媒体M1、M2、M3は、可燃性や毒性のない不活不活性ガスのHFC-245fa、R245fa等や沸点の低い媒体(水とアンモニアの混合物等、炭化水素(ペンタン))等が使用される。
第5実施形態にかかる熱媒体移送管500及び熱媒体移送管500の施工方法について図15乃至図20を参照して説明する。図15は、第5実施形態にかかる本発明の熱媒体移送管500の一部を省略した縦断面図である。図16は、第5実施形態にかかる本発明の熱媒体移送管500を施工する途中の縦断面図である。図17は、第5実施形態にかかる本発明の熱媒体移送管500を施工する途中の縦断面図である。図18は、第5実施形態にかかる本発明の熱媒体移送管500の管ねじ継ぎ手51の部分を拡大した概要図である。図19は、第5実施形態にかかる本発明の変形例の熱媒体移送管500の一部を省略した縦断面図である。図20は、第5実施形態にかかる本発明の地熱発電システムの熱媒体移送管500の深度と熱水の温度分布の関係を示す関係図である。尚、第1実施形態乃至第4施形態と同じ箇所には同じ符号が付してあり、上述した記載については省略する。
図15及び図18に示すように、第1保護管31は、媒体注入管50の注入管40同士を接続する管ねじ継ぎ手51の下方に円盤状の熱水74の上方までの対流を遮蔽する共に、施工時等の暴噴を防ぐ対流遮蔽盤73(対流遮蔽手段)を設けている。対流遮蔽板73は、内径を管ねじ継ぎ手51の外径より小さくし、地下水の水圧等により上方へ抜けない構造となっている。
第1保護管31及び第2保護管32の間及び第2保護管32及び第3保護管33は、下方にコンクリート材により閉塞した閉塞部34、35を設けている。
先ず、掘削機械により最も大きな径で700m地点まで掘削する。掘削時は崩落が起きないように地熱セメント等により側壁を固めながら掘り進め、700m地点に到達した場合には、図16に示すように深さ10mから100mの区間をコンクリート材により充填した閉塞部35を形成し、上述した第3保護管33を埋設する。
次に、図15に示すように掘削機の径を更に小さくし、第1保護管31が埋設できる程度の大きさで掘削を行い、断熱領域22の1700m前後の位置まで掘り進め、上述した第1保護管31を埋設する。
尚、媒体移動孔76は、金属等での網状に形成した孔であっても良い。このように受け管75は、地熱帯Uが熱水の場合に、岩や砂等を媒体注入管50に接触させないような構造を採るのが好ましく、熱水等の流体が媒体注入管50に接触する領域を確保する事が可能である。
第6実施形態にかかる本発明の地熱発電システム400の構成を図21乃至図22を参照し説明する。図21は、第6実施形態にかかる本発明の地熱発電システム400の構成を示す概要図である。図22は、第6実施形態にかかる本発明の熱媒体移送管410fの構成を示す概要図である。
地熱発電システム400は、加圧給水ポンプ3から地中の最深部にて媒体注入管50によって供給される媒体としての水を熱交換し、熱水となった水を加圧しながら熱媒体取出管80によって地上に移送する。移送された熱水L3は、圧力調整弁PV1により減圧沸騰させ気水分離器Fに移送される。
蒸気タービンTは、タービン形式だけでなくスクリュー形式のもの等であってもよく、蒸気によって発電可能なものであればよい。
尚、本発明は、複数の熱媒体移送管(410a乃至410f)を上述した実施例2乃至実施例5のAからBのバイナリー等の発電設備に適用することも可能である。
地熱発電システム400は、地熱帯Uの地中熱を媒体注入管50が吸収し、熱媒体としての熱水(L2)と熱交換し、地上に熱水(L3)を移送するが、媒体注入管50の付近の地熱帯Uの熱が回復しない場合等の理由により、伝達促進媒体39の温度低下がある場合には、熱媒体移送管410fの地上側に設けた流路切替弁413及び流路切替弁414を切り替えて、地熱帯Uまで至る熱媒体移送管410f内で熱媒体としての水を循環する構造としている。
以下に本実施形態の技術的特徴点の一例を括弧内に示すが、特に限定するものでもなく例示しているものであり、これら特徴から考えられる効果についても記載する。
<第1の特徴点>
地中に媒体(例えば、主に水、油等)を搬送し、地中にて熱を吸収する前記媒体を回収する熱媒体移送管(例えば、主に熱媒体移送管10(媒体注入管50、熱媒体取出管80)410・500)であって、前記熱媒体移送管は、複数本設けられた前記熱媒体移送管を連結する管継ぎ手(例えば、主に管ねじ継ぎ手51・55)と、前記熱媒体移送管の内部に前記管継ぎ手及び前記熱媒体移送管の一部を連続して被覆し、前記媒体が保有する熱を保温する熱媒体保温管(例えば、主に保温管60・90)と、を備えたことを特徴とする。
前記熱媒体保温管は、前記熱媒体移送管の内部に挿入する挿入管(例えば、主に挿入管61・91)と、前記熱媒体移送管に内径よりも大きな径を持ち、前記管継ぎ手の内部に保持される突出部(例えば、主に突出部62・92)と、を備えたことを特徴とする。
以上の特徴によって、本発明は、熱媒体保温管自体の取り替えや熱媒体移送管の設置の作業が容易となる。
前記熱媒体移送管は、前記熱媒体移送管を前記管継ぎ手による連結時に前記管継ぎ手と螺合し連結する螺合部分の近傍に設け、前記熱媒体移送管を把持する把持部(例えば、主に把持部47・87)と、前記把持部を避けて設けた断熱材料を被覆した被覆層(例えば、主に被覆層46・86)と、を備え、前記熱媒体保温管は、少なくとも把持部の部分まで延びている前記挿入管を備えたことを特徴とする。
以上の特徴によって、本発明は、熱媒体移送管の接続作業の性能を損なわずに、接続管の熱媒体保温管により熱媒体移送管の保温性能は向上する。また、熱媒体移送管は、熱を奪われずに媒体を地中から取り出すことが可能である。
前記熱媒体移送管は、地中に前記媒体を移送する媒体注入管(例えば、主に媒体注入管50)と、地中により熱を吸収した前記媒体を地上に取り出す媒体取出管(例えば、主に熱媒体取出管80)と、を備え、前記媒体注入管及び前記媒体取出管に前記熱媒体保温管を備えたことを特徴とする。
地上に取り出した前記媒体の熱を利用し発電する発電機(例えば、主に発電機G又はバイナリー発電機B)と、発電に必要な温度の熱を前記媒体が吸収する吸収領域以外であって、移送中の前記媒体の熱を保温するための断熱領域に、掘削時に掘削した穴の側壁を固めるセメントにより断熱するコンクリート断熱層(例えば、主に地熱セメント)と、前記媒体注入管及び管継ぎ手の周囲に断熱材料で被服した第2被覆層(例えば、主に断熱材70)と、前記媒体の所望する温度の飽和蒸気圧力以上の圧力を保ち、前記媒体の相状態を変えずに移送する圧力ポンプ(例えば、主に加圧給水ポンプ5)と、を備えたことを特徴とする。
前記熱媒体移送管同士を前記管継ぎ手により連結した後、前記管継ぎ手の全体を覆うように外部から被覆する管継ぎ手被覆部(例えば、主に管ねじ継ぎ手被覆部93)を備えたことを特徴とする。
以上の特徴により、熱媒体移送管は、管継ぎ手の部分における熱の伝達を、管継ぎ手被覆部により遮断することが可能である。
地中に媒体を搬送し、地中にて熱を吸収した前記媒体を回収する熱媒体移送管(例えば、主に熱媒体移送管10(媒体注入管50、熱媒体取出管80)・410・500)であって、前記熱媒体移送管と前記熱媒体移送管の外周に設けられた管状の保護管(例えば、第3保護管33)との間から侵入する地下水が上下方向へ対流することを遮断する対流遮断部(例えば、主に対流遮蔽盤73)を上下方向の複数箇所に設けたとを特徴とする。
前記熱媒体移送管を連結する管継ぎ手の下方に位置し、内径が前記媒体移送管の外周よりも大きく、且つ前記管継ぎ手の外径よりも小さな円環状の前記対流遮蔽部材を備えたことを特徴とする。
以上の特徴によって、本発明は、地下水の水圧等により上方へ抜けない構造であると共に設置の際の作業性が向上する。
地中に媒体を搬送し、地中にて熱を吸収した前記媒体を回収する熱媒体移送管であって、
前記熱媒体移送管の外周に設けられた複数の保護管(例えば、主に第1保護管31、第2保護管32、第3保護管33)と、前記保護管と他の前記保護管との間に設けた断熱層(例えば、主に発泡コンクリート36、37)と、断熱層の下方に下方からの地下水の浸入を防ぐ密封層(例えば、主に閉塞部34、35)と、を備えたことを特徴とする。
前記断熱層は、軽い基材又は気泡を多く含んだコンクリートにより形成したことを特徴とする。
以上の特徴によって、本発明は、水の浸入を防ぐだけでなく、空気等を多く含むようにすることで断熱性能を向上させている。
密封層は、コンクリートにより形成したことを特徴とする請求項8に記載の熱媒体移送管。
以上の特徴によって、本発明は、密封層により水の浸入を防ぐことができ、地下水の浸入により熱媒体移送管の温度低下を防いでいる。
地中に媒体(例えば、主に水、油等))を搬送し、地中にて熱を吸収した前記媒体を回収する熱媒体移送管(例えば、主に熱媒体移送管10(媒体注入管50、熱媒体取出管80)、410、500)を複数備え、回収した前記媒体の熱を利用して発電する地熱発電システムであって、前記媒体を記熱媒体移送管媒体内で循環させるために、前記媒体の流路を切り替える切替弁(例えば、主に流路切替弁414)と、媒体の状態を変化させずに圧力を所定の圧力に保ったまま前記媒体を循環させる圧力調整装置(例えば、主に圧送ポンプ411)と、を備え、前記媒体の温度が低下した際に、前記切替弁と前記圧力調整装置とを駆動し、前記媒体の温度が回復するまで記熱媒体移送管媒体内で前記媒体を循環させることを特徴とする。
前記媒体を循環させる経路に、前記媒体の温度を測定する温度測定装置(例えば、主に循環センサー部412(温度センサー))を備えたことを特徴とする。
以上の特徴によって、地熱帯の温度が解らない場合であっても、本発明は、熱水の温度が均一になるように地熱帯を含めて循環させ、循環させた熱水の温度を温度測定装置によって計測することが可能であるため、地熱帯の温度が回復したかどうかの指標とすることができる。
地中に媒体(例えば、主に水、油等))を搬送し、地中にて熱を吸収した前記媒体を回収する熱媒体移送管(例えば、主に熱媒体移送管10(媒体注入管50、熱媒体取出管80)、410、500)の施工方法であって、掘削した穴にセメント(例えば、主にセメント、地熱セメント)を流し込み、掘削した穴を密封する第1密封層(例えば、主に閉塞部35)を形成する第1密封工程と、前記第1密封工程により形成した穴に第1保護管(例えば、主に第1保護管31)を埋設する第1保護管埋設工程と、前記第1密封層が安定した後、前記第1密封層の穴より小さな径にて、前記第1密封層ごと掘削を行い、その掘削した穴にセメントを流し込み、掘削した穴を密封する第2密封層(例えば、主に閉塞部34)を形成する第2密封工程と、前記第2密封工程により形成した穴に第2保護管(例えば、主に第2保護管32)を埋設する第2保護管埋設工程と、前記第2密封層が安定した後、前記第2密封層の穴より小さな径にて、前記第2密封層ごと掘削を行い、その掘削した穴に、第3保護管(例えば、主に第3保護管33)を埋設する第3保護管埋設工程と、前記第1保護管と前記第2保護管との間、及び前記第2保護管と前記第3保護管との間に、発泡コンクリート(例えば、主に発泡コンクリート36、37)を流し込む断熱層形成工程と第3保護管埋設工程の後に、前記第3保護管の穴よりも小さな径にて、掘削を行い、掘削された穴に前記熱媒体移送管を埋設する熱媒体移送管埋設工程と、からなることを特徴とする。
地中に媒体(例えば、主に水、油等)を搬送し、地中にて熱を吸収した前記媒体を回収する熱媒体移送管(例えば、主に熱媒体移送管10(媒体注入管50、熱媒体取出管80)、410、500)を複数備え、回収した前記媒体の熱を利用して発電する地熱発電方法であって、地熱帯に存在する岩盤(例えば、主に岩盤帯38)を、前記熱媒体移送管よりも大きな径により形成した穴である挿入穴を設け、その挿入穴に伝達促進媒体(例えば、主に伝達促進媒体39)及び前記熱媒体移送管を挿入し、前記伝達促進媒体を介して前記地熱帯の熱を前記熱媒体移送管に伝達することを特徴とする。
地中に媒体(例えば、主に水、油等)を搬送し、地中にて熱を吸収した前記媒体を回収する熱媒体移送管を複数備え、回収した前記媒体の熱を利用して発電する地熱発電方法であって、地熱帯に存在する破砕帯(例えば、主に破砕帯43)に、前記熱媒体移送管よりも大きな径により形成した穴である挿入穴と、その挿入穴に挿入し、伝達促進媒体(例えば、主に伝達促進媒体39、水、油等)を収容する媒体容器(受け管75)と、を設け、前記媒体容器を挿入し、前記媒体容器に収容した前記伝達促進媒体を介して前記地熱帯の熱を前記熱媒体移送管に伝達することを特徴とする。
1a・1b・1c…加圧水発電装置、3…加圧給水ポンプ、4…温水サービスタンク、
5…復水ポンプ、6…復水器、10・410(a~f)・500…熱媒体移送管、
27…蒸発曲線、31…第1保護管、32…第2保護管、40…注入管、
42・82…雄ネジ部、33…第3保護管、34・35…発泡コンクリート、
36・37…発泡コンクリート、38…岩盤帯、39…伝達促進媒体、43…破砕帯、
50…媒体注入管、51・55…管ねじ継ぎ手、52・56…雌ネジ部、
53・57…載置空間部、46・86…被覆層、47・87…把持部、
60・90…保温管、61・91…挿入管、62・92…突出部、73…対流遮蔽盤、
75…受け管、76…媒体移動孔、80・80a…熱媒体取出管、81…取出管、
85…断熱部、93…管ねじ継ぎ手被覆部、150…熱交換部、151…熱交換器、
155…循環ポンプ、414…流路切替弁、411…圧送ポンプ、
412…循環センサー部、T・T2・T3…蒸気タービン、G…発電機、
B…バイナリー発電装置、CT…冷却塔、F…気水分離器、TF…受電設備、
S…地表、U…地熱帯。
Claims (1)
- 地中に媒体を搬送し、地中にて熱を吸収した前記媒体を回収する熱媒体移送管を複数備え、回収した前記媒体の熱を利用して発電する地熱発電システムであって、
全体の複数の前記熱媒体移送管内に前記媒体を圧送する圧力ポンプと、
前記媒体を個々の前記熱媒体移送管内で循環させるために、媒体取出管から媒体注入管へ直接流入するように前記媒体の流路を切り替える切替弁と、
個々の前記熱媒体移送管内で循環させるために、前記媒体の状態を変化させずに圧力を所定の圧力に保ったまま前記媒体を循環させる個々の圧力調整手段と、を備え、
前記媒体の温度が低下した際に、前記切替弁と前記圧力調整手段とを駆動し、前記媒体の温度が回復するまで前記熱媒体移送管内で前記媒体を循環させることを特徴とする地熱発電システム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017104035 | 2017-05-26 | ||
JP2017104035 | 2017-05-26 | ||
JP2017200775A JP7116981B2 (ja) | 2017-05-26 | 2017-10-17 | 地熱発電装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017200775A Division JP7116981B2 (ja) | 2017-05-26 | 2017-10-17 | 地熱発電装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022001764A JP2022001764A (ja) | 2022-01-06 |
JP7269674B2 true JP7269674B2 (ja) | 2023-05-09 |
Family
ID=64668119
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017200775A Active JP7116981B2 (ja) | 2017-05-26 | 2017-10-17 | 地熱発電装置 |
JP2021155051A Active JP7529280B2 (ja) | 2017-05-26 | 2021-09-24 | 地熱発電装置 |
JP2021155052A Active JP7269674B2 (ja) | 2017-05-26 | 2021-09-24 | 地熱発電システム |
JP2023209738A Active JP7584825B2 (ja) | 2017-05-26 | 2023-12-13 | 地熱発電装置及び埋設管 |
JP2024188766A Pending JP2025003661A (ja) | 2017-05-26 | 2024-10-28 | 埋設管 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017200775A Active JP7116981B2 (ja) | 2017-05-26 | 2017-10-17 | 地熱発電装置 |
JP2021155051A Active JP7529280B2 (ja) | 2017-05-26 | 2021-09-24 | 地熱発電装置 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023209738A Active JP7584825B2 (ja) | 2017-05-26 | 2023-12-13 | 地熱発電装置及び埋設管 |
JP2024188766A Pending JP2025003661A (ja) | 2017-05-26 | 2024-10-28 | 埋設管 |
Country Status (1)
Country | Link |
---|---|
JP (5) | JP7116981B2 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7116981B2 (ja) * | 2017-05-26 | 2022-08-12 | ジャパン・ニュー・エナジー株式会社 | 地熱発電装置 |
CN112412718B (zh) * | 2020-12-09 | 2024-08-27 | 四川大学 | 一种五阶段梯级原位地热发电系统 |
WO2022226163A1 (en) * | 2021-04-23 | 2022-10-27 | Geothermic Solution, Llc | Glider devices and methods therefor |
CN117651805A (zh) | 2021-12-13 | 2024-03-05 | 株式会社赛内特 | 同轴循环型发电装置以及同轴循环型发电方法 |
CN116412308B (zh) * | 2023-06-09 | 2023-08-18 | 无锡市华立石化工程有限公司 | 管道预热装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001147056A (ja) | 1999-11-19 | 2001-05-29 | Unicom Kikaku Sekkei:Kk | 基礎杭による地中熱利用システム |
JP2008504470A (ja) | 2004-06-23 | 2008-02-14 | ビー. カーレット ハリー | 深部地熱貯留層の開発および生産方法(関連出願のクロスレファレンス)本出願は、2004年6月23日出願の米国仮特許出願第60/582,626号および2005年2月7日出願の米国仮特許出願第60/650,667号の開示全体に優先権を主張し、かつ参照により本明細書に組み込む。 |
JP2011080644A (ja) | 2009-10-05 | 2011-04-21 | Eco Power:Kk | 地中熱採熱システム |
WO2016204287A1 (ja) | 2015-06-19 | 2016-12-22 | ジャパン・ニュー・エナジー株式会社 | 地熱発電システム、地熱発電装置、地熱発電方法又は媒体移送管、その媒体移送管を利用した地熱発電装置及び地熱発電方法並びに破砕帯に媒体移送管を設置する方法 |
JP2017025730A (ja) | 2015-07-17 | 2017-02-02 | 株式会社大林組 | 地熱採取方法および地熱採取システム |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49103122A (ja) * | 1973-02-05 | 1974-09-30 | ||
CN1008470B (zh) * | 1985-08-17 | 1990-06-20 | 巴布科克和威尔科斯公司 | 保温蒸汽管线的接头 |
JPH0733819B2 (ja) * | 1987-07-22 | 1995-04-12 | エフ ビューチ ハンス | 地熱エネルギを抽出して利用する方法 |
JPH01182691A (ja) * | 1988-01-07 | 1989-07-20 | Nippon Steel Corp | 断熱性油井鋼管継手 |
US4844164A (en) * | 1988-05-27 | 1989-07-04 | Union Oil Company Of California | Process and composition for treating underground formations penetrated by a well borehole |
JPH04234576A (ja) * | 1991-01-08 | 1992-08-24 | Toshiba Corp | 高温岩体熱抽出装置 |
US5282652A (en) * | 1991-10-22 | 1994-02-01 | Werner Pipe Service, Inc. | Lined pipe joint and seal |
AT404386B (de) * | 1994-05-25 | 1998-11-25 | Johann Dipl Ing Springer | Doppelwandiger thermisch isolierter tubingstrang |
JP2005351558A (ja) * | 2004-06-11 | 2005-12-22 | Asahi Kasei Homes Kk | 地熱交換装置の設計方法 |
ITTO20060021A1 (it) * | 2006-01-13 | 2007-07-14 | Soilmec Spa | Sistema di perforazione del terreno per realizzare la circolazione di fluido in un impianto per lo sfruttamento dell'energia geotermica. |
DE102009028306B4 (de) * | 2009-08-06 | 2011-04-21 | Tpr Fiberdur Gmbh & Co. Kg | Doppelrohr |
CN101832673B (zh) * | 2010-01-27 | 2012-05-23 | 龚智勇 | 利用油层套管传导地下热能再利用的方法及装置 |
JP5917352B2 (ja) * | 2012-01-10 | 2016-05-11 | ジャパン・ニュー・エナジー株式会社 | 蒸気発生システム、地熱発電システム、蒸気発生方法及び地熱発電方法 |
DE102012005048A1 (de) * | 2012-03-15 | 2013-09-19 | Daldrup & Söhne AG | Förderverrohrung zur Verwendung bei einer Erdwärmesonde zur Gewinnung geothermischer Energie und Verfahren zum Einbau einer solchen Förderverrohrung |
JP2016031023A (ja) * | 2014-07-26 | 2016-03-07 | ジャパン・ニュー・エナジー株式会社 | 伝熱用輸送管及び地熱交換器 |
WO2016035770A1 (ja) * | 2014-09-02 | 2016-03-10 | 国立大学法人京都大学 | 地熱交換器、液体輸送管、液体上昇用管、地熱発電設備及び地熱発電方法 |
JP6393602B2 (ja) | 2014-11-26 | 2018-09-19 | 協同テック株式会社 | 循環型地熱発電方法及び装置 |
JP6552222B2 (ja) * | 2015-03-06 | 2019-07-31 | ジャパン・ニュー・エナジー株式会社 | 媒体移送管、その媒体移送管を利用した地熱発電装置及び地熱発電方法 |
DE102015112892B4 (de) * | 2015-08-05 | 2019-01-31 | Handke Brunnenbau Gmbh | Verrohrung für eine Erdwärmesonde zur Gewinnung geothermischer Energie, insbesondere tiefengeothermischer Energie |
DE202016003750U1 (de) * | 2016-06-15 | 2016-07-22 | Franz-Josef Struffert | Gedämmtes Rohr für den Einsatz in der Tiefen-Geothermie |
JP7116981B2 (ja) * | 2017-05-26 | 2022-08-12 | ジャパン・ニュー・エナジー株式会社 | 地熱発電装置 |
-
2017
- 2017-10-17 JP JP2017200775A patent/JP7116981B2/ja active Active
-
2021
- 2021-09-24 JP JP2021155051A patent/JP7529280B2/ja active Active
- 2021-09-24 JP JP2021155052A patent/JP7269674B2/ja active Active
-
2023
- 2023-12-13 JP JP2023209738A patent/JP7584825B2/ja active Active
-
2024
- 2024-10-28 JP JP2024188766A patent/JP2025003661A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001147056A (ja) | 1999-11-19 | 2001-05-29 | Unicom Kikaku Sekkei:Kk | 基礎杭による地中熱利用システム |
JP2008504470A (ja) | 2004-06-23 | 2008-02-14 | ビー. カーレット ハリー | 深部地熱貯留層の開発および生産方法(関連出願のクロスレファレンス)本出願は、2004年6月23日出願の米国仮特許出願第60/582,626号および2005年2月7日出願の米国仮特許出願第60/650,667号の開示全体に優先権を主張し、かつ参照により本明細書に組み込む。 |
JP2011080644A (ja) | 2009-10-05 | 2011-04-21 | Eco Power:Kk | 地中熱採熱システム |
WO2016204287A1 (ja) | 2015-06-19 | 2016-12-22 | ジャパン・ニュー・エナジー株式会社 | 地熱発電システム、地熱発電装置、地熱発電方法又は媒体移送管、その媒体移送管を利用した地熱発電装置及び地熱発電方法並びに破砕帯に媒体移送管を設置する方法 |
JP2017025730A (ja) | 2015-07-17 | 2017-02-02 | 株式会社大林組 | 地熱採取方法および地熱採取システム |
Also Published As
Publication number | Publication date |
---|---|
JP2024015378A (ja) | 2024-02-01 |
JP7116981B2 (ja) | 2022-08-12 |
JP2022001764A (ja) | 2022-01-06 |
JP2018200161A (ja) | 2018-12-20 |
JP7584825B2 (ja) | 2024-11-18 |
JP2022003293A (ja) | 2022-01-11 |
JP7529280B2 (ja) | 2024-08-06 |
JP2025003661A (ja) | 2025-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7269674B2 (ja) | 地熱発電システム | |
US11788516B2 (en) | Systems and methods of generating electricity using heat from within the earth | |
US20200217304A1 (en) | Systems and methods of generating electricity using heat from within the earth | |
RU2421666C2 (ru) | Труба и система для использования низкотемпературной энергии | |
US6708494B1 (en) | Device for utlilizing geothermal heat and method for operating the same | |
US8650875B2 (en) | Direct exchange geothermal refrigerant power advanced generating system | |
US9394771B2 (en) | Single well, self-flowing, geothermal system for energy extraction | |
US8020382B1 (en) | Closed loop, hot dry rock heat recovery process | |
US9423158B2 (en) | System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model | |
EP3415838B1 (en) | Geothermal heat exchange system and construction method thereof | |
US8201409B1 (en) | Closed loop, hot dry rock heat recovery fluid | |
CN102105755A (zh) | 从钻井内获取地热来发电的系统和方法 | |
US11913679B1 (en) | Geothermal systems and methods with an underground magma chamber | |
US20060130480A1 (en) | Method and system for geothermal electrical generation | |
JP7175024B2 (ja) | 地熱発電装置 | |
US20170016201A1 (en) | Heat exchange structure of power generation facility | |
US20240271832A1 (en) | Molten salt as heat transfer fluid in magma geothermal system | |
JP6809698B2 (ja) | 気水分離装置、地熱発電装置及び地熱発電方法 | |
TW201925670A (zh) | 熱媒輸送管、熱媒輸送管之施工方法、使用該熱媒輸送管之地熱發電系統及地熱發電方法 | |
JP2011145050A (ja) | 既設地下空洞を再利用したエネルギー供給システム | |
TW202040050A (zh) | 熱媒輸送管、熱媒輸送管之施工方法、使用該熱媒輸送管之地熱發電系統及地熱發電方法 | |
JP6796854B2 (ja) | 気水分離装置、地熱発電装置及び地熱発電方法 | |
JP2011002218A (ja) | 地中蓄熱装置造成工法、地中蓄熱装置及び地中蓄熱方法 | |
WO2024182025A1 (en) | Geothermal systems and methods with an underground magma chamber | |
KR20070111606A (ko) | 지열을 이용한 난방 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210924 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220907 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221103 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230413 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230417 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7269674 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |