JP7236118B2 - Butterfly Finned Tube Heat Exchanger - Google Patents
Butterfly Finned Tube Heat Exchanger Download PDFInfo
- Publication number
- JP7236118B2 JP7236118B2 JP2021525343A JP2021525343A JP7236118B2 JP 7236118 B2 JP7236118 B2 JP 7236118B2 JP 2021525343 A JP2021525343 A JP 2021525343A JP 2021525343 A JP2021525343 A JP 2021525343A JP 7236118 B2 JP7236118 B2 JP 7236118B2
- Authority
- JP
- Japan
- Prior art keywords
- butterfly
- heat exchange
- heat exchanger
- fins
- curvature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005260 corrosion Methods 0.000 claims description 41
- 239000011247 coating layer Substances 0.000 claims description 19
- 239000002131 composite material Substances 0.000 claims description 10
- 239000010410 layer Substances 0.000 claims description 9
- 238000007747 plating Methods 0.000 claims description 9
- 230000007704 transition Effects 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- JUWOETZNAMLKMG-UHFFFAOYSA-N [P].[Ni].[Cu] Chemical compound [P].[Ni].[Cu] JUWOETZNAMLKMG-UHFFFAOYSA-N 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- VZDYWEUILIUIDF-UHFFFAOYSA-J cerium(4+);disulfate Chemical compound [Ce+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O VZDYWEUILIUIDF-UHFFFAOYSA-J 0.000 claims description 3
- 229910000355 cerium(IV) sulfate Inorganic materials 0.000 claims description 3
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 description 29
- 239000003546 flue gas Substances 0.000 description 28
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 27
- 239000000428 dust Substances 0.000 description 20
- 239000002253 acid Substances 0.000 description 15
- 239000002918 waste heat Substances 0.000 description 10
- 238000011084 recovery Methods 0.000 description 9
- 238000012546 transfer Methods 0.000 description 8
- 230000003628 erosive effect Effects 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/32—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0003—Recuperative heat exchangers the heat being recuperated from exhaust gases
- F28D21/001—Recuperative heat exchangers the heat being recuperated from exhaust gases for thermal power plants or industrial processes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/30—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/02—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
本発明は、ボイラや工業窯炉及び発電所の煙道ガスの熱エネルギーを回収するための耐低温腐食のバタフライ型フィンチューブ熱交換器に関し、煙道ガスの廃熱利用の分野に属し、低温煙道ガスの熱エネルギー回収に用いることができる。 The present invention relates to a low temperature corrosion resistant butterfly finned tube heat exchanger for recovering the thermal energy of the flue gas of boilers, industrial kilns and power plants, belonging to the field of flue gas waste heat utilization, It can be used for flue gas thermal energy recovery.
石炭焚きボイラ及び工業窯炉の煙道ガスの成分は比較的複雑であり、煙道ガスには大量の固体粒子状物質、SOx、NOx及び水蒸気などが含まれており、高温煙道排気ガスの廃熱を回収すると、廃熱回収及び熱交換器の除塵問題を重点的に考慮し、既存の発明CN103438746A、CN106091782A、CN103438746Aなどのように高温煙道ガスの廃熱回収を実現でき、効果が顕著である。しかし、煙道ガスの温度が酸性煙道ガスの凝縮温度に降下するとき、塵埃の堆積、除塵を考慮する以外に、さらに重要なのは、熱交換器の耐用年数に影響を与える酸腐食、エロージョン腐食及び熱交換器の伝熱性能の悪化を回避する問題を考慮することであり、このとき、塵埃の堆積、硫酸蒸気、硝酸蒸気及び水蒸気の凝縮現象が同時に発生し、酸腐食を主とするフィン腐食問題が熱交換器の耐用年数に影響を与える重要な要因となる。 The flue gas composition of coal-fired boilers and industrial kilns is relatively complex, and the flue gas contains a large amount of solid particulate matter, SOx, NOx and water vapor, etc. When the waste heat is recovered, the waste heat recovery and the dust removal problem of the heat exchanger are mainly considered, and the waste heat recovery of the high temperature flue gas can be realized like the existing inventions CN103438746A, CN106091782A, CN103438746A, etc., and the effect is remarkable. is. However, when the flue gas temperature drops to the acid flue gas condensation temperature, besides considering dust accumulation, dust removal, more importantly, acid corrosion, erosion corrosion, which affects the service life of the heat exchanger and the problem of avoiding the deterioration of the heat transfer performance of the heat exchanger. Corrosion problems are an important factor affecting the service life of heat exchangers.
含塵煙道ガスの廃熱回収において、本発明は、塵埃及び汚れが堆積しにくく、クリーニングが容易で、効率的に熱交換することを図るとともに、煙道ガス側の構造及び防食被覆層技術の両方から、煙道ガスの低温腐食、伝熱性能が悪いなどの難題を協働して解決することにより、煙道ガスの廃熱回収用の熱交換器の耐用年数を延長する。 In the waste heat recovery of dust-laden flue gas, the present invention is intended to prevent dust and dirt from accumulating, to facilitate cleaning, to achieve efficient heat exchange, and to improve the flue gas side structure and anti-corrosion coating technology. From both, jointly solve the difficult problems such as low temperature corrosion of flue gas, poor heat transfer performance, etc., thereby prolonging the service life of the heat exchanger for waste heat recovery of flue gas.
本発明の一態様に係るバタフライ型フィンチューブ熱交換器は、
熱交換管と、熱交換管に設けられた複数組のフィンとを含み、各組のフィンが、熱交換管の両側に対称に配置された2つのハーフバタフライ型フィンで構成されたバタフライ構造であり、各ハーフバタフライ型フィンの四隅が、いずれも曲率半径が10mm~100mmの弧形角であり、前記ハーフバタフライ型フィン及び熱交換管の外面に複合防食被覆層が塗布されている。
A butterfly finned-tube heat exchanger according to an aspect of the present invention comprises:
A butterfly structure comprising a heat exchange tube and a plurality of sets of fins provided on the heat exchange tube, each set of fins being composed of two half-butterfly fins arranged symmetrically on both sides of the heat exchange tube. The four corners of each half-butterfly fin are arcuate with a radius of curvature of 10 mm to 100 mm, and the outer surfaces of the half-butterfly fins and heat exchange tubes are coated with a composite anti-corrosion coating layer.
好ましくは、前記バタフライ構造において、2つのハーフバタフライ型フィンの間隔は、6mm~100mmである。 Preferably, in the butterfly structure, the interval between two half-butterfly fins is 6 mm to 100 mm.
好ましくは、前記弧形角は、直線移行部又は弧線移行部を介して接続される内側弧形角及び外側弧形角に分けられ、前記外側弧形角の曲率半径が内側弧形角の曲率半径よりも大きい。 Preferably, said arcuate angle is divided into an inner arcuate angle and an outer arcuate angle connected via a straight transition or an arcuate transition, the radius of curvature of said outer arcuate angle being equal to the curvature of said inner arcuate angle. Greater than radius.
好ましくは、各ハーフバタフライ型フィンの縁には、曲率半径が2mm~8mmの第1の面取りが厚さ方向に設けられている。 Preferably, the edge of each half-butterfly fin is provided with a first chamfer in the thickness direction with a radius of curvature between 2 mm and 8 mm.
好ましくは、前記ハーフバタフライ型フィンと熱交換管との接続箇所には、曲率半径が2mm~8mmの第2の面取りが形成されている。 Preferably, a second chamfer having a radius of curvature of 2 mm to 8 mm is formed at the connecting portion between the half-butterfly fin and the heat exchange tube.
上記態様において、前記複合防食被覆層は、下地めっき層及び有機防食被覆層を含む。前記下地めっき層は、硫酸第二セリウムを添加剤として制作された非晶質のニッケル銅リン複合めっき層であり、前記有機防食被覆層は、フッ素樹脂、ポリウレタン、フルオロカーボン樹脂又はシリコン被覆層である。前記熱交換管は、円管、楕円管又は扁平管である。 In the above aspect, the composite anti-corrosion coating layer includes a base plating layer and an organic anti-corrosion coating layer. The underlying plating layer is an amorphous nickel-copper-phosphorus composite plating layer made with ceric sulfate as an additive, and the organic anticorrosion coating layer is a fluororesin, polyurethane, fluorocarbon resin, or silicon coating layer. . The heat exchange tubes are circular tubes, elliptical tubes or flat tubes.
酸腐食の問題がある煙道排気ガスの廃熱回収を行う場合には、以下の3つの重要な問題を協働して解決する必要がある。1つ目は、煙道ガス側フィンで熱交換の強化と堆積した塵埃の除塵能力とを両立させて、熱交換器全体の伝熱性能を向上させること、2つ目は、対応する構造形態を用い、塵埃と酸性凝縮液のタイムリーな脱落及び排出を実現して、熱交換器の目詰まりを回避し、熱交換器の動作期間を延長すること、3つ目は、酸腐食、エロージョン腐食を緩和する防食制御技術を用いて、熱交換器の耐用年数を効果的に向上させることである。本発明は、複数回の施設現場調査、共通の問題の整理分析及び多方面の繰り返し試験研究に基づいて、バタフライ型フィンチューブ熱交換器を提案し、従来技術に比べて、以下の利点及び顕著な効果を有する。本発明は、(1)、フィンがバタフライ構造であり、フィンの隅角がいずれも弧形設計であるため、鋭角、稜角位置などの腐食されやすい領域の比表面積を効果的に小さくし、フィンの酸腐食を効果的に緩和するとともに、含塵煙道ガスのエロージョン摩耗を低減させることができ、(2)、2つのハーフバタフライ型フィンが熱交換管に対称に配置され、一定の間隔が空くことで、含塵気流が熱交換管の前縁に衝撃を与える場合や、負圧領域の後縁を流れる場合、集まった塵埃及び凝縮液が重力の作用によりタイムリーに脱落して排出されるのに役立ち、(3)、フィンと熱交換管との接続箇所に完全溶接方式及び弧線移行を用いることで、溶接継ぎ目の位置の局部的な応力が低減し、応力腐食及び酸腐食速度が効果的に低減し、(4)、構造及び被覆層の両方から、従来技術に存在する熱交換器が酸腐食されやすく、塵埃及び凝縮液が排出されにくく、伝熱効率が低いなどの問題を協働して解決し、従来の煙道ガスの廃熱回収用の熱交換器に比べて、材料を節約し、塵埃及び液体が堆積しにくく、エロージョン摩耗が効果的に低減し、耐用年数が長いなどの特徴を有する。したがって、本発明は、上記重要な課題を効果的に解決し、酸腐食などの問題を効果的に抑制するとともに、煙道ガスの廃熱回収を実現することができる。 When performing waste heat recovery for flue gas with acid corrosion problems, the following three important problems need to be solved jointly. The first is to improve the heat transfer performance of the entire heat exchanger by achieving both the enhancement of heat exchange and the ability to remove accumulated dust on the flue gas side fins, and the second is the corresponding structural form. to realize the timely shedding and discharge of dust and acid condensate to avoid clogging of the heat exchanger and extend the operating period of the heat exchanger; The purpose is to effectively improve the service life of heat exchangers by using anti-corrosion control technology to mitigate corrosion. The present invention proposes a butterfly-type finned-tube heat exchanger based on multiple site surveys, consolidation analysis of common problems, and multifaceted repeated test research, and has the following advantages and notables compared with the prior art: effect. In the present invention, (1) the fins have a butterfly structure and the corner angles of the fins are all arcuately designed, so the specific surface area of areas prone to corrosion such as acute angles and edge angles can be effectively reduced, and the fins can be (2) Two half-butterfly fins are symmetrically arranged on the heat exchange tube with a certain spacing Therefore, when the dust-containing airflow impacts the leading edge of the heat exchange tube or flows along the trailing edge of the negative pressure area, the collected dust and condensate will fall off and be discharged in a timely manner by the action of gravity. (3) The use of a full welding method and arc wire transfer at the connection point between the fin and the heat exchange tube reduces the local stress at the weld seam location and reduces the stress corrosion and acid corrosion rate (4) from both the structure and the coating layer, the heat exchangers existing in the prior art are prone to acid corrosion, dust and condensate are difficult to discharge, and the heat transfer efficiency is low. solution, compared with the traditional flue gas waste heat recovery heat exchanger, it saves materials, is not easy to accumulate dust and liquid, effectively reduces erosion wear, has a long service life, etc. has the characteristics of Therefore, the present invention can effectively solve the above important problems, effectively suppress problems such as acid corrosion, and realize waste heat recovery of flue gas.
以下、図面を参照しながら本発明の具体的な構造及び動作過程をさらに説明する。 Hereinafter, the detailed structure and operation process of the present invention will be further described with reference to the drawings.
図1に示すように、本発明に係る煙道ガスの腐食を防止するバタフライ型フィンチューブ熱交換器は、熱交換管1と、熱交換管に設けられ、それぞれ熱交換管の両側に対称に配置された2つのハーフバタフライ型フィン2で構成されたバタフライ構造である複数組のフィンとを含み、各ハーフバタフライ型フィン2の四隅は、いずれも曲率半径が10mm~100mmの弧形角3であり、前記ハーフバタフライ型フィン2及び熱交換管1の外面に複合防食被覆層が塗布され、熱交換管1は、円管を選択してもよく、楕円管又は扁平管などの異形熱交換管を選択してもよい。
As shown in FIG. 1, the butterfly finned tube heat exchanger for preventing flue gas corrosion according to the present invention is provided on the
煙道ガス側の熱交換管は、表面伝熱係数が低く、一般的に、熱交換器の熱交換管の外にリブを設ける方式で、煙道ガス側の熱交換面積を増加させて、熱交換器の伝熱性能を向上させる目的を達成する。なお、リブのタイプには、一体型リブ、スパイラルリブ及びピンリブなどがある。煙道ガスの成分が複雑で、粒子状物質を含有し、低温表面に触れると凝縮しやすいため、煙道ガスが鉛直に配置された熱交換管を流れる際に、熱交換管の上流に滞留域が存在し、滞留域に塵埃及び酸性凝縮液が堆積しやすくなり、熱交換管の下流に1つの負圧領域が存在し、該負圧領域に塵埃の付着及び低温煙道ガスの酸腐食が最も発生しやすくなるので、従来の熱交換器は、熱交換管の風上側及び風下側に溜まった塵埃、酸性凝縮液がタイムリーに除去されないと、塵埃及び汚れの堆積、堆積腐食、ひいては目詰まり現象が発生しやすく、熱交換器全体の伝熱性能及び耐用年数に影響を与える。本発明のフィンは、バタフライ構造を用いて、滞留域での自動除塵が実現でき、かつフィンの隅角がいずれも弧形設計であるため、鋭角、稜角位置などの腐食されやすい領域の比表面積を効果的に小さくすることができ、フィンの酸腐食を効果的に緩和するとともに、含塵煙道ガスのエロージョン(washout)摩耗を低減する。 The heat exchange tube on the flue gas side has a low surface heat transfer coefficient. Generally, the method of installing ribs on the outside of the heat exchange tube of the heat exchanger is used to increase the heat exchange area on the flue gas side, To achieve the purpose of improving the heat transfer performance of the heat exchanger. The types of ribs include integrated ribs, spiral ribs and pin ribs. Due to the complex composition of flue gas, which contains particulate matter and tends to condense on contact with cold surfaces, when flue gas flows through vertically arranged heat exchange tubes, it stays upstream of the heat exchange tubes. There is an area where dust and acid condensate tend to accumulate in the stagnation area, and there is one negative pressure area downstream of the heat exchange tube, which is susceptible to dust deposition and cold flue gas acid corrosion. is the most likely to occur, conventional heat exchangers are susceptible to dust and dirt buildup, buildup corrosion, and even The clogging phenomenon is likely to occur, affecting the heat transfer performance and service life of the entire heat exchanger. The fin of the present invention uses a butterfly structure to achieve automatic dust removal in the stagnation area, and since the corners of the fins are all arc-shaped design, the specific surface area of areas that are easily corroded such as acute angles and ridge angles. can be effectively reduced, effectively mitigating acid corrosion of the fins and reducing dust laden flue gas washout wear.
具体的には、弧形角3は、直線移行部又は弧線移行部を介して接続される内側弧形角3a及び外側弧形角3bに分けられ(図2を参照)、好ましくは、外側弧形角3bの曲率半径は、内側弧形角の曲率半径よりも大きいように設計されてもよく、このように、強いエロージョン腐食を効果的に防止することができ、含塵量が大きく、気流速度が高い場合に適している。煙道ガスの流れ方向において、熱交換管の上下流位置には、対称に配置された2つのハーフバタフライ型フィンの間に一定の間隔H(図2を参照)が空いており、2つのハーフバタフライ型フィン2の間隔Hは、一般的には、6mm~100mmであり、塵埃及び残りの酸性凝集液の混合物は、常に熱交換管に沿って下向きに流れ、タイムリーに除塵し酸性凝縮液を排出する目的を達成する。間隔Hが小さすぎると、目詰まりが発生して熱交換器を破損しやすく、Hが大きすぎると、フィンの熱交換強化能力が弱くなり、熱交換器の伝熱性能が低い。
Specifically, the
図3に示すように、バタフライ型フィンチューブ熱交換器は、2本の熱交換管1と、2本の熱交換管に設けられ、それぞれ2本の熱交換管の両側に対称に配置された2つのハーフバタフライ型フィン2で構成されたバタフライ構造である複数組のフィンとを含む。
As shown in FIG. 3, the butterfly-type finned-tube heat exchangers are provided in two
本発明の各ハーフバタフライ型フィンの縁には、曲率半径が好ましは2~8mmである第1の面取り7が厚さ方向に設けられ(図4を参照)、該第1の面取りの構造は、流入している含塵煙道ガスのエロージョン腐食を低減させるとともに、局部的な比表面積を低減させ、酸性凝縮液がフィンの表面上の被覆層を腐食する速度を効果的に低減させることができる。前記ハーフバタフライ型フィン2と熱交換管1との接続箇所には、曲率半径が2~8mmの第2の面取り4が形成されているため、熱交換管1とハーフバタフライ型フィン2との間の応力腐食を低減させるだけでなく、局部的な比表面積を低下させることにより酸腐食を弱めることもできる。前記ハーフバタフライ型フィン2の厚さ方向には、円形面取りが設けられているので(図1~3を参照)、局部的な腐食速度の低減に役立つだけでなく、防食被覆層の高品質なスパッタリングにも役立つ。
The edge of each half-butterfly fin of the invention is provided in the thickness direction with a first chamfer 7 having a radius of curvature of preferably 2-8 mm (see FIG. 4), the structure of the first chamfer can reduce the erosion corrosion of the incoming dust-laden flue gas, reduce the local specific surface area, and effectively reduce the rate at which the acid condensate corrodes the coating layer on the surface of the fins. can. A
上記態様において、前記複合防食被覆層は、下地めっき層及び有機防食被覆層で構成され、前記下地めっき層は、硫酸第二セリウムを添加剤として制作された非晶質のニッケル銅リン複合めっき層であり、前記有機防食被覆層は、フッ素樹脂、ポリウレタン、フルオロカーボン樹脂又はシリコン被覆層である。このように、被覆層の局部的な加速酸腐食/腐食を抑制することから、熱交換器全体の耐用年数が向上し、構造及び複合被覆層の両方から協働して、酸液の腐食が効果的に抑制され、酸性凝縮液の複合被覆層への腐食が顕著に緩和され、本熱交換器の長い耐用年数及び経済的で安定的な運転が実現される。また、上記各円形面取り(第1の面取り及び第2の面取り)は、楕円面取りなどの、滑らかな曲線構造を有する面取りを選択してもよい。 In the above aspect, the composite anti-corrosion coating layer is composed of an underlying plating layer and an organic anti-corrosion coating layer, and the underlying plating layer is an amorphous nickel-copper-phosphorus composite plating layer produced using ceric sulfate as an additive. and the organic anti-corrosion coating layer is a fluororesin, polyurethane, fluorocarbon resin or silicon coating layer. This inhibition of localized accelerated acid corrosion/corrosion of the cladding enhances the overall service life of the heat exchanger, and both the structure and the composite cladding cooperate to reduce acid-liquid corrosion. Effectively inhibited, corrosion of the composite coating layer of acidic condensate is significantly alleviated, realizing long service life and economical and stable operation of the heat exchanger. Also, each of the circular chamfers (the first chamfer and the second chamfer) may be selected to have a smooth curvilinear structure, such as an ellipsoidal chamfer.
以上より、従来のフィンチューブ熱交換器は、含塵煙道ガスによって生じる酸性凝縮液に触れると、フィンに顕著な酸性腐食、衝撃腐食及び応力腐食が発生しやすくなる。本発明は、ハーフバタフライ型フィンを用い、かつ、ハーフバタフライ型フィンの隅角、厚さ方向、及び熱交換管とフィンとの完全溶接の接触位置に亘って大きな曲率構造を設計し、各組のハーフバタフライ型フィンの間に間隔Hを設けることにより、フィンの曲がり角などの位置の滑らかな移行が実現される。最後に、特殊な複合防食被覆層構造を用いることにより、含塵煙道ガスの廃熱回収過程における煙道ガスの被覆層へのエロージョン腐食、応力腐食が効果的に低減し、含塵煙道ガスの酸腐食が抑制され、自動除塵が実現され、究極的に熱交換器の熱交換構造が腐食されずに熱交換器の耐用年数を顕著に延長することが確保される。 Thus, conventional finned tube heat exchangers are susceptible to significant acid, impact and stress corrosion of the fins when exposed to acidic condensate produced by dusty flue gases. The present invention uses half-butterfly fins, and designs a large curvature structure over the corner angle of the half-butterfly fins, the thickness direction, and the contact position of the complete welding between the heat exchange tube and the fins. By providing a spacing H between the half-butterfly fins, smooth transitions in position, such as fin turns, are achieved. Finally, the use of a special composite anti-corrosion coating layer structure effectively reduces erosion corrosion and stress corrosion of the flue gas coating layer during the waste heat recovery process of the dust-containing flue gas. Acid corrosion is suppressed, automatic dust removal is achieved, and ultimately the heat exchange structure of the heat exchanger is not corroded, and the service life of the heat exchanger is significantly extended.
1 熱交換管
2 ハーフバタフライ型フィン
3 弧形角
3a 内側弧形角
3b 外側弧形角
4 第2の面取り
7 第1の面取り
Claims (4)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810825380.0 | 2018-07-25 | ||
CN201810825380.0A CN108775831A (en) | 2018-07-25 | 2018-07-25 | A kind of butterfly finned tube exchanger preventing flue gas corrosion |
PCT/CN2018/120061 WO2020019627A1 (en) | 2018-07-25 | 2018-12-10 | Heat exchanger with butterfly finned pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021530668A JP2021530668A (en) | 2021-11-11 |
JP7236118B2 true JP7236118B2 (en) | 2023-03-09 |
Family
ID=64030057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021525343A Active JP7236118B2 (en) | 2018-07-25 | 2018-12-10 | Butterfly Finned Tube Heat Exchanger |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7236118B2 (en) |
CN (1) | CN108775831A (en) |
WO (1) | WO2020019627A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108775831A (en) * | 2018-07-25 | 2018-11-09 | 北京建筑大学 | A kind of butterfly finned tube exchanger preventing flue gas corrosion |
CN111750728B (en) * | 2020-07-23 | 2025-01-28 | 西安西热锅炉环保工程有限公司 | A multi-rib protective pipe sleeve |
CN112113238B (en) * | 2020-09-28 | 2023-02-07 | 台州市德长环保有限公司 | Fluorine lining pipe flue gas heating system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2578772Y (en) | 2002-11-06 | 2003-10-08 | 上海锅炉厂有限公司 | Butterfly fin heat transfer pipes |
CN101403580A (en) | 2008-11-26 | 2009-04-08 | 北京建筑工程学院 | Composite anti-corrosion heat-exchanger by using flue gas to condense thermal energy |
CN205228244U (en) | 2015-12-14 | 2016-05-11 | 青岛凯能锅炉设备有限公司 | Reinforce heat transfer arc extended surface tube |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01147073A (en) * | 1987-12-03 | 1989-06-08 | Tanaka Kikinzoku Kogyo Kk | Electroless coppering bath |
CN201764847U (en) * | 2010-07-01 | 2011-03-16 | 北京建筑工程学院 | Finned tube anti-corrosion heat exchanger with brass-based tubes using flue gas condensation heat energy |
CN102997504A (en) * | 2012-12-28 | 2013-03-27 | 合肥美的荣事达电冰箱有限公司 | Heat exchanger used for refrigerator and manufacturing method of heat exchanger |
CN103542734B (en) * | 2013-09-27 | 2014-08-13 | 山东大学 | Enclosed arc finned tube radiator of different alloys |
JP2017150726A (en) * | 2016-02-24 | 2017-08-31 | 株式会社神戸製鋼所 | Heat transfer pipe and vaporizer |
CN107228592A (en) * | 2017-06-02 | 2017-10-03 | 江阴德耐特重工科技有限公司 | The oval extended surface tube heat exchange element of oval fin list |
CN108775831A (en) * | 2018-07-25 | 2018-11-09 | 北京建筑大学 | A kind of butterfly finned tube exchanger preventing flue gas corrosion |
-
2018
- 2018-07-25 CN CN201810825380.0A patent/CN108775831A/en active Pending
- 2018-12-10 JP JP2021525343A patent/JP7236118B2/en active Active
- 2018-12-10 WO PCT/CN2018/120061 patent/WO2020019627A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2578772Y (en) | 2002-11-06 | 2003-10-08 | 上海锅炉厂有限公司 | Butterfly fin heat transfer pipes |
CN101403580A (en) | 2008-11-26 | 2009-04-08 | 北京建筑工程学院 | Composite anti-corrosion heat-exchanger by using flue gas to condense thermal energy |
CN205228244U (en) | 2015-12-14 | 2016-05-11 | 青岛凯能锅炉设备有限公司 | Reinforce heat transfer arc extended surface tube |
Also Published As
Publication number | Publication date |
---|---|
CN108775831A (en) | 2018-11-09 |
JP2021530668A (en) | 2021-11-11 |
WO2020019627A1 (en) | 2020-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7236118B2 (en) | Butterfly Finned Tube Heat Exchanger | |
CN104501639B (en) | Non-centrosymmetry H type finned tube and finned tube heat-exchanging tube bundle thereof | |
CN102519278A (en) | Heat exchanger capable of recycling heat from acidic gas containing dust | |
CN105402760A (en) | Fluoroplastic-steel air preheater with anti-corrosive and anti-blockage functions | |
CN101782274B (en) | Heat energy recovering device for boiler tail gas | |
CN108332597A (en) | A kind of air setting flue gas heat and mass transfer enhancement element and its heat exchanger | |
CN112228861A (en) | Self-ash-cleaning low-temperature coal economizer | |
CN204373484U (en) | Non-centrosymmetry H type fin tube structure and finned tube heat-exchanging tube bundle thereof | |
CN108731021A (en) | A kind of various dimensions composite moduleization casting condensation enhanced heat exchange device | |
CN208091292U (en) | Crack H-type finned tube for a kind of surface | |
CN210088822U (en) | H-shaped fin auxiliary economizer | |
CN213395270U (en) | Self-ash-cleaning low-temperature economizer structure | |
CN215864708U (en) | A waste heat recovery device for dusty exhaust gas | |
CN205807915U (en) | A kind of cleanable heat pump heat exchanger | |
CN208968335U (en) | A butterfly finned tube heat exchanger for preventing flue gas corrosion | |
CN210802173U (en) | Boiler | |
CN213455094U (en) | Finned tube and heat exchanger | |
CN110986626B (en) | Dust-deposition-preventing cross-row three-dimensional rib tube bundle with circumferentially-changing rib structure and shell-and-tube heat exchanger | |
CN208091293U (en) | A kind of air setting flue gas heat and mass transfer enhancement component structure and its heat exchanger | |
CN2757083Y (en) | Heat pipe air preheater | |
CN2527953Y (en) | Film-type wall-type heat-exchanger for desulfurization | |
CN203454852U (en) | Stainless steel corrugated pipe condenser of condensing type gas water heater | |
CN201302410Y (en) | Longitudinal finned oblate tube heat exchanger for high-temperature, corrosive dusty gas | |
CN219530911U (en) | Honeycomb heat exchange tube type air preheater | |
CN2716789Y (en) | An improved air preheater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230117 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7236118 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |