[go: up one dir, main page]

JP7240653B2 - Emission color tone control method - Google Patents

Emission color tone control method Download PDF

Info

Publication number
JP7240653B2
JP7240653B2 JP2019034658A JP2019034658A JP7240653B2 JP 7240653 B2 JP7240653 B2 JP 7240653B2 JP 2019034658 A JP2019034658 A JP 2019034658A JP 2019034658 A JP2019034658 A JP 2019034658A JP 7240653 B2 JP7240653 B2 JP 7240653B2
Authority
JP
Japan
Prior art keywords
component
solution
emission color
composition
michler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019034658A
Other languages
Japanese (ja)
Other versions
JP2020139030A (en
Inventor
洋一郎 國信
敏彰 森
裕介 吉越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2019034658A priority Critical patent/JP7240653B2/en
Publication of JP2020139030A publication Critical patent/JP2020139030A/en
Application granted granted Critical
Publication of JP7240653B2 publication Critical patent/JP7240653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、溶液状又は固体状組成物の発光色調の制御方法に関する。 TECHNICAL FIELD The present invention relates to a method for controlling the emission color tone of a solution or solid composition.

発光性有機化合物は、生体標識材料、有機エレクトロニクス材料、化学センサ、及び有機レーザなど幅広い分野で用いられており、新たな発光性材料の開発研究が盛んに行われている。とりわけX線や紫外線、又は可視光線の照射により発光する蛍光性有機化合物は上記の用途のほか有機蛍光塗料などにも利用可能である。
しかしながら、一般に発光性有機材料として用いられる分子は強固で平面性の高い分子が多いことから、溶液中では分子同士の接触や相互の干渉が少なく強く発光するものの、結晶状態などの固体状態では放出される電磁波のエネルギーが近傍の平面分子の影響を受けて減衰し、発光効率が著しく低下してしまう場合が多い。発光性有機材料は、アプリケーション上、固体状態で用いられる場合もあることから、溶液のみならず固体状態でも強い発光を示す材料の開発は重要な課題である。
Luminescent organic compounds are used in a wide range of fields such as biolabeling materials, organic electronic materials, chemical sensors, and organic lasers, and research and development of new luminescent materials is being actively conducted. In particular, fluorescent organic compounds that emit light when irradiated with X-rays, ultraviolet rays, or visible light can be used for organic fluorescent paints, etc., in addition to the above uses.
However, most of the molecules used as light-emitting organic materials are strong and have high planarity. Therefore, in a solution, there is little contact or mutual interference between molecules, and they emit light strongly. In many cases, the energy of the emitted electromagnetic wave is attenuated by the influence of nearby planar molecules, resulting in a marked decrease in luminous efficiency. Since luminescent organic materials are sometimes used in a solid state for some applications, the development of materials that exhibit strong luminescence not only in solution but also in the solid state is an important issue.

特許文献1には、8-アミノキノリン誘導体のホウ素錯体が電界発光アセンブリに用いることができることが記載されている。また特許文献2には、4’-ジメチルアミノ-N-メチル-4-スチルバゾリウムトシレートの結晶が光学非線形特性を持つことが記載されている。さらに特許文献3には、ピリジン-N-オキシド-ジフルオロホウ素化合物が溶液状態及び固体状態でも発光することが記載されている。非特許文献1には、5-N-アリールアミノチアゾールとルイス酸を含有する溶液が白色光を発することが記載されている。非特許文献2には2-(2’-ヒドロキシフェニル)イミダゾ〔1,2-d〕ピリジン誘導体を添加したポリマーが発光することが記載されている。また非特許文献3には、ボロン-ジピリンが凝集状態を変化させることにより発光色が変化することが記載されている。 US Pat. No. 6,200,000 describes that boron complexes of 8-aminoquinoline derivatives can be used in electroluminescent assemblies. Patent document 2 describes that crystals of 4'-dimethylamino-N-methyl-4-stilbazolium tosylate have optical nonlinear properties. Furthermore, Patent Document 3 describes that a pyridine-N-oxide-difluoroboron compound emits light both in a solution state and a solid state. Non-Patent Document 1 describes that a solution containing 5-N-arylaminothiazole and a Lewis acid emits white light. Non-Patent Document 2 describes that a polymer to which a 2-(2'-hydroxyphenyl)imidazo[1,2-d]pyridine derivative is added emits light. Non-Patent Document 3 describes that the luminescent color is changed by changing the aggregation state of boron-dipyrin.

特開2000-138096号公報JP-A-2000-138096 特表2000-504298号公報Japanese Patent Publication No. 2000-504298 国際公開第2014/132704号WO2014/132704

Murai, T. et. al., ChemistryOPEN 2016, 5, 434-438Murai, T. et. al., ChemistryOPEN 2016, 5, 434-438 Mutai, T.; Araki, K. et. al., ACS Appl. Mater. Inter., 2014, 6, 16065-16070Mutai, T.; Araki, K. et. al., ACS Appl. Mater. Inter., 2014, 6, 16065-16070 Yamamoto, Y. et. al., ACS Nano, 2016, 10, 7058-7063Yamamoto, Y. et al., ACS Nano, 2016, 10, 7058-7063

しかしながら、前記発光特性を有する化合物のほとんどは、溶液状態及び固体状態のいずれにおいても発光を示すものではなく、特許文献3記載の化合物でも発光色を制御できるものではなかった。
本発明の課題は、溶液状態だけでなく固体状態でも優れた発光特性を示し、広範囲の発光色調を制御可能な手段を提供することにある。
However, most of the compounds having the above-described luminescent properties do not emit light either in solution or in solid state, and even the compound described in Patent Document 3 cannot control the emission color.
An object of the present invention is to provide a means that exhibits excellent luminescence characteristics not only in a solution state but also in a solid state and that can control a wide range of luminescence color tones.

そこで、本発明者は、種々の蛍光物質とルイス酸等の化合物とを媒体中に配合し、その溶液状態及び固体状態における光学特性を検討したところ、全く意外にも、それらを配合した組成物が、溶液状態だけでなく、ゲル状態やフィルム、繊維、成形体等の固体状態においても強く発光し、かつその含有量の変化等により種々の発光色が得られ、容易に広範囲の発光色が制御できることを見出し、本発明を完成した。 Therefore, the present inventor blended various fluorescent substances and compounds such as Lewis acids in a medium and examined the optical properties in the solution state and the solid state. However, it emits strong light not only in a solution state but also in a gel state, a solid state such as a film, a fiber, a molded body, etc., and various emission colors can be obtained by changing its content, etc., and a wide range of emission colors can be easily obtained. We found that it can be controlled, and completed the present invention.

すなわち、本発明は、次の発明〔1〕~〔13〕を提供するものである。 That is, the present invention provides the following inventions [1] to [13].

〔1〕(a)蛍光物質、(b)前記成分(a)と非共有結合性相互作用する物質及び(c)媒質、を含有する組成物において、組成物中の成分(a)、成分(b)及びそれらの錯体の平衡定数を変化させるか、又は成分(c)中の成分(a)の含有比率若しくは成分(c)中の成分(a)及び成分(b)の重量比率を変化させることを特徴とする発光色調の制御方法。
〔2〕前記組成物が、溶液状組成物又は固体状組成物である〔1〕記載の発光色調の制御方法。
〔3〕蛍光物質が、式(1)で表される化合物である〔1〕又は〔2〕記載の発光色調の制御方法。
[1] In a composition containing (a) a fluorescent substance, (b) a substance that non-covalently interacts with component (a), and (c) a medium, component (a) and component ( b) and the equilibrium constants of their complexes, or changing the content ratio of component (a) in component (c) or the weight ratio of component (a) and component (b) in component (c) A method for controlling emission color tone, characterized by:
[2] The method for controlling emission color tone according to [1], wherein the composition is a solution composition or a solid composition.
[3] The method for controlling emission color tone according to [1] or [2], wherein the fluorescent substance is a compound represented by formula (1).

Figure 0007240653000001
Figure 0007240653000001

(式中、Ar1及びAr2は、同一又は異なって芳香族炭化水素基又は芳香族複素環式基を示し、R1、R2、R3及びR4は、同一又は異なって、水素原子、脂肪族炭化水素基又は芳香族炭化水素を示す)
〔4〕成分(b)が、ブレンステッド酸、ルイス酸又はハロゲン結合ドナーである〔1〕~〔3〕のいずれかに記載の発光色調の制御方法。
〔5〕前記成分(a)、成分(b)及びそれらの錯体の平衡定数をK=0.1からK=106に変化させる〔1〕~〔4〕のいずれかに記載の発光色調の制御方法。
〔6〕前記成分(c)中の成分(a)の含有比率を0.01mMから100mM又は前記成分(c)中の成分(a)及び成分(b)の重量比率を0.01%から100%に変化させる〔1〕~〔5〕のいずれかに記載の発光色調の制御方法。
〔7〕(a)蛍光物質、(b)前記成分(a)と非共有結合性相互作用する物質及び(c)媒質、を含有する発光組成物。
〔8〕前記組成物が、溶液状組成物又は固体状組成物である〔7〕記載の発光組成物。
〔9〕蛍光物質が、式(1)で表される化合物である〔7〕又は〔8〕記載の発光組成物。
(wherein Ar 1 and Ar 2 are the same or different and represent an aromatic hydrocarbon group or an aromatic heterocyclic group; R 1 , R 2 , R 3 and R 4 are the same or different and are hydrogen atoms; , indicates an aliphatic hydrocarbon group or an aromatic hydrocarbon)
[4] The method for controlling emission color tone according to any one of [1] to [3], wherein component (b) is Bronsted acid, Lewis acid or halogen bond donor.
[5] The emission color tone of any one of [1] to [4], wherein the equilibrium constants of the components (a), (b) and their complexes are changed from K = 0.1 to K = 10 6 control method.
[6] The content ratio of component (a) in component (c) is 0.01 mM to 100 mM, or the weight ratio of component (a) and component (b) in component (c) is 0.01% to 100 The method for controlling emission color tone according to any one of [1] to [5], wherein
[7] A luminescent composition containing (a) a fluorescent substance, (b) a substance that non-covalently interacts with the component (a), and (c) a medium.
[8] The luminescent composition of [7], wherein the composition is a solution composition or a solid composition.
[9] The luminescent composition according to [7] or [8], wherein the fluorescent substance is a compound represented by formula (1).

Figure 0007240653000002
Figure 0007240653000002

(式中、Ar1及びAr2は、同一又は異なって芳香族炭化水素基又は芳香族複素環式基を示し、R1、R2、R3及びR4は、同一又は異なって、水素原子、脂肪族炭化水素基又は芳香族炭化水素を示す)
〔10〕成分(b)が、ブレンステッド酸、ルイス酸又はハロゲン結合ドナーである〔7〕~〔9〕のいずれかに記載の発光組成物。
〔11〕前記成分(a)、成分(b)及びそれらの錯体の平衡定数がK=0.1からK=106の範囲である〔7〕~〔10〕のいずれかに記載の発光組成物。
〔12〕前記成分(c)中の成分(a)の含有比率が濃度で0.01mMから100mM又は前記成分(c)中の成分(a)及び成分(b)の重量比率が0.01%から100%の範囲である〔7〕~〔11〕のいずれかに記載の発光組成物。
〔13〕補色関係を有する2つのピーク波長を呈する白色発光体である、〔7〕~〔12〕のいずれかに記載の発光組成物。
(wherein Ar 1 and Ar 2 are the same or different and represent an aromatic hydrocarbon group or an aromatic heterocyclic group; R 1 , R 2 , R 3 and R 4 are the same or different and are hydrogen atoms; , indicates an aliphatic hydrocarbon group or an aromatic hydrocarbon)
[10] The luminescent composition according to any one of [7] to [9], wherein component (b) is a Bronsted acid, a Lewis acid or a halogen bond donor.
[11] The luminescent composition according to any one of [7] to [10], wherein the equilibrium constants of the components (a), (b) and their complexes are in the range of K = 0.1 to K = 106 . thing.
[12] The content ratio of component (a) in component (c) is 0.01 mM to 100 mM in concentration, or the weight ratio of component (a) and component (b) in component (c) is 0.01%. to 100%, the luminescent composition according to any one of [7] to [11].
[13] The luminescent composition according to any one of [7] to [12], which is a white luminescent material exhibiting two peak wavelengths having complementary colors.

本発明方法によれば、溶液状態及び固体状態の両状態において強い発光を示し、かつその広範囲の発光色調を容易な手段により制御することができる。従って、本発明により発光色調を制御できる組成物は、蛍光発光組成物、蛍光塗料組成物、波長変換部材組成物、有機EL部材組成物、有機トランジスタ部材組成物、有機太陽電池部材組成物、化学センサ、及び、有機レーザ部材組成物からなる組成物群から選ばれる光学組成物に含まれる有機光学材料として有用である。
本発明において有機光学材料とは、光を受けて材料を構成する電子のエネルギー準位が変換されることを利用する材料全般を示す。そのような材料は、光を受けて機能を発揮し、例えば、着色したり、蛍光を発するところから具体的には、有機EL、有機固体レーザ、有機非線形光学材料、インキ等として用いることができるほか、有機太陽電池、有機固体センサなどに用いることができる。更に、光作動性の電子輸送層、有機導波路、ダイオード、トランジスタなどの光電子材料に用いることもできる。
According to the method of the present invention, strong luminescence is exhibited in both the solution state and the solid state, and the luminescence color tone can be controlled in a wide range by easy means. Therefore, the composition capable of controlling the emission color tone according to the present invention includes a fluorescent light-emitting composition, a fluorescent coating composition, a wavelength conversion member composition, an organic EL member composition, an organic transistor member composition, an organic solar cell member composition, a chemical It is useful as an organic optical material contained in an optical composition selected from the composition group consisting of a sensor and an organic laser component composition.
In the present invention, the term "organic optical material" refers to all materials that utilize the conversion of the energy level of electrons constituting the material upon receiving light. Such materials can be used as organic EL, organic solid-state lasers, organic nonlinear optical materials, inks, etc., because they exhibit their functions upon receiving light, for example, they are colored or emit fluorescence. In addition, it can be used for organic solar cells, organic solid-state sensors, and the like. Furthermore, it can also be used in optoelectronic materials such as photo-activated electron transport layers, organic waveguides, diodes and transistors.

成分(a)(ミヒラーケトン誘導体1)と成分(b)の塩化メチレン溶液中での比率の変化による発光色制御を示す。FIG. 1 shows emission color control by changing the ratio of component (a) (Michler's ketone derivative 1) and component (b) in a methylene chloride solution. 成分(a)(ミヒラーケトン誘導体1)と成分(b)の塩化メチレン溶液中での成分(a)比率の変化による発光色制御を示す。FIG. 1 shows emission color control by changing the ratio of component (a) (Michler's ketone derivative 1) and component (b) in a methylene chloride solution. 成分(a)(ミヒラーケトン誘導体1)と成分(b)の塩化メチレン溶液中での成分(a)濃度の変化による発光色制御を示す。FIG. 1 shows emission color control by changing the concentration of component (a) (Michler's ketone derivative 1) and component (b) in a methylene chloride solution. 成分(a)(ミヒラーケトン誘導体1)と成分(b)の塩化メチレン溶液中での成分(a)濃度の変化による発光色制御を示す。FIG. 1 shows emission color control by changing the concentration of component (a) (Michler's ketone derivative 1) and component (b) in a methylene chloride solution. 成分(a)(ミヒラーケトン誘導体1)と成分(b)の塩化メチレン溶液中での成分(a)濃度の変化による発光色制御を示す。FIG. 1 shows emission color control by changing the concentration of component (a) (Michler's ketone derivative 1) and component (b) in a methylene chloride solution. 成分(a)(ミヒラーケトン誘導体2)と成分(b)の塩化メチレン溶液中での成分(a)濃度の変化による発光色制御を示す。FIG. 1 shows emission color control by changing the concentration of component (a) (Michler's ketone derivative 2) and component (b) in a methylene chloride solution. 成分(a)(ミヒラーケトン誘導体2)と成分(b)の塩化メチレン溶液中での成分(a)濃度の変化による発光色制御を示す。FIG. 1 shows emission color control by changing the concentration of component (a) (Michler's ketone derivative 2) and component (b) in a methylene chloride solution. 成分(a)(ミヒラーケトン誘導体2)と成分(b)の塩化メチレン溶液中での成分(a)濃度の変化による発光色制御を示す。FIG. 1 shows emission color control by changing the concentration of component (a) (Michler's ketone derivative 2) and component (b) in a methylene chloride solution. 成分(a)(ミヒラーケトン誘導体2)と成分(b)のトルエン-ヘキサン混合溶媒中での混合溶媒比率変化による発光色制御を示す。FIG. 1 shows emission color control by changing the mixed solvent ratio of component (a) (Michler's ketone derivative 2) and component (b) in a toluene-hexane mixed solvent. 成分(a)(ミヒラーケトン誘導体2)と成分(b)のトルエン-ヘキサン混合溶媒中での混合溶媒比率変化による発光色制御を示す。FIG. 1 shows emission color control by changing the mixed solvent ratio of component (a) (Michler's ketone derivative 2) and component (b) in a toluene-hexane mixed solvent. 成分(a)と成分(b)の樹脂(ポリスチレン、PS)中の(固体状態)での発光色制御を示す。Fig. 3 shows emission color control (in solid state) in resin (polystyrene, PS) of component (a) and component (b). 成分(a)と成分(b)の樹脂(ポリプロピレン、PP)中の(固体状態)での発光色制御を示す。Fig. 2 shows emission color control (in solid state) in resins (polypropylene, PP) of component (a) and component (b). 成分(a)と成分(b)の樹脂(ポリ酢酸ビニル、PVAc)中の(固体状態)での発光色制御を示す。The emission color control in (solid state) in the resin (polyvinyl acetate, PVAc) of component (a) and component (b) is shown. 成分(a)と成分(b)の樹脂(ポリ塩化ビニル、PVC)中の(固体状態)での発光色制御を示す。The emission color control in (solid state) in the resin (polyvinyl chloride, PVC) of component (a) and component (b) is shown. 成分(a)と成分(b)の樹脂(ポリメチルメタクリレート、PMMA)中の(固体状態)での発光色制御を示す。Fig. 3 shows emission color control (in solid state) in resin (polymethyl methacrylate, PMMA) of component (a) and component (b). 成分(a)と成分(b)の樹脂(ポリエチレングリコール、PEG)中の(固体状態)での発光色制御を示す。Fig. 2 shows emission color control (solid state) in resins (polyethylene glycol, PEG) of component (a) and component (b). 成分(a)と成分(b)の樹脂(ポリビニルアルコール、PVA)中の(固体状態)での発光色制御を示す。The emission color control in (solid state) in the resin (polyvinyl alcohol, PVA) of component (a) and component (b) is shown. 成分(a)と成分(b)の樹脂(ポリフッ化ビニリデン、PVDF)中の(固体状態)での発光色制御を示す。Fig. 3 shows emission color control (in a solid state) in a resin (polyvinylidene fluoride, PVDF) of component (a) and component (b). 成分(a)と成分(b)の樹脂(PVAc)中の(固体状態)での発光色制御で白色が得られることを示す。It shows that white color can be obtained by controlling the emission color (in the solid state) in the resin (PVAc) of components (a) and (b). 成分(a)単独、及び成分(a)と成分(b)の錯体へのIRスペクトルを示す。IR spectra of component (a) alone and a complex of components (a) and (b) are shown.

本明細書において、本発明において「媒質」とは、蛍光物質等が存在する環境を形成する物質を意味しており、媒体、マトリクスなどとも記載することがあり、具体的には、溶媒やポリマーを指す。
本明細書において「担持」とは、成分(a)、(b)及びその錯体が成分(c)に分散している状態を指しており、均一化な場合も不均一を問わない。
本明細書において「樹脂」「ポリマー」は同義で用いている。
As used herein, the term "medium" in the present invention means a substance that forms an environment in which a fluorescent substance or the like exists, and may also be described as a medium, a matrix, etc. Specifically, a solvent or a polymer point to
As used herein, the term "support" refers to a state in which components (a), (b) and their complexes are dispersed in component (c), and may or may not be homogenous.
In this specification, the terms "resin" and "polymer" are used synonymously.

本発明の発光色調の制御方法に用いられる組成物は、(a)蛍光物質、(b)前記成分(a)と非共有結合性相互作用する物質及び(c)媒質、を含有する組成物である。 The composition used in the method for controlling emission color tone of the present invention is a composition containing (a) a fluorescent substance, (b) a substance that non-covalently interacts with component (a), and (c) a medium. be.

(a)蛍光物質は、ある波長の光を吸収して他の波長の光を放出する物質であれば特に制限されないが、可視領域の蛍光を発する物質が好ましい。例えば、フルオレセイン、エオシン、ローズベンガル、アクリジン、フェナジン、クマリン、ベンゾフェノン、フクシン、アリザリン、アントシアニン、アントラキノン、インディゴ、ゲニステイン、シコニン、ピペリシン、ベルベリン、リトマス、ロドキサンチン等が挙げられる。 (a) The fluorescent substance is not particularly limited as long as it absorbs light of a certain wavelength and emits light of another wavelength, but a substance that emits fluorescence in the visible region is preferable. Examples include fluorescein, eosin, rose bengal, acridine, phenazine, coumarin, benzophenone, fuchsine, alizarin, anthocyanin, anthraquinone, indigo, genistein, shikonin, piperidine, berberine, litmus, and rhodoxanthin.

本発明に用いられる(a)蛍光物質のうち、式(1)で表される化合物が好ましい。 Among the (a) fluorescent substances used in the present invention, the compound represented by formula (1) is preferred.

Figure 0007240653000003
Figure 0007240653000003

(式中、Ar1及びAr2は、同一又は異なって芳香族炭化水素基又は芳香族複素環式基を示し、R1、R2、R3及びR4は、同一又は異なって、水素原子、脂肪族炭化水素基又は芳香族炭化水素を示す) (wherein Ar 1 and Ar 2 are the same or different and represent an aromatic hydrocarbon group or an aromatic heterocyclic group; R 1 , R 2 , R 3 and R 4 are the same or different and are hydrogen atoms; , indicates an aliphatic hydrocarbon group or an aromatic hydrocarbon)

式(1)中、Ar1及びAr2は、同一又は異なって芳香族炭化水素基又は芳香族複素環式基を示す。芳香族炭化水素基としては、炭素数6~30の単環又は縮合多環式芳香族炭化水素基が挙げられる。具体的には、ベンゼン、クメン、メシチレン、スチレン、トルエン、キシレン等の単環芳香族炭化水素由来の基;インデン、ナフタレン、フルオレン、フェナントレン、アントラセン、ペンタセン、ヘキサセン等の縮合多環式芳香族炭化水素由来の基が挙げられる。このうち、炭素数6~16の単環芳香族炭化水素由来の基がより好ましく、フェニレン基がさらに好ましい。 In formula (1), Ar 1 and Ar 2 are the same or different and represent an aromatic hydrocarbon group or an aromatic heterocyclic group. The aromatic hydrocarbon group includes monocyclic or condensed polycyclic aromatic hydrocarbon groups having 6 to 30 carbon atoms. Specifically, groups derived from monocyclic aromatic hydrocarbons such as benzene, cumene, mesitylene, styrene, toluene, and xylene; condensed polycyclic aromatic hydrocarbons such as indene, naphthalene, fluorene, phenanthrene, anthracene, pentacene, and hexacene; Groups derived from hydrogen can be mentioned. Among them, a group derived from a monocyclic aromatic hydrocarbon having 6 to 16 carbon atoms is more preferred, and a phenylene group is even more preferred.

芳香族複素環式基としては、1~4個の窒素原子、酸素原子又は酸素原子を有する単環又は縮合多環の複素環式基が挙げられる。具体的には、ピロール、フラン、チオフェン、イミダゾール、ピラゾール、オキサゾール、チアゾール、トリアゾール、オキサジアゾール、チアジアゾール、ピリジン、ピリミジン、トリアジン、インドール、インダゾール、キノリン、イソキノリン、カルバゾール、キナゾリン等の複素環式基由来の基が挙げられる。 Aromatic heterocyclic groups include monocyclic or condensed polycyclic heterocyclic groups having 1 to 4 nitrogen atoms, oxygen atoms or oxygen atoms. Specifically, heterocyclic groups such as pyrrole, furan, thiophene, imidazole, pyrazole, oxazole, thiazole, triazole, oxadiazole, thiadiazole, pyridine, pyrimidine, triazine, indole, indazole, quinoline, isoquinoline, carbazole, quinazoline, etc. derived groups.

1、R2、R3及びR4は、同一又は異なって、水素原子、脂肪族炭化水素基又は芳香族炭化水素基を示す。脂肪族炭化水素基としては、炭素数1~12のアルキル基、アルケニル基が挙げられる。具体的には、メチル基、エチル基、イソプロピル基等の炭素数1~12のアルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキ基;ビニル基、プロペニル基等の炭素数2~8のアルケニル基;エチニル基等の炭素数2~6のアルキニル基等が挙げられる。
芳香族炭化水素基としては、フェニル基、ナフチル基、クメニル基、メシチレニル基等の炭素数6~14の芳香族炭化水素基が挙げられる。
R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom, an aliphatic hydrocarbon group or an aromatic hydrocarbon group. Aliphatic hydrocarbon groups include alkyl groups and alkenyl groups having 1 to 12 carbon atoms. Specifically, alkyl groups having 1 to 12 carbon atoms such as methyl group, ethyl group and isopropyl group; cycloalkyl groups having 3 to 8 carbon atoms such as cyclopropyl group, cyclopentyl group and cyclohexyl group; vinyl group, propenyl group and the like. alkenyl groups having 2 to 8 carbon atoms; and alkynyl groups having 2 to 6 carbon atoms such as ethynyl groups.
The aromatic hydrocarbon group includes aromatic hydrocarbon groups having 6 to 14 carbon atoms such as phenyl group, naphthyl group, cumenyl group and mesitylenenyl group.

(b)前記成分(a)と非共有結合性相互作用する物質としては、具体的には、ブレンステッド酸、ルイス酸、ハロゲン結合ドナーが知られている。 (b) Bronsted acids, Lewis acids, and halogen bond donors are specifically known as substances that non-covalently interact with component (a).

ブレンステッド酸としては、カルボン酸、スルホン酸、ホスホン酸、ホスフィン酸などを挙げることが出来る。酢酸、トリフルオロ酢酸等のカルボン酸、フルオロスルホン酸、メタンスルホン酸、エチルスルホン酸、4-ドデシルベンゼンスルホン酸、ヘプタデカフルオロオクタンスルホン酸、カンファースルホン酸、p-トルエンスルホン酸、2,4-ジニトロベンゼンスルホン酸、1-ナフタレンスルホン酸、メシチレンスルホン酸等のスルホン酸、メチルホスホン酸、エチルホスホン酸、プロピルホスホン酸、tert-ブチルホスホン酸、オクチルホスホン酸、ヘキサデシルホスホン酸等のホスホン酸、ジメチルホスフィン酸、フェニルホスフィン酸、ジフェニルホスフィン酸、ジイソオクチルホスフィン酸等のホスフィン酸等が挙げられる。 Bronsted acids include carboxylic acid, sulfonic acid, phosphonic acid, phosphinic acid and the like. acetic acid, carboxylic acids such as trifluoroacetic acid, fluorosulfonic acid, methanesulfonic acid, ethylsulfonic acid, 4-dodecylbenzenesulfonic acid, heptadecafluorooctane sulfonic acid, camphorsulfonic acid, p-toluenesulfonic acid, 2,4- Sulfonic acids such as dinitrobenzenesulfonic acid, 1-naphthalenesulfonic acid and mesitylenesulfonic acid, phosphonic acids such as methylphosphonic acid, ethylphosphonic acid, propylphosphonic acid, tert-butylphosphonic acid, octylphosphonic acid and hexadecylphosphonic acid, dimethyl Phosphinic acid such as phosphinic acid, phenylphosphinic acid, diphenylphosphinic acid, diisooctylphosphinic acid, and the like.

ルイス酸としては、BF3、BBr3、B(NMe2)3、トリス(ピロリジノ)ボラン、トリス(メシチル)ボラン、ホウ酸トリエチル、ホウ酸トリブチル、アルピンボラン、トリフェニルボラン、B(C653、AlCl3、FeCl3、FeBr3、ZnCl2、InCl3、TiCl4、金属トリフラート塩が挙げられる。 Lewis acids include BF 3 , BBr 3 , B(NMe 2 ) 3 , tris(pyrrolidino)borane, tris(mesityl)borane, triethyl borate, tributyl borate, alpine borane, triphenylborane, B(C 6 F 5 ) 3 , AlCl3 , FeCl3 , FeBr3 , ZnCl2 , InCl3 , TiCl4 , metal triflate salts.

ハロゲン結合ドナーとしては、ハロゲン結合ドナー自身の構造により生じる空軌道にルイス塩基官能基の非共有電子対を受容することができる。具体的には、パーフルオロヨードベンゼン、ハロゲン分子、ハロゲンカチオン、パーフルオロヨードアルカン、N-ハロゲノジカルボン酸イミド、1,2,3-トリアゾリニウム-5-ハライド、N,N-ジアルキルイミダゾリニウム-2-ハライド、2-ハロゲノイソインドリル-1,3-ジオン、2-ハロゲノベンゾ〔d〕イソチアゾール-3(2H)-オン 1,1-ジオキシド、2-ハロゲノ-5-ニトロイソインドリル-1,3-ジオン、2-ハロゲノ-3,4-ジメチルチアゾール-3-ニウム トリフルオロスルホナート等が挙げられる。 As a halogen bond donor, a vacant orbital generated by the structure of the halogen bond donor itself can accept a lone pair of electrons of a Lewis base functional group. Specifically, perfluoroiodobenzene, halogen molecule, halogen cation, perfluoroiodoalkane, N-halogenodicarboxylic acid imide, 1,2,3-triazolinium-5-halide, N,N-dialkylimidazolinium -2-halide, 2-halogenoisoindolyl-1,3-dione, 2-halogenobenzo[d]isothiazol-3(2H)-one 1,1-dioxide, 2-halogeno-5-nitroisoindolyl -1,3-dione, 2-halogeno-3,4-dimethylthiazol-3-nium trifluorosulfonate and the like.

本発明における非共有結合性相互作用とは、非共有結合により結合状態となっていることを言い、配位結合、イオン結合等が挙げられる。例えば、シアノ基とルイス酸との配位結合、芳香族基中の窒素原子(例えばピリジン環中の窒素原子)とブレンステッド酸、ルイス酸、又はハロゲン結合ドナーとのイオン結合、配位結合等が挙げられる。 The non-covalent interaction in the present invention refers to a non-covalent bonding state, and includes coordinate bonding, ionic bonding, and the like. For example, a coordinate bond between a cyano group and a Lewis acid, an ionic bond between a nitrogen atom in an aromatic group (for example, a nitrogen atom in a pyridine ring) and a Bronsted acid, a Lewis acid, or a halogen bond donor, a coordinate bond, etc. are mentioned.

(c)媒質には、溶媒及び固体媒体のいずれもが挙げられる。溶媒としては、成分(a)及び成分(b)を溶解する物質であれば制限されず、水及び種々の有機溶媒が挙げられる。有機溶媒としては、メタノール-エタノール等のアルコール類、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素、アセトン等のケトン系溶媒、ヘキサン等の炭化水素、ジメチルスルホキシド等のスルホキシド系溶媒、ジエチルエーテル等のエーテル系溶媒、N、N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。 (c) medium includes both solvents and solid media. The solvent is not limited as long as it dissolves the components (a) and (b), and includes water and various organic solvents. Examples of organic solvents include alcohols such as methanol-ethanol, halogenated hydrocarbons such as dichloromethane and dichloroethane, ketone solvents such as acetone, hydrocarbons such as hexane, sulfoxide solvents such as dimethylsulfoxide, and ether solvents such as diethyl ether. Solvents include amide solvents such as N,N-dimethylformamide.

固体媒体としては、成分(a)及び成分(b)、又は成分(a)と成分(b)の結合体を均一に分散させることのできる媒体であればよく、分散の態様は均一であるか不均一であるかを問わない。本明細書においては、均一に分散している場合を例として説明する。固体媒体としては、例えば熱硬化性樹脂、熱可塑性樹脂、光硬化性樹脂等の樹脂媒体、具体的にはポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリアルキルメタクリレート、ポリ酢酸ビニル、ポリエチレングリコール、ポリビニルアルコール、ポリフッ化ビニリデン、及びこれらの1種又は2種以上の混合物が挙げられる。なお、発光強度の観点から使用される樹脂は光透過性を有するものが好ましい。また前記樹脂媒体は、樹脂媒体に加え、単量体や重合体前駆体も含む。
成分(a)及び成分(b)、又は成分(a)と成分(b)の結合体が溶媒に溶解していると、本発明組成物は溶液状組成物となる。一方、成分(a)及び成分(b)、又は成分(a)及び成分(b)の結合体が固体媒体中に均一又は不均一に分散していると、本発明組成物は、固体状組成物となる。
The solid medium may be any medium in which the component (a) and the component (b) or the combination of the component (a) and the component (b) can be uniformly dispersed. It does not matter if it is uneven or not. In the present specification, the case where they are uniformly dispersed will be described as an example. Examples of solid media include resin media such as thermosetting resins, thermoplastic resins, and photocurable resins, specifically polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyalkyl methacrylate, polyvinyl acetate, polyethylene glycol, polyvinyl alcohols, polyvinylidene fluoride, and mixtures of one or more of these. From the viewpoint of emission intensity, the resin used preferably has light transmittance. The resin medium also includes a monomer and a polymer precursor in addition to the resin medium.
When component (a) and component (b) or a combination of component (a) and component (b) are dissolved in a solvent, the composition of the present invention becomes a solution composition. On the other hand, when component (a) and component (b) or a combination of component (a) and component (b) are uniformly or non-uniformly dispersed in a solid medium, the composition of the present invention is a solid composition. become things.

本発明の組成物は、溶液状態でも固体状態でも強く発光する。ここで本発明の組成物(発光組成物)には、溶液、成形品(フィルム、繊維、成形体)、ゲル状物、基材上に塗布したもの、積層体等が含まれる。 The compositions of the present invention are highly luminous both in solution and in the solid state. Here, the composition (luminescent composition) of the present invention includes solutions, molded articles (films, fibers, molded articles), gel-like materials, materials coated on substrates, laminates, and the like.

本発明の組成物は、組成物中の成分(a)、成分(b)及びそれらの錯体の平衡定数を変化させるか、又は成分(c)中の成分(a)の含有比率若しくは成分(c)中の成分(a)及び成分(b)の重量比率を変化させることにより、広範囲において発光色調が変化する特性を有する。従って、本発明の組成物を用いれば、広範囲の発光色調を制御(調節)することができる。 The composition of the present invention changes the equilibrium constants of component (a), component (b) and their complexes in the composition, or the content ratio of component (a) in component (c) or component (c ) by changing the weight ratio of components (a) and (b) in ), the color tone of the emitted light changes over a wide range. Therefore, by using the composition of the present invention, it is possible to control (modulate) a wide range of emission color tones.

成分(a)と成分(b)は成分(c)において錯体を形成するが、媒体(c)において平衡状態にある。平衡定数Kとすると、
K=[成分(c)中の錯体の濃度]/{[成分(a)の濃度]×[成分(b)の濃度]
と表すことが出来る。
成分(a)と成分(b)の平衡定数Kは、K=0.1からK=10に変化させるのが好ましく、平衡定数Kの下限値は、好ましくは1以上、より好ましくは10以上、さらに好ましくは10とすることが好ましくは、上限値としては、10がより好ましく、10がさらに好ましい。平衡定数をこの範囲に変化させることにより青から赤の範囲における発光を制御することができる。
Components (a) and (b) form a complex in component (c), but are in equilibrium in medium (c). Assuming the equilibrium constant K,
K=[concentration of complex in component (c)]/{[concentration of component (a)]×[concentration of component (b)]
can be expressed as
The equilibrium constant K of component (a) and component (b) is preferably changed from K = 0.1 to K = 106 , and the lower limit of equilibrium constant K is preferably 1 or more, more preferably 10 or more. , more preferably 10 2 , and the upper limit is more preferably 10 5 and even more preferably 10 4 . Emission in the blue to red range can be controlled by varying the equilibrium constant over this range.

成分(a)、成分(b)及びそれらの錯体の平衡定数を前記範囲に変化させるには、媒質である成分(c)の極性を変化させる手段、温度を変化させる手段、圧力を変化させる手段が挙げられる。ここで、媒体である成分(c)の極性を変化させる手段としては、媒体である成分(c)の官能基の種類や分子全体の形状などを選択する手段、媒体が溶媒の場合には、混合溶媒を用いて2種の溶媒の混合比率を変化させる手段が挙げられる。媒体が樹脂の場合には、分子量、分子量分布、融点、ガラス転移点が影響するほか主鎖や側鎖に存在する官能基の種類を選択するという手段が挙げられる。 In order to change the equilibrium constants of component (a), component (b) and their complexes within the above range, means for changing the polarity of the medium component (c), means for changing temperature, and means for changing pressure are mentioned. Here, means for changing the polarity of component (c), which is a medium, include means for selecting the type of functional group of component (c), which is a medium, the shape of the entire molecule, etc. When the medium is a solvent, Means of using a mixed solvent and changing the mixing ratio of two kinds of solvents can be mentioned. When the medium is a resin, the molecular weight, molecular weight distribution, melting point and glass transition point affect the medium, and other means include selecting the types of functional groups present in the main chain and side chains.

成分(c)中の成分(a)の含有比率は、0.01mMから100mMに変化させるのが好ましく、0.1mMから10mMに変化させるのがより好ましい。成分(c)中の成分(a)及び成分(b)の重量比率は、0.01%から100%に変化させるのが好ましく、0.1%から50%に変化させるのがより好ましい。これらの範囲に変化させることにより、青から赤の範囲における発光を制御することができる。 The content ratio of component (a) in component (c) is preferably changed from 0.01 mM to 100 mM, more preferably from 0.1 mM to 10 mM. The weight ratio of component (a) and component (b) in component (c) is preferably varied from 0.01% to 100%, more preferably from 0.1% to 50%. By varying these ranges, emission in the blue to red range can be controlled.

本発明の組成物中において、成分(a)と成分(b)は、配位結合、イオン結合等の非共有結合によって結合していると考えられる。本発明組成物が固体状態の場合、成分(c)のマトリクス中に、成分(a)と成分(b)とが結合した状態で分散しているものと考えられる。 In the composition of the present invention, component (a) and component (b) are believed to be bound by non-covalent bonds such as coordinate bonds and ionic bonds. When the composition of the present invention is in a solid state, it is believed that the component (a) and the component (b) are dispersed in a bonded state in the matrix of the component (c).

本発明の成分(c)を媒体とする組成物を形成するためには、成分(a)、(b)を溶媒に溶解させてそのまま合わせても良いし、溶解させたものから錯体として単離したものを成分(c)に混合させても良い。また、成分(c)がポリマーの場合は、成分(a)、(b)を成分(c)と接触させるにあたり、溶媒を用いても用いなくても良いし、いずれかの成分を溶媒に溶解して接触させても良い。さらに、成分(c)を加熱、溶融させて成分(a)、(b)を溶媒に溶解させ、または無溶媒で接触させてもよく、または熱硬化性樹脂の場合には硬化前の成分(c)に、成分(a)、(b)を添加しても良い。 In order to form a composition using the component (c) of the present invention as a medium, the components (a) and (b) may be dissolved in a solvent and then combined as they are, or isolated as a complex from the solution. You may mix the thing which carried out with the component (c). Further, when the component (c) is a polymer, when the components (a) and (b) are brought into contact with the component (c), a solvent may or may not be used, and either component may be dissolved in the solvent. It is also possible to contact Furthermore, component (c) may be heated and melted to dissolve components (a) and (b) in a solvent, or may be brought into contact without a solvent, or in the case of a thermosetting resin, the component before curing ( Components (a) and (b) may be added to c).

本発明の組成物は溶液状態のみならず固体状態においても強い蛍光を発する性質を有している。本明細書において「蛍光」という用語は、発光の一態様として、X線、紫外線、及び/又は可視光線が照射された際にそのエネルギーを吸収することで電子が励起し、それが基底状態に戻る際に余分なエネルギーを電磁波として放出する現象を意味しており、いかなる意味においても限定的に解釈してはならず、最も広義に解釈しなければならない。固体状態での蛍光測定は一般的には絶対PL量子収率測定装置C-9920-02(マルチチャンネル検出器 PMA-11、浜松ホトニクス株式会社)などを使用して行うことができるが、この特定の装置及び方法に限定されるわけではない。 The composition of the present invention has the property of emitting strong fluorescence not only in a solution state but also in a solid state. As used herein, the term "fluorescence" refers to a form of light emission, in which electrons are excited by absorbing the energy when irradiated with X-rays, ultraviolet rays, and/or visible light, and then enter the ground state. It means the phenomenon of releasing excess energy as electromagnetic waves when returning, and should not be interpreted restrictively in any sense, but should be interpreted in the broadest sense. Fluorescence measurement in a solid state can generally be performed using an absolute PL quantum yield measurement device C-9920-02 (multichannel detector PMA-11, Hamamatsu Photonics Co., Ltd.). is not limited to the apparatus and method of

本発明の組成物は、具体的には、有機EL、有機固体レーザ、有機非線形光学材料、インキ等として用いることができるほか、有機太陽電池、有機固体センサなどに用いることができる。更に、光作動性の電子輸送層、有機導波路(光ファイバーを含む)、ダイオード、トランジスタなどの光電子材料に用いることもできる。 Specifically, the composition of the present invention can be used as an organic EL, an organic solid-state laser, an organic nonlinear optical material, an ink, and the like, and can also be used in an organic solar cell, an organic solid-state sensor, and the like. Further, it can be used in optoelectronic materials such as photo-activated electron transport layers, organic waveguides (including optical fibers), diodes, transistors and the like.

次に実施例を挙げて、本発明を更に詳細に説明する。 EXAMPLES Next, the present invention will be described in more detail with reference to Examples.

(試薬)
添加剤:B(C653は東京化成工業株式会社製のものを使用した。
ポリマー:PVAc、PVC、PVDF、PAN(シグマアルドリッチ社製)、PMMA、PS(富士フィルム和光純薬株式会社製)PEG(キシダ化学)、PVA(応研商事)はそれぞれに示した薬品会社のものを使用した。
ミヒラーケトン誘導体1:N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン誘導体1、富士フィルム和光純薬株式会社製)
ミヒラーケトン誘導体2:N,N,N’,N’-テトラフェニル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン誘導体2)は、以下の反応式に従って合成した。原料、試薬は東京化成工業株式会製のものを使用した。
(reagent)
Additives: B(C 6 F 5 ) 3 manufactured by Tokyo Chemical Industry Co., Ltd. was used.
Polymers: PVAc, PVC, PVDF, PAN (manufactured by Sigma-Aldrich), PMMA, PS (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), PEG (Kishida Chemical), PVA (Okenshoji) are those of the chemical companies indicated respectively. used.
Michler's ketone derivative 1: N,N,N',N'-tetramethyl-4,4'-diaminobenzophenone (Michler's ketone derivative 1, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
Michler's ketone derivative 2: N,N,N',N'-tetraphenyl-4,4'-diaminobenzophenone (Michler's ketone derivative 2) was synthesized according to the following reaction scheme. Materials and reagents manufactured by Tokyo Chemical Industry Co., Ltd. were used.

Figure 0007240653000004
Figure 0007240653000004

窒素雰囲気中で4,4’ージフルオロベンゾフェノン(655mg,3.0mmol)をN,N-ジメチルホルムアミド50mLに溶かし、ジフェニルアミン(1.18g,7.0mmol)を加えた。そこにt-ブトキシカリウム(1.01g,9.0mmol)を加え、その溶液を12時間加熱還流した。溶媒を留去した後、残渣に塩化メチレンを加え、それを塩化アンモニウム水溶液で3回洗浄した。有機層を硫酸ナトリウムで乾燥し、溶媒を留去した。その残渣をシリカゲルカラムクロマトグラフィーによって精製した。目的のミヒラーケトン誘導体2を580mg(収率38%)で得た。 4,4'-Difluorobenzophenone (655 mg, 3.0 mmol) was dissolved in 50 mL of N,N-dimethylformamide in a nitrogen atmosphere, and diphenylamine (1.18 g, 7.0 mmol) was added. Potassium t-butoxy (1.01 g, 9.0 mmol) was added thereto, and the solution was heated under reflux for 12 hours. After evaporating the solvent, methylene chloride was added to the residue and it was washed three times with aqueous ammonium chloride solution. The organic layer was dried over sodium sulfate and evaporated. The residue was purified by silica gel column chromatography. 580 mg (yield 38%) of the desired Michler's ketone derivative 2 was obtained.

(使用機器)
吸収スペクトル測定(溶液):
紫外可視吸収スペクトル測定装置V650(日本分光株式会社)
吸収スペクトル測定(固体・粉末):
紫外可視吸収スペクトル測定装置UV-3150(株式会社島津製作所)
発光スペクトル測定(溶液):
発光スペクトル測定装置 FP-6000(日本分光株式会社)
もしくは絶対PL量子収率測定装置C9920-02
(マルチチャンネル検出器PMA-11、
及び溶液測定用治具A10104-01付属、浜松ホトニクス株式会社)
発光スペクトル測定(固体・薄膜):
絶対PL量子収率測定装置C9920-02
(マルチチャンネル検出器PMA-11付属、浜松ホトニクス株式会社)
量子収率測定:
絶対PL量子収率測定装置C9920-02
(マルチチャンネル検出器PMA-11付属、浜松ホトニクス株式会社)
(Used equipment)
Absorption spectrum measurement (solution):
Ultraviolet-visible absorption spectrometer V650 (JASCO Corporation)
Absorption spectrum measurement (solid/powder):
Ultraviolet-visible absorption spectrometer UV-3150 (Shimadzu Corporation)
Emission spectrum measurement (solution):
Emission spectrum measuring device FP-6000 (JASCO Corporation)
Or absolute PL quantum yield measurement device C9920-02
(multichannel detector PMA-11,
and solution measurement jig A10104-01 attached, Hamamatsu Photonics K.K.)
Emission spectrum measurement (solid/thin film):
Absolute PL quantum yield measurement device C9920-02
(Attached to multi-channel detector PMA-11, Hamamatsu Photonics K.K.)
Quantum yield measurement:
Absolute PL quantum yield measurement device C9920-02
(Attached to multi-channel detector PMA-11, Hamamatsu Photonics K.K.)

実施例1
大気中でミヒラーケトン誘導体1であるN,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(2.7mg、0.01mmol)を10mLの塩化メチレンに加えて溶解させた。これを溶液Aとした。トリス(ペンタフルオロフェニル)ボラン(5.1mg、0.01mmol)を、10mLの塩化メチレンに加えて溶解させた。これを溶液Bとした。溶液Aから0.9mL、溶液Bから0.1mLずつ取り出し、これを混合した。その溶液の溶液色及び紫外線ランプ(λ=365nm)照射下での発光色を目視観察した。その溶液の吸収スペクトル、発光スペクトル、ならびに絶対量子収率を測定した。
Example 1
Michler's ketone derivative 1, N,N,N',N'-tetramethyl-4,4'-diaminobenzophenone (2.7 mg, 0.01 mmol) was added to 10 mL of methylene chloride and dissolved in air. This was designated as solution A. Tris(pentafluorophenyl)borane (5.1 mg, 0.01 mmol) was added to 10 mL of methylene chloride and dissolved. This solution was designated as solution B. 0.9 mL from solution A and 0.1 mL from solution B were taken out and mixed. The color of the solution and the color of light emitted under irradiation with an ultraviolet lamp (λ=365 nm) were visually observed. The absorption spectrum, emission spectrum and absolute quantum yield of the solution were measured.

Figure 0007240653000005
Figure 0007240653000005

結果を図1、図2及び表2に示す。成分(a)と成分(b)の含有比率を変化させることにより、青色から赤色の広い範囲の強い発光が観察された。 The results are shown in FIGS. 1, 2 and Table 2. By changing the content ratio of component (a) and component (b), strong luminescence in a wide range from blue to red was observed.

Figure 0007240653000006
Figure 0007240653000006

実施例2
大気中でミヒラーケトン誘導体1であるN,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(26.8mg、0.1mmol)と、トリス(ペンタフルオロフェニル)ボラン(51.2mg、0.1mmol)を、10mLの塩化メチレンに加えて溶解させ、ミヒラーケトン誘導体1の濃度が10mMの溶液を調製した(溶液C)。その溶液の溶液色及び紫外線ランプ(λ=365nm)照射下での発光色を目視観察した。その溶液の吸収スペクトル、発光スペクトル、ならびに絶対量子収率を測定した。その溶液の溶液色及び紫外線ランプ(λ=365nm)照射下での発光色を目視観察した。その溶液の吸収スペクトル、発光スペクトル、ならびに絶対量子収率を測定した。溶液Cから1mLを取り出し、2mLになるように薄めてミヒラーケトン誘導体1の濃度が5mMとなる溶液を調製した(溶液D)。その溶液の溶液色及び紫外線ランプ(λ=365nm)照射下での発光色を目視観察した。その溶液の吸収スペクトル、発光スペクトル、ならびに絶対量子収率を測定した。溶液Dから1mLを取り出し、2mLになるように薄めてミヒラーケトン誘導体1の濃度が2.5mMとなる溶液を調製した(溶液E)。その溶液の溶液色及び紫外線ランプ(λ=365nm)照射下での発光色を目視観察した。その溶液の吸収スペクトル、発光スペクトル、ならびに絶対量子収率を測定した。溶液Dから0.4mL取り出して2mLになるように薄めてミヒラーケトン誘導体1の濃度が1mMとなる溶液を調製した(溶液F)。このように、溶液を次々に薄めていくことで0.75、0.50、0.25、0.10、0.05、0.01mMの溶液を調製した。それらの溶液の溶液色及び紫外線ランプ(λ=365nm)照射下での発光色を目視観察した。その溶液の吸収スペクトル、発光スペクトル、ならびに絶対量子収率を測定した。
Example 2
N,N,N',N'-tetramethyl-4,4'-diaminobenzophenone (26.8 mg, 0.1 mmol), which is Michler's ketone derivative 1, and tris(pentafluorophenyl) borane (51.2 mg) in air. , 0.1 mmol) was added to 10 mL of methylene chloride and dissolved to prepare a solution with a concentration of 10 mM of Michler's ketone derivative 1 (solution C). The color of the solution and the color of light emitted under irradiation with an ultraviolet lamp (λ=365 nm) were visually observed. The absorption spectrum, emission spectrum and absolute quantum yield of the solution were measured. The color of the solution and the color of light emitted under irradiation with an ultraviolet lamp (λ=365 nm) were visually observed. The absorption spectrum, emission spectrum and absolute quantum yield of the solution were measured. 1 mL was taken out from solution C and diluted to 2 mL to prepare a solution having a concentration of Michler's ketone derivative 1 of 5 mM (solution D). The color of the solution and the color of light emitted under irradiation with an ultraviolet lamp (λ=365 nm) were visually observed. The absorption spectrum, emission spectrum and absolute quantum yield of the solution were measured. 1 mL was taken out from solution D and diluted to 2 mL to prepare a solution having a concentration of Michler's ketone derivative 1 of 2.5 mM (solution E). The color of the solution and the color of light emitted under irradiation with an ultraviolet lamp (λ=365 nm) were visually observed. The absorption spectrum, emission spectrum and absolute quantum yield of the solution were measured. 0.4 mL was taken out from the solution D and diluted to 2 mL to prepare a solution having a Michler ketone derivative 1 concentration of 1 mM (solution F). Thus, 0.75, 0.50, 0.25, 0.10, 0.05 and 0.01 mM solutions were prepared by successively diluting the solutions. The colors of these solutions and the color of light emitted under irradiation with an ultraviolet lamp (λ=365 nm) were visually observed. The absorption spectrum, emission spectrum and absolute quantum yield of the solution were measured.

Figure 0007240653000007
Figure 0007240653000007

結果を図3~図5及び表4に示す。その結果、塩化メチレン中の成分(a)(ミヒラーケトン誘導体1)の濃度(もしくは成分(b)(ボラン)の濃度)を変化させることにより、青色から赤色の広い範囲の強い発光が観察された。 The results are shown in FIGS. 3-5 and Table 4. As a result, by changing the concentration of component (a) (Michler's ketone derivative 1) (or the concentration of component (b) (borane)) in methylene chloride, strong luminescence in a wide range from blue to red was observed.

Figure 0007240653000008
Figure 0007240653000008

実施例3
大気中でミヒラーケトン誘導体2であるN,N,N’,N’-テトラフェニル-4,4’-ジアミノベンゾフェノン(51.6mg、0.1mmol)と、トリス(ペンタフルオロフェニル)ボラン(51.2mg、0.1mmol)を、10mLの塩化メチレンに加えて溶解させ、ミヒラーケトン誘導体2の濃度が10mMの溶液を調製した(溶液G)。その溶液の溶液色及び紫外線ランプ(λ=365nm)照射下での発光色を目視観察した。その溶液の吸収スペクトル、発光スペクトル、ならびに絶対量子収率を測定した。その溶液の溶液色及び紫外線ランプ(λ=365nm)照射下での発光色を目視観察した。その溶液の吸収スペクトル、発光スペクトル、ならびに絶対量子収率を測定した。溶液Gから1mLを取り出し、2mLになるように薄めてミヒラーケトン誘導体2の濃度が5mMとなる溶液を調製した(溶液H)。その溶液の溶液色及び紫外線ランプ(λ=365nm)照射下での発光色を目視観察した。その溶液の吸収スペクトル、発光スペクトル、ならびに絶対量子収率を測定した。溶液Hから1mLを取り出し、2mLになるように薄めてミヒラーケトン誘導体2の濃度が2.5mMとなる溶液を調製した(溶液I)。その溶液の溶液色及び紫外線ランプ(λ=365nm)照射下での発光色を目視観察した。その溶液の吸収スペクトル、発光スペクトル、ならびに絶対量子収率を測定した。溶液Dから0.4mL取り出して2mLになるように薄めてミヒラーケトン誘導体2の濃度が1mMとなる溶液を調製した(溶液J)。このように、溶液を次々に薄めていくことで0.75、0.50、0.25、0.10、0.05、0.01mMの溶液を調製した。それらの溶液の溶液色及び紫外線ランプ(λ=365nm)照射下での発光色を目視観察した。その溶液の吸収スペクトル、発光スペクトル、ならびに絶対量子収率を測定した。
Example 3
N,N,N',N'-tetraphenyl-4,4'-diaminobenzophenone (51.6 mg, 0.1 mmol), which is Michler's ketone derivative 2, and tris(pentafluorophenyl)borane (51.2 mg) in air. , 0.1 mmol) was added to 10 mL of methylene chloride and dissolved to prepare a solution with a concentration of 10 mM of Michler's ketone derivative 2 (solution G). The color of the solution and the color of light emitted under irradiation with an ultraviolet lamp (λ=365 nm) were visually observed. The absorption spectrum, emission spectrum and absolute quantum yield of the solution were measured. The color of the solution and the color of light emitted under irradiation with an ultraviolet lamp (λ=365 nm) were visually observed. The absorption spectrum, emission spectrum and absolute quantum yield of the solution were measured. 1 mL was removed from the solution G and diluted to 2 mL to prepare a solution having a Michler's ketone derivative 2 concentration of 5 mM (solution H). The color of the solution and the color of light emitted under irradiation with an ultraviolet lamp (λ=365 nm) were visually observed. The absorption spectrum, emission spectrum and absolute quantum yield of the solution were measured. 1 mL was taken out from solution H and diluted to 2 mL to prepare a solution having a concentration of Michler's ketone derivative 2 of 2.5 mM (solution I). The color of the solution and the color of light emitted under irradiation with an ultraviolet lamp (λ=365 nm) were visually observed. The absorption spectrum, emission spectrum and absolute quantum yield of the solution were measured. 0.4 mL was taken out from solution D and diluted to 2 mL to prepare a solution having a concentration of Michler's ketone derivative 2 of 1 mM (solution J). Thus, 0.75, 0.50, 0.25, 0.10, 0.05 and 0.01 mM solutions were prepared by successively diluting the solutions. The colors of these solutions and the color of light emitted under irradiation with an ultraviolet lamp (λ=365 nm) were visually observed. The absorption spectrum, emission spectrum and absolute quantum yield of the solution were measured.

Figure 0007240653000009
Figure 0007240653000009

結果を図6~8及び表6に示す。その結果、塩化メチレン中の成分(a)(ミヒラーケトン誘導体2)の濃度(もしくは成分(b)(ボラン)の濃度)を変化させることにより、青色から赤色の広い範囲の強い発光が観察された。 The results are shown in FIGS. 6-8 and Table 6. As a result, by changing the concentration of component (a) (Michler's ketone derivative 2) (or the concentration of component (b) (borane)) in methylene chloride, strong luminescence in a wide range from blue to red was observed.

Figure 0007240653000010
Figure 0007240653000010

実施例4
ミヒラーケトン誘導体2であるN,N,N’,N’-テトラフェニル-4,4’-ジアミノベンゾフェノン(5.2mg、0.01mmol)と、トリス(ペンタフルオロフェニル)ボラン(5.1mg、0.01mmol)を、5mLの塩化メチレンに加えて溶解させ、ミヒラーケトン誘導体2の濃度が2.0mMの溶液を調製した(溶液K)。そこから0.25mL取り出して、4.75mLのトルエンで希釈した。それらの溶液の溶液色及び紫外線ランプ(λ=365nm)照射下での発光色を目視観察した。その溶液の吸収スペクトル、発光スペクトル、ならびに絶対量子収率を測定した。同様に、希釈する溶媒の比率を変えることで、混合溶媒の比率がトルエン:ヘキサン=10:0~9.5:0.5となるような溶液を調製した。
Example 4
Michler's ketone derivative 2, N,N,N',N'-tetraphenyl-4,4'-diaminobenzophenone (5.2 mg, 0.01 mmol) and tris(pentafluorophenyl)borane (5.1 mg, 0.01 mmol). 01 mmol) was added to 5 mL of methylene chloride and dissolved to prepare a solution with a concentration of 2.0 mM of Michler's ketone derivative 2 (solution K). 0.25 mL was taken from there and diluted with 4.75 mL of toluene. The colors of these solutions and the color of light emitted under irradiation with an ultraviolet lamp (λ=365 nm) were visually observed. The absorption spectrum, emission spectrum and absolute quantum yield of the solution were measured. Similarly, by changing the ratio of diluting solvents, solutions were prepared in which the ratio of the mixed solvent was toluene:hexane=10:0 to 9.5:0.5.

Figure 0007240653000011
Figure 0007240653000011

結果を図9、図10及び表8に示す。その結果、成分(c)中の成分(a)と成分(b)の濃度を変化させることにより青色から赤色の広い範囲の強い発光が観察された。 The results are shown in FIGS. 9, 10 and Table 8. As a result, by varying the concentrations of component (a) and component (b) in component (c), strong luminescence in a wide range from blue to red was observed.

Figure 0007240653000012
Figure 0007240653000012

実施例5
ミヒラーケトン誘導体であるN,N,N’,N’-テトラフェニル-4,4’-ジアミノベンゾフェノン(5.2mg、0.01mmol)と、トリス(ペンタフルオロフェニル)ボラン(5.1mg、0.01mmol)を、5mLの塩化メチレンに加えて溶解させ、ミヒラーケトン誘導体の濃度が2mMの溶液を調製した(溶液L)。溶液Lの重量濃度を((N,N,N’,N’-テトラフェニル-4,4’-ジアミノベンゾフェノン+トリス(ペンタフルオロフェニル)ボラン)/塩化メチレンの体積)=10.3/5mL=2.06mg/mLとした。ポリスチレン(1000mg)を10mLの塩化メチレンに加えて溶解させた(溶液M)。溶液Lから0.01mL、溶液Mから0.2mL取り出して全体が1.5mLになるように塩化メチレンで薄めた。これを5分間撹拌した。ここから0.01mL取り出し、石英基板上に滴下した。それを風乾して溶媒を留去し、さらに減圧乾燥にて完全に溶媒を取り除いて成膜した。ミヒラーケトンとボラン化合物のポリマーへの担持量は、溶液Lと溶液Mの重量濃度から、((2.06×溶液Gの取り出し量)/(100×溶液Hの取り出し量))で算出した。この薄膜の色及び紫外線ランプ(λ=365nm)照射下での発光色を目視観察した。その薄膜の吸収スペクトル、発光スペクトル、ならびに絶対量子収率を測定した。
Example 5
Michler's ketone derivative N,N,N',N'-tetraphenyl-4,4'-diaminobenzophenone (5.2 mg, 0.01 mmol) and tris(pentafluorophenyl)borane (5.1 mg, 0.01 mmol) ) was added to 5 mL of methylene chloride and dissolved to prepare a solution with a Michler ketone derivative concentration of 2 mM (solution L). The weight concentration of solution L is ((N,N,N',N'-tetraphenyl-4,4'-diaminobenzophenone+tris(pentafluorophenyl)borane)/volume of methylene chloride)=10.3/5 mL= 2.06 mg/mL. Polystyrene (1000 mg) was added to 10 mL of methylene chloride and dissolved (solution M). 0.01 mL from solution L and 0.2 mL from solution M were taken out and diluted with methylene chloride so that the total volume was 1.5 mL. This was stirred for 5 minutes. 0.01 mL was taken out from here and dropped onto a quartz substrate. It was air-dried to distill off the solvent, and further dried under reduced pressure to completely remove the solvent to form a film. The amount of Michler's ketone and the borane compound supported on the polymer was calculated from the weight concentrations of solution L and solution M by ((2.06×amount of solution G taken out)/(100×amount of solution H taken out)). The color of this thin film and the emission color under irradiation with an ultraviolet lamp (λ=365 nm) were visually observed. The absorption spectrum, emission spectrum and absolute quantum yield of the thin film were measured.

Figure 0007240653000013
Figure 0007240653000013

この他にPP(実施例6)、PVAc(実施例7)PVC(実施例8)、PMMA(実施例9)、PEG(実施例10)、PVA(実施例11)、PVDF(実施例12)に関しても、100mg/mLの塩化メチレン溶液を調製し、同様の手順にてポリマーフィルムを調製した。 In addition, PP (Example 6), PVAc (Example 7), PVC (Example 8), PMMA (Example 9), PEG (Example 10), PVA (Example 11), PVDF (Example 12) Also, a 100 mg/mL methylene chloride solution was prepared, and a polymer film was prepared in the same manner.

結果を図11~図18及び表10及び表11に示す。その結果、成分(a)と成分(b)を成分(c)中に含有する固体状組成物は、成分(a)の濃度変化により青色から赤色の広い範囲で強い発光を示した。 The results are shown in FIGS. 11-18 and Tables 10 and 11. As a result, the solid composition containing component (a) and component (b) in component (c) showed strong luminescence in a wide range from blue to red depending on the concentration change of component (a).

Figure 0007240653000014
Figure 0007240653000014

Figure 0007240653000015
Figure 0007240653000015

図13より、成分(a)及び成分(b)の濃度5.0重量%~7.5重量%の場合に白色の発光が得られることを示す。なお、図13において、スペクトルは2色性の発光であることを示しており、青色と赤色の発光が混ざっている状態であり、それらの発光強度がちょうど1:1になるのが5.0~7.5重量%付近である。なお、ここでは青色発光ピークと赤色発光ピークの例を示したが、蛍光スペクトルにおいて、色関係にある2つの波長ピークを有すれば、他の発光ピーク波長であっても構わない。 FIG. 13 shows that white light emission can be obtained when the concentration of components (a) and (b) is 5.0% by weight to 7.5% by weight. In FIG. 13, the spectrum indicates dichroic luminescence, in which blue and red luminescence are mixed, and 5.0 when their luminescence intensities are exactly 1:1. ~7.5% by weight. Although an example of a blue emission peak and a red emission peak is shown here, other emission peak wavelengths may be used as long as they have two wavelength peaks in a color relationship in the fluorescence spectrum.

実施例13
白色フィルムの調製
ミヒラーケトン誘導体2であるN,N,N’,N’-テトラフェニル-4,4’-ジアミノベンゾフェノン(5.2mg、0.01mmol)と、トリス(ペンタフルオロフェニル)ボラン(5.1mg、0.01mmol)を、5mLの塩化メチレンに加えて溶解させ、ミヒラーケトン誘導体2の濃度が2mMの溶液を調製した(溶液L)。溶液Lの重量濃度を((N,N,N’,N’-テトラフェニル-4,4’-ジアミノベンゾフェノン+トリス(ペンタフルオロフェニル)ボラン)/塩化メチレンの体積)=10.3/5mL=2.06mg/mLとした。ポリ酢酸ビニル(1000mg)を10mLの塩化メチレンに加えて溶解させた(溶液N)。溶液Nのポリマーの重量濃度を100mg/mLとした。溶液Lから1.166mL、溶液Nから0.2mL取り出して混合し、全体が1.5mLになるように塩化メチレンで薄めた。これを5分間撹拌した。ここから0.01mL取り出し、石英基板上に滴下した。それを風乾して溶媒を留去し、さらに減圧乾燥にて完全に溶媒を取り除いて成膜した。ミヒラーケトン2とボラン化合物のポリマーへの担持量は、溶液Lと溶液Nの重量濃度から、((2.06×溶液Lの取り出し量)/(100×溶液Nの取り出し量))で算出した。この薄膜の色及び紫外線ランプ(λ=365nm)照射下での発光色を目視観察した。その薄膜の吸収スペクトル、発光スペクトル、ならびに絶対量子収率を測定した。この発光色をCIE座標系で表示すると(0.33、0.32)を示した。(比較:白色ならば(0.33、0.33)である)
Example 13
Preparation of white film Michler's ketone derivative 2 N,N,N',N'-tetraphenyl-4,4'-diaminobenzophenone (5.2 mg, 0.01 mmol) and tris(pentafluorophenyl)borane (5. 1 mg, 0.01 mmol) was added to 5 mL of methylene chloride and dissolved to prepare a solution with a concentration of 2 mM of Michler's ketone derivative 2 (solution L). The weight concentration of solution L is ((N,N,N',N'-tetraphenyl-4,4'-diaminobenzophenone+tris(pentafluorophenyl)borane)/volume of methylene chloride)=10.3/5 mL= 2.06 mg/mL. Polyvinyl acetate (1000 mg) was added to 10 mL of methylene chloride and dissolved (solution N). The weight concentration of the polymer in solution N was set to 100 mg/mL. 1.166 mL from solution L and 0.2 mL from solution N were taken out, mixed, and diluted with methylene chloride so that the total volume was 1.5 mL. This was stirred for 5 minutes. 0.01 mL was taken out from here and dropped onto a quartz substrate. It was air-dried to distill off the solvent, and further dried under reduced pressure to completely remove the solvent to form a film. The amounts of Michler's ketone 2 and the borane compound supported on the polymer were calculated from the weight concentrations of solution L and solution N by ((2.06×amount of solution L taken out)/(100×amount of solution N taken out)). The color of this thin film and the emission color under irradiation with an ultraviolet lamp (λ=365 nm) were visually observed. The absorption spectrum, emission spectrum and absolute quantum yield of the thin film were measured. When this emission color was expressed in the CIE coordinate system, it was (0.33, 0.32). (Comparison: If it is white, it is (0.33, 0.33))

Figure 0007240653000016
Figure 0007240653000016

結果を図19及び表13に示す。図19及び表13より、成分(a)の樹脂中(PVAc)の濃度を変化させることにより、白色発光も得られることが判明した。 The results are shown in FIG. 19 and Table 13. From FIG. 19 and Table 13, it was found that white light emission can also be obtained by changing the concentration of (PVAc) in the resin of component (a).

Figure 0007240653000017
Figure 0007240653000017

実施例14
(IRスペクトル測定)
成分(a)(ミヒラーケトン誘導体2)と、成分(b)(ボラン)との錯体の粉末を調製し、それぞれのIRスペクトルを測定した。理論計算からのシミュレーションと並べて、図20に示す。シミュレーションと良い一致を示しており、錯体が成分(a)と成分(b)の部位での相互作用で形成されていることを支持する結果を得た。
Example 14
(IR spectrum measurement)
Powders of complexes of component (a) (Michler's ketone derivative 2) and component (b) (borane) were prepared, and their IR spectra were measured. It is shown in FIG. 20 together with the simulation from the theoretical calculation. The results show good agreement with the simulation, and the results support the fact that the complex is formed by the interaction between the components (a) and (b).

Claims (7)

(a)蛍光物質、(b)前記成分(a)と非共有結合性相互作用する物質並びに(c)溶媒及び樹脂から選ばれる媒質、を含有する溶液状組成物及び固体状組成物において、組成物中の成分(a)、成分(b)及びそれらの錯体の平衡定数を変化させるか、又は組成物中の成分(c)中の成分(a)の含有比率若しくは成分(c)中の成分(a)及び成分(b)の重量比率を変化させることを特徴とする発光色調の制御方法であって、
前記(a)蛍光物質が、式(1)で表される化合物であり、
Figure 0007240653000018
(式中、Ar 1 及びAr 2 は、同一又は異なって芳香族炭化水素基又は芳香族複素環式基を示し、R 1 、R 2 、R 3 及びR 4 は、同一又は異なって、水素原子、脂肪族炭化水素基又は芳香族炭化水素を示す)
前記(b)前記成分(a)と非共有結合性相互作用する物質が、ルイス酸である、発光色調の制御方法。
(a) a fluorescent substance, (b) a substance that non-covalently interacts with component (a), and (c ) a medium selected from solvents and resins , wherein changing the equilibrium constants of component (a), component (b) and their complexes in the composition, or changing the content ratio of component (a) in component (c) in the composition or in component (c) A method for controlling emission color tone, characterized by changing the weight ratio of component (a) and component (b) of
(a) the fluorescent substance is a compound represented by formula (1),
Figure 0007240653000018
(wherein Ar 1 and Ar 2 are the same or different and represent an aromatic hydrocarbon group or an aromatic heterocyclic group; R 1 , R 2 , R 3 and R 4 are the same or different and are hydrogen atoms; , indicates an aliphatic hydrocarbon group or an aromatic hydrocarbon)
(b) The method for controlling emission color tone, wherein the substance that non-covalently interacts with component (a) is a Lewis acid.
前記成分(a)と成分(b)の平衡定数をK=0.1からK=106に変化させる請求項1記載の発光色調の制御方法。 2. The method of controlling emission color tone according to claim 1, wherein the equilibrium constant of said components (a) and (b) is changed from K=0.1 to K=10 <6> . 前記成分(c)中の成分(a)の含有比率を0.01mM から100mM 又は前記成分(c)中の成分(a)および成分(b)の重量比率を0.01%から100%に変化させる請求項1記載の発光色調の制御方法。 Change the content ratio of component (a) in component (c) from 0.01 mM to 100 mM or change the weight ratio of component (a) and component (b) in component (c) from 0.01% to 100% 2. The method for controlling emission color tone according to claim 1 . (a)蛍光物質、(b)前記成分(a)と非共有結合性相互作用する物質並びに(c)溶媒及び樹脂から選ばれる媒質、を含有する溶液状又は固体状の発光組成物であって、
前記(a)蛍光物質が、式(1)で表される化合物であり、
Figure 0007240653000019
(式中、Ar 1 及びAr 2 は、同一又は異なって芳香族炭化水素基又は芳香族複素環式基を示し、R 1 、R 2 、R 3 及びR 4 は、同一又は異なって、水素原子、脂肪族炭化水素基又は芳香族炭化水素を示す)
前記(b)前記成分(a)と非共有結合性相互作用する物質が、ルイス酸である、発光組成物。
(a) a fluorescent substance, (b) a substance that non-covalently interacts with component (a), and (c) a medium selected from solvents and resins , a solution or solid luminescent composition comprising ,
(a) the fluorescent substance is a compound represented by formula (1),
Figure 0007240653000019
(wherein Ar 1 and Ar 2 are the same or different and represent an aromatic hydrocarbon group or an aromatic heterocyclic group; R 1 , R 2 , R 3 and R 4 are the same or different and are hydrogen atoms; , indicates an aliphatic hydrocarbon group or an aromatic hydrocarbon)
The luminescent composition, wherein (b) the substance that non-covalently interacts with component (a) is a Lewis acid.
前記成分(a)、成分(b)及びそれらの錯体の平衡定数がK=0.1からK= 106範囲である請求項4記載の発光組成物。 5. The luminescent composition according to claim 4, wherein said components (a), (b) and their complexes have equilibrium constants in the range of K=0.1 to K=10 <6> . 前記成分(c)中の成分(a)の含有比率が0.01mMから100mM又は前記成分(c)中の成分(a)及び成分(b)の重量比率が0.01%から100%である請求項4記載の発光組成物。 The content ratio of component (a) in component (c) is from 0.01 mM to 100 mM, or the weight ratio of component (a) and component (b) in component (c) is from 0.01% to 100%. A luminescent composition according to claim 4 . 補色関係を有する2つのピーク波長を呈する白色発光体である、請求項4~6のいずれか1項記載の発光組成物。 7. The luminescent composition according to any one of claims 4 to 6 , which is a white luminescent material exhibiting two peak wavelengths having a complementary color relationship.
JP2019034658A 2019-02-27 2019-02-27 Emission color tone control method Active JP7240653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019034658A JP7240653B2 (en) 2019-02-27 2019-02-27 Emission color tone control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019034658A JP7240653B2 (en) 2019-02-27 2019-02-27 Emission color tone control method

Publications (2)

Publication Number Publication Date
JP2020139030A JP2020139030A (en) 2020-09-03
JP7240653B2 true JP7240653B2 (en) 2023-03-16

Family

ID=72264497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019034658A Active JP7240653B2 (en) 2019-02-27 2019-02-27 Emission color tone control method

Country Status (1)

Country Link
JP (1) JP7240653B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508151A (en) 2011-02-14 2014-04-03 カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ Bipyridine compounds end-capped with carbazole and methods for their preparation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2379515B1 (en) * 2008-12-29 2014-02-12 Life Technologies Corporation Benzoxazole-based fluorescent metal ion indicators

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508151A (en) 2011-02-14 2014-04-03 カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ Bipyridine compounds end-capped with carbazole and methods for their preparation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPANGE, Stefan et al.,Unusual solvatochromism of the 4,4'-bis(dimethylamino)-benzophenone (Michler's ketone)-tetracyanoethene electron donor-acceptor complex,Jouurnal of Physical Organic Chemistry,1999年,12,547-556

Also Published As

Publication number Publication date
JP2020139030A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
Xia et al. White light emission from cucurbituril-based host–guest interaction in the solid state: new function of the macrocyclic host
Babu et al. Nonvolatile liquid anthracenes for facile full-colour luminescence tuning at single blue-light excitation
Chen et al. Aggregation-induced emission of cis, cis-1, 2, 3, 4-tetraphenylbutadiene from restricted intramolecular rotation
Zhang et al. Oligo (phenothiazine) s: twisted intramolecular charge transfer and aggregation-induced emission
Wang et al. Construction of high efficiency non-doped deep blue emitters based on phenanthroimidazole: remarkable substitution effects on the excited state properties and device performance
Upamali et al. Carbazole-based cyano-stilbene highly fluorescent microcrystals
Niko et al. 1-, 3-, 6-, and 8-tetrasubstituted asymmetric pyrene derivatives with electron donors and acceptors: high photostability and regioisomer-specific photophysical properties
Ma et al. Molecular engineering of thermally activated delayed fluorescence emitters with aggregation-induced emission via introducing intramolecular hydrogen-bonding interactions for efficient solution-processed nondoped oleds
He et al. Visible-light excitable europium (III) complexes with 2, 7-positional substituted carbazole group-containing ligands
KR20160120784A (en) Luminescent material, organic luminescent element, and compound
Xiao et al. Solid-emissive BODIPY derivatives: design, synthesis and applications
Chiang et al. Improved Synthesis of 2, 2 ‘-Dibromo-9, 9 ‘-spirobifluorene and Its 2, 2 ‘-Bisdonor-7, 7 ‘-bisacceptor-Substituted Fluorescent Derivatives
JP2011213643A (en) Copper complex compound and organic luminescent element using the same
JP7028176B2 (en) Organic light emitting devices and light emitting materials and compounds used for them
WO2003022857A1 (en) Rare-earth complex and photofunctional material and luminescent device each employing the same
Pramod et al. Impact of solvents on energy gap, photophysical, photometric properties for a new class of 4-HCM coumarin derivative: Nonlinear optical studies and optoelectronic applications
Xu et al. High-performance two-photon absorption luminophores: large action cross sections, free from fluorescence quenching and tunable emission of efficient non-doped organic light-emitting diodes
Chen et al. Ultrapure blue phosphorescent organic light-emitting diodes employing a twisted Pt (II) complex
Panthi et al. Carbazole donor− carbazole linker-based compounds: preparation, photophysical properties, and formation of fluorescent nanoparticles
JP6131400B2 (en) Benzotriazole derivative compounds
Shi et al. Room-temperature phosphorescence materials featuring triplet hybrid local charge transfer emission
JP7240653B2 (en) Emission color tone control method
Liu et al. Angular-fused dithianaphthylquinone derivative: Selective synthesis, thermally activated delayed fluorescence property, and application in organic light-emitting diode
Zhang et al. Synthesis, characterization, and enhanced aggregation‐induced emission of oligomer methylacryloyl tetraphenylethylene and volatile organic compounds detection
Shin et al. Efficient TADF from carbon− carbon bonded donor− acceptor molecules based on boron-carbonyl hybrid acceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230221

R150 Certificate of patent or registration of utility model

Ref document number: 7240653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150