JP7252768B2 - Method for manufacturing rare earth bonded magnet - Google Patents
Method for manufacturing rare earth bonded magnet Download PDFInfo
- Publication number
- JP7252768B2 JP7252768B2 JP2019016047A JP2019016047A JP7252768B2 JP 7252768 B2 JP7252768 B2 JP 7252768B2 JP 2019016047 A JP2019016047 A JP 2019016047A JP 2019016047 A JP2019016047 A JP 2019016047A JP 7252768 B2 JP7252768 B2 JP 7252768B2
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- resin
- bonded
- rare earth
- curing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims description 47
- 150000002910 rare earth metals Chemical group 0.000 title claims description 47
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 238000000034 method Methods 0.000 title description 21
- 239000003822 epoxy resin Substances 0.000 claims description 54
- 229920000647 polyepoxide Polymers 0.000 claims description 54
- 239000003795 chemical substances by application Substances 0.000 claims description 52
- 238000005470 impregnation Methods 0.000 claims description 39
- 239000000843 powder Substances 0.000 claims description 32
- 239000000956 alloy Substances 0.000 claims description 25
- 229910045601 alloy Inorganic materials 0.000 claims description 25
- 238000010438 heat treatment Methods 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 5
- 229920005989 resin Polymers 0.000 description 68
- 239000011347 resin Substances 0.000 description 68
- 238000000465 moulding Methods 0.000 description 30
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 21
- 239000011342 resin composition Substances 0.000 description 20
- 239000003960 organic solvent Substances 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 11
- 230000006835 compression Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 6
- 238000004898 kneading Methods 0.000 description 6
- 238000000748 compression moulding Methods 0.000 description 4
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- -1 imidazole compound Chemical class 0.000 description 3
- 229910001172 neodymium magnet Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- FVCSARBUZVPSQF-UHFFFAOYSA-N 5-(2,4-dioxooxolan-3-yl)-7-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C(C(OC2=O)=O)C2C(C)=CC1C1C(=O)COC1=O FVCSARBUZVPSQF-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 2
- 239000008116 calcium stearate Substances 0.000 description 2
- 235000013539 calcium stearate Nutrition 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 238000002074 melt spinning Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000004848 polyfunctional curative Substances 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 1
- XPEKVUUBSDFMDR-UHFFFAOYSA-N 4-methyl-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound CC1C=CCC2C(=O)OC(=O)C12 XPEKVUUBSDFMDR-UHFFFAOYSA-N 0.000 description 1
- OEMSKMUAMXLNKL-UHFFFAOYSA-N 5-methyl-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C(C)=CCC2C(=O)OC(=O)C12 OEMSKMUAMXLNKL-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
本発明は磁気特性に優れ、かつ優れた強度を有する希土類系ボンド磁石の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing a bonded rare earth magnet having excellent magnetic properties and strength.
希土類系永久磁石は高い磁気特性を有しており、今日、様々な分野で使用されている。希土類系永久磁石は使用する原料粉末や製造方法により焼結磁石とボンド磁石に大きく分類されるが、希土類系ボンド磁石(以下、単にボンド磁石と称する)は、希土類系焼結磁石に比べて形状の自由度が大きく、さらに、磁石粉末同士の間に絶縁物である樹脂が存在している為、電気抵抗が高いという利点を有している。しかしながら、ボンド磁石は磁石粉末を樹脂バインダーによって結合した構造であるため、希土類系焼結磁石に比べて磁石強度が低くならざるをえず、高い磁石強度を要する用途への採用は困難であった。 Rare earth permanent magnets have high magnetic properties and are used in various fields today. Rare earth permanent magnets are broadly classified into sintered magnets and bonded magnets, depending on the raw material powder used and manufacturing method. In addition, since the resin as an insulator exists between the magnet powders, it has the advantage of high electrical resistance. However, since bonded magnets have a structure in which magnet powder is bound by a resin binder, their magnet strength is inevitably lower than that of rare earth sintered magnets, making it difficult to use them in applications requiring high magnet strength. .
国際公開第2012/118001号(特許文献1)には、混錬時に添加する樹脂量と有機溶剤量を一定の範囲として作製したボンド磁石用コンパウンドを強圧縮することによって、高い成形体密度を有するとともに、高い磁気特性を有するボンド磁石を製造する方法が開示されている。 In International Publication No. 2012/118001 (Patent Document 1), a compound for a bonded magnet, which is produced by setting the amount of resin and the amount of organic solvent added during kneading within a certain range, is strongly compressed to obtain a high molded body density. Also disclosed are methods of making bonded magnets with high magnetic properties.
特開2017-34097号(特許文献2)には、通常の圧縮ボンド磁石や特許文献1に記載の強圧縮ボンド磁石に採用可能で、高温における機械的強度に優れる成形用樹脂が開示されている。 Japanese Patent Application Laid-Open No. 2017-34097 (Patent Document 2) discloses a molding resin that can be used for normal compression bond magnets and the strongly compression bond magnet described in Patent Document 1, and has excellent mechanical strength at high temperatures. .
一方、特開平4-27102号(特許文献3)には、希土類系磁石粉末を常温で固体状のエポキシ樹脂、硬化剤、及び硬化促進剤を含有するバインダー1によって成形し、バインダー1を熱硬化させた成形体に対し、エポキシ樹脂と硬化剤(イミダゾール化合物)を含むバインダー2を真空含浸し、バインダー2を熱硬化させることによってボンド磁石を製造する方法が開示されている。 On the other hand, in Japanese Patent Laid-Open No. 4-27102 (Patent Document 3), a rare earth magnet powder is molded with a binder 1 containing an epoxy resin, a curing agent, and a curing accelerator that is solid at room temperature, and the binder 1 is heat-cured. A method of manufacturing a bonded magnet is disclosed in which a binder 2 containing an epoxy resin and a curing agent (imidazole compound) is vacuum-impregnated into the formed body, and the binder 2 is thermally cured.
しかしながら、特許文献1に記載のボンド磁石の磁石強度は実用的なものにとどまっており、高い磁石強度を必要とする用途への採用は通常の成形体密度のボンド磁石よりもさらに困難である。また、特許文献2に記載の樹脂を採用することによって、ある程度機械的強度は向上するものの、例えば、より高い強度が求められる高速回転するモーターなどの用途には決して十分な強度を有しているとは言えない。 However, the magnetic strength of the bonded magnet described in Patent Document 1 remains practical, and it is even more difficult to adopt the bonded magnet for applications requiring high magnetic strength than the bonded magnet with a normal molded body density. Also, by adopting the resin described in Patent Document 2, although the mechanical strength is improved to some extent, it never has sufficient strength for applications such as high-speed rotating motors that require higher strength. It can not be said.
さらに、特許文献3に記載の方法によれば、強度に優れるエポキシ樹脂によって成形して熱硬化させた成形体に対し、さらに強度に優れるエポキシ樹脂を前記成形体に存在する空隙に含浸させた後、熱硬化させるため、前記空隙がエポキシ樹脂によって埋められ、磁石強度の大幅な向上が期待できる。しかしながら、含浸樹脂組成物(バインダー2)は硬化剤(イミダゾール化合物)を含んでおり、真空含浸装置の樹脂槽内で、常温でも徐々に硬化が始まってしまうためにポットライフを有しており、頻繁に含浸樹脂を入れ替えたり、真空含浸装置を清掃したりする必要があり生産効率が悪い。 Furthermore, according to the method described in Patent Document 3, after impregnating the voids present in the molded article with an epoxy resin having an even higher strength to a molded article that has been molded and thermoset with an epoxy resin that has excellent strength, Since the magnet is cured by heat, the voids are filled with the epoxy resin, and a significant improvement in the strength of the magnet can be expected. However, the impregnating resin composition (binder 2) contains a curing agent (imidazole compound), and since it gradually begins to harden even at room temperature in the resin tank of the vacuum impregnation device, it has a pot life. It is necessary to frequently replace the impregnating resin and clean the vacuum impregnating device, resulting in poor production efficiency.
従って、本発明の目的は、高い磁石強度を有する希土類系ボンド磁石を優れた生産効率で製造する方法を提供することである。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for producing a bonded rare earth magnet having high magnetic strength with excellent production efficiency.
上記目的に鑑み鋭意検討の結果、本発明者らは、希土類ボンド磁石の製造工程において、例えば、希土類系ボンド磁石を成形する際に使用する成型用エポキシ樹脂組成物に、過剰の硬化剤を含ませて硬化させ、過剰の硬化剤を残存させた状態で希土類系ボンド磁石を作製した後、さらに硬化剤を含まない樹脂組成物を含浸させ、前記残存する硬化剤によって硬化させることによって、高い磁石強度を有する希土類系ボンド磁石を優れた生産効率で製造することができることを見出し本発明に想到した。 As a result of intensive studies in view of the above object, the inventors of the present invention have found that, in the manufacturing process of bonded rare earth magnets, for example, an epoxy resin composition for molding used for molding bonded rare earth magnets contains an excessive amount of curing agent. After making a bonded rare earth magnet with an excess curing agent remaining, impregnating it with a resin composition that does not contain a curing agent, and curing with the remaining curing agent, a high magnet is obtained. The present inventors have found that a rare earth bonded magnet having strength can be produced with excellent production efficiency, and have arrived at the present invention.
すなわち、本発明の希土類系ボンド磁石の製造方法は、
希土類系急冷合金磁石粉末、エポキシ樹脂及び硬化剤を混練した混練物を圧縮して熱処理することにより得られるボンド磁石成形体に、前記硬化剤で硬化可能なエポキシ樹脂を含浸させて含浸成形体を得るエポキシ樹脂含浸工程と、
前記含浸成形体を熱処理して希土類系ボンド磁石を得る熱処理工程とを含み、
前記ボンド磁石成形体は、前記硬化剤が残存し、
前記ボンド磁石成形体及び前記含浸成形体に硬化剤は含浸させず、
前記熱処理工程では、前記ボンド磁石成形体中に残存する前記硬化剤により、前記エポキシ樹脂含浸工程により前記ボンド磁石成形体に含浸させた前記エポキシ樹脂を硬化させることを特徴とする。
That is, the method for producing a bonded rare earth magnet of the present invention includes:
A bond magnet molded body obtained by compressing and heat-treating a kneaded mixture of quenched rare earth alloy magnet powder, an epoxy resin and a curing agent is impregnated with an epoxy resin curable with the curing agent to form an impregnated molded body. an epoxy resin impregnation step to obtain;
a heat treatment step of heat-treating the impregnated molded body to obtain a bonded rare earth magnet,
In the bonded magnet compact, the curing agent remains,
The bonded magnet molded body and the impregnated molded body are not impregnated with a curing agent,
In the heat treatment step, the epoxy resin impregnated into the bonded magnet molded body in the epoxy resin impregnation step is cured with the curing agent remaining in the bonded magnet molded body.
前記含浸は真空加圧含浸であるのが好ましい。 Preferably, the impregnation is vacuum pressure impregnation.
本発明によれば、高い磁石強度を有する希土類系ボンド磁石を優れた生産効率で製造できる。 According to the present invention, a bonded rare earth magnet having high magnetic strength can be produced with excellent production efficiency.
本発明の方法は、例えば、過剰の硬化剤を含有する成形用樹脂組成物を用いて成形及び硬化したボンド磁石成形体に対し、硬化剤を含有しないエポキシ樹脂(含浸用樹脂組成物)を含浸させて熱処理することにより、ボンド磁石成形体に残存する硬化剤によって含浸させたエポキシ樹脂を硬化させることを特徴とする方法であり、磁石強度の高いボンド磁石を得ることができるとともに、硬化剤を含まない含浸用樹脂組成物はポットライフが長く、樹脂の入れ替えや樹脂槽の清掃のサイクルが長いので生産効率が良い。 In the method of the present invention, for example, a bonded magnet molded body molded and cured using a molding resin composition containing an excess curing agent is impregnated with an epoxy resin (impregnation resin composition) containing no curing agent. This method is characterized in that the impregnated epoxy resin is cured by the curing agent remaining in the bonded magnet compact by heating and heat-treating, and a bonded magnet with high magnetic strength can be obtained, and the curing agent is removed. The resin composition for impregnation that does not contain it has a long pot life and a long cycle of replacing the resin and cleaning the resin tank, so that the production efficiency is good.
以下、図1を参照しながら本発明の希土類系ボンド磁石の製造方法を詳細に説明する。 Hereinafter, the method for producing a bonded rare earth magnet of the present invention will be described in detail with reference to FIG.
(1) 希土類系急冷合金粉末を準備する工程S1
まず、希土類系急冷合金粉末を準備する。本発明で使用できる希土類系急冷合金粉末に特段制限はない。例えば、所定の組成の合金の溶湯をメルトスピニング法やストリップキャスト法などのロール急冷法により急冷して作製した急冷合金薄帯を粉砕して製造したものが挙げられる。好適な希土類系急冷合金磁石粉末としては、例えば、米国特許第4802931号に記載のNd-Fe-B系急冷合金磁石粉末が挙げられる。
(1) Step S1 of preparing quenched rare earth alloy powder
First, a quenched rare earth alloy powder is prepared. There is no particular limitation on the quenched rare earth alloy powder that can be used in the present invention. For example, it is produced by pulverizing a quenched alloy ribbon prepared by quenching a melt of an alloy having a predetermined composition by a roll quenching method such as a melt spinning method or a strip casting method. Suitable rare earth-based quenched alloy magnet powders include, for example, Nd--Fe--B-based quenched alloy magnet powders described in US Pat. No. 4,802,931.
(2) 成形用樹脂溶液を準備する工程S2
次に、エポキシ樹脂(成形用樹脂)及び硬化剤を配合した成形用樹脂組成物を有機溶剤等で溶解して成形用樹脂溶液を準備する。使用できる成形用樹脂組成物(エポキシ樹脂と硬化剤との組合せ)は、含まれる硬化剤が、後述の含浸用樹脂(エポキシ樹脂)も硬化できるような組合せであれば特に制限はない。成形用樹脂組成物は2種類以上のエポキシ樹脂や、硬化促進剤などを含有してもよい。このような成形用樹脂組成物としては、例えば、特許文献2記載の樹脂組成物や、DIC社製エピクロン4050、三菱ケミカル社製JER7007Pなどが挙げられる。
(2) Step S2 of preparing a resin solution for molding
Next, a molding resin composition containing an epoxy resin (molding resin) and a curing agent is dissolved in an organic solvent or the like to prepare a molding resin solution. The resin composition for molding (combination of epoxy resin and curing agent) that can be used is not particularly limited as long as the contained curing agent is a combination that can also cure the resin for impregnation (epoxy resin) described below. The resin composition for molding may contain two or more types of epoxy resins, curing accelerators, and the like. Examples of such molding resin compositions include the resin composition described in Patent Document 2, Epiclon 4050 manufactured by DIC Corporation, and JER7007P manufactured by Mitsubishi Chemical Corporation.
エポキシ樹脂と硬化剤との配合比は、硬化剤が成形用樹脂のエポキシ樹脂と含浸用樹脂のエポキシ樹脂の双方を完全に硬化できる量を含むように設定される。すなわち、成形用樹脂組成物中のエポキシ樹脂を硬化させるのに必要な量に対して過剰の硬化剤を含み、後述の熱処理工程S5によって得られるボンド磁石成形体に硬化剤が残存するよう配合する。通常、エポキシ樹脂と硬化剤とを配合する場合、その配合比は完全にエポキシ樹脂を硬化できるよう、理論的な反応量に対してある程度過剰の硬化剤を含むように設定するため、反応に寄与しなかった硬化剤はボンド磁石内に残存する。含浸用樹脂はその含浸量がわずかであるため、通常の成形用樹脂の組成物を硬化させた後に残存する硬化剤で含浸用樹脂を十分に硬化させることができる。 The blending ratio of the epoxy resin and the curing agent is set so that the curing agent contains an amount capable of completely curing both the epoxy resin for the molding resin and the epoxy resin for the impregnation resin. That is, the resin composition for molding contains an excessive amount of curing agent with respect to the amount necessary to cure the epoxy resin, and is blended so that the curing agent remains in the bonded magnet molded body obtained by the heat treatment step S5 described later. . Normally, when blending an epoxy resin and a curing agent, the blending ratio is set so that the amount of the curing agent exceeds the theoretical reaction amount to some extent so that the epoxy resin can be completely cured, which contributes to the reaction. The uncured hardener remains in the bonded magnet. Since the amount of the impregnating resin to be impregnated is very small, the impregnating resin can be sufficiently cured with the curing agent remaining after curing a typical molding resin composition.
有機溶剤は、常温で気体となる揮発性の有機溶剤が好ましい。好適に使用され得る有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、ベンゼン、トルエン、キシレンが挙げられる。安全性や取扱い性の観点から、メチルエチルケトンなどのケトン類が最も好ましい。 The organic solvent is preferably a volatile organic solvent that becomes gas at room temperature. Organic solvents that can be suitably used include, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, benzene, toluene and xylene. Ketones such as methyl ethyl ketone are most preferable from the viewpoint of safety and handling.
成形用樹脂溶液は、上記のようにエポキシ樹脂と硬化剤とを含む成形用樹脂組成物を有機溶剤で溶解することによって準備してもよいが、エポキシ樹脂を有機溶剤で溶解したものに硬化剤を混合することで成形用樹脂溶液を得てもよく、硬化剤を有機溶剤で溶解したものにエポキシ樹脂を混合することで成形用樹脂溶液を得てもよい。さらに、エポキシ樹脂や硬化剤は、溶剤可溶型の樹脂に限定されず、水性や無溶剤型の樹脂を用いることもできる。 The molding resin solution may be prepared by dissolving the molding resin composition containing the epoxy resin and the curing agent in an organic solvent as described above. or by mixing epoxy resin with a curing agent dissolved in an organic solvent. Furthermore, the epoxy resin and the curing agent are not limited to solvent-soluble resins, and water-based or solvent-free resins can also be used.
(3) 希土類系ボンド磁石用コンパウンドを作製する工程S3
続いて、工程S1で準備した希土類系急冷合金粉末と工程S2で準備した成形用樹脂溶液とを混練し、有機溶剤を揮発させることにより希土類系ボンド磁石用コンパウンドを作製する。混練に使用する成形用樹脂溶液は、混練される希土類系急冷合金粉末を100質量%としたとき、0.5質量%以上5.0質量%以下のエポキシ樹脂と、3質量%以上7質量%以下の有機溶剤とを含有するのが好ましい。有機溶剤の含有量が3質量%未満であると、混練の際、樹脂が磁石粉末表面に行き渡るまでに有機溶剤が揮発してしまい、均一被覆ができない恐れがある。また、有機溶剤の割合が7質量%を超えると有機溶剤が揮発するまでに時間がかかり、生産性の面から好ましくない。このような割合で混練して、混練中に有機溶剤を揮発させることにより、個々の粉末粒子の表面が樹脂によって薄くかつ均一に被覆されたコンパウンドを作製することができる。好ましい実施形態において、コンパウンド中の樹脂は希土類系急冷合金の磁石粉末粒子を90%以上の被覆率で被覆し、その樹脂の厚さは0.1μm以上1μm以下である。このようなコンパウンドは磁石粉末粒子が高い被覆率で薄く均一に被覆されている為、磁石粉末粒子同士が接しても導通し難く、最終的に高い電気抵抗を有するボンド磁石を得ることができる。続く圧縮成形時の金型の損傷を低減するためには、コンパウンドにステアリン酸カルシウムなどの潤滑剤などを添加・混合するのが望ましい。
(3) Step S3 of preparing a rare earth bonded magnet compound
Subsequently, the quenched rare earth alloy powder prepared in step S1 and the molding resin solution prepared in step S2 are kneaded, and the organic solvent is volatilized to produce a rare earth bonded magnet compound. The molding resin solution used for kneading contains 0.5% by mass or more and 5.0% by mass or less of an epoxy resin and 3% by mass or more and 7% by mass or less of an organic solvent when the rare earth alloy powder to be kneaded is taken as 100% by mass. It preferably contains and If the content of the organic solvent is less than 3% by mass, the organic solvent may volatilize during kneading before the resin spreads over the surface of the magnet powder, making uniform coating impossible. In addition, if the proportion of the organic solvent exceeds 7% by mass, it takes a long time for the organic solvent to volatilize, which is undesirable from the standpoint of productivity. By kneading in such a ratio and volatilizing the organic solvent during kneading, a compound in which the surfaces of individual powder particles are thinly and uniformly coated with resin can be produced. In a preferred embodiment, the resin in the compound covers the quenched rare earth alloy magnet powder particles at a coverage rate of 90% or more, and the thickness of the resin is 0.1 μm or more and 1 μm or less. In such a compound, the magnet powder particles are thinly and uniformly coated with a high coverage rate, so even if the magnet powder particles are in contact with each other, it is difficult for them to conduct, and finally a bonded magnet having a high electrical resistance can be obtained. In order to reduce damage to the mold during subsequent compression molding, it is desirable to add or mix a lubricant such as calcium stearate to the compound.
(4) 圧縮成形体を作製する工程S4
次に、工程S3で得られた希土類系ボンド磁石用コンパウンドを圧縮して圧縮成形体を作製する。この圧縮成形工程では、圧縮成形体の密度が希土類系急冷合金粉末の真密度の70%以上90%以下の範囲になるように希土類系ボンド磁石用コンパウンドを圧縮するのが好ましい。このような圧縮成形体を得るためには、成形圧力は80 MPa以上2000 MPa以下の範囲であるのが好ましく、200 MPa以上1000 MPa以下の範囲であるのがより好ましい。成形圧力が80 MPa未満であると、高い磁石密度が得られにくい。また、2000 MPaを超えると、金型への負荷が大きくなりすぎるため好ましくない。圧縮成形に用いるプレス装置としては、例えば、メカ式冷間プレス機や特許文献1に記載の超高圧粉末プレス装置が挙げられる。本発明の方法は、特許文献1記載の強圧縮高密度磁石に限定されることなく、汎用の圧縮ボンド磁石にも適用可能であり、本発明の方法によって得られる希土類系ボンド磁石は高い磁石強度が必要な用途に好適に採用される。
(4) Step S4 of producing a compression molded body
Next, the compound for bonded rare earth magnets obtained in step S3 is compressed to produce a compression molded body. In this compression molding step, it is preferable to compress the rare earth bonded magnet compound so that the density of the compression molded body is in the range of 70% to 90% of the true density of the quenched rare earth alloy powder. In order to obtain such a compression molded body, the molding pressure is preferably in the range of 80 MPa to 2000 MPa, more preferably in the range of 200 MPa to 1000 MPa. If the molding pressure is less than 80 MPa, it is difficult to obtain a high magnet density. Moreover, if it exceeds 2000 MPa, the load on the mold becomes too large, which is not preferable. Examples of the press apparatus used for compression molding include a mechanical cold press machine and an ultra-high pressure powder press apparatus described in Patent Document 1. The method of the present invention is not limited to the strongly compressed high-density magnet described in Patent Document 1, but can also be applied to general-purpose compressed bond magnets. is suitably adopted for applications requiring
汎用の圧縮ボンド磁石に本発明を適用する場合には、希土類系ボンド磁石用の材料、他製造条件、含浸条件を汎用の圧縮ボンド磁石に合わせ設定すればよい。 When the present invention is applied to general-purpose compressed bond magnets, the materials for rare earth-based bonded magnets, other manufacturing conditions, and impregnation conditions may be set in accordance with general-purpose compressed bond magnets.
(5) 圧縮成形体を熱処理してボンド磁石成形体を作製する工程S5
こうして圧縮成形された圧縮成形体を熱処理することにより、成形用樹脂が硬化してなるボンド磁石成形体が得られる。熱処理条件は使用する樹脂の硬化条件に準ずればよいが、熱処理温度は、好ましくは150℃以上300℃以下であり、より好ましくは175℃以上250℃以下である。希土類系急冷合金粉末としてNd-Fe-B系急冷合金粉末を採用する場合、特に酸化され易いため、熱処理雰囲気は、10 Pa以下の減圧雰囲気中(特に、真空度1 Pa以下の真空中)、Arガスや窒素ガスなどの不活性ガス雰囲気中などの非酸化性雰囲気が好ましい。同様に酸化防止の観点から、熱処理時間(前記熱処理温度での保持時間)は、好ましくは1分以上4時間以下であり、より好ましくは5分以上1時間以下である。
(5) Step S5 of heat-treating the compression molded body to produce a bonded magnet molded body
By heat-treating the compression-molded body thus compression-molded, a bonded magnet molded body obtained by curing the molding resin is obtained. The heat treatment conditions may conform to the curing conditions of the resin used, but the heat treatment temperature is preferably 150° C. or higher and 300° C. or lower, more preferably 175° C. or higher and 250° C. or lower. When Nd-Fe-B-based quenched alloy powder is used as the rare-earth-based quenched alloy powder, it is particularly susceptible to oxidation. A non-oxidizing atmosphere such as an inert gas atmosphere such as Ar gas or nitrogen gas is preferred. Similarly, from the viewpoint of preventing oxidation, the heat treatment time (holding time at the heat treatment temperature) is preferably 1 minute or more and 4 hours or less, more preferably 5 minutes or more and 1 hour or less.
前述したように、成形用樹脂組成物はエポキシ樹脂を硬化させるに対して過剰の硬化剤を含むので、圧縮成形体の熱処理によって得られたボンド磁石成形体には硬化剤が残存する。 As described above, since the resin composition for molding contains an excessive amount of curing agent for curing the epoxy resin, the curing agent remains in the bond magnet molded body obtained by heat-treating the compression molded body.
(6) ボンド磁石成形体に含浸用樹脂(エポキシ樹脂)を含浸させて含浸成形体を作製する工程S6
次に、エポキシ樹脂を含む含浸用樹脂組成物を有機溶剤等で溶解して含浸用樹脂溶液を準備する。この含浸用樹脂組成物は硬化剤を含まない。使用できる含浸用樹脂としては、単独では硬化しにくく、成形用樹脂に含まれる硬化剤によって硬化されるものであれば他に特に制限はないが、例えばエポキシ樹脂が使用できる。エポキシ樹脂の種類としてはグリシジルエーテル型、グリシジルエステル型、グリシジルアミン型、脂環型が挙げられる。含浸用樹脂は、特にエポキシ樹脂を含むものが好ましく、エポキシ樹脂以外の樹脂を含んでいても良い。含浸用樹脂は、有機溶剤に溶解して溶液とすることができれば常温で固体であっても良い。含浸用樹脂溶液は、水や溶剤でさらに希釈しても良い。
(6) Step S6 of impregnating the bonded magnet molded body with an impregnating resin (epoxy resin) to produce an impregnated molded body.
Next, a resin composition for impregnation containing an epoxy resin is dissolved in an organic solvent or the like to prepare a resin solution for impregnation. This impregnating resin composition does not contain a curing agent. The impregnating resin that can be used is not particularly limited as long as it is hard to cure by itself and can be cured by a curing agent contained in the molding resin. For example, an epoxy resin can be used. Types of epoxy resins include glycidyl ether type, glycidyl ester type, glycidyl amine type, and alicyclic type. The impregnating resin preferably contains an epoxy resin, and may contain a resin other than the epoxy resin. The impregnating resin may be solid at room temperature as long as it can be dissolved in an organic solvent to form a solution. The impregnating resin solution may be further diluted with water or a solvent.
続いて、工程S5で得られたボンド磁石成形体に対し、含浸用樹脂溶液を含浸させて含浸成形体を作製する。含浸の方法は、真空加圧法、真空法、加圧法、浸漬法、遠心法等を採用することができる。特に真空加圧含浸法が好ましい。これらの方法で含浸処理する際には、含浸用樹脂溶液及びボンド磁石成形体を加熱して含浸処理するのが好ましい。加熱することで含浸用樹脂溶液がボンド磁石成形体に含浸されやすくなる。 Subsequently, the bonded magnet compact obtained in step S5 is impregnated with an impregnating resin solution to produce an impregnated compact. As the impregnation method, a vacuum pressurization method, a vacuum method, a pressurization method, an immersion method, a centrifugal method, or the like can be adopted. A vacuum pressure impregnation method is particularly preferred. When the impregnation treatment is performed by these methods, it is preferable to heat the impregnating resin solution and the bonded magnet compact to perform the impregnation treatment. Heating facilitates the impregnation of the resin solution for impregnation into the bonded magnet compact.
(7) 含浸成形体を熱処理して希土類系ボンド磁石を作製する工程S7
続いて、工程S6で作製した含浸成形体を熱処理して希土類系ボンド磁石を作製する。含浸用樹脂組成物は硬化剤を含まないが、工程S5で得られたボンド磁石成形体には硬化剤が残存しているので、ボンド磁石成形体に含浸させたエポキシ樹脂は、この残存する硬化剤によって熱処理で硬化する。
(7) Step S7 of heat-treating the impregnated compact to produce a bonded rare earth magnet.
Subsequently, the impregnated compact produced in step S6 is heat-treated to produce a bonded rare earth magnet. Although the resin composition for impregnation does not contain a curing agent, the bonded magnet compact obtained in step S5 contains a curing agent. It is hardened by heat treatment with an agent.
特許文献3のように硬化剤を含む含浸用樹脂組成物を使用する場合、常温でも徐々に含浸用樹脂の硬化が始まってしまう。そのため含浸用樹脂組成物にはポットライフがあり、ポットライフが短いと頻繁に樹脂の入れ替えや樹脂槽の清掃が必要になるので、ポットライフができるだけ長い樹脂を使うのが好ましいが、そのような樹脂は硬化時間が長く、かつ硬化温度も高いため、生産効率が悪く、磁気特性を劣化させる恐れがある。このように、硬化剤を含有する含浸用樹脂組成物を用いる場合は、ポットライフと、生産効率及び磁気特性劣化率の両立が難しい。 When a resin composition for impregnation containing a curing agent is used as in Patent Document 3, curing of the resin for impregnation begins gradually even at room temperature. Therefore, the resin composition for impregnation has a pot life, and if the pot life is short, it is necessary to frequently replace the resin and clean the resin tank. Resin takes a long time to harden and has a high hardening temperature, resulting in poor production efficiency and possibly deteriorating magnetic properties. Thus, when using an impregnating resin composition containing a curing agent, it is difficult to achieve both pot life, production efficiency, and magnetic property deterioration rate.
これに対して本発明の方法においては、成形用樹脂に過剰の硬化剤を含有させて、成形用樹脂硬化後も硬化剤をボンド磁石中に残存させることにより、硬化剤を含まない含浸用樹脂を含浸させて熱処理した場合は、前記残存する硬化剤によって含浸用樹脂を硬化させることができるので、ポットライフ、生産効率、磁気特性の劣化率及び磁石強度のすべてを解決できることができる。 On the other hand, in the method of the present invention, an excess curing agent is added to the molding resin so that the curing agent remains in the bond magnet even after the molding resin is cured. When impregnated with and heat-treated, the impregnating resin can be cured by the remaining curing agent, so that pot life, production efficiency, deterioration rate of magnetic properties, and magnet strength can all be solved.
熱処理条件は使用する含浸用樹脂の硬化条件に準ずればよい。希土類系急冷合金粉末としてNd-Fe-B系急冷合金粉末を採用する場合、特に酸化され易いため、熱処理雰囲気はS5工程と同様の非酸化性雰囲気、もしくはオイル中などの酸素を遮断した環境で行うのが好ましい。 The heat treatment conditions may conform to the curing conditions of the impregnating resin used. When Nd-Fe-B-based quenched alloy powder is used as the rare-earth-based quenched alloy powder, it is particularly susceptible to oxidation. preferably done.
上記の工程を経て得られたボンド磁石は、成形用樹脂のみを含むボンド磁石成形体に対して磁石強度が1.2倍以上に向上している。また、上記で使用した含浸用樹脂は硬化剤を含んでいないため、硬化剤を含む含浸用樹脂に対して格段にポットライフが長く、真空含浸装置における樹脂の入れ替えや樹脂槽清掃のサイクルが長いため生産効率が高い。また、含浸用樹脂硬化の熱処理を非酸化性雰囲気中で行った場合、ボンド磁石成形体に対する磁気特性劣化率が2.0%以内である。 The bonded magnet obtained through the above steps has a magnetic strength that is 1.2 times or more higher than that of the bonded magnet compact containing only the molding resin. In addition, since the impregnating resin used above does not contain a curing agent, it has a much longer pot life than the impregnating resin containing a curing agent, and the cycle of replacing the resin in the vacuum impregnation device and cleaning the resin tank is long. Therefore, production efficiency is high. Further, when the heat treatment for curing the impregnating resin is performed in a non-oxidizing atmosphere, the rate of deterioration of the magnetic properties of the bonded magnet compact is within 2.0%.
工程S5と工程S6との間にボンド磁石成形体の加工工程を追加してもよい。すなわち、ボンド磁石成形体を加工し、加工後のボンド磁石成形体に対して工程S6で準備した含浸用樹脂溶液を含浸させてもよい。また、工程S7の後に加工工程を追加してもよい。すなわち、工程S7で作製したボンド磁石を加工して完成品としてもよい。また、工程S7の後に種々の表面処理を行ってもよい。このように、工程S1~工程S7は、順番は上記の順であるが、各々の工程の間、後に他の工程を追加してもよい。 A step of processing the bonded magnet compact may be added between step S5 and step S6. That is, the bonded magnet compact may be processed, and the processed bonded magnet compact may be impregnated with the impregnating resin solution prepared in step S6. Further, a processing step may be added after step S7. That is, the bonded magnet produced in step S7 may be processed into a finished product. Various surface treatments may be performed after step S7. In this way, steps S1 to S7 are in the order described above, but other steps may be added after each step.
上記の実施形態では、S1工程(希土類系急冷合金粉末を準備する工程)からS7工程(含浸成形体を熱処理して希土類系ボンド磁石を作製する工程)までを説明した。ただし、本発明は上記の実施形態に限定されない。 In the above embodiment, steps S1 (the step of preparing the rapidly solidified rare earth alloy powder) to S7 (the step of heat-treating the impregnated compact to produce a bonded rare earth magnet) have been described. However, the invention is not limited to the above embodiments.
例えば、希土類系急冷合金磁石粉末、エポキシ樹脂及び硬化剤を混練した混練物を圧縮して熱処理することにより得られるボンド磁石成形体を入手し、これにエポキシ樹脂を含浸させて含浸成形体を作製し(エポキシ樹脂含浸工程)、この含浸成形体を熱処理することにより(熱処理工程)、希土類系ボンド磁石を得ることができる。 For example, a bonded magnet compact obtained by compressing and heat-treating a kneaded product obtained by kneading a quenched rare earth alloy magnet powder, an epoxy resin and a curing agent is obtained, and impregnated with an epoxy resin to produce an impregnated compact. (epoxy resin impregnation step) and heat-treating the impregnated compact (heat-treatment step) to obtain a bonded rare earth magnet.
実施例1
希土類系急冷合金粉末として、メルトスピニング法で得られたNd-Fe-B系急冷合金粉末(マグネクエンチ社製MQP-13-9)を準備した。成形用樹脂として、DIC社製無水ビスフェノールA型エポキシ樹脂エピクロン4050、三菱ケミカル社製ビスフェノールF型エポキシ樹脂JER4007P、三菱ケミカル社製硬化剤DICY7(ジシアンジアミド)を配合比45:50:5(質量比)にて準備し、これらをメチルエチルケトン(MEK)に溶解し、成形用樹脂溶液を作製した。MEKの量は混錬される急冷合金粉末の質量を基準として4.5質量%となるようにした。
Example 1
As the rare earth-based quenched alloy powder, a Nd--Fe--B-based quenched alloy powder (MQP-13-9 manufactured by Magnequench Co., Ltd.) obtained by a melt spinning method was prepared. As the molding resin, DIC's anhydrous bisphenol A type epoxy resin Epiclon 4050, Mitsubishi Chemical's bisphenol F type epoxy resin JER4007P, and Mitsubishi Chemical's hardener DICY7 (dicyandiamide) are mixed at a mixing ratio of 45:50:5 (mass ratio). and dissolved in methyl ethyl ketone (MEK) to prepare a molding resin solution. The amount of MEK was set to 4.5% by mass based on the mass of the quenched alloy powder to be kneaded.
この成形用樹脂溶液とNd-Fe-B系急冷合金粉末とを、急冷合金粉末の質量を基準としてMEKを除く樹脂量が2.0質量%となるように混合し、溶液中のMEKが完全に揮発するまで混錬した。その後、急冷合金粉末の質量を基準として0.07質量%のステアリン酸カルシウムを混合して希土類系ボンド磁石用コンパウンドを作製した。 This molding resin solution and the Nd-Fe-B system quenched alloy powder were mixed so that the amount of resin excluding MEK was 2.0% by mass based on the mass of the quenched alloy powder, and MEK in the solution was completely volatilized. kneaded until After that, 0.07% by mass of calcium stearate was mixed with the mass of the quenched alloy powder as a reference to prepare a compound for a rare earth bonded magnet.
こうして得られた希土類系ボンド磁石用コンパウンドに対して1000 MPaの成形圧力で圧縮成形を行うことにより圧縮成形体を作製した。この成形体に対し、真空雰囲気中で180℃の温度で2時間熱処理して、外径15.5 mm、内径9.7 mm、高さ2.6 mmのボンド磁石成形体を作製した。このボンド磁石成形体の圧環強度は184.8 N(5個の平均値)、磁力はN極240.4 mT、S極243.6 mT(それぞれ5個の平均値)であった。 A compression-molded body was produced by subjecting the compound for a bonded rare earth magnet thus obtained to compression molding under a molding pressure of 1000 MPa. This compact was heat-treated in a vacuum atmosphere at a temperature of 180° C. for 2 hours to produce a bonded magnet compact having an outer diameter of 15.5 mm, an inner diameter of 9.7 mm and a height of 2.6 mm. The radial crushing strength of this bonded magnet compact was 184.8 N (average value of 5 pieces), and the magnetic force was 240.4 mT for the N pole and 243.6 mT for the S pole (average value for each of 5 pieces).
本実施例における圧環強度は、圧環強度試験機を用い、ボンド磁石成形体又はボンド磁石の径方向中央部より圧力をかけ、それらが破壊されるときの強度である。磁力はボンド磁石成形体又はボンド磁石を着磁し、日本電磁測器社製マグネットアナライザーを用いて、N極及びS極それぞれ磁石厚み方向の中央部を測定した。(すべて5個の平均値。) The radial crushing strength in this embodiment is the strength when a pressure is applied from the radially central portion of the bonded magnet compact or the bonded magnet using a radial crushing strength tester, and they are destroyed. The magnetic force was obtained by magnetizing the bonded magnet compact or the bonded magnet, and using a magnet analyzer manufactured by Nippon Electromagnetic Sokki Co., Ltd., to measure the central portion in the magnet thickness direction of each of the N and S poles. (All 5 averages.)
続いて含浸用樹脂溶液(エポキシ樹脂F)を作製した。含浸用樹脂溶液の配合比は、ビスフェノールA型エポキシ樹脂:ポリプロピレングリコールジグリジシルエーテル=1:1(質量比)であった。 Subsequently, a resin solution for impregnation (epoxy resin F) was prepared. The blending ratio of the resin solution for impregnation was bisphenol A type epoxy resin:polypropylene glycol diglydisyl ether=1:1 (mass ratio).
この含浸用樹脂溶液を真空加圧含浸法にて、ボンド磁石成形体に含浸させて含浸成形体を作製した。続いてこの含浸成形体を表1の3つの条件で熱処理して含浸用樹脂を硬化させ、サンプルNo.1~3の希土類系ボンド磁石を作製した。これらのボンド磁石に対して、圧環強度及び磁力を測定し、ボンド磁石成形体に対する強度比及び磁力低下率を調べた。結果を表2に示す。 A bond magnet compact was impregnated with this resin solution for impregnation by a vacuum pressure impregnation method to produce an impregnated compact. Subsequently, this impregnated molded body was heat-treated under the three conditions shown in Table 1 to cure the impregnating resin, and sample Nos. 1 to 3 of bonded rare earth magnets were produced. The radial crushing strength and magnetic force of these bonded magnets were measured, and the strength ratio and magnetic force reduction rate with respect to the bonded magnet compact were investigated. Table 2 shows the results.
表2から、これらのボンド磁石はボンド磁石成形体に対して圧環強度が1.2倍以上に向上していた。また磁力低下率はN極及びS極ともに2%以内であった。なお含浸用樹脂溶液(エポキシ樹脂F)は硬化剤を含んでおらず、単独では硬化しないことが確認されている。しかしながら、本実施例においてはボンド磁石成形体に含浸させたエポキシ樹脂Fが十分な硬度で硬化し、含浸前のボンド磁石成形体に対して圧環強度が1.2倍以上に向上したことから、エポキシ樹脂Fはボンド磁石成形体に残存していた硬化剤によって硬化したものと考えられる。 From Table 2, the radial crushing strength of these bonded magnets was improved by 1.2 times or more as compared with the molded bonded magnet. Moreover, the magnetic force reduction rate was within 2% for both the N pole and the S pole. It has been confirmed that the resin solution for impregnation (epoxy resin F) does not contain a curing agent and does not cure by itself. However, in this example, the epoxy resin F with which the bonded magnet compact was impregnated was hardened with sufficient hardness, and the radial crushing strength was improved by 1.2 times or more compared to the bonded magnet compact before impregnation. It is considered that F was cured by the curing agent remaining in the bonded magnet compact.
実施例2
比較例の樹脂として、硬化剤を含む含浸用樹脂溶液(エポキシ樹脂C)を準備した。含浸用樹脂溶液の配合比は、ビスフェノールA型エポキシ樹脂:ポリプロピレングリコールジグリシジルエーテル:3 or 4-メチル-1,2,3,6-テトラヒドロ無水フタル酸=1:1:2(質量比)であった。
Example 2
As a comparative resin, an impregnating resin solution (epoxy resin C) containing a curing agent was prepared. The blending ratio of the resin solution for impregnation is bisphenol A type epoxy resin: polypropylene glycol diglycidyl ether: 3 or 4-methyl-1,2,3,6-tetrahydrophthalic anhydride = 1:1:2 (mass ratio). there were.
エポキシ樹脂Fを用いた含浸用樹脂溶液と、エポキシ樹脂Cを用いた含浸用樹脂溶液とを作製し、それらの粘度の時間経過による変化を比較することによってポットライフを比較した。なお、粘度は23℃条件下においてBH型粘度計により測定した。 A resin solution for impregnation using epoxy resin F and a resin solution for impregnation using epoxy resin C were prepared, and pot lives were compared by comparing changes in viscosity over time. The viscosity was measured with a BH type viscometer at 23°C.
エポキシ樹脂Fは30日経過後も粘度が500 mP・sであり、含浸に使用できる状態であったが、エポキシ樹脂Cは5日経過後で粘度が10000 mP・sとなり含浸に使用することが難しい状態になった。 Epoxy resin F had a viscosity of 500 mP s even after 30 days, and was ready for impregnation. Epoxy resin C had a viscosity of 10,000 mP s after 5 days, making it difficult to use for impregnation. Became.
本発明によれば、高い磁石強度を有する希土類系ボンド磁石を優れた生産効率で製造する方法を得られる。 According to the present invention, it is possible to obtain a method for manufacturing a bonded rare earth magnet having high magnetic strength with excellent production efficiency.
Claims (2)
前記含浸成形体を熱処理して希土類系ボンド磁石を得る熱処理工程とを含み、
前記ボンド磁石成形体は、前記硬化剤が残存し、
前記ボンド磁石成形体及び前記含浸成形体に硬化剤は含浸させず、
前記熱処理工程では、前記ボンド磁石成形体中に残存する前記硬化剤により、前記エポキシ樹脂含浸工程により前記ボンド磁石成形体に含浸させた前記エポキシ樹脂を硬化させる希土類系ボンド磁石の製造方法。 A bond magnet molded body obtained by compressing and heat-treating a kneaded mixture of quenched rare earth alloy magnet powder, an epoxy resin and a curing agent is impregnated with an epoxy resin curable with the curing agent to form an impregnated molded body. an epoxy resin impregnation step to obtain;
a heat treatment step of heat-treating the impregnated molded body to obtain a bonded rare earth magnet,
In the bonded magnet compact, the curing agent remains,
The bonded magnet molded body and the impregnated molded body are not impregnated with a curing agent,
In the heat treatment step, the epoxy resin impregnated into the bonded magnet compact in the epoxy resin impregnation step is cured with the curing agent remaining in the bonded magnet compact.
前記含浸が真空加圧含浸であることを特徴とする希土類系ボンド磁石の製造方法。 In the method for producing a bonded rare earth magnet according to claim 1,
A method for producing a bonded rare earth magnet, wherein the impregnation is vacuum pressure impregnation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019016047A JP7252768B2 (en) | 2019-01-31 | 2019-01-31 | Method for manufacturing rare earth bonded magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019016047A JP7252768B2 (en) | 2019-01-31 | 2019-01-31 | Method for manufacturing rare earth bonded magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020123703A JP2020123703A (en) | 2020-08-13 |
JP7252768B2 true JP7252768B2 (en) | 2023-04-05 |
Family
ID=71992978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019016047A Active JP7252768B2 (en) | 2019-01-31 | 2019-01-31 | Method for manufacturing rare earth bonded magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7252768B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010238929A (en) | 2009-03-31 | 2010-10-21 | Denso Corp | Reactor and method of manufacturing the same |
WO2012118001A1 (en) | 2011-03-02 | 2012-09-07 | 日立金属株式会社 | Rare-earth bond magnet manufacturing method |
JP2017073479A (en) | 2015-10-08 | 2017-04-13 | 日立化成株式会社 | Bond magnet hardened body |
JP2017147387A (en) | 2016-02-19 | 2017-08-24 | 日立オートモティブシステムズ阪神株式会社 | Internal combustion engine ignition coil and method of manufacturing internal combustion engine ignition coil |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0427102A (en) * | 1990-05-23 | 1992-01-30 | Sumitomo Metal Mining Co Ltd | Resin magnet and its manufacturing method |
-
2019
- 2019-01-31 JP JP2019016047A patent/JP7252768B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010238929A (en) | 2009-03-31 | 2010-10-21 | Denso Corp | Reactor and method of manufacturing the same |
WO2012118001A1 (en) | 2011-03-02 | 2012-09-07 | 日立金属株式会社 | Rare-earth bond magnet manufacturing method |
JP2017073479A (en) | 2015-10-08 | 2017-04-13 | 日立化成株式会社 | Bond magnet hardened body |
JP2017147387A (en) | 2016-02-19 | 2017-08-24 | 日立オートモティブシステムズ阪神株式会社 | Internal combustion engine ignition coil and method of manufacturing internal combustion engine ignition coil |
Also Published As
Publication number | Publication date |
---|---|
JP2020123703A (en) | 2020-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60207302A (en) | Rare earth element-iron magnet bonded with epoxy resin | |
JP5257614B2 (en) | Rare earth bonded magnet | |
JP2013522441A (en) | Composition for producing magnetic or magnetized molded article, and method for producing the composition | |
JP2010232468A5 (en) | ||
JP4552090B2 (en) | Rare earth bonded magnet and manufacturing method thereof | |
JP7252768B2 (en) | Method for manufacturing rare earth bonded magnet | |
JP6393737B2 (en) | Rare earth bonded magnet | |
JPH0547528A (en) | Manufacturing method of anisotropical rare earth bonded magnet | |
JPH04119604A (en) | Manufacture of bonded magnet | |
JP2022035048A (en) | Method for manufacturing rare-earth bond magnet | |
JP4116690B2 (en) | Rare earth bonded magnet composition and rare earth bonded magnet | |
JP2757040B2 (en) | Method for producing Nd-Fe-B bonded magnet | |
JP6438713B2 (en) | Rare earth iron-based magnet powder and bonded magnet using the same | |
JP2568511B2 (en) | High strength with excellent heat and oxidation resistance | |
EP2667386A1 (en) | Bonded magnet and motor provided with same | |
JP3185454B2 (en) | Composition for resin-bonded magnet and resin-bonded magnet | |
JPH04337603A (en) | Rare-earth metal and resin composite molded body and production thereof | |
JP2010262996A (en) | Rare earth permanent magnet and method of manufacturing the same | |
JPH05175024A (en) | Rare earth bonded magnet materilal, rare earth bonded magnet and manufacture of the magnet | |
JP2024117266A (en) | Composition for bonded magnet and method for producing bonded magnet | |
JP3941134B2 (en) | Raw material powder for manufacturing bond type permanent magnet and manufacturing method | |
JP2888059B2 (en) | Composition for bonded magnet and method for producing the same | |
WO2024203793A1 (en) | Rare earth bonded magnet | |
JP3182961B2 (en) | Composition for bonded magnet and method for producing the same | |
JPH0618130B2 (en) | Permanent magnet material composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220930 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230324 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7252768 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |