JP7257100B2 - Transparent substrate, thin film supporting substrate - Google Patents
Transparent substrate, thin film supporting substrate Download PDFInfo
- Publication number
- JP7257100B2 JP7257100B2 JP2017174141A JP2017174141A JP7257100B2 JP 7257100 B2 JP7257100 B2 JP 7257100B2 JP 2017174141 A JP2017174141 A JP 2017174141A JP 2017174141 A JP2017174141 A JP 2017174141A JP 7257100 B2 JP7257100 B2 JP 7257100B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- thin film
- transparent substrate
- transmittance
- ultraviolet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Electroluminescent Light Sources (AREA)
- Glass Compositions (AREA)
Description
本発明は、透明基板、透明基板に薄膜を積層した薄膜支持基板に関するものである。 The present invention relates to a transparent substrate and a thin film support substrate obtained by laminating a thin film on a transparent substrate.
光を透過する透明基板は、有機EL素子などの自発光素子の光取り出し側基板として用いられている。このような透明基板は、光の取り出し効率を向上させるなどの目的で、表面に凹凸賦形を設けたものが知られている(下記特許文献1参照)。 A transparent substrate that transmits light is used as a light extraction side substrate of a self-luminous element such as an organic EL element. As for such a transparent substrate, there is known one in which unevenness is formed on the surface for the purpose of improving light extraction efficiency (see Patent Document 1 below).
前述した透明基板は、フォトリソグラフィー工程を用いて、表面に透明電極層や絶縁層などのパターン形成が行われる。その際には、透明基板上にパターン形成される薄膜を成膜した後、その上にフォトレジストを塗布して、紫外線によるマスク露光を行う。マスク露光では、フォトマスクの開口部を通過した紫外線がフォトレジスト層及び薄膜を通過して、透明基板の界面で反射して戻される現象が起こり、前述したように透明基板の表面又は裏面に凹凸賦形を施している場合には、凹凸賦形の界面で様々な方向に反射した紫外線がフォトマスクの遮光領域下におけるフォトレジスト層を露光することになる。 The transparent substrate described above is patterned with a transparent electrode layer, an insulating layer, and the like on the surface thereof using a photolithography process. In that case, after forming a thin film to be patterned on a transparent substrate, a photoresist is applied thereon, and mask exposure with ultraviolet light is performed. In mask exposure, the ultraviolet rays passing through the opening of the photomask pass through the photoresist layer and thin film, and are reflected back at the interface of the transparent substrate. In the case of shaping, the photoresist layer under the light-shielding region of the photomask is exposed to ultraviolet rays reflected in various directions at the interfaces of the uneven shaping.
このように、表面にフォトリソグラフィー工程によるパターン形成を行う透明基板は、その表面又は裏面に凹凸賦形が設けられている場合には、凹凸賦形の界面で反射する紫外線によって、意図しないフォトレジスト層の露光がなされることで、パターンのエッジぼけが生じてしまう問題があった。 In this way, a transparent substrate on which a pattern is formed by a photolithography process on its surface is provided with irregularities on its front or back surface. There is a problem that edge blurring of the pattern occurs due to exposure of the layer.
本発明は、このような問題に対処することを課題とするものである。すなわち、表面又は裏面に凹凸賦形が施された透明基板上に積層された薄膜をフォトリソグラフィー工程でパターニングするに際して、パターンにエッジぼけが生じるのを抑止すること、等が本発明の課題である。 An object of the present invention is to address such problems. That is, it is an object of the present invention to prevent blurring of the edges of a pattern when patterning a thin film laminated on a transparent substrate having unevenness on its front or back surface by a photolithography process. .
このような課題を解決するために、本発明は、以下の構成を具備するものである。
紫外線の透過率が50%以下である透明基板を用意する工程、前記透明基板に、前記透明基板を用意する工程と同時、または、後に、表面と裏面の一方又は両方に凹凸賦形を設ける工程を有し、前記凹凸賦形はその界面で前記紫外線を様々な方向に反射するものであり、次いで、前記紫外線を用いて、フォトリソグラフィーを行いパターン形成し、薄膜支持基板とする工程、前記薄膜支持基板上に、電極層を含む薄膜を積層する工程、を含むパターン形成された前記薄膜支持基板を有する薄膜積層基板の製造方法。
In order to solve such problems, the present invention has the following configurations.
A step of preparing a transparent substrate having an ultraviolet transmittance of 50% or less, and a step of forming unevenness on one or both of the front surface and the back surface simultaneously with or after the step of preparing the transparent substrate on the transparent substrate. , the uneven shaping reflects the ultraviolet rays in various directions at the interface, and then photolithography is performed using the ultraviolet rays to form a pattern to form a thin film supporting substrate ; A method for manufacturing a thin film laminated substrate having the patterned thin film supporting substrate, comprising the step of laminating a thin film including an electrode layer on a supporting substrate.
このような特徴を有する本発明は、フォトマスクの開口を通過した紫外線は、フォトレジスト層を露光した後透明基板を透過しにくくなるので、凹凸賦形を有する透明基板の界面で反射して再びフォトレジスト層を露光する紫外線が抑制される。これによって、パターンのエッジぼけを抑止し、凹凸賦形を有する透明基板上に寸法精度の高いパターニング層を形成することができる。 In the present invention having such characteristics, the ultraviolet rays passing through the openings of the photomask become difficult to transmit through the transparent substrate after exposing the photoresist layer, so that the ultraviolet rays are reflected at the interface of the transparent substrate having irregularities and are again reflected. Ultraviolet radiation that exposes the photoresist layer is suppressed. As a result, blurring of pattern edges can be suppressed, and a patterning layer with high dimensional accuracy can be formed on a transparent substrate having irregularities.
以下、図面を参照して本発明の実施形態を説明する。図1に示すように、凹凸賦形を有する透明基板Gに成膜された薄膜(ITO膜など)T上のフォトレジスト層Rに、フォトマスクMを介して紫外線UVを照射する場合、図1(a)に示すように、凹凸賦形の界面で反射して戻される紫外線UVが存在する場合には、その紫外線UVは凹凸賦形の界面にて様々な方向に反射することになるので、反射された紫外線UVがフォトレジスト層Rの遮光領域を露光することになり、これによってパターンのエッジぼけが生じることになる。 Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, when a photoresist layer R on a thin film (such as an ITO film) T formed on a transparent substrate G having irregularities is irradiated with ultraviolet UV through a photomask M, As shown in (a), when there is an ultraviolet ray UV that is reflected back at the interface of the uneven shaping, the ultraviolet ray UV is reflected in various directions at the interface of the uneven shaping. The reflected ultraviolet light UV will expose the light shielded areas of the photoresist layer R, which will result in edge blurring of the pattern.
これに対して、透明基板G1が、フォトリソグラフィー工程で使用する紫外線(例えば、365nm)の透過率の低い基板である場合には、図1(b)に示すように、フォトマスクMの開口を通過した紫外線UVは、フォトレジスト層Rを露光して、透明基板G1上の薄膜Tを通過した後、大半の紫外線UVが透明基板G1に吸収される。これによって、透明基板G1の凹凸賦形の界面で反射して再びフォトレジスト層Rを露光する紫外線が抑制され、フォトレジスト層Rは、フォトマスクMの開口パターンどおりに露光されることになる。これにより、その後のフォトレジスト層Rの現像工程、薄膜Tのエッチング工程において、マスクパターンに対応した精度の高いパターン形成が可能になる。 On the other hand, when the transparent substrate G1 is a substrate having a low transmittance of ultraviolet rays (for example, 365 nm) used in the photolithography process, as shown in FIG. The passed ultraviolet rays UV expose the photoresist layer R and after passing through the thin film T on the transparent substrate G1, most of the ultraviolet rays UV are absorbed by the transparent substrate G1. As a result, the ultraviolet rays that are reflected at the unevenly shaped interface of the transparent substrate G1 to expose the photoresist layer R again are suppressed, and the photoresist layer R is exposed according to the opening pattern of the photomask M. As a result, in the subsequent development process of the photoresist layer R and the etching process of the thin film T, highly accurate pattern formation corresponding to the mask pattern becomes possible.
図1(b)においては、透明基板G1は、一面側のみに凹凸賦形が形成されているが、両面に凹凸賦形面が形成されていて、その凹凸賦形面上に薄膜Tが成膜されているものであってもよい。また、透明基板G1の一面のみに形成された凹凸賦形面上に薄膜Tが成膜されているものであってもよい。また、図1(b)においては、透明基板G1上の薄膜Tは、一層のみであるが、多層の薄膜Tが積層され、そのうちの一層に対してパターンを形成するものであってもよい。ここでの薄膜Tの一例は、薄膜積層構造を有する自発光素子の透明電極層や絶縁層などである。 In FIG. 1(b), the transparent substrate G1 is formed with unevenness on only one side, but has unevenness-enhanced surfaces on both sides, and a thin film T is formed on the unevenness-enhanced surfaces. It may be a film-coated one. Alternatively, the thin film T may be formed on the uneven surface formed on only one surface of the transparent substrate G1. Also, in FIG. 1(b), the thin film T on the transparent substrate G1 is only one layer, but a multilayer thin film T may be laminated and a pattern may be formed on one of them. An example of the thin film T here is a transparent electrode layer, an insulating layer, or the like of a self-luminous element having a thin film lamination structure.
透明基板G1における紫外線の透過率と界面で戻ってくる光の割合(戻り率)との関係は、界面で全て反射される場合を考えると、戻り率は、透過率の二乗になるので、表1に示すようになる。表1から明らかなように、透過率を50%以下にすることで、戻り率を大きく下げる(25%以下)ことが可能になり、透過率を30%以下にすることで、更に戻り率を低くする(一桁%以下)ことが可能になる。このように、透明基板G1の紫外線透過率を低く抑えることで、透明基板G1の凹凸賦形の界面で反射して再びフォトレジスト層Rを露光する紫外線を効果的に抑止することができる。 The relationship between the transmittance of ultraviolet rays in the transparent substrate G1 and the rate of light returning at the interface (return rate) is as follows. 1. As is clear from Table 1, by setting the transmittance to 50% or less, the return rate can be greatly reduced (to 25% or less), and by setting the transmittance to 30% or less, the return rate can be further reduced. It becomes possible to lower it (single digit % or less). In this way, by keeping the ultraviolet transmittance of the transparent substrate G1 low, it is possible to effectively suppress the ultraviolet rays that are reflected at the interfaces of the uneven shapes of the transparent substrate G1 and expose the photoresist layer R again.
透明基板G1がガラス基板の場合には、ガラス基板に紫外線吸収成分を含有させることで、紫外線の透過率を所望の率に下げることが可能になる。この際、透明基板G1が照明用発光装置の光取り出し側基板である場合には、紫外線吸収成分の含有によって、可視光域の光透過率が低下しないように、紫外線吸収成分の材料及び含有量を適宜選択することが望まれる。 When the transparent substrate G1 is a glass substrate, it is possible to reduce the transmittance of ultraviolet rays to a desired rate by making the glass substrate contain an ultraviolet absorbing component. At this time, when the transparent substrate G1 is the light extraction side substrate of the light emitting device for illumination, the material and content of the ultraviolet absorbing component are determined so that the light transmittance in the visible light region does not decrease due to the inclusion of the ultraviolet absorbing component. is desired to be selected as appropriate.
透明基板G1が、ガラス基板であって、照明用発光装置の光取り出し側基板である場合に、好適な紫外線吸収成分としては、酸化セリウム(CeO2)や酸化バナジウム(V2O5)を例示することができる。 When the transparent substrate G1 is a glass substrate and is the light extraction side substrate of the light emitting device for illumination, cerium oxide (CeO 2 ) and vanadium oxide (V 2 O 5 ) are exemplified as suitable ultraviolet absorbing components. can do.
図2は、酸化セリウムを含有したケイ酸塩ガラスをガラス基板とした例(基板厚さ1mm)の波長毎の光透過率を示している。ここでは、酸化セリウム0%のケイ酸塩ガラス、酸化セリウム0.24重量%のケイ酸塩ガラス、酸化セリウム0.47重量%のケイ酸塩ガラスの光透過率を示している。酸化セリウム0.24重量%含有のケイ酸塩ガラスは、波長365nmの紫外線の透過率を約50%に抑え、可視光域(波長400nm以上)の透過率を約80%以上にしている。また、酸化セリウム0.47重量%含有のケイ酸塩ガラスは、波長365nmの紫外線の透過率を約30%に抑え、可視光域(波長400nm以上)の透過率を約70%以上にしている。 FIG. 2 shows the light transmittance for each wavelength in an example of using silicate glass containing cerium oxide as a glass substrate (substrate thickness: 1 mm). Here, the light transmittance of 0% cerium oxide silicate glass, 0.24% cerium oxide silicate glass, and 0.47% cerium oxide silicate glass is shown. Silicate glass containing 0.24% by weight of cerium oxide suppresses the transmittance of ultraviolet light with a wavelength of 365 nm to about 50%, and the transmittance of visible light region (wavelength of 400 nm or more) to about 80% or more. In addition, the silicate glass containing 0.47% by weight of cerium oxide suppresses the transmittance of ultraviolet light with a wavelength of 365 nm to about 30%, and the transmittance of the visible light region (wavelength of 400 nm or more) to about 70% or more. .
図3は、酸化バナジウムを含有したソーダ石灰ガラスをガラス基板とした例(基板厚さ1mm)の波長毎の光透過率を示している。ここでは、酸化バナジウム0%のソーダ石灰ガラス、酸化バナジウム0.2重量%のソーダ石灰ガラス、酸化バナジウム0.5重量%のソーダ石灰ガラスの光透過率を示している。酸化バナジウム0.2重量%含有のソーダ石灰ガラスは、波長365nmの紫外線の透過率を約57%に抑え、可視光域(波長400nm以上)の透過率を約87%以上にしている。また、酸化バナジウム0.5重量%含有のソーダ石灰ガラスは、波長365nmの紫外線の透過率を約30%に抑え、可視光域(波長400nm以上)の透過率を約81%以上にしている。 FIG. 3 shows the light transmittance for each wavelength of an example in which soda-lime glass containing vanadium oxide is used as a glass substrate (substrate thickness: 1 mm). Here, the light transmittance of soda-lime glass with 0% vanadium oxide, soda-lime glass with 0.2% by weight vanadium oxide, and soda-lime glass with 0.5% by weight vanadium oxide is shown. The soda-lime glass containing 0.2% by weight of vanadium oxide suppresses the transmittance of ultraviolet light with a wavelength of 365 nm to about 57%, and the transmittance of the visible light region (wavelength of 400 nm or more) to about 87% or more. Also, the soda-lime glass containing 0.5% by weight of vanadium oxide suppresses the transmittance of ultraviolet light with a wavelength of 365 nm to about 30%, and the transmittance of the visible light region (wavelength of 400 nm or more) to about 81% or more.
図2及び図3の例から明らかなように、酸化セリウム又は酸化バナジウムを含有させたガラス基板では、酸化セリウム又は酸化バナジウムの含有量を0.2~0.5重量%にすることで、効果的に紫外線を吸収し、且つ高い透過率で可視光を透過させることができる。 As is clear from the examples of FIGS. 2 and 3, in the glass substrate containing cerium oxide or vanadium oxide, the content of cerium oxide or vanadium oxide is set to 0.2 to 0.5% by weight, and the effect is It can absorb ultraviolet light effectively and transmit visible light with high transmittance.
図4は、ガラス基板上に薄膜を積層した薄膜支持基板の一例として、有機EL素子基板を示している。有機EL素子基板1は、照明用発光装置の光源の一部となるものであり、ガラス基板2を備え、ガラス基板2上に透明電極層(陽極層)3、絶縁層4、発光機能層5、金属電極層(陰極層)6などの薄膜を積層した構造を有している。ガラス基板2は、光取り出し側の基板であり、このガラス基板2を介して光が外部に取り出される。
FIG. 4 shows an organic EL element substrate as an example of a thin film supporting substrate in which a thin film is laminated on a glass substrate. The organic EL element substrate 1 is a part of the light source of a light emitting device for illumination, and includes a glass substrate 2. On the glass substrate 2, a transparent electrode layer (anode layer) 3, an
ガラス基板2は、紫外線吸収成分を含有することで、フォトリソグラフィー工程を用いて、パターン形成層である透明電極層3や絶縁層4のパターン形成を精度良く行うことができる。
Since the glass substrate 2 contains an ultraviolet absorbing component, it is possible to accurately pattern the transparent electrode layer 3 and the
下記の表2は、ガラス基板2の酸化セリウム(CeO2)の含有量における波長365nmと可視光での透過率を示している。例1は、紫外線吸収成分である酸化セリウム(CeO2)が含有されていない比較例であり、例2~例5は、酸化セリウム(CeO2)の含有量を0.24重量%から2.31重量%まで変えた例である。 Table 2 below shows the transmittance of the cerium oxide (CeO 2 ) content of the glass substrate 2 at a wavelength of 365 nm and visible light. Example 1 is a comparative example that does not contain cerium oxide (CeO 2 ), which is an ultraviolet absorbing component . This is an example in which the content is changed up to 31% by weight.
例2~5におけるガラス成分のCeO2は、含有量を増やすことで、紫外線(波長365nm)の透過率を抑えることができるが、過剰に加え得ると、可視光域の透過率を低下させることになる。可視光域の透過率を確保するためには、前述したように、CeO2の含有量を0.2~0.5重量%とすることが好ましい。 By increasing the content of CeO 2 as a glass component in Examples 2 to 5, it is possible to suppress the transmittance of ultraviolet rays (wavelength: 365 nm). become. In order to secure the transmittance in the visible light region, it is preferable to set the content of CeO 2 to 0.2 to 0.5% by weight, as described above.
ガラス基板2が、紫外線吸収成分を含有していることで、透明電極層3や絶縁層4のパターン形成を高い精度で行うことができる。これによって、発光むらの少ない高品質の照明装置を実現することができる。
Since the glass substrate 2 contains an ultraviolet absorbing component, pattern formation of the transparent electrode layer 3 and the
1:有機EL素子基板,2:ガラス基板,3:透明電極層,
4:絶縁層,5:発光機能層,6:金属電極層
1: organic EL element substrate, 2: glass substrate, 3: transparent electrode layer,
4: insulating layer, 5: light-emitting functional layer, 6: metal electrode layer
Claims (3)
前記透明基板に、前記透明基板を用意する工程と同時、または、後に、表面と裏面の一方又は両方に凹凸賦形を設ける工程を有し、前記凹凸賦形はその界面で前記紫外線を様々な方向に反射するものであり、次いで、
前記紫外線を用いて、フォトリソグラフィーを行いパターン形成し、薄膜支持基板とする工程、
前記薄膜支持基板上に、電極層を含む薄膜を積層する工程、
を含むパターン形成された前記薄膜支持基板を有する薄膜積層基板の製造方法。
A step of preparing a transparent substrate having an ultraviolet transmittance of 50% or less;
Simultaneously with or after the step of preparing the transparent substrate, the transparent substrate has a step of forming unevenness on one or both of the front surface and the back surface, and the unevenness shaping is performed by irradiating the ultraviolet rays at the interface. direction and then
A step of photolithography using the ultraviolet rays to form a pattern to form a thin film supporting substrate;
laminating a thin film including an electrode layer on the thin film supporting substrate;
A method of manufacturing a thin film laminated substrate having the patterned thin film support substrate comprising:
2. The method of manufacturing a thin film laminated substrate having the patterned thin film supporting substrate according to claim 1 , wherein the transparent substrate contains an ultraviolet absorbing component.
3. The method of manufacturing a thin film laminated substrate having the patterned thin film supporting substrate according to claim 2 , wherein the ultraviolet absorbing component is cerium oxide or vanadium oxide.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017174141A JP7257100B2 (en) | 2017-09-11 | 2017-09-11 | Transparent substrate, thin film supporting substrate |
JP2022039338A JP2022081622A (en) | 2017-09-11 | 2022-03-14 | Transparent substrate, and thin film support substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017174141A JP7257100B2 (en) | 2017-09-11 | 2017-09-11 | Transparent substrate, thin film supporting substrate |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022039338A Division JP2022081622A (en) | 2017-09-11 | 2022-03-14 | Transparent substrate, and thin film support substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019050144A JP2019050144A (en) | 2019-03-28 |
JP7257100B2 true JP7257100B2 (en) | 2023-04-13 |
Family
ID=65905097
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017174141A Active JP7257100B2 (en) | 2017-09-11 | 2017-09-11 | Transparent substrate, thin film supporting substrate |
JP2022039338A Pending JP2022081622A (en) | 2017-09-11 | 2022-03-14 | Transparent substrate, and thin film support substrate |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022039338A Pending JP2022081622A (en) | 2017-09-11 | 2022-03-14 | Transparent substrate, and thin film support substrate |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7257100B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112838113B (en) * | 2021-01-22 | 2023-05-09 | 武汉华星光电半导体显示技术有限公司 | Display device |
CN119212875A (en) | 2022-05-18 | 2024-12-27 | 旭化成株式会社 | Flexographic printing original plate, method for producing flexographic printing plate, flexographic printing plate and flexographic printing method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004311419A (en) | 2003-03-25 | 2004-11-04 | Kyoto Univ | Light emitting device and organic electroluminescent light emitting device |
JP4153290B2 (en) | 2002-11-28 | 2008-09-24 | 株式会社栗本鐵工所 | Shutter device for water faucet installation |
JP4219343B2 (en) | 2005-06-06 | 2009-02-04 | 株式会社新来島どっく | Method for measuring the bottom of the ship |
JP4310539B2 (en) | 2003-10-08 | 2009-08-12 | 株式会社河本組 | Wall block body connection structure |
JP2015217595A (en) | 2014-05-16 | 2015-12-07 | 住友ゴム工業株式会社 | Flexographic printing plate and method for manufacturing the same, and method for manufacturing liquid crystal display element |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61231541A (en) * | 1985-04-06 | 1986-10-15 | Nippon Seihaku Kk | Photosensitive lithographic plating material |
US4774435A (en) * | 1987-12-22 | 1988-09-27 | Gte Laboratories Incorporated | Thin film electroluminescent device |
JPH03261633A (en) * | 1990-03-13 | 1991-11-21 | Nippon Electric Glass Co Ltd | Ultraviolet ray-shielding glass fiber composition |
JP3079579B2 (en) * | 1990-12-18 | 2000-08-21 | 日本電気硝子株式会社 | Medical UV absorbing glass |
JPH04310539A (en) * | 1991-04-05 | 1992-11-02 | Asahi Glass Co Ltd | Infrared and ultraviolet absorbing glass |
JP3105459B2 (en) * | 1996-10-31 | 2000-10-30 | 東京応化工業株式会社 | Positive photoresist composition and multilayer resist material using the same |
JP2000106280A (en) * | 1998-09-28 | 2000-04-11 | Sharp Corp | Organic light-emitting element |
JP2000150145A (en) * | 1998-11-02 | 2000-05-30 | Toyota Motor Corp | EL element sealing method |
JP2001126868A (en) * | 1999-10-28 | 2001-05-11 | Idemitsu Kosan Co Ltd | Method for manufacturing organic electroluminescence device |
JP2003101360A (en) * | 2001-09-19 | 2003-04-04 | Murata Mfg Co Ltd | Method of forming electrode pattern of surface acoustic wave-device |
JP2003320591A (en) * | 2002-04-26 | 2003-11-11 | Wako Seisakusho:Kk | Method for manufacturing bathtub |
JP2004111233A (en) * | 2002-09-19 | 2004-04-08 | Nippon Sheet Glass Co Ltd | Sealing plate for glass el element, and mother glass substrate for multiple sealing plates |
JP2004127746A (en) * | 2002-10-03 | 2004-04-22 | Fuji Photo Film Co Ltd | Light-emitting element |
JP4259106B2 (en) * | 2002-12-11 | 2009-04-30 | コニカミノルタホールディングス株式会社 | Transparent conductive substrate for organic electroluminescence device, organic electroluminescence device using the same, and organic electroluminescence display device |
EP1478032A2 (en) * | 2003-05-16 | 2004-11-17 | Kabushiki Kaisha Toyota Jidoshokki | Light emitting diode method for forming the same |
JP2004342523A (en) * | 2003-05-16 | 2004-12-02 | Toyota Industries Corp | Self-luminous device |
JP2007234301A (en) * | 2006-02-28 | 2007-09-13 | Seiko Epson Corp | Electroluminescence device and electronic device |
JP2007332200A (en) * | 2006-06-13 | 2007-12-27 | Jsr Corp | Thermosetting resin composition, method for forming antihalation film for solid-state image sensor, antihalation film for solid-state image sensor, and solid-state image sensor |
JP2008247626A (en) * | 2007-03-29 | 2008-10-16 | Isuzu Seiko Glass Kk | Method for manufacturing refractive index distribution type optical element having ultraviolet absorptivity |
JP2010066667A (en) * | 2008-09-12 | 2010-03-25 | Nitto Denko Corp | Method of manufacturing optical waveguide device |
JP2013189321A (en) * | 2010-07-14 | 2013-09-26 | Asahi Glass Co Ltd | Synthetic quartz glass for ultraviolet cut filter, and method for manufacturing the same |
JP5998600B2 (en) * | 2011-06-24 | 2016-09-28 | 三菱レイヨン株式会社 | Optical film and optical apparatus using the same |
US9627653B2 (en) * | 2011-11-14 | 2017-04-18 | Konica Minolta, Inc. | Organic electroluminescence element and planar light-emitting body each having light extraction sheet |
WO2014042056A1 (en) * | 2012-09-11 | 2014-03-20 | コニカミノルタ株式会社 | Organic electroluminescence element, and light extraction sheet for organic electroluminescence element |
JPWO2014185277A1 (en) * | 2013-05-16 | 2017-02-23 | コニカミノルタ株式会社 | Organic electroluminescence device |
JP6312399B2 (en) * | 2013-10-07 | 2018-04-18 | 旭化成株式会社 | Concave and convex shaped body for optics |
CN105848888B (en) * | 2014-01-06 | 2018-04-10 | 株式会社可乐丽 | The manufacture method of glass baseplate layered product, the manufacture method of optical element, optical element and light condensing solar energy power generation device |
JP6546433B2 (en) * | 2015-04-03 | 2019-07-17 | 積水化学工業株式会社 | Multilayer piping |
EP3385234B1 (en) * | 2015-12-02 | 2021-06-16 | AGC Inc. | Glass |
-
2017
- 2017-09-11 JP JP2017174141A patent/JP7257100B2/en active Active
-
2022
- 2022-03-14 JP JP2022039338A patent/JP2022081622A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4153290B2 (en) | 2002-11-28 | 2008-09-24 | 株式会社栗本鐵工所 | Shutter device for water faucet installation |
JP2004311419A (en) | 2003-03-25 | 2004-11-04 | Kyoto Univ | Light emitting device and organic electroluminescent light emitting device |
JP4310539B2 (en) | 2003-10-08 | 2009-08-12 | 株式会社河本組 | Wall block body connection structure |
JP4219343B2 (en) | 2005-06-06 | 2009-02-04 | 株式会社新来島どっく | Method for measuring the bottom of the ship |
JP2015217595A (en) | 2014-05-16 | 2015-12-07 | 住友ゴム工業株式会社 | Flexographic printing plate and method for manufacturing the same, and method for manufacturing liquid crystal display element |
Also Published As
Publication number | Publication date |
---|---|
JP2022081622A (en) | 2022-05-31 |
JP2019050144A (en) | 2019-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101642617B1 (en) | Mask blank for reflection-type exposure, and mask for reflection-type exposure | |
US9055680B2 (en) | Electroconductive sheet and touch panel | |
CN104681592B (en) | A kind of display panel and preparation method thereof and display device | |
JP2021015299A5 (en) | ||
CN109273518A (en) | Display substrate, manufacturing method thereof, display device and control method thereof | |
JP2022081622A (en) | Transparent substrate, and thin film support substrate | |
CN113035923A (en) | Array substrate, preparation method thereof and display panel | |
JP2017026701A5 (en) | ||
JP2007178649A (en) | Gray-scale mask | |
CN104298068A (en) | Extreme-ultraviolet photoetching mask structure for large-value pore diameter | |
JP5790073B2 (en) | Method for manufacturing a reflective mask blank | |
TW200941545A (en) | Method for patterning photoresist layer | |
JP2012208415A (en) | Reflective exposure mask | |
JP7167922B2 (en) | Photomask blanks, photomask, exposure method, and device manufacturing method | |
JP2018146760A5 (en) | ||
WO2016161847A1 (en) | Mask and manufacturing method thereof | |
JP5742300B2 (en) | REFLECTIVE MASK BLANK AND ITS MANUFACTURING METHOD, REFLECTIVE MASK | |
JP5754592B2 (en) | Reflective mask manufacturing method and reflective mask | |
JP2015141972A (en) | Euv mask and method of manufacturing euv mask | |
JP2013074058A (en) | Reflective mask blank, method for manufacturing the same and reflective mask | |
JP5803517B2 (en) | Reflective mask, mask blank, and manufacturing method thereof | |
JP5668745B2 (en) | Gradation mask | |
JP5765666B2 (en) | Reflective mask | |
JP2012190979A (en) | Reflective mask blank, reflective mask, and manufacturing method of reflective mask blank | |
JP2013084886A (en) | Reflective mask and reflective mask manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200824 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210525 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210708 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20211221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220314 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20220314 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20220323 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20220329 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20220520 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20220524 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20221004 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20221220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230126 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20230228 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20230328 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20230328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230403 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7257100 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |