[go: up one dir, main page]

JP7268537B2 - battery cooling system - Google Patents

battery cooling system Download PDF

Info

Publication number
JP7268537B2
JP7268537B2 JP2019155798A JP2019155798A JP7268537B2 JP 7268537 B2 JP7268537 B2 JP 7268537B2 JP 2019155798 A JP2019155798 A JP 2019155798A JP 2019155798 A JP2019155798 A JP 2019155798A JP 7268537 B2 JP7268537 B2 JP 7268537B2
Authority
JP
Japan
Prior art keywords
battery
cooler
pair
temperature
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019155798A
Other languages
Japanese (ja)
Other versions
JP2021034303A (en
Inventor
昌弘 糟谷
尭史 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Original Assignee
Toyota Boshoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp filed Critical Toyota Boshoku Corp
Priority to JP2019155798A priority Critical patent/JP7268537B2/en
Publication of JP2021034303A publication Critical patent/JP2021034303A/en
Application granted granted Critical
Publication of JP7268537B2 publication Critical patent/JP7268537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は、電池の温度を管理する電池冷却システムに関する。 The present invention relates to a battery cooling system that manages battery temperature.

従来、複数の電池としての電池モジュールを冷却可能な電池システムとして、例えば特許文献1に示すものが知られている。こうした電池システムでは、複数の電池モジュールが互いに距離を隔てて配置することで、複数の電池モジュール同士の間にそれぞれ冷媒通路を形成している。そして、ファンによって各冷媒通路に冷却風を流すことにより、各電池モジュールの冷却を行うようにしている。 2. Description of the Related Art Conventionally, as a battery system capable of cooling battery modules as a plurality of batteries, for example, the system disclosed in Patent Document 1 is known. In such a battery system, a plurality of battery modules are arranged at a distance from each other, thereby forming coolant passages between the plurality of battery modules. Each battery module is cooled by blowing cooling air through each refrigerant passage with a fan.

特開2003-331932号公報Japanese Patent Application Laid-Open No. 2003-331932

ところで、上述のような電池システムでは、複数の電池モジュール同士の間にそれぞれ形成された冷媒通路にファンによる一定の冷却風を流すだけで複数の電池モジュールを冷却する構成であるため、複数の電池モジュールを適切な温度で管理する上では改善の余地を残すものとなっている。 By the way, in the battery system as described above, since the plurality of battery modules is cooled only by flowing a certain amount of cooling air from a fan through the coolant passages formed between the plurality of battery modules, the plurality of battery modules is cooled. There is room for improvement in managing the module at an appropriate temperature.

本発明は、このような従来技術に存在する問題点に着目してなされた。その目的は、電池を適切な温度で精度よく管理することができる電池冷却システムを提供することにある。 The present invention has been made by paying attention to such problems existing in the prior art. The object is to provide a battery cooling system capable of precisely controlling the battery at an appropriate temperature.

以下、上記課題を解決するための手段及びその作用効果について記載する。
上記課題を解決する電池冷却システムは、一方向に並ぶように配置された複数の電池と、隣り合う前記電池同士の間に前記電池と接触するように配置され、冷却用の流体が流れる流路を有した電池冷却器と、前記電池冷却器に前記流体を供給する流体供給機と、前記電池の温度を検出する温度センサと、前記電池冷却器に対して前記一方向における加圧力を付与可能な加圧機構と、前記加圧機構の駆動を制御する制御部と、を備え、前記電池冷却器は、前記加圧機構によって加圧力が付与された場合に、前記流路の断面積が小さくなるように弾性変形可能に構成され、前記制御部は、前記温度センサによる検出結果に基づいて、前記電池の温度が高いときの方が前記電池の温度が低いときよりも前記加圧機構から前記電池冷却器に付与される加圧力が大きくなるように、前記加圧機構の駆動を制御することを要旨とする。
Means for solving the above problems and their effects will be described below.
A battery cooling system that solves the above problems includes a plurality of batteries arranged so as to line up in one direction; a fluid supplier that supplies the fluid to the battery cooler; a temperature sensor that detects the temperature of the battery; and a pressurizing force can be applied to the battery cooler in the one direction and a control unit for controlling the driving of the pressure mechanism, and the battery cooler reduces the cross-sectional area of the flow path when pressure is applied by the pressure mechanism. Based on the result of detection by the temperature sensor, the controller controls, based on the result of detection by the temperature sensor, when the temperature of the battery is high, the pressure from the pressurizing mechanism is higher than when the temperature of the battery is low. The gist of the invention is to control the driving of the pressurizing mechanism so that the pressurizing force applied to the battery cooler is increased.

この構成によれば、電池冷却器は、加圧機構によって加圧力が付与されると、流路の断面積が小さくなるように弾性変形する。このため、流路を流れる流体の流速が速くなるので、電池冷却器の電池に対する冷却性能が向上する。したがって、電池の温度が適切な温度よりも高くなった場合には、加圧機構によって電池冷却器を加圧することで、電池を効率的に冷却することができるので、電池の温度を適切な温度まで迅速に下げることができる。一方、電池の温度が適切な温度よりも低くなった場合には、加圧機構による電池冷却器の加圧を解除することで、電池冷却器の電池に対する冷却性能が低下するため、電池の温度を適切な温度まで上げることができる。すなわち、制御部が温度センサによる検出結果に基づいて電池の温度が高いときの方が電池の温度が低いときよりも加圧機構から電池冷却器に付与される加圧力が大きくなるように加圧機構の駆動を制御することで、電池を適切な温度で精度よく管理することができる。 According to this configuration, the battery cooler elastically deforms so that the cross-sectional area of the flow path is reduced when the pressurizing force is applied by the pressurizing mechanism. As a result, the flow velocity of the fluid flowing through the flow path is increased, so that the battery cooling performance of the battery cooler is improved. Therefore, when the temperature of the battery becomes higher than the appropriate temperature, the battery can be efficiently cooled by pressurizing the battery cooler with the pressurizing mechanism. can be quickly lowered to On the other hand, when the battery temperature becomes lower than the appropriate temperature, the pressurization of the battery cooler by the pressurizing mechanism is released. can be raised to an appropriate temperature. That is, the control unit applies pressure to the battery cooler from the pressurizing mechanism based on the result of detection by the temperature sensor so that the pressure applied to the battery cooler when the temperature of the battery is high is greater than when the temperature of the battery is low. By controlling the driving of the mechanism, the battery can be accurately managed at an appropriate temperature.

一実施形態の電池冷却システムの概略構成を示す側面模式図。1 is a schematic side view showing a schematic configuration of a battery cooling system according to one embodiment; FIG. 図1の電池冷却システムにおいて送風機の位置を具体的に示した平面図。FIG. 2 is a plan view specifically showing the position of the blower in the battery cooling system of FIG. 1; 流路の断面積が通常のときの電池冷却器を示す側面模式図。FIG. 4 is a schematic side view showing the battery cooler when the cross-sectional area of the flow path is normal; 流路の断面積が通常よりも小さいときの電池冷却器を示す側面模式図。FIG. 4 is a schematic side view showing the battery cooler when the cross-sectional area of the flow path is smaller than normal; 図1の電池冷却システムにおいて、一対の挟持部材によって複数の電池冷却器を複数の電池と共に加圧したときの状態を示す側面模式図。FIG. 2 is a schematic side view showing a state in which a pair of clamping members pressurize a plurality of battery coolers together with a plurality of batteries in the battery cooling system of FIG. 1 ;

以下、電池冷却システムの一実施形態を図面に従って説明する。
図1及び図2に示すように、電池冷却システム11は、複数の電池12と、複数の電池冷却器13と、複数の温度センサ14と、流体供給機の一例としての複数の送風機15と、加圧機構16と、制御部17とを備えている。
An embodiment of a battery cooling system will be described below with reference to the drawings.
As shown in FIGS. 1 and 2, the battery cooling system 11 includes a plurality of batteries 12, a plurality of battery coolers 13, a plurality of temperature sensors 14, a plurality of blowers 15 as an example of a fluid supplier, A pressure mechanism 16 and a control unit 17 are provided.

各電池12は、略矩形板状にアルミラミネートフィルムによって包装された状態のリチウムイオン電池などの二次電池によって構成されている。複数の電池12は、直方体状をなす中空のベース部材18上に水平方向における一方向Xに並ぶように配置されている。この場合、ベース部材18の長手方向と一方向Xとは一致している。複数の電池12は、それらの上面から突出する正極端子19及び負極端子20をそれぞれ有しており、バスバー(図示略)によって直列に接続されている。 Each battery 12 is composed of a secondary battery such as a lithium ion battery in a state of being wrapped in an aluminum laminate film in a substantially rectangular plate shape. The plurality of batteries 12 are arranged on a hollow rectangular parallelepiped base member 18 in one direction X in the horizontal direction. In this case, the longitudinal direction of the base member 18 and the one direction X match. A plurality of batteries 12 each have a positive electrode terminal 19 and a negative electrode terminal 20 protruding from their upper surfaces, and are connected in series by a bus bar (not shown).

各電池冷却器13は、略矩形板状をなしており、一方向Xに並んだ隣り合う電池12同士の間に電池12と接触するように配置されている。つまり、ベース部材18上には、複数の電池12と複数の電池冷却器13とが最大限面接触するように一方向Xに交互に並んで配置されている。この場合、一方向Xの両端にはいずれも電池12が配置されるため、電池冷却器13の数は電池12の数よりも一つ少なくなっている。 Each battery cooler 13 has a substantially rectangular plate shape and is arranged between adjacent batteries 12 aligned in one direction X so as to be in contact with the batteries 12 . That is, on the base member 18, the plurality of batteries 12 and the plurality of battery coolers 13 are alternately arranged in one direction X so as to be in maximum surface contact. In this case, the number of battery coolers 13 is one less than the number of batteries 12 because the batteries 12 are arranged at both ends in the one direction X. As shown in FIG.

ベース部材18上における一方向Xの両端に位置する2つの電池12の外側には、一対のL字板状の挟持部材21が、これら2つの電池12とそれぞれ面接触するように配置されている。すなわち、一対の挟持部材21は、複数の電池12及び複数の電池冷却器13を一方向Xにおいて両側から纏めて挟むように配置されている。一対の挟持部材21のうちの一方はベース部材18上に一対のボルト22で固定された固定挟持部材23とされ、他方はベース部材18上において一方向Xに往復移動可能に設けられた可動挟持部材24とされている。 A pair of L-shaped plate-shaped clamping members 21 are arranged outside the two batteries 12 positioned at both ends in the one direction X on the base member 18 so as to be in surface contact with the two batteries 12, respectively. . That is, the pair of holding members 21 are arranged so as to collectively hold the plurality of batteries 12 and the plurality of battery coolers 13 in one direction X from both sides. One of the pair of clamping members 21 is a fixed clamping member 23 fixed on the base member 18 by a pair of bolts 22, and the other is a movable clamping member provided on the base member 18 so as to reciprocate in one direction X. A member 24 is provided.

ベース部材18内における可動挟持部材24の下側には、可動挟持部材24を一方向Xに往復移動可能なアクチュエータ25が設けられている。アクチュエータ25は、一方向Xに延びるボールねじ軸26と、ボールねじ軸26に螺合した状態で可動挟持部材24に連結されたナット27と、ボールねじ軸26を正逆両方向に回転駆動可能なモータ28とを備えている。 An actuator 25 capable of reciprocating the movable clamping member 24 in one direction X is provided below the movable clamping member 24 in the base member 18 . The actuator 25 includes a ball screw shaft 26 extending in one direction X, a nut 27 screwed onto the ball screw shaft 26 and connected to the movable holding member 24, and capable of rotationally driving the ball screw shaft 26 in both forward and reverse directions. A motor 28 is provided.

したがって、モータ28によってボールねじ軸26を正方向に回転駆動したり逆方向に回転駆動したりすることで、可動挟持部材24が一方向Xにおいて固定挟持部材23に対して近づいたり離れたりするように移動する。そして、モータ28によってボールねじ軸26を正方向に回転駆動することによって可動挟持部材24を一方向Xにおいて固定挟持部材23に対して近づくように移動させた場合には、一対の挟持部材21によって複数の電池冷却器13及び複数の電池12に対して一方向Xにおける加圧力が付与される。 Therefore, by rotating the ball screw shaft 26 in the forward direction or in the reverse direction by the motor 28, the movable clamping member 24 moves toward or away from the fixed clamping member 23 in the one direction X. move to When the motor 28 rotates the ball screw shaft 26 in the forward direction to move the movable clamping member 24 toward the fixed clamping member 23 in the direction X, the pair of clamping members 21 A pressurizing force in one direction X is applied to the plurality of battery coolers 13 and the plurality of batteries 12 .

なお、本実施形態では、アクチュエータ25及び一対の挟持部材21により、電池冷却器13に対して一方向Xにおける加圧力を付与可能な加圧機構16が構成されている。
図2及び図3に示すように、電池冷却器13は、互いに一方向Xで対向する一対の矩形板状をなす板金部材30と、一対の板金部材30同士の間に配置された弾性部材の一例としての板ばね部31とを備えている。電池冷却器13は、一対の板金部材30同士の間の隙間が冷却用の流体の一例としての空気が流れる流路32になっている。電池冷却器13は、一対の板金部材30が例えばアルミニウムなどの熱伝導性の高い材料によって構成され、電池12に接触させて電池12の熱を奪うことによって電池12を冷却する。
In this embodiment, the actuator 25 and the pair of clamping members 21 constitute a pressing mechanism 16 capable of applying a pressing force in the one direction X to the battery cooler 13 .
As shown in FIGS. 2 and 3, the battery cooler 13 includes a pair of rectangular plate-shaped sheet metal members 30 facing each other in one direction X, and an elastic member disposed between the pair of sheet metal members 30 . A leaf spring portion 31 is provided as an example. In the battery cooler 13, the gap between the pair of sheet metal members 30 forms a channel 32 through which air, which is an example of a cooling fluid, flows. The battery cooler 13 has a pair of sheet metal members 30 made of a material having high thermal conductivity such as aluminum, and cools the battery 12 by contacting the battery 12 and drawing heat from the battery 12 .

電池冷却器13における板ばね部31は、一対の板金部材30のうちの一方に切り起こし加工を施すことによって複数形成されている。この場合、複数の板ばね部31は、板金部材30における縦横両方向に対してジグザグに並ぶように配置されている。すなわち、複数の板ばね部31は、板金部材30に対して千鳥状に並ぶように形成されている。一対の板金部材30のうち複数の板ばね部31が形成された一方は第1板金部材33とされ、他方は第2板金部材34とされている。 A plurality of leaf spring portions 31 in the battery cooler 13 are formed by cutting and raising one of the pair of sheet metal members 30 . In this case, the plurality of leaf spring portions 31 are arranged in a zigzag pattern in both the vertical and horizontal directions of the sheet metal member 30 . That is, the plurality of leaf spring portions 31 are formed so as to be arranged in a zigzag manner with respect to the sheet metal member 30 . One of the pair of sheet metal members 30 on which the plurality of leaf spring portions 31 are formed is a first sheet metal member 33 , and the other is a second sheet metal member 34 .

各板ばね部31は、第1板金部材33から一方向X及び鉛直方向の両方と直交する幅方向Yの一方側に第1板金部材33に対して傾斜するように第2板金部材34に向かって真っ直ぐに延びる矩形板状の基端部35と、基端部35の先端から第2板金部材34に沿って幅方向Yの一方側に真っ直ぐに延びる矩形板状の先端部36とを備えている。この場合、ベース部材18の短手方向と幅方向Yとは一致している。各板ばね部31の先端部36は、第2板金部材34と面接触した状態で接合されている。 Each leaf spring portion 31 extends from the first sheet metal member 33 toward the second sheet metal member 34 so as to be inclined with respect to the first sheet metal member 33 in one side of the width direction Y perpendicular to both the one direction X and the vertical direction. and a rectangular plate-shaped distal end portion 36 extending straight from the distal end of the proximal end portion 35 to one side in the width direction Y along the second sheet metal member 34. there is In this case, the lateral direction and the width direction Y of the base member 18 match. A tip portion 36 of each plate spring portion 31 is joined to the second sheet metal member 34 in a state of surface contact.

そして、電池冷却器13は、一対の挟持部材21によって一方向Xにおける加圧力が付与された場合に、図4に示すように、一対の板金部材30同士の隙間である流路32が狭くなるように各板ばね部31が弾性変形する。すなわち、電池冷却器13は、一対の挟持部材21によって一方向Xにおける加圧力が付与された場合に、図4に示すように、流路32の断面積が小さくなるように各板ばね部31が弾性変形する。 In the battery cooler 13, when pressure is applied in the one direction X by the pair of holding members 21, the passage 32, which is the gap between the pair of sheet metal members 30, narrows as shown in FIG. Each plate spring portion 31 is elastically deformed. That is, in the battery cooler 13, when pressure is applied in the one direction X by the pair of holding members 21, as shown in FIG. is elastically deformed.

この場合、各板ばね部31の基端部35と第1板金部材33とのなす鋭角の角度は小さくなり、各板ばね部31の基端部35と先端部36とのなす鈍角の角度は大きくなり、第1板金部材33と第2板金部材34との位置が幅方向Yにおいてずれる。 In this case, the acute angle formed between the base end portion 35 of each leaf spring portion 31 and the first sheet metal member 33 becomes small, and the obtuse angle formed between the base end portion 35 and the tip portion 36 of each leaf spring portion 31 becomes As a result, the positions of the first sheet metal member 33 and the second sheet metal member 34 are shifted in the width direction Y.

図1及び図2に示すように、ベース部材18に対して幅方向Yの一方側の位置には、複数の送風機15が一方向Xに等間隔で並ぶように配置されている。この場合、複数の送風機15は、電池冷却器13における各板ばね部31の基端部35が第1板金部材33に対して幅方向Yにおいて傾斜する側とは反対側に配置されている。複数の送風機15は、複数の電池冷却器13の流路32及び複数の電池12に対して冷却用の空気を供給する。 As shown in FIGS. 1 and 2, a plurality of blowers 15 are arranged in the one direction X at one side in the width direction Y with respect to the base member 18 so as to be arranged at regular intervals. In this case, the plurality of blowers 15 are arranged on the side opposite to the side where the base end portion 35 of each plate spring portion 31 in the battery cooler 13 is inclined in the width direction Y with respect to the first sheet metal member 33 . The plurality of blowers 15 supply cooling air to the flow paths 32 of the plurality of battery coolers 13 and the plurality of batteries 12 .

制御部17は、電池冷却システム11を統括的に制御する。複数の電池12には、複数の電池12の温度を検出する温度センサ14がそれぞれ取り付けられている。制御部17は、複数の送風機15、複数の温度センサ14、及びモータ28とそれぞれ電気的に接続されている。制御部17は、複数の温度センサ14による検出結果に基づいて、モータ28及び複数の送風機15の駆動を制御する。なお、制御部17には、電池12を効率よく使用する上での電池12の適切な温度範囲の上限値Jと下限値Kとが記憶されている。 The control unit 17 comprehensively controls the battery cooling system 11 . A temperature sensor 14 for detecting the temperature of the plurality of batteries 12 is attached to each of the plurality of batteries 12 . The controller 17 is electrically connected to the plurality of blowers 15, the plurality of temperature sensors 14, and the motor 28, respectively. The control unit 17 controls the driving of the motor 28 and the plurality of fans 15 based on the detection results of the plurality of temperature sensors 14 . Note that the controller 17 stores an upper limit value J and a lower limit value K of a temperature range suitable for the battery 12 for efficient use of the battery 12 .

次に、電池冷却システム11の作用について説明する。
図1及び図2に示すように、電池冷却システム11の初期状態では、一対の挟持部材21により各電池冷却器13に対して一方向Xにおける加圧力が付与されない状態で且つ各送風機15が停止した状態になっている。この状態で、各電池12が使用されると、各電池12の温度が上昇する。そして、各電池12の平均温度が下限値Kよりも高くなると、各送風機15が駆動されて各電池冷却器13の流路32及び各電池12に対して冷却用の空気が供給される。
Next, operation of the battery cooling system 11 will be described.
As shown in FIGS. 1 and 2, in the initial state of the battery cooling system 11, each blower 15 is stopped in a state in which the pair of clamping members 21 does not apply pressure to each battery cooler 13 in one direction X. It is in a state of When each battery 12 is used in this state, the temperature of each battery 12 rises. Then, when the average temperature of each battery 12 becomes higher than the lower limit value K, each blower 15 is driven to supply cooling air to the flow path 32 of each battery cooler 13 and each battery 12 .

すると、各電池冷却器13によって電池12から奪われた熱が流路32を流れる空気によって持ち去られるので、各電池12が電池冷却器13によって効率的に冷却される。そして、各電池12が電池冷却器13によって冷却されて各電池12の平均温度が下限値Kよりも低くなった場合には、各送風機15を停止する。 Then, the heat taken from the battery 12 by each battery cooler 13 is removed by the air flowing through the flow path 32 , so that each battery 12 is efficiently cooled by the battery cooler 13 . When each battery 12 is cooled by the battery cooler 13 and the average temperature of each battery 12 becomes lower than the lower limit value K, each blower 15 is stopped.

これにより、各電池12が電池冷却器13によってほとんど冷却されなくなるので、各電池12の平均温度が再び上昇して下限値Kよりも高くなる。このようにして各電池12の電池冷却器13による冷却状態を調節することによって各電池12の平均温度が適切な温度範囲である上限値Jと下限値Kとの間で管理される。 As a result, each battery 12 is hardly cooled by the battery cooler 13, so that the average temperature of each battery 12 rises again and becomes higher than the lower limit value K. By adjusting the cooling state of each battery 12 by the battery cooler 13 in this manner, the average temperature of each battery 12 is controlled between the upper limit value J and the lower limit value K, which are appropriate temperature ranges.

しかし、各電池12の使い方によっては各電池12の電池冷却器13による冷却が追いつかない場合がある。そして、各電池12の平均温度が上限値Jよりも高くなった場合には、可動挟持部材24を一方向Xにおいて固定挟持部材23に対して近づくように移動させることにより、一対の挟持部材21によって複数の電池冷却器13に対して一方向Xにおける加圧力を付与する。 However, depending on how each battery 12 is used, the cooling of each battery 12 by the battery cooler 13 may not keep up. Then, when the average temperature of each battery 12 becomes higher than the upper limit value J, the pair of clamping members 21 is moved by moving the movable clamping member 24 closer to the fixed clamping member 23 in the one direction X. applies a pressure in one direction X to the plurality of battery coolers 13 by .

すると、各電池冷却器13は、図4及び図5に示すように、一対の板金部材30同士の隙間である流路32が狭くなるように各板ばね部31が弾性変形する。すなわち、各電池冷却器13は、流路32の断面積が小さくなるように各板ばね部31が弾性変形する。 Then, in each battery cooler 13, as shown in FIGS. 4 and 5, each plate spring portion 31 is elastically deformed so that the channel 32, which is the gap between the pair of sheet metal members 30, becomes narrower. That is, in each battery cooler 13, each plate spring portion 31 is elastically deformed so that the cross-sectional area of the flow path 32 is reduced.

これにより、各電池冷却器13の流路32を流れる空気の流速が上がるので、各電池冷却器13による電池12に対する冷却性能が向上する。このため、平均温度が上限値Jよりも高くなった各電池12が電池冷却器13によって効果的に冷却されて各電池12の平均温度が上限値Jよりも低くなる。 As a result, the flow velocity of the air flowing through the flow path 32 of each battery cooler 13 is increased, so that the cooling performance of each battery cooler 13 for the battery 12 is improved. Therefore, each battery 12 whose average temperature has become higher than the upper limit value J is effectively cooled by the battery cooler 13 and the average temperature of each battery 12 becomes lower than the upper limit value J.

このように、本実施形態の電池冷却システム11では、各送風機15から電池冷却器13に冷却用の空気を送るだけでなく各電池冷却器13の流路32を流れる空気の流速を調節することができる。このため、各電池冷却器13による電池12に対する冷却性能を調節できるので、各電池12に対して細かい温度管理を行うことができる。すなわち、各電池12を適切な温度で精度よく管理することができる。 As described above, in the battery cooling system 11 of the present embodiment, not only can cooling air be sent from each blower 15 to the battery cooler 13, but also the flow velocity of the air flowing through the flow path 32 of each battery cooler 13 can be adjusted. can be done. Therefore, since the cooling performance of each battery cooler 13 for the battery 12 can be adjusted, the temperature of each battery 12 can be finely controlled. That is, each battery 12 can be accurately controlled at an appropriate temperature.

以上詳述した実施形態によれば、次のような効果が発揮される。
(1)電池冷却システム11において、電池冷却器13は加圧機構16によって加圧力が付与された場合に流路32の断面積が小さくなるように弾性変形可能に構成され、制御部17は温度センサ14による検出結果に基づいて加圧機構16の駆動を制御する。この構成によれば、電池冷却器13は、加圧機構16によって加圧力が付与されると、流路32の断面積が小さくなるように弾性変形する。このため、流路32を流れる空気の流速が速くなるので、電池冷却器13の電池12に対する冷却性能が向上する。したがって、電池12の温度が適切な温度よりも高くなった場合には、加圧機構16によって電池冷却器13を加圧することで、電池12を効率的に冷却することができるので、電池12の温度を適切な温度まで迅速に下げることができる。一方、電池12の温度が適切な温度よりも低くなった場合には、加圧機構16による電池冷却器13の加圧を解除することで、電池冷却器13の電池12に対する冷却性能が低下するため、電池12の温度を適切な温度まで上げることができる。すなわち、制御部17が温度センサ14による検出結果に基づいて電池12の温度が高いときの方が電池12の温度が低いときよりも加圧機構16から電池冷却器13に付与される加圧力が大きくなるように加圧機構16の駆動を制御するため、電池12を適切な温度で精度よく管理することができる。
According to the embodiment detailed above, the following effects are exhibited.
(1) In the battery cooling system 11, the battery cooler 13 is configured to be elastically deformable so that the cross-sectional area of the flow path 32 becomes smaller when pressure is applied by the pressure mechanism 16, and the controller 17 controls the temperature The drive of the pressurizing mechanism 16 is controlled based on the detection result by the sensor 14 . According to this configuration, the battery cooler 13 elastically deforms so that the cross-sectional area of the flow path 32 becomes smaller when a pressure is applied by the pressure mechanism 16 . Therefore, the flow velocity of the air flowing through the flow path 32 is increased, so that the cooling performance of the battery cooler 13 for the battery 12 is improved. Therefore, when the temperature of the battery 12 becomes higher than the appropriate temperature, the battery cooler 13 is pressurized by the pressurizing mechanism 16 so that the battery 12 can be efficiently cooled. The temperature can be quickly lowered to a suitable temperature. On the other hand, when the temperature of the battery 12 becomes lower than the appropriate temperature, the pressurization of the battery cooler 13 by the pressurizing mechanism 16 is released, thereby lowering the cooling performance of the battery cooler 13 for the battery 12. Therefore, the temperature of the battery 12 can be raised to an appropriate temperature. That is, when the temperature of the battery 12 is higher than when the temperature of the battery 12 is low, the pressure applied from the pressurizing mechanism 16 to the battery cooler 13 is greater than when the temperature of the battery 12 is low. Since the driving of the pressurizing mechanism 16 is controlled so as to increase the temperature, the battery 12 can be accurately controlled at an appropriate temperature.

(2)電池冷却システム11において、加圧機構16は、複数の電池12及び複数の電池冷却器13を一方向Xにおいて両側から纏めて挟む一対の挟持部材21と、一対の挟持部材を一方向Xにおいて互いに近づいたり離れたりするように相対移動可能なアクチュエータ25とを備えている。この構成によれば、アクチュエータ25によって一対の挟持部材21を一方向Xにおいて互いに近づいたり離れたりするように相対移動させることができるので、複数の電池12及び複数の電池冷却器13を纏めて加圧したり複数の電池12及び複数の電池冷却器13の加圧状態を纏めて解除したりすることができる。 (2) In the battery cooling system 11, the pressure mechanism 16 includes a pair of clamping members 21 that collectively clamp the plurality of batteries 12 and the plurality of battery coolers 13 from both sides in one direction X, and the pair of clamping members and an actuator 25 which is relatively movable so as to move toward or away from each other in X. According to this configuration, the actuator 25 can relatively move the pair of holding members 21 toward or away from each other in the direction X, so that the plurality of batteries 12 and the plurality of battery coolers 13 can be collectively added. Alternatively, the pressurized state of the plurality of batteries 12 and the plurality of battery coolers 13 can be collectively released.

(3)電池冷却システム11において、各電池冷却器13は一対の板金部材30と一対の板金部材30同士の間に配置された板ばね部31とを備えている。各電池冷却器13の構成を簡単にすることができる。 (3) In the battery cooling system 11 , each battery cooler 13 includes a pair of sheet metal members 30 and a leaf spring portion 31 arranged between the pair of sheet metal members 30 . The configuration of each battery cooler 13 can be simplified.

(4)電池冷却システム11において、板ばね部31は、一対の板金部材30のうちのいずれか一方に切り起こし加工を施すことによって形成されている。この構成によれば、各電池冷却器13を構成する部品点数の低減に寄与できる。加えて、板ばね部31は、金属製なので、電池12から熱を奪う。このため、一対の板金部材30だけでなく板ばね部31も電池12の冷却に寄与できる。 (4) In the battery cooling system 11 , the leaf spring portion 31 is formed by cutting and raising one of the pair of sheet metal members 30 . This configuration can contribute to a reduction in the number of parts constituting each battery cooler 13 . In addition, since the plate spring portion 31 is made of metal, it takes heat from the battery 12 . Therefore, not only the pair of sheet metal members 30 but also the leaf spring portion 31 can contribute to the cooling of the battery 12 .

(変更例)
上記実施形態は、以下のように変更して実施することができる。また、上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
(Change example)
The above embodiment can be implemented with the following modifications. Moreover, the above embodiments and the following modified examples can be implemented in combination with each other within a technically consistent range.

・一対の挟持部材21は、両方が一方向Xに往復移動可能に構成されていてもよい。この場合、一対の挟持部材21の両方を互いに一方向Xにおいて近づくように移動させることで、各電池冷却器13及び各電池12に加圧力が付与される。 - Both of the pair of holding members 21 may be configured to be reciprocally movable in one direction X. In this case, pressing force is applied to each battery cooler 13 and each battery 12 by moving both of the pair of holding members 21 toward each other in one direction X. As shown in FIG.

・加圧機構16を構成するアクチュエータ25は、エアシリンダ、油圧シリンダ、電動シリンダなどによって構成してもよい。
・電池冷却器13において、板ばね部31の代わりに弾性部材としてコイルばねやエラストマなどを採用してもよい。
- The actuator 25 that constitutes the pressurizing mechanism 16 may be composed of an air cylinder, a hydraulic cylinder, an electric cylinder, or the like.
- In the battery cooler 13, instead of the leaf spring portion 31, a coil spring, an elastomer, or the like may be employed as an elastic member.

・各電池冷却器13の流路32の断面積を小さくしても各電池冷却器13による電池12に対する冷却性能が不足するようであれば、さらに各送風機15から各電池冷却器13の流路32に送る空気の流速を上げるようにしてもよい。このようにすれば、各電池冷却器13の流路32を流れる空気の流速がより一層上がるので、各電池冷却器13による電池12に対する冷却性能をより一層向上することができる。 If the cooling performance for the battery 12 by each battery cooler 13 is insufficient even if the cross-sectional area of the flow path 32 of each battery cooler 13 is reduced, the flow path from each blower 15 to each battery cooler 13 is further reduced. The flow rate of the air sent to 32 may be increased. In this way, the flow velocity of the air flowing through the flow path 32 of each battery cooler 13 is further increased, so that the cooling performance of each battery cooler 13 for the batteries 12 can be further improved.

・複数の電池12と複数の電池冷却器13とは、一方向Xにおいて必ずしも交互に配置する必要はない。例えば、複数の電池12に対して二つおきに電池冷却器13を一つ配置するようにしてもよいし、複数の電池12に対して三つおきに電池冷却器13を一つ配置するようにしてもよい。 - The plurality of batteries 12 and the plurality of battery coolers 13 do not necessarily have to be arranged alternately in one direction X. For example, one battery cooler 13 may be arranged for every two batteries 12 , or one battery cooler 13 may be arranged for every three batteries 12 . can be

・冷却用の流体は、空気以外の気体であってもよいし、液体であってもよいし、気体と液体の混合物であってもよい。冷却用の流体として液体を用いる場合には、例えばフッ素系不活性液体であるフロリナート(登録商標)などの電気絶縁性を有する液体を採用することが好ましい。 - The cooling fluid may be a gas other than air, a liquid, or a mixture of gas and liquid. When a liquid is used as the cooling fluid, it is preferable to use an electrically insulating liquid such as Fluorinert (registered trademark), which is a fluorine-based inert liquid.

11…電池冷却システム、12…電池、13…電池冷却器、14…温度センサ、15…流体供給機の一例としての送風機、16…加圧機構、17…制御部、21…挟持部材、25…アクチュエータ、30…板金部材、31…弾性部材の一例としての板ばね部、32…流路、X…一方向。 DESCRIPTION OF SYMBOLS 11... Battery cooling system 12... Battery 13... Battery cooler 14... Temperature sensor 15... Blower as an example of a fluid supplier 16... Pressure mechanism 17... Control part 21... Clamping member 25... Actuator 30... Sheet metal member 31... Plate spring portion as an example of an elastic member 32... Flow path X... One direction.

Claims (4)

一方向に並ぶように配置された複数の電池と、
隣り合う前記電池同士の間に前記電池と接触するように配置され、冷却用の流体が流れる流路を有した電池冷却器と、
前記電池冷却器に前記流体を供給する流体供給機と、
前記電池の温度を検出する温度センサと、
前記電池冷却器に対して前記一方向における加圧力を付与可能な加圧機構と、
前記加圧機構の駆動を制御する制御部と、
を備え、
前記電池冷却器は、前記加圧機構によって加圧力が付与された場合に、前記流路の断面積が小さくなるように弾性変形可能に構成され、
前記制御部は、前記温度センサによる検出結果に基づいて、前記電池の温度が高いときの方が前記電池の温度が低いときよりも前記加圧機構から前記電池冷却器に付与される加圧力が大きくなるように、前記加圧機構の駆動を制御することを特徴とする電池冷却システム。
a plurality of batteries arranged so as to line up in one direction;
a battery cooler disposed between the adjacent batteries so as to be in contact with the batteries and having a flow path through which a cooling fluid flows;
a fluid supplier that supplies the fluid to the battery cooler;
a temperature sensor that detects the temperature of the battery;
a pressurizing mechanism capable of applying a pressurizing force in the one direction to the battery cooler;
a control unit that controls driving of the pressurizing mechanism;
with
The battery cooler is configured to be elastically deformable so that the cross-sectional area of the flow path becomes smaller when pressure is applied by the pressure mechanism,
Based on the result of detection by the temperature sensor, the control unit controls the pressure applied from the pressurizing mechanism to the battery cooler when the temperature of the battery is higher than when the temperature of the battery is lower. A battery cooling system characterized by controlling the driving of the pressurizing mechanism so as to increase the size.
前記加圧機構は、複数の前記電池及び前記電池冷却器を前記一方向において両側から纏めて挟む一対の挟持部材と、一対の前記挟持部材を前記一方向において互いに近づいたり離れたりするように相対移動可能なアクチュエータとを備えていることを特徴とする請求項1に記載の電池冷却システム。 The pressurizing mechanism includes a pair of clamping members that collectively clamp the plurality of batteries and the battery cooler from both sides in the one direction, and a pair of clamping members that face each other in the one direction so as to approach and separate from each other. 2. The battery cooling system of claim 1, comprising a movable actuator. 前記電池冷却器は、一対の板金部材と、一対の前記板金部材同士の間に配置された弾性部材とを備えていることを特徴とする請求項1または請求項2に記載の電池冷却システム。 3. The battery cooling system according to claim 1, wherein the battery cooler comprises a pair of sheet metal members and an elastic member arranged between the pair of sheet metal members. 前記弾性部材は、一対の前記板金部材のうちのいずれか一方に切り起こし加工を施すことによって形成された板ばね部によって構成されていることを特徴とする請求項3に記載の電池冷却システム。 4. The battery cooling system according to claim 3, wherein the elastic member comprises a leaf spring portion formed by cutting and raising one of the pair of sheet metal members.
JP2019155798A 2019-08-28 2019-08-28 battery cooling system Active JP7268537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019155798A JP7268537B2 (en) 2019-08-28 2019-08-28 battery cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019155798A JP7268537B2 (en) 2019-08-28 2019-08-28 battery cooling system

Publications (2)

Publication Number Publication Date
JP2021034303A JP2021034303A (en) 2021-03-01
JP7268537B2 true JP7268537B2 (en) 2023-05-08

Family

ID=74677553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019155798A Active JP7268537B2 (en) 2019-08-28 2019-08-28 battery cooling system

Country Status (1)

Country Link
JP (1) JP7268537B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7639800B2 (en) * 2022-09-26 2025-03-05 トヨタ自動車株式会社 Energy Storage Devices
WO2024244855A1 (en) * 2023-05-29 2024-12-05 浙江极氪智能科技有限公司 Cooling plate, battery pack, and electric device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147010A (en) 2006-12-08 2008-06-26 Nissan Motor Co Ltd Power supply device, and its control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3594023B2 (en) * 2002-07-30 2004-11-24 日産自動車株式会社 Battery module
JP2010009989A (en) * 2008-06-27 2010-01-14 Sanyo Electric Co Ltd Charge/discharge method of secondary battery and battery device
JP5545168B2 (en) * 2010-10-22 2014-07-09 トヨタ自動車株式会社 Vehicle assembled battery and vehicle
JP6608653B2 (en) * 2015-09-02 2019-11-20 株式会社東芝 Battery module

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147010A (en) 2006-12-08 2008-06-26 Nissan Motor Co Ltd Power supply device, and its control method

Also Published As

Publication number Publication date
JP2021034303A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
JP7268537B2 (en) battery cooling system
TWI284968B (en) Cooling equipment
WO2016194906A1 (en) Molding device
WO2000073008A3 (en) No wat welding system
US20160161998A1 (en) Actively Cooled Liquid Cooling System
JP6575391B2 (en) Power converter
JP5256088B2 (en) Electrostatic atomizer
JP2007280121A (en) Temperature control system, and temperature controller applied to temperature control system
JP5487142B2 (en) Heat tool and thermocompression bonding equipment
JP7356079B2 (en) battery system
US10049958B2 (en) Semiconductor device
JPH05172426A (en) Air conditioner with built-in heat transfer unit
KR101511180B1 (en) Hating element hot blast heater
US20230037843A1 (en) Assembled battery and battery pack
JP4854353B2 (en) Temperature control device and burn-in test device
JP7533286B2 (en) Vehicle battery unit and control method thereof
CN210821420U (en) A thermal head and printing equipment
KR20200065831A (en) Vehicle cooling system having movable radiator
JP2013235773A (en) Battery temperature control device
JP2010147340A (en) Electronic equipment
KR20120097884A (en) Inkjet print head
CN116551149B (en) Heat dissipation method and position correction method for friction stir welding equipment
CN219610576U (en) Battery module
JP6204048B2 (en) Cooler
KR20200143970A (en) Plate heating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230404

R151 Written notification of patent or utility model registration

Ref document number: 7268537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151