[go: up one dir, main page]

JP7264692B2 - Heavy metal remover, and adsorbent, compact and water purifier using same - Google Patents

Heavy metal remover, and adsorbent, compact and water purifier using same Download PDF

Info

Publication number
JP7264692B2
JP7264692B2 JP2019065654A JP2019065654A JP7264692B2 JP 7264692 B2 JP7264692 B2 JP 7264692B2 JP 2019065654 A JP2019065654 A JP 2019065654A JP 2019065654 A JP2019065654 A JP 2019065654A JP 7264692 B2 JP7264692 B2 JP 7264692B2
Authority
JP
Japan
Prior art keywords
adsorbent
heavy metal
particle size
compound
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019065654A
Other languages
Japanese (ja)
Other versions
JP2020163270A (en
Inventor
修治 川崎
修始 松永
哲也 花本
寛枝 吉延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2019065654A priority Critical patent/JP7264692B2/en
Priority to US17/442,164 priority patent/US20220176342A1/en
Priority to PCT/JP2020/013483 priority patent/WO2020203588A1/en
Priority to CN202080025718.XA priority patent/CN113631259B/en
Priority to KR1020217034026A priority patent/KR20210138744A/en
Priority to TW109110432A priority patent/TWI754251B/en
Publication of JP2020163270A publication Critical patent/JP2020163270A/en
Application granted granted Critical
Publication of JP7264692B2 publication Critical patent/JP7264692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は重金属除去剤、並びに、それを用いた吸着材、成形体および浄水器に関する。 TECHNICAL FIELD The present invention relates to a heavy metal remover, and an adsorbent, molded article and water purifier using the same.

活性炭は各種汚染物質の吸着能に優れており、従来から家庭用、工業用を問わず種々の分野で吸着材として使用されている。近年、塩素臭、カビ臭の無いおいしい水が要望されており、この要望に対してこれまで種々の浄水器が提案されている。しかしながら、最近では、トリハロメタン(以下、THMと略称する)、環境ホルモン、重金属など、水質に関する安全衛生上の関心がさらに高まっており、これらの要望に応えるには、活性炭のみでは不十分であり、特異な吸着能を有する無機化合物など他の吸着材を併用する必要がある。 Activated carbon has excellent adsorption capacity for various contaminants, and has been used as an adsorbent in various fields, both domestic and industrial. In recent years, there has been a demand for delicious water free from chlorine and moldy odors, and various water purifiers have been proposed to meet this demand. However, in recent years, there has been an increasing interest in water quality safety and health, such as trihalomethanes (hereinafter abbreviated as THM), endocrine disruptors, and heavy metals. It is necessary to use other adsorbents such as inorganic compounds with unique adsorption capacity.

本出願人は、これまでにも、重金属を効率良く除去する手段として、アルミノシリケート系無機化合物にプラスチック粉末を付着させた複合粉末体、複合粉末体と吸着性物質からなる複合吸着材を研究開発している(特許文献1)。 The present applicant has researched and developed a composite powder, in which plastic powder is adhered to an aluminosilicate-based inorganic compound, and a composite adsorbent consisting of a composite powder and an adsorptive substance, as means for efficiently removing heavy metals. (Patent Document 1).

一方、とくに浄水の分野において、アルミニウムの溶出量について厳格な規制があり、アルミノシリケート系無機化合物を用いる場合、アルミニウムの溶出が問題となる場合がある。 On the other hand, especially in the field of water purification, there are strict regulations on the amount of elution of aluminum, and in the case of using an aluminosilicate-based inorganic compound, the elution of aluminum may become a problem.

特許第4361489号公報Japanese Patent No. 4361489

そこで、本発明は、上述したような複合吸着材の優れた重金属除去性能を維持しつつ、さらにアルミニウムの溶出を抑制できる吸着材用の材料(重金属除去剤)を提供することを課題とする。 Therefore, an object of the present invention is to provide an adsorbent material (heavy metal remover) capable of suppressing the elution of aluminum while maintaining the excellent heavy metal removal performance of the composite adsorbent as described above.

本発明者らは、前記課題を解決するため鋭意検討の結果、下記構成の重金属除去剤によって上記課題が解消されることを見出し、当該知見に基づきさらに研究を重ねて本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by a heavy metal removing agent having the following composition, and have completed the present invention by further research based on the findings.

本発明の一局面に係る重金属除去剤は、アルミノシリケート化合物からなる微粒子化合物(a1)と、プラスチック粉末(a2)とを含み、体積粒度分布における粒子径40μm以下の粒子が15体積%以下であることを特徴とする。 A heavy metal remover according to one aspect of the present invention contains a fine particle compound (a1) made of an aluminosilicate compound and a plastic powder (a2), and contains 15% by volume or less of particles having a particle diameter of 40 μm or less in the volume particle size distribution. It is characterized by

このような構成により、重金属などに対する優れた除去性能を維持しつつ、さらにアルミニウムの溶出を抑制できる重金属除去剤を提供できる。 With such a configuration, it is possible to provide a heavy metal remover capable of suppressing elution of aluminum while maintaining excellent removal performance for heavy metals and the like.

また、前記重金属除去剤の平均粒子径が50μm~1mmであることが好ましい。それにより、圧力損失と取扱い性においてより優れると考えられる。 Also, the average particle size of the heavy metal removing agent is preferably 50 μm to 1 mm. As a result, the pressure loss and handleability are considered to be superior.

本発明の他の局面に係る吸着材は、上述の重金属除去剤と、活性炭とを含むことを特徴とする。 An adsorbent according to another aspect of the present invention is characterized by containing the above heavy metal remover and activated carbon.

前記吸着材において、前記活性炭がヤシ殻活性炭であることが好ましい。それにより、塩素臭、カビ臭に加え、THMについても吸着除去できるという利点がある。 In the adsorbent, the activated carbon is preferably coconut shell activated carbon. As a result, there is an advantage that THM can also be adsorbed and removed in addition to chlorine odor and musty odor.

前記吸着材において、吸着材に対する前記重金属除去剤の割合を2質量%とし、空間速度(SV)2300hr-1でろ過した場合の、1分後のアルミニウム溶出量が100ppb未満であることが好ましい。 In the adsorbent, it is preferable that the aluminum elution amount after 1 minute is less than 100 ppb when the ratio of the heavy metal removing agent to the adsorbent is 2% by mass and the filtration is performed at a space velocity (SV) of 2300 hr −1 .

さらに、本発明には、上記吸着材を含有する成形体、並びに、前記吸着材を備える浄水器も包含される。 Furthermore, the present invention also includes a molded body containing the adsorbent, and a water purifier comprising the adsorbent.

本発明によれば、優れた重金属除去性能を維持しつつ、さらにアルミニウムの溶出を抑制できる重金属除去剤、並びにそれを用いた吸着材、成形体および浄水器を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a heavy metal removing agent capable of suppressing elution of aluminum while maintaining excellent heavy metal removing performance, and an adsorbent, molded article and water purifier using the same.

本発明者らは、鉛イオンなどの重金属除去性能と、アルミニウムの溶出に関して、アルミノシリケート化合物からなる微粒子化合物(a1)と、プラスチック粉末(a2)とを含む複合凝集体粒子の状態について鋭意検討し、研究を重ねた結果、粒子径が40μm以下の複合凝集体粒子の割合(比率)と、アルミニウム溶出量に相関性があることを見出し、当該知見に基づいて、さらに研究を行い本発明に至った。 The present inventors diligently studied the state of composite aggregate particles containing a fine particle compound (a1) made of an aluminosilicate compound and a plastic powder (a2) with respect to the ability to remove heavy metals such as lead ions and the elution of aluminum. As a result of repeated research, it was found that there is a correlation between the ratio (ratio) of composite aggregate particles with a particle size of 40 μm or less and the amount of aluminum eluted, and based on this finding, further research was conducted to reach the present invention. rice field.

以下、本発明の実施形態について具体例などを参照して詳細に説明するが、本発明はこれらに限定されるものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to specific examples, but the present invention is not limited to these.

<重金属除去剤>
本実施形態の重金属除去剤は、アルミノシリケート化合物からなる微粒子化合物(a1)と、プラスチック粉末(a2)とを含み、体積粒度分布における粒子径40μm以下の粒子が15体積%以下であることを特徴とする。
<Heavy metal remover>
The heavy metal removing agent of the present embodiment contains a fine particle compound (a1) made of an aluminosilicate compound and a plastic powder (a2), and is characterized in that particles having a particle diameter of 40 μm or less in the volume particle size distribution are 15% by volume or less. and

このような構成を有する重金属除去剤を吸着材とすることによって、優れた重金属除去性能を維持しつつ、さらにアルミニウムの溶出を抑制できる浄水器等を提供することが可能となる。 By using the heavy metal removing agent having such a structure as an adsorbent, it is possible to provide a water purifier or the like capable of suppressing elution of aluminum while maintaining excellent heavy metal removing performance.

なお、本実施形態において、平均粒子径とは、体積基準の累積分布の50%粒子径を意味し、この平均粒子径の数値はレーザー回折・散乱法による粒度分布測定により測定した値であり、例えば、後述するマイクロトラック・ベル社製の湿式粒度分布測定装置(マイクロトラックMT3300EX II)などにより測定できる。また、粒子径40μm以下の粒子体積%は、前記粒度分布測定で得られた体積基準の累積分布から求めることができる。 In the present embodiment, the average particle size means the 50% particle size of the volume-based cumulative distribution, and the numerical value of this average particle size is a value measured by particle size distribution measurement by a laser diffraction/scattering method. For example, it can be measured by a wet particle size distribution analyzer (Microtrac MT3300EX II) manufactured by Microtrac Bell Co., which will be described later. Also, the volume % of particles having a particle diameter of 40 μm or less can be obtained from the volume-based cumulative distribution obtained by the particle size distribution measurement.

本実施形態における重金属除去剤は、体積粒度分布における粒子径40μm以下の粒子が15体積%以下であることがより好ましく、10体積%以下であることがさらに好ましい。 In the heavy metal removing agent in the present embodiment, particles having a particle diameter of 40 μm or less in the volume particle size distribution are more preferably 15% by volume or less, more preferably 10% by volume or less.

本実施形態において、重金属除去剤はアルミノシリケート化合物からなる微粒子化合物(a1)と、プラスチック粉末(a2)とを含んでおり、これらは複合凝集体粒子となっている。その複合凝集体粒子は、前記プラスチック粉末(a2)が前記微粒子化合物(a1)の表面の少なくとも一部に付着しているような複合体であれば特に限定はされないが、例えば、前記プラスチック粉末(a2)が前記微粒子化合物(a1)の表面の少なくとも一部に付着して、前記微粒子化合物(a1)同士を接着させているような形態であってもよい。 In this embodiment, the heavy metal removing agent contains a fine particle compound (a1) consisting of an aluminosilicate compound and a plastic powder (a2), which form composite aggregate particles. The composite aggregate particle is not particularly limited as long as it is a composite in which the plastic powder (a2) is attached to at least a part of the surface of the fine particle compound (a1). A2) may adhere to at least a part of the surface of the fine particle compound (a1) to adhere the fine particle compounds (a1) to each other.

本実施形態の微粒子化合物(a1)は、イオン交換容量が大きく、重金属に対して選択性が高いアルミノシリケート化合物である。 The fine particle compound (a1) of the present embodiment is an aluminosilicate compound having a large ion exchange capacity and high selectivity to heavy metals.

アルミノシリケート化合物としては、イオン交換容量が大きい点でA型又はX型アルミノシリケート化合物が好適である。株式会社シナネンゼオミック社から市販されている商品名ゼオミック等が知られている。 As the aluminosilicate compound, an A-type or X-type aluminosilicate compound is suitable because of its large ion exchange capacity. Zeomic, a trade name marketed by Sinanen Zeomic Co., Ltd., and the like are known.

本実施形態で用いられるプラスチック粉末(a2)としては、ポリエチレン、ポリプロピレン、ポリスチレン、エチレン酢酸ビニル共重合体、アクリロニトリルブタジエンスチレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチルメタクリレートなどのポリエステル、ナイロンなどのポリアミドなどの各種熱可塑性樹脂、フラン樹脂、フェノール樹脂などの熱硬化性樹脂の粉末を挙げることができる。なかでも、加熱により凝集体粒子を作ることができるという観点から、熱可塑性樹脂の粉末が好ましく使用できる。また、これらの熱可塑性樹脂のなかでもポリエチレンが最も好ましい。 Examples of the plastic powder (a2) used in the present embodiment include polyesters such as polyethylene, polypropylene, polystyrene, ethylene-vinyl acetate copolymer, acrylonitrile-butadiene-styrene, polyethylene terephthalate, polybutylene terephthalate and polymethyl methacrylate, and polyamides such as nylon. powders of thermosetting resins such as various thermoplastic resins, furan resins, and phenolic resins. Among them, thermoplastic resin powder can be preferably used from the viewpoint that aggregate particles can be formed by heating. Among these thermoplastic resins, polyethylene is most preferred.

熱可塑性樹脂粉末のメルトフローレート(MFR)は、あまり小さいものを使用した場合、微粒子化合物が熱可塑性樹脂の表面に付着しにくいことがあり、一方、あまり大きいものを使用した場合、融点以上に加熱すると、熱可塑性樹脂が、粒子の形状を保持出来ずに流れてしまうことがある。よって、MFRとしては、0.02g/10分以上であるものを使用するのが好ましく、また、40g/10分以下のものを使用するのが好ましい。なお、MFRとは、一定の温度及び圧力で規定の直径及び長さのオリフィスから押出される熱可塑性樹脂の流出速度であり、具体的にはJIS K 7210(2014年)に従って測定される。 If the melt flow rate (MFR) of the thermoplastic resin powder is too small, the fine particle compound may be difficult to adhere to the surface of the thermoplastic resin. When heated, the thermoplastic resin may flow without retaining the shape of the particles. Therefore, the MFR is preferably 0.02 g/10 min or more, and preferably 40 g/10 min or less. The MFR is the outflow rate of a thermoplastic resin extruded from an orifice of specified diameter and length at constant temperature and pressure, and is specifically measured according to JIS K 7210 (2014).

本実施形態の複合凝集体粒子は、まず微粒子化合物(a1)にプラスチック粉末(a2)を付着させる必要がある。微粒子化合物(a1)は粉末状であっても顆粒状であってもよいが、あまり粒子径が大きいと複合吸着材としたときの吸着速度が遅くなる傾向にあるので、平均粒子径(直径)として200μm以下、好ましくは100μm以下のものが好ましい。特に、担持保持性の観点から、微粒子化合物(a1)の粒子径を3μm~80μmとすることが望ましい。 For the composite aggregate particles of the present embodiment, it is first necessary to adhere the plastic powder (a2) to the fine particle compound (a1). The fine particle compound (a1) may be in the form of powder or granules. is 200 μm or less, preferably 100 μm or less. In particular, from the viewpoint of support retention, it is desirable that the particle diameter of the fine particle compound (a1) is 3 μm to 80 μm.

本実施形態で使用するプラスチック粉末(a2)の粒子径は、微粒子化合物(a1)の粒子の大きさと関係し、大きめの微粒子化合物(a1)を使用する場合には、大きめのプラスチック粉末を、小さめの微粒子化合物(a1)を作る場合には、小さめのプラスチック粉末を選定すればよい。かかる観点から、プラスチック粉末の平均粒子径は0.1μm~200μm、好ましくは1μm~100μmとすることが望ましい。 The particle size of the plastic powder (a2) used in the present embodiment is related to the particle size of the fine particle compound (a1). In the case of producing the fine particle compound (a1) of (1), a smaller plastic powder may be selected. From this point of view, it is desirable that the average particle size of the plastic powder is 0.1 μm to 200 μm, preferably 1 μm to 100 μm.

微粒子化合物(a1)にプラスチック粉末(a2)を付着させるには、例えば、遠赤外線加熱、加熱乾燥炉などの手段によることができる。なお、本実施形態における付着とは、接着剤などによる接着の他、溶融加熱などによる熱融着など、微粒子化合物とプラスチック粉末とが強固に固着した状態全てを意味するが、確実に固着できる点で熱融着による付着が好ましい。 Adhering the plastic powder (a2) to the fine particle compound (a1) can be carried out by, for example, means such as far-infrared heating or a heat drying oven. In addition, the adhesion in the present embodiment means all states in which the fine particle compound and the plastic powder are firmly adhered, such as adhesion by an adhesive agent or the like, heat fusion by melting heating, etc., but the point is that they can be firmly adhered. Therefore, adhesion by heat sealing is preferable.

より具体的には、例えば、微粒子化合物(a1)にプラスチック粉末(a2)を3~40重量%となるように均一に混合して混合物とし、該混合物をプラスチック粉末の融点以上に加熱して、熱が冷めないうちに粉砕し、篩い分けすることによって、体積粒度分布における粒子径40μm以下の粒子が15体積%以下である、重金属除去剤(複合凝集体粒子)を得ることができる。 More specifically, for example, the fine particle compound (a1) is uniformly mixed with the plastic powder (a2) in an amount of 3 to 40% by weight to form a mixture, and the mixture is heated to the melting point of the plastic powder or higher, By pulverizing and sieving before the heat cools down, it is possible to obtain a heavy metal removing agent (composite aggregate particles) in which particles having a particle size of 40 µm or less in the volume particle size distribution account for 15% by volume or less.

なお、前記複合凝集体粒子中のプラスチック粉末(a2)量は、揮発分を測定することでも推定することができる。揮発分の測定は、まず、110℃で3時間乾燥したサンプルを室温で秤量し、その後、サンプルを磁性のルツボに入れて蓋をした状態で、930℃の炉内に7分間放置し、冷却後に残存サンプルの重量を測定するという方法で行う。プラスチック粉末は、この温度では分解、揮発するので、重量減少分をプラスチック粉末(a2)含有量とする。 The amount of the plastic powder (a2) in the composite aggregate particles can also be estimated by measuring the volatile content. Volatile content was measured by first weighing a sample dried at 110°C for 3 hours at room temperature, then placing the sample in a magnetic crucible with a lid and leaving it in a furnace at 930°C for 7 minutes to cool. This is done by measuring the weight of the remaining sample afterwards. Since the plastic powder decomposes and volatilizes at this temperature, the weight loss is taken as the content of the plastic powder (a2).

篩い分けした結果、所定の篩い分け基準より小さい粒子は再使用することができる。金属除去剤(複合凝集体粒子)の平均粒子径としては、50μm以上、1mm以下とするのが、圧力損失と取扱性の点で好ましく、75μm以上、500μm以下がさらに好ましい。 Particles that, as a result of sieving, are smaller than the predetermined sieving criteria can be reused. The average particle size of the heavy metal removing agent (composite aggregate particles) is preferably 50 µm or more and 1 mm or less in terms of pressure loss and handleability, and more preferably 75 µm or more and 500 µm or less.

本実施形態では、使用する微粒子化合物に含まれる粒子径10μm以下の粒子の割合を調整したり、適切なサイズの篩い分け器により篩い分けたりすることによって、複合凝集体粒子体の粒子径40μm以下の粒子体積%が15以下となる重金属除去剤を得ることができる。微粒子化合物の調整は、サイクロン装置等を用いることで効率的に行うことができる。 In the present embodiment, by adjusting the ratio of particles with a particle size of 10 μm or less contained in the fine particle compound to be used, or by sieving with a sieving device of an appropriate size, the composite aggregate particles have a particle size of 40 μm or less. A heavy metal removing agent having a particle volume % of 15 or less can be obtained. Adjustment of the fine particle compound can be efficiently performed by using a cyclone device or the like.

なお、本実施形態における粒度分布の測定方法は以下の通りである。 The method for measuring the particle size distribution in this embodiment is as follows.

微粒子化合物(a1)、プラスチック粉末(a2)、重金属除去剤(複合凝集体粒子)、活性炭の粒径(平均粒子径等)はレーザー回折測定法により測定した。方法としては、測定物、界面活性剤、およびイオン交換水とを混合した分散液を、レーザー回折・散乱式 粒子径分布測定装置(マイクロトラック・ベル(株)社製「MT3300 II」)を用いて透過法にて測定した。なお分散液濃度は同装置で表示される測定濃度範囲に収まるように調整した。また、分散液調製時の界面活性剤には、和光純薬工業(株)社製「ポリオキシエチレン(10)オクチルフェニルエーテル」を用い、測定に影響する気泡などが発生しない適当量添加した。分析条件を以下に示す。 The particle size (average particle size, etc.) of the fine particle compound (a1), the plastic powder (a2), the heavy metal removing agent (composite aggregate particles), and the activated carbon was measured by a laser diffraction measurement method. As a method, a dispersion obtained by mixing a measurement object, a surfactant, and ion-exchanged water was measured using a laser diffraction/scattering particle size distribution analyzer (“MT3300 II” manufactured by Microtrack Bell Co., Ltd.). was measured by the transmission method. The concentration of the dispersion liquid was adjusted so as to fall within the measurement concentration range displayed by the apparatus. "Polyoxyethylene (10) octylphenyl ether" manufactured by Wako Pure Chemical Industries, Ltd. was used as the surfactant in preparing the dispersion liquid, and an appropriate amount was added so as not to generate air bubbles that would affect the measurement. Analysis conditions are shown below.

(分析条件)
測定回数;1回
測定時間;30秒
分布表示;体積
粒径区分;標準
計算モード;MT3000 II
溶媒名;WATER
測定上限;2000μm、測定下限;0.021μm
残分比;0.00
通過分比;0.00
残分比設定;無効
粒子透過性;透過
粒子屈折率;1.81
粒子形状;非球形
溶媒屈折率;1.333
DV値;0.0150~0.0700
透過率(TR);0.700~0.950
(Analysis conditions)
Number of measurements: 1 Measurement time: 30 seconds Distribution display: Volume particle size classification: Standard calculation mode: MT3000 II
Solvent name; WATER
Upper limit of measurement: 2000 μm Lower limit of measurement: 0.021 μm
Residual ratio; 0.00
Passing fraction ratio; 0.00
Residual ratio setting; Ineffective particle permeability; Transmitted particle refractive index; 1.81
Particle shape: non-spherical Solvent refractive index: 1.333
DV value; 0.0150 to 0.0700
Transmittance (TR); 0.700 to 0.950

そして、前記測定で得られる粒度分布(体積粒度分布)の累積分布から、粒子径40μm以下の粒子の割合(体積%)を求めることができる。平均粒子径とは、体積基準の累積分布の50%となる粒子径を意味する。 Then, from the cumulative distribution of the particle size distribution (volume particle size distribution) obtained by the above measurement, the proportion (% by volume) of particles having a particle diameter of 40 μm or less can be obtained. The average particle size means a particle size that is 50% of the volume-based cumulative distribution.

本実施形態の重金属除去剤はそのまま吸着材として使用することも可能であるが、好ましくは、後述のように、活性炭と混合し吸着材として使用する。 Although the heavy metal removing agent of the present embodiment can be used as an adsorbent as it is, it is preferably mixed with activated carbon and used as an adsorbent as described later.

<吸着材、成形体および浄水器>
本実施形態の吸着材は、上述の重金属除去剤と活性炭とを含むことを特徴とする。
<Adsorbent, compact and water purifier>
The adsorbent of this embodiment is characterized by containing the above-described heavy metal removing agent and activated carbon.

活性炭としては、炭素質材料を炭化、賦活することによって活性炭となるものであればよく、数100m/g以上の比表面積を有するものが好ましい。 As the activated carbon, any carbonaceous material can be carbonized and activated to become activated carbon, and those having a specific surface area of several hundred m 2 /g or more are preferable.

前記炭素質材料としては、例えば、木材、鋸屑、木炭、ヤシ殻、クルミ殻などの果実殻、果実種子、パルプ製造副生物、リグニン、廃糖蜜などの植物系、泥炭、草炭、亜炭、褐炭、レキ青炭、無煙炭、コークス、コールタール、石炭ピッチ、石油蒸留残渣、石油ピッチなどの鉱物系、フェノール、サラン、アクリル樹脂などの合成素材、再生繊維(レーヨン)などの天然素材を例示することができる。なかでも、植物系のヤシ殻活性炭を使用することが好ましい。 Examples of the carbonaceous material include wood, sawdust, charcoal, fruit shells such as coconut shells and walnut shells, fruit seeds, pulp production by-products, lignin, plant materials such as blackstrap molasses, peat, grass coal, lignite, lignite, Minerals such as limestone, anthracite, coke, coal tar, coal pitch, petroleum distillation residue, and petroleum pitch, synthetic materials such as phenol, saran, and acrylic resin, and natural materials such as regenerated fiber (rayon). can. Among them, it is preferable to use plant-based coconut shell activated carbon.

粉状および粒状の活性炭を使用する場合、そのサイズは、作業性、水との接触効率、通水抵抗などの点から、75μm~2.8mm(200メッシュ~7メッシュ)が好ましく、100μm~1.4mm(150メッシュ~12メッシュ)がさらに好ましい。繊維状の活性炭を使用する場合、成形性の点から1~5mm程度に切断して使用するのがよく、さらに、遊離塩素の除去性の点からヨウ素吸着量が1200~3000mg/gのものを使用するのが好ましい。 When powdery or granular activated carbon is used, its size is preferably 75 μm to 2.8 mm (200 mesh to 7 mesh) from the viewpoint of workability, water contact efficiency, water flow resistance, etc., and 100 μm to 1 0.4 mm (150 mesh to 12 mesh) is more preferred. When fibrous activated carbon is used, it is preferable to cut it into pieces of about 1 to 5 mm from the viewpoint of formability, and from the viewpoint of removal of free chlorine, one with an iodine adsorption amount of 1200 to 3000 mg / g is recommended. preferably used.

本実施形態における吸着材は、吸着材中、複合凝集体粒子の割合が1質量%以上であることが好ましく、また、50質量%以下であることが好ましく、20質量%以下であることがより好ましい。上述の複合凝集体粒子と活性炭を混合することによって得られる。混合方法はとくに限定されず、公知の方法を採用することができる。この混合物(吸着材)は浄水材としてそのまま自動充填して使用することができるが、さらに加圧して成形し、カートリッジ形態の成形体として使用することも可能である。成形体とする際には、適宜成形のためのバインダや成形体の形状維持のための不織布を用いてもよい。また、複合凝集体粒子と活性炭との混合物に、抗菌性を与えるために、銀添着活性炭あるいは銀ゼオライトを添加することもできる。 The adsorbent in the present embodiment preferably has a ratio of composite aggregate particles of 1% by mass or more, preferably 50% by mass or less, and more preferably 20% by mass or less in the adsorbent. preferable. It is obtained by mixing the composite agglomerate particles described above with activated carbon. A mixing method is not particularly limited, and a known method can be adopted. This mixture (adsorbent) can be automatically filled and used as a water purification material as it is, but it is also possible to further pressurize and mold it and use it as a molded body in the form of a cartridge. When forming a molded article, a binder for molding or a non-woven fabric for maintaining the shape of the molded article may be used as appropriate. Silver-impregnated activated carbon or silver zeolite can also be added to the mixture of composite aggregate particles and activated carbon to impart antibacterial properties.

本実施形態の吸着材は、優れた重金属除去性能を有する一方で、アルミニウムの溶出も抑制できる。本実施形態の吸着材を使用することにより、吸着材中の前記重金属除去剤の量を2質量%とし、空間速度(SV)2300hr-1でろ過したときの、1分後のアルミニウム溶出量を100ppb未満にできるという優れた利点がある。このとき、吸着材に対する前記重金属除去剤の割合を2質量%であるときに、空間速度(SV)2300hr-1でろ過した場合の、1分後のアルミニウム溶出量が100ppb未満であるものであるように重金属除去剤と活性炭を選択することが好ましいのであって、実際の吸着材の使用形態においては、吸着材中の重金属除去剤の割合を適宜変更できる。 The adsorbent of the present embodiment has excellent heavy metal removal performance and can also suppress the elution of aluminum. By using the adsorbent of the present embodiment, the amount of the heavy metal removing agent in the adsorbent is set to 2% by mass, and when filtering at a space velocity (SV) of 2300 hr -1 , the aluminum elution amount after 1 minute is It has the great advantage of being able to go below 100 ppb. At this time, when the ratio of the heavy metal removing agent to the adsorbent is 2% by mass, the aluminum elution amount after 1 minute is less than 100 ppb when filtered at a space velocity (SV) of 2300 hr -1 . It is preferable to select the heavy metal removing agent and the activated carbon as described above, and in the actual usage of the adsorbent, the ratio of the heavy metal removing agent in the adsorbent can be appropriately changed.

吸着材を容器(カラム)に充填して浄水器として使用する場合の通水条件はとくに限定されないが、圧力損失があまり大きくならないように、例えば50~4000hr-1の空間速度(SV)で実施される。本実施形態の吸着材は、吸着速度が速いので、SVを100hr-1以上、さらに1000hr-1以上の流速でも性能を発揮するので、浄水器カラムを大幅に小型化することができる。 When the adsorbent is packed in a container (column) and used as a water purifier, the water flow conditions are not particularly limited, but the space velocity (SV) is, for example, 50 to 4000 hr -1 so as not to increase the pressure loss too much. be done. Since the adsorbent of the present embodiment has a high adsorption speed, it exhibits performance even at flow velocities of 100 hr -1 or more, and even 1000 hr -1 or more, so that the size of the water purifier column can be greatly reduced.

本実施形態の吸着材、成形体および浄水器は、優れた重金属除去性能を備え、かつアルミニウムの溶出量も抑制できるため、産業利用上、極めて有用である。 The adsorbent, molded article, and water purifier of the present embodiment have excellent heavy metal removal performance and can suppress the elution amount of aluminum, and therefore are extremely useful for industrial use.

以下、実施例に基づいて本発明をより詳細に説明する。しかし、本発明は、以下の実施例により何ら制限されるものではない。 The present invention will be described in more detail below based on examples. However, the present invention is by no means limited by the following examples.

(実施例1)
微粒子化合物として、アルミノシリケート化合物(株式会社シナネンゼオミック製「ゼオミック」LH210N、平均粒子径32μm)(アルミノシリケート1と称する)1kgと、プラスチック粉末として、ポリエチレン(PE)粉末(住友精化株式会社製「フローセン」UF-1.5N、MFR1.4g/10分間、融点110℃、平均粒子径20μm)75gとを均一に混合した。この混合物を160℃の温度で、加熱乾燥機を使用して1時間加熱した後、温度を60℃以上に維持したまま、解砕機で解砕した。その後、室温まで冷却し、篩い分け機で篩い分けを行った。メッシュサイズを変更することによって、表1に示すような平均粒子径と粒子径40μm以下の粒子体積%の重金属除去剤を得た。揮発分(PE含有量)は、23%であった。
(Example 1)
As a fine particle compound, 1 kg of an aluminosilicate compound (“Zeomic” LH210N manufactured by Sinanen Zeomic Co., Ltd., average particle size 32 μm) (referred to as aluminosilicate 1), and as a plastic powder, polyethylene (PE) powder (manufactured by Sumitomo Seika Co., Ltd. “ Fluothane" UF-1.5N, MFR 1.4 g/10 minutes, melting point 110°C, average particle size 20 µm) and 75 g were uniformly mixed. This mixture was heated at a temperature of 160° C. for 1 hour using a heat dryer, and then pulverized with a pulverizer while maintaining the temperature at 60° C. or higher. Then, it was cooled to room temperature and sieved with a sieving machine. By changing the mesh size, a heavy metal removing agent having an average particle size and a particle volume % of particles having a particle size of 40 μm or less as shown in Table 1 was obtained. Volatiles (PE content) was 23%.

(実施例2~4)
微粒子化合物として、アルミノシリケート化合物(株式会社シナネンゼオミック製「ゼオミック」LH210Nを、ロールミルによって粉砕し、平均粒子径が30μm(実施例2)または27μm(実施例3)、24μm(実施例4)である微粒子化合物(それぞれアルミノシリケート2、3、4)を用いた以外は、実施例1と同様にして、表1に示すような平均粒子径と粒子径40μm以下の粒子体積%の重金属除去剤を得た。揮発分(PE含有量)は、23%であった。
(Examples 2-4)
As the fine particle compound, an aluminosilicate compound ("Zeomic" LH210N manufactured by Sinanen Zeomic Co., Ltd. was pulverized with a roll mill to an average particle size of 30 μm (Example 2), 27 μm (Example 3), or 24 μm (Example 4). In the same manner as in Example 1, except that fine particle compounds (aluminosilicates 2, 3, and 4, respectively) were used, a heavy metal removing agent having an average particle size and a particle volume % of particles having a particle size of 40 μm or less as shown in Table 1 was obtained. The volatile content (PE content) was 23%.

(比較例1)
微粒子化合物として、アルミノシリケート化合物(株式会社シナネンゼオミック製「ゼオミック」LH210Nを、ロールミルによって粉砕し、平均粒子径が17μm(比較例1)である微粒子化合物(アルミノシリケート5)を用いた以外は、実施例1と同様にして、表1に示すような平均粒子径と粒子径40μm以下の粒子体積%の重金属除去剤を得た。揮発分(PE含有量)は、23%であった。
(Comparative example 1)
As the fine particle compound, an aluminosilicate compound ("Zeomic" LH210N manufactured by Sinanen Zeomic Co., Ltd. was pulverized with a roll mill and the fine particle compound (aluminosilicate 5) having an average particle size of 17 µm (Comparative Example 1) was used. In the same manner as in Example 1, a heavy metal removing agent having an average particle size and a particle volume % of particles having a particle size of 40 μm or less was obtained as shown in Table 1. The volatile content (PE content) was 23%.

(比較例2)
微粒子化合物として、アルミノシリケート化合物(株式会社シナネンゼオミック製「ゼオミック」LGK10T、平均粒子径9μm)(アルミノシリケート6と称する)を用いた以外は、実施例1と同様にして、表1に示すような平均粒子径と粒子径40μm以下の割合とを示す重金属除去剤を得た。揮発分(PE有含量)は、23%であった。
(Comparative example 2)
As the fine particle compound, an aluminosilicate compound (“Zeomic” LGK10T manufactured by Sinanen Zeomic Co., Ltd., average particle size 9 μm) (referred to as aluminosilicate 6) was used in the same manner as in Example 1, as shown in Table 1. A heavy metal removing agent having an average particle size and a proportion of particles having a particle size of 40 μm or less was obtained. The volatile content (PE content) was 23%.

<評価試験>
以上のようにして得た、実施例および比較例それぞれの重金属除去剤0.64gと、活性炭(株式会社クラレ製「クラレコール」GW60/150(粒子径0.25mm~0.1mm、比表面積800m/g)32.3gとを均一に混合し、それぞれの実施例および比較例の吸着材とした。
<Evaluation test>
0.64 g of the heavy metal remover of each of the examples and comparative examples obtained as described above, activated carbon ("Kuraray Coal" GW60/150 manufactured by Kuraray Co., Ltd. (particle size 0.25 mm to 0.1 mm, specific surface area 800 m 2 /g) and 32.3 g were uniformly mixed to obtain adsorbents for each of Examples and Comparative Examples.

重金属除去剤中の40μm以下の粒子の割合(体積%)については、上述した(粒度分布)の測定結果から算出した。 The proportion (% by volume) of particles of 40 μm or less in the heavy metal removing agent was calculated from the measurement result of the above-mentioned (particle size distribution).

鉛イオン除去性能について、それぞれの吸着材を60mlのカラムに充填し、50ppbの溶解性鉛(硝酸鉛を加えて鉛イオン濃度が50ppbになるように調整した)を含む原水を2.3リットル(L)/分(SV2300hr-1)の流速で通水し、鉛イオン濃度から鉛イオンの除去率を計算した。この鉛イオン除去率が80%となる通液量(L)および吸着材(カラム)単位体積あたりの通液量(L/ml)を鉛イオン除去性能として評価した。 Regarding the lead ion removal performance, each adsorbent was packed in a 60 ml column, and 2.3 liters of raw water containing 50 ppb soluble lead (lead nitrate was added to adjust the lead ion concentration to 50 ppb) ( L)/min (SV2300hr -1 ), and the lead ion removal rate was calculated from the lead ion concentration. The flow rate (L) at which the lead ion removal rate is 80% and the flow rate per unit volume of the adsorbent (column) (L/ml) were evaluated as the lead ion removal performance.

また、アルミニウム溶出量については、上記条件で通水し、通液1分後のアルミニウム濃度と原水のアルミニウム濃度の差分から求めた。 Further, the aluminum elution amount was obtained from the difference between the aluminum concentration in the raw water and the aluminum concentration in the raw water after 1 minute of passing the water under the above conditions.

結果を、それぞれ表1に示す。 The results are shown in Table 1, respectively.

Figure 0007264692000001
Figure 0007264692000001

(考察)
表1の結果より、実施例の重金属除去剤を用いた吸着材では、優れた鉛除去性能を発揮しつつ、アルミニウムの溶出を抑制できることが確認できた。
(Discussion)
From the results in Table 1, it was confirmed that the adsorbents using the heavy metal removers of the examples exhibited excellent lead removal performance while suppressing the elution of aluminum.

一方、本発明の規定を満たさない比較例の重金属除去剤を用いた吸着材では、アルミニウムの溶出が十分に抑制できないことがわかった。 On the other hand, it was found that the adsorbent using the heavy metal removing agent of the comparative example, which did not satisfy the requirements of the present invention, could not sufficiently suppress the elution of aluminum.

以上の結果から、本発明の重金属除去剤を用いることで非常に優れた鉛除去率を維持しつつ、アルミニウムの溶出が抑えられる吸着材や浄水材等が提供できることが示された。

From the above results, it was shown that by using the heavy metal removing agent of the present invention, it is possible to provide adsorbents, water purifying materials, etc. that can suppress the elution of aluminum while maintaining a very excellent lead removal rate.

Claims (6)

アルミノシリケート化合物からなる微粒子化合物(a1)と、プラスチック粉末(a2)とを含み、
前記プラスチック粉末(a2)が前記微粒子化合物(a1)の表面の少なくとも一部に付着していること、
前記微粒子化合物(a1)と前記プラスチック粉末(a2)との合計100重量%に対する、前記プラスチック粉末(a2)の含有量が3~40重量%であること、
前記微粒子化合物(a1)の平均粒子径が200μm以下であること、
体積粒度分布における粒子径40μm以下の粒子が15体積%以下であること、及び、
平均粒子径が50μm~1mmであることを特徴とする、重金属除去剤。
including a fine particle compound (a1) made of an aluminosilicate compound and a plastic powder (a2),
the plastic powder (a2) adheres to at least part of the surface of the fine particle compound (a1);
The content of the plastic powder (a2) is 3 to 40% by weight with respect to the total 100% by weight of the fine particle compound (a1) and the plastic powder (a2);
The fine particle compound (a1) has an average particle size of 200 μm or less,
Particles with a particle diameter of 40 μm or less in the volume particle size distribution are 15% by volume or less , and
A heavy metal removing agent having an average particle size of 50 μm to 1 mm .
請求項1に記載の重金属除去剤と、活性炭とを含む、吸着材。 An adsorbent comprising the heavy metal remover according to claim 1 and activated carbon. 前記活性炭がヤシ殻活性炭である、請求項に記載の吸着材。 3. The adsorbent of claim 2 , wherein said activated carbon is coconut shell activated carbon. 吸着材に対する前記重金属除去剤の割合を2質量%とし、空間速度(SV)2300hr-1でろ過した場合の、1分後のアルミニウム溶出量が100ppb未満である、請求項またはに記載の吸着材。 4. The aluminum elution amount after 1 minute is less than 100 ppb when the ratio of the heavy metal removing agent to the adsorbent is 2 % by mass and the filtration is performed at a space velocity (SV) of 2300 hr −1 . adsorbent. 請求項のいずれかに記載の吸着材を含有する、成形体。 A molded article containing the adsorbent according to any one of claims 2 to 4 . 請求項のいずれかに記載の吸着材を備える、浄水器。 A water purifier comprising the adsorbent according to any one of claims 2 to 4 .
JP2019065654A 2019-03-29 2019-03-29 Heavy metal remover, and adsorbent, compact and water purifier using same Active JP7264692B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019065654A JP7264692B2 (en) 2019-03-29 2019-03-29 Heavy metal remover, and adsorbent, compact and water purifier using same
US17/442,164 US20220176342A1 (en) 2019-03-29 2020-03-25 Adsorbent, heavy metal removing agent, molded body using same, and water purifier
PCT/JP2020/013483 WO2020203588A1 (en) 2019-03-29 2020-03-25 Adsorbent, heavy metal removing agent, molded body using same, and water purifier
CN202080025718.XA CN113631259B (en) 2019-03-29 2020-03-25 Adsorption material, heavy metal remover, and molded body and water purifier using same
KR1020217034026A KR20210138744A (en) 2019-03-29 2020-03-25 Adsorbents, heavy metal removers, and molded articles and water purifiers using them
TW109110432A TWI754251B (en) 2019-03-29 2020-03-27 Adsorbent material, heavy metal remover, and molded body and water purifier using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019065654A JP7264692B2 (en) 2019-03-29 2019-03-29 Heavy metal remover, and adsorbent, compact and water purifier using same

Publications (2)

Publication Number Publication Date
JP2020163270A JP2020163270A (en) 2020-10-08
JP7264692B2 true JP7264692B2 (en) 2023-04-25

Family

ID=72715540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019065654A Active JP7264692B2 (en) 2019-03-29 2019-03-29 Heavy metal remover, and adsorbent, compact and water purifier using same

Country Status (1)

Country Link
JP (1) JP7264692B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039494A1 (en) 2002-10-29 2004-05-13 Kuraray Chemical Co.,Ltd. Composite adsorbent and method for production thereof, and water purification material and water purifier
JP2009208076A (en) 2009-05-18 2009-09-17 Mitsubishi Rayon Co Ltd Adsorbent, and water purifier using the same
JP2014193454A (en) 2013-02-26 2014-10-09 Nippon Valqua Ind Ltd Adsorption sheet, manufacturing method for obtaining the adsorption sheet, recovery method of adsorption performance and adsorption method
JP2015112518A (en) 2013-12-10 2015-06-22 株式会社タカギ Molded adsorbent and water purifier using the same
JP2016019980A (en) 2009-08-06 2016-02-04 クラレケミカル株式会社 Active carbon and water purifier using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039494A1 (en) 2002-10-29 2004-05-13 Kuraray Chemical Co.,Ltd. Composite adsorbent and method for production thereof, and water purification material and water purifier
JP2009208076A (en) 2009-05-18 2009-09-17 Mitsubishi Rayon Co Ltd Adsorbent, and water purifier using the same
JP2016019980A (en) 2009-08-06 2016-02-04 クラレケミカル株式会社 Active carbon and water purifier using the same
JP2014193454A (en) 2013-02-26 2014-10-09 Nippon Valqua Ind Ltd Adsorption sheet, manufacturing method for obtaining the adsorption sheet, recovery method of adsorption performance and adsorption method
JP2015112518A (en) 2013-12-10 2015-06-22 株式会社タカギ Molded adsorbent and water purifier using the same

Also Published As

Publication number Publication date
JP2020163270A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
KR100985429B1 (en) Composite adsorber, its manufacturing method, water purifier and water purifier
CN102471096B (en) Activated carbon molded body and water purifier using the activated carbon molded body
Akl et al. Adsorption of acid dyes onto bentonite and surfactant-modified bentonite
US7374680B2 (en) Filtration matrix
US20040168973A1 (en) Gas porous polymer filter and methods of use
JPWO2006082898A1 (en) Composite adsorbent, method for producing the same, water purifier, and water purifier
MXPA06013601A (en) Gas porous polymer filter and methods of making it.
JP7264692B2 (en) Heavy metal remover, and adsorbent, compact and water purifier using same
CN113631259B (en) Adsorption material, heavy metal remover, and molded body and water purifier using same
JP6440383B2 (en) Metal ion adsorbent and composite adsorbent using the same
JP6856824B2 (en) Composite aggregate particles, as well as adsorbents, moldings and water purifiers using them
JP5429931B2 (en) Adsorbent and water purifier using the same
JP6965117B2 (en) Metal ion adsorbent and composite adsorbent using it
JP7264691B2 (en) Adsorbent, molded article and water purifier using the same
WO2024248068A1 (en) Zeolite-containing activated carbon composition and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230413

R150 Certificate of patent or registration of utility model

Ref document number: 7264692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150