[go: up one dir, main page]

JP7233781B1 - Lighting equipment for growing plants for fruits and vegetables - Google Patents

Lighting equipment for growing plants for fruits and vegetables Download PDF

Info

Publication number
JP7233781B1
JP7233781B1 JP2022121883A JP2022121883A JP7233781B1 JP 7233781 B1 JP7233781 B1 JP 7233781B1 JP 2022121883 A JP2022121883 A JP 2022121883A JP 2022121883 A JP2022121883 A JP 2022121883A JP 7233781 B1 JP7233781 B1 JP 7233781B1
Authority
JP
Japan
Prior art keywords
light
led
light emitting
elements
emitting elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022121883A
Other languages
Japanese (ja)
Other versions
JP2024018502A (en
Inventor
啓二 上田
Original Assignee
ジャパンフューチャーエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジャパンフューチャーエナジー株式会社 filed Critical ジャパンフューチャーエナジー株式会社
Priority to JP2022121883A priority Critical patent/JP7233781B1/en
Priority to JP2023020195A priority patent/JP2024018891A/en
Application granted granted Critical
Publication of JP7233781B1 publication Critical patent/JP7233781B1/en
Publication of JP2024018502A publication Critical patent/JP2024018502A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】低電気コストで果菜類の促成栽培及び果実の収量の増加が実現でき、視認性の高い昼白色光の光源で光合成に有効なスペクトル光と高い光強度で栽培ができる植物育成用照明装置を提供する。【解決手段】植物育成用照明装置は、複数の発光素子12を備え、発光素子のうち被育成植物へ照射する所定発光素子において、所定発光素子の数NT、所定発光素子のうち赤色に発光可能な素子の数NR、所定発光素子のうち青色に発光可能な素子の数NB、所定発光素子のうち緑色に発光可能な素子の数NG、及び所定発光素子のうち白色に発光可能な素子の数NWは、式(1)ないし(5)を充足する。NT=NR+NB+NG+NW(1)LR≦NR/NT≦UR(2)LB≦NB/NT≦UR(3)LG≦NG/NT≦UR(4)LW≦NW/NT≦UR(5)【選択図】図2Kind Code: A1 A lighting for cultivating plants that enables forcing cultivation of fruit vegetables and an increase in the yield of fruits at low electricity cost, and enables cultivation with high light intensity and spectral light effective for photosynthesis with a light source of highly visible daylight white light. Provide equipment. A lighting device for growing a plant is provided with a plurality of light-emitting elements 12, and among the light-emitting elements, predetermined light-emitting elements that irradiate plants to be grown can emit light in red. NR, the number of predetermined light emitting elements capable of emitting blue light NB, the number of predetermined light emitting elements capable of emitting green light NG, and the number of predetermined light emitting elements capable of emitting white light. NW satisfies equations (1) through (5). NT = NR + NB + NG + NW (1) LR ≤ NR/NT ≤ UR (2) LB ≤ NB/NT ≤ UR (3) LG ≤ NG/NT ≤ UR (4) LW ≤ NW/NT ≤ UR (5) Figure 2

Description

本発明は、果菜類向け植物育成用照明装置に関する。 TECHNICAL FIELD The present invention relates to a lighting device for growing plants for fruits and vegetables.

従来、太陽光の代わりに蛍光灯又はLED照明装置などを用いて植物栽培を行う人工光型植物工場及び人工光型苗生産装置がある。だが、いずれも1ケ月程度の短期間で栽培ができるリーフレタスを主体とする葉菜類、ハーブ類栽培もしくは野菜苗、花卉苗の一次育苗(プラグ苗等)の苗生産が主であり、果菜類(イチゴ)の生産は全体の5%程度に限られている。これは播種から収穫までの栽培に要する電気コストとの兼ね合いが理由にある(非特許文献1参照)。 Conventionally, there are artificial light type plant factories and artificial light type seedling production apparatuses for cultivating plants using fluorescent lamps or LED lighting devices instead of sunlight. However, in either case, leafy vegetables such as leaf lettuce, which can be cultivated in a short period of about one month, herb cultivation, vegetable seedlings, and flower seedling primary seedlings (plug seedlings, etc.) are mainly produced, and fruit vegetables ( Strawberry) production is limited to about 5% of the total. The reason for this is the balance with the cost of electricity required for cultivation from sowing to harvesting (see Non-Patent Document 1).

トマト、イチゴなどの果菜類においては人工光型植物工場(閉鎖型植物工場)での栽培の場合、播種から収穫までに100日~120日程度の栽培期間を要する。栽培期間においては光と温度管理に要する電気コスト、人件費、肥料などの栽培に付帯するコストが栽培期間に比例してかかる。これが、果菜類の生産を行う上で経営上、収益が悪くなる要因となる。これを解決するには、果実が短期間の栽培で収穫ができ、収量の増加が見込める光である。すなわち植物が効率的に光合成を行なえるスペクトル光と、低エネルギーで高い光強度を発光する光源の照明が必要となる。非特許文献2に記載されている資料によると電気コストの内訳は照明60%、空調28%、その他(ポンプなど)11%と照明の比率が高い。 Fruit vegetables such as tomatoes and strawberries require a cultivation period of about 100 to 120 days from sowing to harvesting when cultivated in an artificial light plant factory (closed plant factory). During the cultivation period, costs incidental to cultivation, such as electricity costs required for light and temperature control, labor costs, fertilizers, etc., are proportional to the cultivation period. This is one of the reasons why profits are poor in terms of management in the production of fruits and vegetables. To solve this problem, it is necessary to use light that allows fruit to be harvested in a short period of cultivation and that can be expected to increase the yield. In other words, it is necessary to have a spectrum of light that allows plants to efficiently perform photosynthesis and a light source that emits light with low energy and high intensity. According to the material described in Non-Patent Document 2, the breakdown of the electricity cost is 60% for lighting, 28% for air conditioning, and 11% for others (pumps, etc.), so lighting has a high ratio.

一方、植物体にとっては、光合成に最適なスペクトル光による光合成産物転化効率(光利用効率)と、高い光強度と、葉面積の増加(受光率)と、が求められる。特にトマト、イチゴなど果実の成る果菜類は、栄養成長期に植物体が生育に適したスペクトル光と高い光強度の光とを受光し、光合成速度(単位時間あたりの光合成量)を増やすとともに光合成により生産された光合成産物(ショ糖、デンプン、セルロース)が効率よく葉や茎や根により多く蓄える必要がある。 On the other hand, plant bodies require photosynthetic product conversion efficiency (light utilization efficiency) with light having the optimum spectrum for photosynthesis, high light intensity, and an increase in leaf area (light receiving rate). In particular, fruit vegetables such as tomatoes and strawberries receive light with a spectrum suitable for growth and light with high light intensity during the vegetative growth period, increasing the photosynthetic rate (amount of photosynthesis per unit time) and photosynthesis. Photosynthetic products (sucrose, starch, and cellulose) produced by the plant need to be efficiently stored in leaves, stems, and roots.

そして、果菜類において、生殖成長期に、光合成により葉や茎や根に蓄えられた光合成産物(ソース)が果実(シンク)への転流と分配とがバランスよく行われることにより、短期間で果実が実り、収穫量を上げることができる。 In fruit vegetables, during the reproductive growth period, photosynthetic products (source) stored in leaves, stems, and roots through photosynthesis are translocated and distributed to fruits (sink) in a well-balanced manner. It bears fruit and can increase the yield.

これらを解決するため、これまでに数多くの発光技術が提案されているが、栽培にかかる電気コストで解決しているとは言えない。例えば、これまでの提案技術には、紫外線、赤色、青色、遠赤外線のピークトップがいずれか1つもしくは2つのピークトップを発光スペクトル、又は、太陽光と同じ、均一な光強度でバランスの良い発光スペクトルとしている。1つもしくは2つのピークトップを発光スペクトルは、例えば、赤青混色光LED、白色光LEDを基本とし、前記のピーク波長を含む混色光LEDによって生成される。均一な光強度でバランスの良い発光スペクトルは、高圧ナトリウムメタルハイドランプ、3波長蛍光灯、3波長蛍光体LEDなどよって生成される。 In order to solve these problems, many light-emitting technologies have been proposed so far, but it cannot be said that they have been solved due to the cost of electricity required for cultivation. For example, in the proposed technology so far, one or two of the peak tops of ultraviolet, red, blue, and far infrared rays are emitted in the emission spectrum, or the same light intensity as sunlight, which is well-balanced Emission spectrum. Emission spectra with one or two peak tops are produced by, for example, red-blue mixed-light LEDs, white-light LEDs, and mixed-light LEDs containing the above-mentioned peak wavelengths. Uniform light intensity and well-balanced emission spectra are produced by high-pressure sodium metal hydride lamps, three-wavelength fluorescent lamps, three-wavelength phosphor LEDs, and the like.

これらの技術は、光強度を補うために、多くの消費電力を要している。人工光型の植物栽培において、低消費電力の光源発光で光合成速度を増加させ、播種から収穫までの栽培期間の短縮と収穫物の増加を図ることで収穫物1個当たりの電気コストを抑える発光技術が求められている(非特許文献3参照)。 These techniques consume a lot of power to compensate for the light intensity. In artificial light type plant cultivation, light emission with low power consumption increases the rate of photosynthesis, shortens the cultivation period from sowing to harvest and increases the yield, thereby reducing the electricity cost per crop. Technology is required (see Non-Patent Document 3).

光強度を補う技術として、従来、特許文献1に記載されているように、2枚の反射板が、基板上に装着されたLED光源の列の両側に平行して、反射面がLED光源の列を両側から挟んで対向する配置で設置される、という技術が提案されている。 As a technique for compensating for light intensity, conventionally, as described in Patent Document 1, two reflectors are arranged parallel to both sides of a row of LED light sources mounted on a substrate so that the reflecting surfaces are aligned with the LED light sources. A technique has been proposed in which they are installed in an arrangement facing each other across a row.

特開2015-99674号公報JP 2015-99674 A

一般社団法人 施設園芸協会、令和3年度スマートグリーンハウス展開事業報告書(別冊1)大規模施設園芸、植物工場 実態調査 事例調査、p.22 図表26主な栽培品目(人工光型)<https://jgha.com/wp-content/uploads/2022/04/TM06-03-bessatsu1.pdf>Greenhouse Horticulture Association, FY2021 Smart Greenhouse Development Project Report (Separate Volume 1) Large-scale Greenhouse Horticulture, Plant Factory Field Survey, Case Study, p. 22 Figure 26 Main cultivated items (artificial light type) <https://jgha. com/wp-content/uploads/2022/04/TM06-03-bessatsu1. pdf> 一般社団法人 施設園芸協会、令和3年度スマートグリーンハウス展開事業報告書(別冊1)大規模施設園芸、植物工場・実態調査・事例調査、p.50 図表65 栽培形態別コスト比率(人工光型)、p.51 図表66電気コストの内訳(人工光型)<https://jgha.com/wp-content/uploads/2022/04/TM06-03-bessatsu1.pdf>Greenhouse Horticulture Association, 2021 Smart Greenhouse Development Business Report (Separate Volume 1) Large-scale Greenhouse Horticulture, Plant Factory/Field Survey/Case Study, p. 50 Figure 65 Cost ratio by cultivation type (artificial light type), p. 51 Figure 66 Breakdown of electricity cost (artificial light type) <https://jgha. com/wp-content/uploads/2022/04/TM06-03-bessatsu1. pdf> 一般社団法人 施設園芸協会、令和3年度スマートグリーンハウス展開事業報告書(別冊1)、大規模施設園芸、植物工場・実態調査・事例調査、P.39 図表50 直近数年の決算<https://jgha.com/wp-content/uploads/2022/04/TM06-03-bessatsu1.pdf>Greenhouse Horticulture Association, FY2021 Smart Greenhouse Development Project Report (Separate Volume 1), Large-scale Greenhouse Horticulture, Plant Factory/Field Survey/Case Study, P. 39 Figure 50 Earnings for the last few years <https://jgha. com/wp-content/uploads/2022/04/TM06-03-bessatsu1. pdf> 東京大学大学院 理学系研究科 生物科学専攻 寺島 一郎、研究紹介、p.17「4. なぜ葉は黒くないのか:葉の光学的性質」、p.18“5. 葉の内部の光環境と光合成システムの構築原理”、[令和4年7月26日検索],インターネット<https://photosyn.jp/journal/sections/kaiho57-3.pdf>Department of Biological Sciences, Graduate School of Science, The University of Tokyo Ichiro Terashima, Introduction of Research, p. 17 "4. Why Leaves Are Not Black: Optical Properties of Leaves", p. 18 “5. Light environment inside leaves and construction principle of photosynthetic system”, [searched on July 26, 2020], Internet <https://photosyn. jp/journal/sections/kaiho57-3. pdf> 寺島 一郎の紹介、(1)葉の内部の光環境と葉の光合成の関係、図5、図6微分的量子収率測定法、[令和4年7月26日検索],インターネット<http://www.bs.s.u-tokyo.ac.jp/~seitaipl/personal/terashima/terashima_j.html>Introduction of Ichiro Terashima, (1) Relationship between the light environment inside the leaf and the photosynthesis of the leaf, Fig. 5, Fig. 6 Differential quantum yield measurement method, [searched July 26, 2022], Internet <http: //www. bs. s. u-tokyo. ac. jp/~seitaipl/personal/terashima/terashima_j. html>

植物工場で栽培される野菜類は、根を食用とする根菜類、葉・茎を食用とする葉菜類、及び果実を食用とする果菜類を含む。これらのうち果菜類は、例えば、トマト、イチゴ等を含む。植物工場での果菜類の栽培においては、短期間での収穫が重要な課題である。しかしながら、先行技術のLED照明装置が用いる白色LED、青色LED、赤色LED、遠赤色LED、紫外線LEDは、果菜類の光合成速度を増やす点において、さらなる改良の余地がある。 Vegetables cultivated in plant factories include root vegetables whose roots are edible, leafy vegetables whose leaves and stems are edible, and fruit vegetables whose fruits are edible. Among these, fruit vegetables include, for example, tomatoes, strawberries, and the like. Harvesting in a short period of time is an important issue in the cultivation of fruit vegetables in a plant factory. However, the white LEDs, blue LEDs, red LEDs, far-red LEDs, and ultraviolet LEDs used in prior art LED lighting devices have room for further improvement in increasing the photosynthetic rate of fruit vegetables.

ところで、緑色光は、これまで光合成には不要な光であると考えられてきた。すなわち、葉が緑に見えるのは緑色光が葉に吸収されず反射しているからと考えられ、緑色光は人工光による栽培では必要のない光とされてきた。しかしながら、実際には緑色光は赤色光、青色光ほど葉に吸収されないものの光合成には必要とされる。緑色光は葉全体では柵状組織や海面組織の発達によって葉の内部で何度も反射と吸収をしている。特に果菜類、花卉類の人工光栽培においては光合成速度を増やすために白色光の光強度を上げるが、これには植物の光合成による光の吸収には限界(光飽和点)があり、高強度の光の場合、葉の表面の葉緑体は光飽和点に達して赤、青色光は光合成には必要とされずに熱として散逸される。その一方で葉の裏面の葉緑体は光飽和点に達していないという状況となる。この時点において緑色光は葉の裏面にも届くため、緑色光は光飽和点に達していない葉緑体の光合成を駆動し、赤色光、青色光よりも緑色光の方が光合成速度を増やす結果となる。ゆえに、緑色光は赤色光、青色光とともに光合成には欠かせない光である。このように、緑色光を活かす改良が望まれる(非特許文献4、5参照)。 By the way, it has been thought that green light is unnecessary for photosynthesis. That is, it is thought that the leaves look green because the green light is reflected instead of being absorbed by the leaves, and green light has been regarded as unnecessary light in cultivation using artificial light. However, green light is actually required for photosynthesis, although it is not as absorbed by leaves as red and blue light. Green light is reflected and absorbed many times inside the leaf due to the development of palisade tissue and sea surface tissue throughout the leaf. Especially in artificial light cultivation of fruit vegetables and flowers, the light intensity of white light is increased in order to increase the photosynthetic rate, but there is a limit (light saturation point) in the absorption of light by photosynthesis of plants, and high intensity , the chloroplasts on the leaf surface reach the light saturation point and red and blue light are dissipated as heat without being needed for photosynthesis. On the other hand, the chloroplast on the back surface of the leaf has not reached the light saturation point. At this point, green light also reaches the underside of the leaf, so green light drives photosynthesis in chloroplasts that have not yet reached the photosaturation point, resulting in a faster rate of photosynthesis with green light than with red or blue light. becomes. Therefore, green light is indispensable for photosynthesis along with red light and blue light. In this way, an improvement that utilizes green light is desired (see Non-Patent Documents 4 and 5).

また、人工光栽培による果菜類を促成栽培する上で、植物体の葉面積を拡大させ、より多くの光を受けるように受光面積を拡大させて、光合成による光合成生産物を蓄える必要性がある。光合成生産物の増加は、落果を防ぐ(着果率の増加)とともに果実の成熟日数の短縮化に繋がる。このように、果菜類の光合成速度を増やすことは、収穫量の増加にも繋がる。 In addition, in forcing cultivation of fruit vegetables by artificial light cultivation, it is necessary to expand the leaf area of the plant body, expand the light receiving area so as to receive more light, and store photosynthetic products by photosynthesis. . An increase in photosynthetic products prevents fruit dropping (increases the rate of fruit setting) and shortens the number of days required for fruit maturation. Thus, increasing the photosynthetic rate of fruit vegetables also leads to an increase in yield.

また、トマトやイチゴの場合には果実の表皮色を見ることによって成熟度合を推し測ることができる。しかし、屋内施設で前述したLED照明装置から発光する照射光には、太陽光とは異なる光源色により光質の違いや照射むらが生じる可能性があるため、トマトやイチゴの果実の表皮の色が、太陽光に照射された場合の表皮の色とは異なり、作業員に誤って視認されるおそれがある。或いは植物体に生ずる生理障害による生育阻害要因を見過ごすおそれがある。そこで、太陽光に近い昼光色で照明可能な植物育成用照明装置の出現が望まれる。具体的には、色温度が6500ケルビン程度であれば果実の表皮色の視認性が高く、演色Ra95程度であれば太陽光に近い昼光色照明となる。 In the case of tomatoes and strawberries, the degree of maturity can be estimated by looking at the skin color of the fruit. However, the illumination light emitted from the above-mentioned LED lighting equipment in indoor facilities may cause differences in light quality and uneven illumination due to the light source color different from sunlight. However, unlike the color of the skin when exposed to sunlight, it may be mistakenly seen by workers. Alternatively, there is a risk of overlooking factors that inhibit growth due to physiological disorders that occur in plants. Therefore, there is a demand for a plant-growing lighting device capable of illuminating in a daylight color close to that of sunlight. Specifically, when the color temperature is about 6500 Kelvin, the visibility of the skin color of the fruit is high, and when the color rendering Ra is about 95, daylight lighting close to sunlight is obtained.

本発明は、上述のような要望に応え、果菜類の光合成速度を増やすことが可能なスペクトルと強い光強度の光を照射することで短期栽培と果実の収量増加が実現可能であり、かつ視認性の高い昼光色を発光する照明として果菜類向け植物育成用照明装置を提供することを目的とする。 In response to the above-mentioned demands, the present invention realizes short-term cultivation and an increase in fruit yield by irradiating light with a spectrum that can increase the photosynthetic rate of fruit vegetables and a high light intensity. To provide a plant-growing lighting device for fruits and vegetables as lighting that emits daylight color with high quality.

前記目的を達成するため、本発明は次に記載する構成を備える。 In order to achieve the above object, the present invention has the following configurations.

(1) 複数の発光素子(例えば、LED素子12)を備え、
前記発光素子のうち被育成植物へ照射する所定発光素子において、前記所定発光素子の数N、前記所定発光素子のうち赤色に発光可能な素子の数N、前記所定発光素子のうち青色に発光可能な素子の数N、前記所定発光素子のうち緑色に発光可能な素子の数N、及び前記所定発光素子のうち白色に発光可能な素子の数Nは、式(1)ないし(5)を充足する、果菜類向け植物育成用照明装置(例えば、LED照明装置1)。
=N+N+N+N (1)
28/216≦N/N≦44/216 (2)
14/216≦N/N≦22/216 (3)
14/216≦N/N≦22/216 (4)
128/216≦N /N ≦160/216 (5)
(1) comprising a plurality of light-emitting elements (for example, LED elements 12);
Among the light emitting elements, among the light emitting elements , the number of the predetermined light emitting elements that irradiate the plant to be grown is N T , the number of the predetermined light emitting elements that can emit red light, the number of the predetermined light emitting elements that can emit blue light, and the predetermined light emitting elements that emit blue light. The number of elements capable of emitting light N B , the number of elements capable of emitting green light among the predetermined light emitting elements N G , and the number of elements capable of emitting white light among the predetermined light emitting elements N W A lighting device for growing plants for fruits and vegetables (for example, an LED lighting device 1) that satisfies (5).
N T = N R + N B + N G + N W (1)
28/216≦N R /N T ≦44/216 (2)
14/216≦N B /N T ≦22/216 (3)
14/216≦ NG / NT ≦22/216 (4)
128/216≦N W /N T ≦160/216 (5)

(1)によれば、赤色に発光する素子の数、青色に発光する素子の数、緑色に発光する素子の数及び白色に発光する素子の数が上記(1)ないし(5)の式を満たす比率となる。これにより、光合成に必要な赤色発光及び青色発光と、葉の奥の光飽和に達していない葉緑体の光合成を駆動させ、植物の光利用効率を高める緑色発光と、を兼ね備えた本発明特有のスペクトルの光を植物に照射することが可能になり、促成栽培と収量増加を目標とする果菜類の栽培に適した果菜類向け植物育成用照明装置を提供することができる。 According to (1), the number of elements that emit red light, the number of elements that emit blue light, the number of elements that emit green light, and the number of elements that emit white light are calculated using the above equations (1) to (5). It becomes a ratio that satisfies This makes it possible to combine the red and blue luminescence required for photosynthesis with the green luminescence that drives photosynthesis in the chloroplasts that have not reached light saturation in the back of the leaves and increases the light utilization efficiency of plants. It is possible to irradiate plants with light of the spectrum of , and it is possible to provide a lighting device for growing fruits and vegetables suitable for cultivation of fruits and vegetables aiming at forcing cultivation and yield increase.

しかも、(1)によれば、上記(1)ないし(5)の式を満たす比率で所定発光素子が各色に発光することにより、太陽光に近く実色の視認性が高い昼光色で照明可能な植物育成用照明装置を提供することを本発明特有のスペクトルの光を植物に照射することと両立できる。 Moreover, according to (1), the predetermined light-emitting elements emit light in each color at a ratio that satisfies the above formulas (1) to (5), so that it is possible to illuminate with a daylight color that is close to sunlight and has high visibility of the actual color. Providing a lighting device for growing plants is compatible with irradiating plants with the light of the spectrum peculiar to the present invention.

(2) (1)において、前記赤色に発光可能な素子は、赤色発光素子(例えば、赤色LED素子12R)であり、前記青色に発光可能な素子は、青色発光素子(例えば、青色LED素子12B)であり、前記緑色に発光可能な素子は、緑色発光素子(例えば、緑色LED素子12G)であり、前記白色に発光可能な素子は、白色発光素子(例えば、白色LED素子12W)である、果菜類向け植物育成用照明装置。 (2) In (1), the element capable of emitting red light is a red light emitting element (e.g., red LED element 12R), and the element capable of emitting blue light is a blue light emitting element (e.g., blue LED element 12B ), wherein the element capable of emitting green light is a green light emitting element (e.g., green LED element 12G), and the element capable of emitting white light is a white light emitting element (e.g., white LED element 12W); Lighting equipment for growing plants for fruits and vegetables.

(2)によれば、各色に発光可能な素子が単色の発光素子であるため、調色可能な蛍光体発光素子をそれぞれの色で発光させた場合より強い混合色光を照射できる。これにより、光合成に必要な赤色発光及び青色発光と、植物の光利用効率を高める緑色発光と、をよりいっそう高い光強度を兼ね備えた光を植物に照射することが可能となる。 According to (2), since the element capable of emitting light in each color is a monochromatic light emitting element, it is possible to irradiate a stronger mixed color light than in the case where the phosphor light emitting elements which can be tuned in color are caused to emit light in respective colors. As a result, it is possible to irradiate the plant with light that combines red and blue light emission necessary for photosynthesis and green light emission that enhances the light utilization efficiency of the plant with much higher light intensity.

また、(2)によれば、各色に発光する素子が単色の発光素子であり、白色に発光する素子が白色発光素子であるため、発光素子を調色する制御手段等を備えた複雑な構成とすることを防ぎ得る。 Further, according to (2), the elements that emit light in each color are monochromatic light emitting elements, and the elements that emit white light are white light emitting elements. can be prevented.

(3) (2)において、12個の前記所定発光素子を有する基本配置を複数配した発光部を含む、果菜類向け植物育成用照明装置。 (3) The plant-growing lighting device for fruits and vegetables according to (2), including a light-emitting portion in which a plurality of basic arrangements having 12 predetermined light-emitting elements are arranged.

(3)によれば、基本配置において、上記(1)ないし(5)の式を満たす比率が達成される。これにより、植物育成用照明装置が照射する範囲全体より狭い範囲に照射する基本配置において、果菜類の促成栽培と収量増加に適した本発明特有のスペクトルの光と光強度が実現できる。 According to (3), a ratio that satisfies the above equations (1) to (5) is achieved in the basic arrangement. As a result, in a basic arrangement that illuminates a narrower range than the entire range illuminated by the lighting device for growing plants, the light of the spectrum and light intensity peculiar to the present invention suitable for forcing cultivation and yield increase of fruits and vegetables can be realized.

よって、(3)によれば、よりいっそう照射光の色むらの少ない昼光色の光色を実現することができる。このように、色むらなく光を植物体に照射することで、光合成速度をよりいっそう増加させることが可能になり、植物の生育をより均一に安定的に進めることができる。 Therefore, according to (3), it is possible to realize a daylight color with even less color unevenness of the irradiated light. By irradiating the plant body with light without color unevenness in this way, it is possible to further increase the photosynthetic rate, and the plant can grow more uniformly and stably.

また、(3)によれば、基本配置において、果菜類の促成栽培と収量増加に適した本発明特有のスペクトルの光と光強度を実現できるため、照射光の色むらを低減する意図と強い光強度を維持する意図で植物育成用照明装置を被育成植物から離す必要がなくなる。これにより、植物育成用照明装置を被育成植物のより近くに配置し、照射効率を向上し得る。 In addition, according to (3), in the basic arrangement, it is possible to realize the light and light intensity of the spectrum peculiar to the present invention suitable for forcing cultivation and yield increase of fruit vegetables. It is no longer necessary to separate the plant-growing lighting device from the plant to be grown for the purpose of maintaining the light intensity. As a result, the plant-growing lighting device can be arranged closer to the plant to be grown, and the irradiation efficiency can be improved.

(4) (3)において、前記基本配置は、前記発光部において、前記赤色発光素子が略同一の間隔で配され、前記青色発光素子が略同一の間隔で配され、前記緑色発光素子が略同一の間隔で配され、前記赤色発光素子、前記青色発光素子、及び前記緑色発光素子を含む色付き発光素子が略同一の間隔で配された、配置を構成可能な配置である、果菜類向け植物育成用照明装置。 (4) In (3), the basic arrangement is such that, in the light emitting portion, the red light emitting elements are arranged at approximately the same intervals, the blue light emitting elements are arranged at approximately the same intervals, and the green light emitting elements are arranged at approximately the same intervals. A plant for fruit vegetables having a configurable arrangement in which colored light-emitting elements including the red light-emitting element, the blue light-emitting element, and the green light-emitting element are arranged at the same intervals and are arranged at substantially the same intervals. Growing lighting device.

(4)によれば、各色の発光素子が略同一の間隔で配されるため、照射光の色むらをよりいっそう低減できる。しかも、(4)によれば、赤、緑、青の単色光の発光素子が略同一の間隔で配されるため、赤、緑、青の単色発光素子の間に白色発光素子が配される配置となり、照射の色むらを更にいっそう低減できる。 According to (4), since the light emitting elements of each color are arranged at approximately the same intervals, it is possible to further reduce color unevenness of the irradiated light. Moreover, according to (4), since the red, green, and blue monochromatic light emitting elements are arranged at approximately the same intervals, the white light emitting element is arranged between the red, green, and blue monochromatic light emitting elements. It becomes arrangement|positioning and can further reduce the color nonuniformity of irradiation.

(5) (1)~(4)において、前記発光素子から前記被育成植物への方向と異なる方向へ照射される光の少なくとも一部を前記被育成植物へ向けて反射可能な反射板(例えば、反射面26(鏡面加工された反射板或いは鏡面メッキ))を2以上備える、果菜類向け植物育成用照明装置。 (5) In (1) to (4), a reflector (for example, a , and two or more reflecting surfaces 26 (mirror-finished reflecting plate or mirror-plating).

(5)によれば、発光素子が消費電力を増やすことなく、植物体に照射する光量を増やすことが可能になる。よって、(5)によれば、照明器具として効率化、省電力化を図ることが可能になる。 According to (5), it is possible to increase the amount of light irradiated to the plant without increasing the power consumption of the light emitting element. Therefore, according to (5), it is possible to improve efficiency and save power as a lighting fixture.

(6) (1)~(5)において、前記複数の発光素子の少なくとも一部又は全部は、直線状に配され、前記直線状に配された発光素子のそれぞれは、略同形かつ略直方体形状のチップLEDからなり、前記直線状に配された発光素子のそれぞれにおいて、前記チップLEDの正極及び負極の両端子が互いに対向する方向と前記発光素子を配する向きとが略直交する、果菜類向け植物育成用照明装置。 (6) In (1) to (5), at least some or all of the plurality of light emitting elements are linearly arranged, and each of the linearly arranged light emitting elements has substantially the same shape and substantially rectangular parallelepiped shape. and in each of the linearly arranged light emitting elements, the direction in which the positive and negative terminals of the chip LED face each other is substantially perpendicular to the direction in which the light emitting elements are arranged. Lighting equipment for growing plants.

(6)によれば、発光素子がチップLEDからなるため、省電力化を図ることができる。しかも、チップLEDの正極及び負極の両端子が互いに対向する向きと発光素子を配する向きとが略直交するため、隣り合うチップLEDの間に配線等を配置する必要がなくなる。よって、(6)によれば、チップLEDの発光部位間の間隔を短くすることが可能になる。これにより、(6)によれば、更に照射光の色むらの少ない昼光色の光色を実現することができる。 According to (6), since the light-emitting element is a chip LED, power saving can be achieved. Moreover, since the direction in which the positive and negative terminals of the chip LED face each other is substantially orthogonal to the direction in which the light emitting element is arranged, there is no need to arrange wiring or the like between the adjacent chip LEDs. Therefore, according to (6), it is possible to shorten the interval between the light emitting portions of the chip LED. Thereby, according to (6), it is possible to realize daylight color with less color unevenness of the irradiated light.

(7) (1)~(6)において、紫外線光LED素子及び遠赤外光発生素子の少なくともいずれか一方を更に含む、果菜類向け植物育成用照明装置。 (7) A plant-growing lighting device for fruits and vegetables according to (1) to (6), further comprising at least one of an ultraviolet light LED element and a far-infrared light generating element.

(7)によれば、近紫外線を照射することにより、果菜類が開花する段階において果菜類が受粉結実に要する送粉昆虫であるミツバチ、マルハナバチ等を活発に行動させることが可能になり、送粉昆虫による受粉を効率的に行うことが可能になる。これにより、人が筆を用いて受粉を行う方法よりも、形のよい結実が多くなる可能性を高めることが可能になる。遠赤外線光を照射することで、葉面積の増加と茎の伸長を促進効果が期待できる。これにより、受光率が高まり、光合成速度を増やすことが可能になることで、果菜類の光合成産物の蓄積を増やすことが可能になる。 According to (7), by irradiating near-ultraviolet rays, it becomes possible to make pollinating insects such as bees and bumblebees, which are necessary for pollination of fruit vegetables, to act actively in the flowering stage of fruit vegetables. It becomes possible to efficiently perform pollination by pollinating insects. This makes it possible to increase the likelihood of more well-shaped fruit set than the method of pollination using a human brush. Irradiation with far-infrared light can be expected to increase leaf area and promote stem elongation. As a result, it becomes possible to increase the rate of light reception and increase the rate of photosynthesis, thereby increasing the accumulation of photosynthetic products of fruits and vegetables.

本発明によれば、果菜類の促成栽培と収量増加を高めることが可能なスペクトル光と高い光強度の発光で照射可能であり、かつ視認性が高い昼光色照明可能な果菜類向け植物育成用照明装置を提供することができる。また、本発明によれば、低消費電力照明で播種から果実収穫までの栽培期間を短縮することができることから、栽培コストの低減が見込める。 INDUSTRIAL APPLICABILITY According to the present invention, lighting for cultivating fruit vegetables that can be irradiated with spectrum light and high light intensity emission that can enhance forcing cultivation and yield increase of fruit vegetables, and that can be illuminated with daylight color with high visibility. Equipment can be provided. In addition, according to the present invention, since the cultivation period from sowing to fruit harvesting can be shortened with low power consumption lighting, a reduction in cultivation costs can be expected.

本発明の一実施形態におけるLED照明装置1の外観を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which shows the external appearance of the LED lighting apparatus 1 in one Embodiment of this invention. LED基板10の構成を示す平面図である。2 is a plan view showing the configuration of an LED substrate 10; FIG. 本発明の一実施形態におけるLED照明装置1に係るアルミ基板11の構成を模式的に示す説明図である。1 is an explanatory diagram schematically showing the structure of an aluminum substrate 11 in an LED lighting device 1 according to one embodiment of the present invention; FIG. LED基板10の複数のLED素子12を直列接続させるアルミ基板11を示す説明図である。FIG. 3 is an explanatory diagram showing an aluminum substrate 11 for serially connecting a plurality of LED elements 12 of an LED substrate 10; LED基板10の複数のLED素子12の一群を直列接続させたものを並列接続させるアルミ基板11を示す説明図である。FIG. 3 is an explanatory view showing an aluminum substrate 11 for connecting a group of a plurality of LED elements 12 of an LED substrate 10 connected in series in parallel. LED照明装置1の照射光のスペクトルの一例を示す図である。4 is a diagram showing an example of a spectrum of light emitted from the LED lighting device 1; FIG. 栽培棚における棚面の光の分布を示す図である。It is a figure which shows distribution of the light of the shelf surface in a cultivation shelf. 4種類のLED照明装置を使用した栽培試験における種子繁殖系イチゴ「よつぼし」の生育差を示す播種後40日目の写真であり、左から白色光LED照明反射板なし、白色光LED照明反射板有り、本発明に係るRGBW4色混色光源白色LED照明反射板なし、本発明に係るRGBW4色混色光源白色LED照明反射板有りのLED照明装置を使用した場合をそれぞれ示す。It is a photograph 40 days after sowing showing the growth difference of the seed propagation strawberry "Yotsuboshi" in the cultivation test using four types of LED lighting devices, from the left: no white light LED lighting reflector, white light LED lighting 4A and 4B show cases of using an LED lighting device with a reflector, without the RGBW four-color mixed light source white LED lighting reflector according to the present invention, and with an RGBW four-color mixed light source white LED lighting reflector according to the present invention. 4種類のLED照明装置を使用した栽培試験における矮性低段ミニトマトの生育差を示す播種後40日目の写真であり、左から白色光LED照明反射板なし、白色光LED照明反射板有り、本発明に係るRGBW4色混色光源白色LED照明反射板なし、本発明に係るRGBW4色混色光源白色LED照明反射板有りのLED照明装置を使用した場合をそれぞれ示す。It is a photograph 40 days after seeding showing the growth difference of dwarf low-stage cherry tomatoes in a cultivation test using four types of LED lighting devices. From the left, without a white light LED lighting reflector, with a white light LED lighting reflector, A case of using an RGBW four-color mixed light source without a white LED lighting reflector according to the present invention and an LED lighting device with an RGBW four-color mixed light source white LED lighting reflector according to the present invention are shown. 4種類のLED照明装置を使用した栽培試験における矮性低段ミニトマトの生育差を示す播種後50日目の写真であり、左から白色光LED照明反射板なし、白色光LED照明反射板有り、本発明に係るRGBW4色混色光源白色LED照明反射板なし、本発明に係るRGBW4色混色光源白色LED照明反射板有りのLED照明装置を使用した場合をそれぞれ示す。It is a photograph 50 days after sowing showing the growth difference of dwarf low-stage cherry tomatoes in a cultivation test using four types of LED lighting devices. From the left, without a white light LED lighting reflector, with a white light LED lighting reflector, A case of using an RGBW four-color mixed light source without a white LED lighting reflector according to the present invention and an LED lighting device with an RGBW four-color mixed light source white LED lighting reflector according to the present invention are shown. 本発明の一実施形態におけるLED照明装置1の変形例を模式的に示す平面図である。FIG. 3 is a plan view schematically showing a modification of the LED lighting device 1 according to one embodiment of the present invention; 変形例における1つのアルミ基板11に複数のLED素子12を2列実装する態様を示す説明図である。It is explanatory drawing which shows the aspect which mounts two rows of several LED element 12 on one aluminum substrate 11 in a modification.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態の植物育成用照明装置において、光源の種類は、該光源以外にマイクロLED、ミニLED、高分子有機EL等の他の光源によって例示される任意の光源でよい。 In the plant-growing lighting device of the present embodiment, the type of light source may be any light source other than the light source, such as micro LEDs, mini LEDs, polymer organic ELs, and the like.

省電力及び構成の容易性の観点から、光源は、現時点の光技術においてはLEDであることが好ましい。以下、本発明の果菜類向け植物育成用照明装置がLED照明装置1であるものとして説明する。本実施形態の記載に接した当業者であれば、他の光源を用いた果菜類向け植物育成用照明装置についても、同様に構成可能であることは、言うまでもない。 From the viewpoint of power saving and ease of construction, the light sources are preferably LEDs in current optical technology. Hereinafter, the LED lighting device 1 will be described as the lighting device for cultivating plants for fruit vegetables according to the present invention. It goes without saying that a person skilled in the art who has access to the description of the present embodiment can similarly configure a lighting device for growing fruit vegetables using other light sources.

[LED照明装置1の構成]
図1は、本発明の一実施形態におけるLED照明装置1の外観を示す斜視図である。
[Configuration of LED lighting device 1]
FIG. 1 is a perspective view showing the appearance of an LED lighting device 1 according to one embodiment of the present invention.

LED照明装置1は、LED基板10と、ヒートシンク20と、を備えている。 The LED lighting device 1 includes an LED substrate 10 and a heat sink 20. As shown in FIG.

〔LED基板10〕
図2は、LED基板10の構成を示す平面図である。LED基板10は、長尺のアルミ基板11と、チップLEDからなる複数のLED素子12と、を備え、発光素子として複数のLED素子12を所定の配置で配した発光部として機能する。
[LED board 10]
FIG. 2 is a plan view showing the configuration of the LED substrate 10. As shown in FIG. The LED substrate 10 includes an elongated aluminum substrate 11 and a plurality of LED elements 12 made of chip LEDs, and functions as a light-emitting portion in which the plurality of LED elements 12 are arranged in a predetermined arrangement.

所定の配置は、特に限定されない。所定の配置は、照射対象となる被育成植物の種類・配置・形状等に応じて、直線状配置、円形状配置、曲線状配置、平面配置、曲面配置、立体配置等の任意の配置から選択可能である。アルミ基板11は、長尺のものに限定されず、選択された配置に応じた任意の形状のものを利用可能である。 The predetermined arrangement is not particularly limited. The predetermined layout is selected from arbitrary layouts such as linear layout, circular layout, curved layout, plane layout, curved layout, and three-dimensional layout according to the type, layout, shape, etc. of the plants to be irradiated. It is possible. The aluminum substrate 11 is not limited to a long one and can be of any shape according to the selected arrangement.

所定の配置は、直線状配置を含むことが好ましい。これにより、人工光多段棚栽培の方法で棚上に直線状に植物体配置して効率よく光を照射できる。 Preferably, the predetermined arrangement comprises a linear arrangement. As a result, the plants can be arranged linearly on the shelf and efficiently irradiated with light by the artificial light multi-tiered shelf cultivation method.

〔ヒートシンク20〕
図1に戻って、ヒートシンク20は、アルミ製の長尺の筒体からなり、長尺の矩形の上面部21と、上面部21において長尺方向に延びかつ互いに対向する両側辺から立設される側面部22、22の端部に連結される下面部23と、を備える。
[Heat sink 20]
Returning to FIG. 1, the heat sink 20 is made of an elongated cylindrical body made of aluminum. and a lower surface portion 23 connected to the ends of the side portions 22, 22.

下面部23は、端面がC字形であり、LED基板10を収納するレール状の収納部24と、収納部24の長尺方向に沿って延びる両側部から斜めに延びる斜面部25と、を有する。この斜面部25の先端部が側面部22、22の端部に連結される。 The lower surface portion 23 has a C-shaped end surface and includes a rail-shaped storage portion 24 for storing the LED substrate 10 and slope portions 25 obliquely extending from both sides extending along the longitudinal direction of the storage portion 24 . . The tip of the slope portion 25 is connected to the ends of the side portions 22 , 22 .

斜面部25におけるLED基板10側の面には、平面でかつ鏡面加工された反射板が接する反射面26が形成されている。なお、反射面26は、斜面部25におけるLED基板10側の面に、長尺方向に鏡面メッキ加工を施してもよい。反射面26はLED基板10の平面に対して70度の角度に位置付けられる。LED基板10の平面に対する反射面26の角度は65~70度の範囲であることが望ましい。 A reflecting surface 26 is formed on the surface of the slope portion 25 on the side of the LED substrate 10, and is in contact with a flat and mirror-finished reflecting plate. The reflecting surface 26 may be mirror-plated in the longitudinal direction on the surface of the slope portion 25 facing the LED substrate 10 . Reflective surface 26 is positioned at an angle of 70 degrees to the plane of LED substrate 10 . It is desirable that the angle of the reflecting surface 26 with respect to the plane of the LED substrate 10 is in the range of 65 to 70 degrees.

収納部24にLED基板10が収納された場合、収納部24の中央部に延びるスリット状の開放領域に複数のLED素子12(図2参照)が対向し、複数のLED素子12の両側部に反射面26、26が配置される。 When the LED substrate 10 is stored in the storage portion 24 , a plurality of LED elements 12 (see FIG. 2 ) face a slit-shaped open area extending in the central portion of the storage portion 24 , and both sides of the plurality of LED elements 12 face each other. Reflective surfaces 26, 26 are arranged.

複数のLED素子12を発光させたときに発生するLED基板10の熱は、ヒートシンク20を介して外部に放出されることにより、LED基板10が冷却される。 Heat generated in the LED substrate 10 when the LED elements 12 are caused to emit light is released to the outside through the heat sink 20, thereby cooling the LED substrate 10. As shown in FIG.

ヒートシンク20には、他にもAC電源をDC電源に変換してLED基板10に電気を供給する電源装置等が備えられている。この電源装置が、アルミ基板11の配線部111a(図3参照)と配線部111b(図3参照)とに直流電流を流すことにより、並列に接続された複数のLED素子12が発光する。 The heat sink 20 is also provided with a power supply device or the like that converts AC power into DC power and supplies electricity to the LED substrate 10 . This power supply supplies a direct current to the wiring portion 111a (see FIG. 3) and the wiring portion 111b (see FIG. 3) of the aluminum substrate 11, thereby causing the plurality of LED elements 12 connected in parallel to emit light.

次に、チップLEDからなる複数のLED素子12を長尺のアルミ基板11に直線状に配置してLED基板10を構成した場合の好ましい態様の一例について説明する。本実施形態の記載に接した当業者であれば、異なる光源及び異なる配置の組合せを選択した植物育成用照明装置についても、同様に構成可能であることは、言うまでもない。 Next, an example of a preferable mode in which the LED substrate 10 is configured by arranging a plurality of LED elements 12 made of chip LEDs in a straight line on the long aluminum substrate 11 will be described. It goes without saying that a person skilled in the art who has access to the description of the present embodiment can similarly configure a plant-growing lighting device in which combinations of different light sources and different arrangements are selected.

(アルミ基板11)
図3は、本発明の一実施形態におけるLED照明装置1に係るアルミ基板11の構成を模式的に示す説明図である。アルミ基板11は、配線部111と、LED素子12を載置し半田付け等によって固定される複数の実装部112と、を備えている。
(Aluminum substrate 11)
FIG. 3 is an explanatory diagram schematically showing the configuration of the aluminum substrate 11 of the LED lighting device 1 according to one embodiment of the present invention. The aluminum substrate 11 includes a wiring portion 111 and a plurality of mounting portions 112 on which the LED elements 12 are placed and fixed by soldering or the like.

配線部111は、LED素子12の一方の端子に接続される配線部111aと、LED素子12の他方の端子に接続される配線部111bと、を備えている。配線部111aと配線部111bは、互いにLED素子12のアノード端子とカソード端子との間隔と同じ間隔を空けてアルミ基板11の長尺方向に沿って平行に延びている。なお、以下の説明において、アノード端子を正極、カソード端子を負極と称する場合がある。 The wiring portion 111 includes a wiring portion 111 a connected to one terminal of the LED element 12 and a wiring portion 111 b connected to the other terminal of the LED element 12 . The wiring portion 111 a and the wiring portion 111 b extend parallel to each other along the longitudinal direction of the aluminum substrate 11 with the same distance as the distance between the anode terminal and the cathode terminal of the LED element 12 . In the following description, the anode terminal may be called a positive electrode, and the cathode terminal may be called a negative electrode.

実装部112は、長尺方向に沿って等間隔に複数設けられており、この実装部112に配線部111aと配線部111bが配置されている。 A plurality of mounting portions 112 are provided at equal intervals along the longitudinal direction, and wiring portions 111a and 111b are arranged on the mounting portions 112 .

図4は、LED基板10の複数のLED素子12を直列接続させるアルミ基板11を示す説明図である。図4に示すアルミ基板11において、配線部111a及び配線部111bは破線状に形成されており、1つの破線によって隣り合う2つのLED素子12の端子同士が接続される。配線部111a及び配線部111bは、実装部112に配置されており、破線の切れ目部分は隣り合う実装部112、112の間に配置される。また、配線部111aと配線部111bとは、1個分のLED素子12だけずれている。言い換えれば、配線部111aにおける1つの破線の中央部が、配線部111bにおける破線の切れ目に対向している。 FIG. 4 is an explanatory diagram showing the aluminum substrate 11 for connecting the plurality of LED elements 12 of the LED substrate 10 in series. In the aluminum substrate 11 shown in FIG. 4, the wiring portion 111a and the wiring portion 111b are formed in a broken line shape, and terminals of two adjacent LED elements 12 are connected by one broken line. The wiring portion 111a and the wiring portion 111b are arranged in the mounting portion 112, and the broken line portion is arranged between the adjacent mounting portions 112, 112. As shown in FIG. Moreover, the wiring portion 111a and the wiring portion 111b are shifted by one LED element 12 . In other words, the central portion of one dashed line in the wiring portion 111a faces the discontinuity of the dashed line in the wiring portion 111b.

このように配線されたアルミ基板11の実装部112に対して、LED素子12が、アノード端子とカソード端子との位置を交互変えながら順番に半田付け等によって固定される。アルミ基板11上において複数のLED素子12が直列に接続される。 The LED elements 12 are fixed to the mounting portion 112 of the aluminum substrate 11 wired in this manner by soldering or the like in order while alternately changing the positions of the anode terminal and the cathode terminal. A plurality of LED elements 12 are connected in series on an aluminum substrate 11 .

LED基板10の複数のLED素子12が直列接続であれば、LED素子12それぞれに電流調整用の抵抗器等を設ける複雑な回路構成にすることなく、複数のLED素子12それぞれに流れる電流を同一にできる。これにより、複数のLED素子12の明るさを均一にできる。また、LED基板10の複数のLED素子12が直列接続であれば、駆動電圧が高い電源を有効利用できる。 If the plurality of LED elements 12 of the LED substrate 10 are connected in series, the current flowing through each of the plurality of LED elements 12 can be made the same without using a complicated circuit configuration in which each LED element 12 is provided with a current adjusting resistor or the like. can be done. Thereby, the brightness of the plurality of LED elements 12 can be made uniform. Moreover, if the plurality of LED elements 12 of the LED substrate 10 are connected in series, a power supply with a high driving voltage can be effectively used.

LED基板10の複数のLED素子12が並列接続であれば、複数のLED素子12のいずれかが故障した場合でも、他のLED素子12を点灯させ続けることができる。LED基板10の複数のLED素子12が並列接続であれば、複数のLED素子12それぞれに独立したスイッチを設け、複数のLED素子12それぞれを個々にオンオフするように構成することが容易に可能になる。また、LED基板10の複数のLED素子12が並列接続であれば、LED素子12の駆動に必要な最低限の電圧でLED素子12を発光させることができる。 If the plurality of LED elements 12 of the LED substrate 10 are connected in parallel, even if one of the plurality of LED elements 12 fails, the other LED elements 12 can continue to light. If the plurality of LED elements 12 of the LED substrate 10 are connected in parallel, it is possible to easily provide an independent switch for each of the plurality of LED elements 12 and turn each of the plurality of LED elements 12 on and off individually. Become. Also, if the plurality of LED elements 12 of the LED substrate 10 are connected in parallel, the LED elements 12 can be caused to emit light with the minimum voltage required to drive the LED elements 12 .

なお、配線部111a及び配線部111bのパターンを変えることにより、同色のLED素子12を直列接続にして異色のLED素子12を並列接続したり、基本配置LのLED素子12を直列接続にして基本配置L又は基本配置Lを一定数繰り返した配列単位で並列接続にしたりすることも可能である。 By changing the pattern of the wiring portion 111a and the wiring portion 111b, the LED elements 12 of the same color can be connected in series and the LED elements 12 of different colors can be connected in parallel, or the LED elements 12 of the basic arrangement L can be connected in series and used as the basic arrangement. It is also possible to connect in parallel an array unit in which the layout L or the basic layout L is repeated a certain number of times.

図5は、LED基板10の複数のLED素子12の一群を直列接続させたものを並列接続させるアルミ基板11を示す説明図である。アルミ基板11の板面には、長尺方向に直線状に延びる配線部111a及び配線部111bと、クランク形状の略Z字形をした複数の配線部111cが形成されている。配線部111cは、配線部111aの長尺方向に対して直角方向に延びる中央部と、中央部の両端部から配線部111aの長尺方向に沿ってそれぞれ逆方向に延びる一端部及び他端部とを有している。配線部111a、配線部111b及び配線部111cは、互いに非接続である。配線部111aと配線部111bとは、LED素子12における両極間の長さよりも若干長い間隔をおいて互いに対向するように配置されている。配線部111aは、基本配置Lにおける最初のLED素子12の正極の位置まで延びる延出部111dを有する。配線部111bは、基本配置Lにおける最後のLED素子12の負極の位置まで延びる延出部111eを有する。最初の配線部111cは、一端部が延出部111dと配線部111bとの間に位置付けられ、他端部が配線部111aに近接するように配置される。2番目の配線部111cは、一端部が最初の配線部111の他端部と配線部111bとの間に位置付けられ、他端部が配線部111aに近接するように配置される。3番目の配線部111cは、一端部が2番目の配線部111の他端部と配線部111bとの間に位置付けられ、他端部が配線部111aに近接するように配置される。以下同様にして23番目の配線部111cが配置され、この配線部111cの他端部は配線部111aと延出部111eとの間に配置される。また、23番目の配線部111aには、23番目の配線部111cの他端の側方でかつ延出部111eの中央に対して若干ずれて延出部111eの延出端に対向するように、2個目の延出部111dが形成されている。そして、延出部111d及び最初の配線部111cの一端部、上流側の配線部111cの他端部及び1つ下流側の配線部の一端部、最後の配線部111cの他端部及び延出部111eに、それぞれ実装部112が形成される。このように構成されたアルミ基板11の実装部112にLED素子12に実装することにより、基本配置LのLED素子12を直列接続し、基本配置Lの単位で並列接続することが可能になる。 FIG. 5 is an explanatory diagram showing an aluminum substrate 11 for connecting in parallel a group of a plurality of LED elements 12 of the LED substrate 10 connected in series. On the plate surface of the aluminum substrate 11, a wiring portion 111a and a wiring portion 111b extending linearly in the longitudinal direction and a plurality of wiring portions 111c having a substantially Z-shaped crank shape are formed. The wiring portion 111c has a central portion extending in a direction perpendicular to the longitudinal direction of the wiring portion 111a, and one end portion and the other end portion extending in opposite directions from both ends of the central portion along the longitudinal direction of the wiring portion 111a. and The wiring portion 111a, the wiring portion 111b, and the wiring portion 111c are not connected to each other. The wiring portion 111a and the wiring portion 111b are arranged so as to face each other with an interval slightly longer than the length between the two poles of the LED element 12 . The wiring portion 111a has an extension portion 111d that extends to the position of the positive electrode of the first LED element 12 in the basic layout L. As shown in FIG. The wiring portion 111b has an extension portion 111e extending to the position of the negative electrode of the last LED element 12 in the basic layout L. As shown in FIG. The first wiring portion 111c is arranged such that one end is positioned between the extending portion 111d and the wiring portion 111b and the other end is adjacent to the wiring portion 111a. The second wiring portion 111c has one end located between the other end of the first wiring portion 111 and the wiring portion 111b, and is arranged so that the other end is close to the wiring portion 111a. One end of the third wiring portion 111c is positioned between the other end of the second wiring portion 111 and the wiring portion 111b, and the other end is arranged so as to be close to the wiring portion 111a. A 23rd wiring portion 111c is arranged in the same manner, and the other end of this wiring portion 111c is arranged between the wiring portion 111a and the extension portion 111e. In addition, the 23rd wiring portion 111a is provided with a wire on the side of the other end of the 23rd wiring portion 111c so as to face the extending end of the extending portion 111e with a slight deviation from the center of the extending portion 111e. , a second extending portion 111d is formed. Then, the extending portion 111d and one end of the first wiring portion 111c, the other end of the upstream wiring portion 111c and one end of the one downstream wiring portion, the other end of the last wiring portion 111c and the extension A mounting portion 112 is formed in each of the portions 111e. By mounting the LED elements 12 on the mounting portion 112 of the aluminum substrate 11 configured in this way, the LED elements 12 of the basic arrangement L can be connected in series and connected in parallel in units of the basic arrangement L.

(LED素子12)
図2に戻る。LED素子12は、直方体形状のチップLEDからなり、直方体形状の長手方向の一端部にアノード端子が配置され、他端部にカソード端子が配置される。このため、LED素子12は、アノード端子とカソード端子とが互いに対向する方向、すなわち、直方体形状の長手方向がアルミ基板11の長尺方向に対して直角になる方向に向けて実装部112に実装される。本実施形態においては、LED素子12のアノード端子が半田付け等によって配線部111aに固定接続され、LED素子12のカソード端子が半田付け等によって配線部111bに固定接続される。これにより、複数のLED素子12は並列に接続される。
(LED element 12)
Return to FIG. The LED element 12 is composed of a rectangular parallelepiped chip LED, and an anode terminal is arranged at one end of the rectangular parallelepiped in the longitudinal direction, and a cathode terminal is arranged at the other end. Therefore, the LED element 12 is mounted on the mounting portion 112 in the direction in which the anode terminal and the cathode terminal face each other, that is, the direction in which the longitudinal direction of the rectangular parallelepiped shape is perpendicular to the longitudinal direction of the aluminum substrate 11 . be done. In this embodiment, the anode terminal of the LED element 12 is fixedly connected to the wiring portion 111a by soldering or the like, and the cathode terminal of the LED element 12 is fixedly connected to the wiring portion 111b by soldering or the like. Thereby, the plurality of LED elements 12 are connected in parallel.

複数のLED素子12は、赤色、青色、緑色及び白色の4種類の混色光で発光可能である。これにより、被照射植物(LED素子12からの照射対象となる植物)の育成に適したスペクトル光を実現できる。 The plurality of LED elements 12 can emit four kinds of mixed-color light of red, blue, green, and white. Thereby, it is possible to realize a spectrum light suitable for growing a plant to be irradiated (a plant to be irradiated from the LED element 12).

被照射植物の種類は、特に限定されないが、被照射植物は、光量を要する果菜類、花卉類であることが好ましい。被照射植物が果菜類、花卉類であることにより、LED素子12が照射する光の4種類の混色光による光合成促進がもたらす生産性向上の効果を見込み得る。 Although the type of the plant to be irradiated is not particularly limited, the plant to be irradiated is preferably fruit vegetables and flowering plants that require a large amount of light. When the plants to be irradiated are fruits and vegetables and flowering plants, it is possible to expect an effect of improving productivity brought about by the promotion of photosynthesis by the mixed light of four kinds of light emitted from the LED element 12 .

被照射植物は、野菜類の中でも果菜類であることがより好ましい。「果菜類」とは、野菜のうち、果実又は種実を食用にするものをいい、例えば、トマト、きゅうり、かぼちゃ、なす、イチゴ、メロン、すいか等が挙げられる。被照射植物が果菜類であることにより、LED素子12が照射する光のうち、青色光による茎の伸張成長(徒長)が抑制され、同時に横方向への肥大と赤色光による発芽促進及び早期の花芽形成効果を見込み得る。また、LED素子12が照射する光のうち、緑色光による葉の内部への光吸収量の向上による光合成速度の増加効果を見込み得る。更に、LED素子12が照射する光のうち、昼光色の光による赤色、青色、緑色の光強度不足を補うことで光合成速度を増加させ、光合成産物の葉や茎や根への蓄積が増加となり、光合成産物の果実への転流と分配が適切に行われ、早期収穫と収量の増加が見込み得る。 The plants to be irradiated are more preferably fruit vegetables among vegetables. “Fruit vegetables” refers to vegetables whose fruits or seeds are edible, and examples thereof include tomatoes, cucumbers, pumpkins, eggplants, strawberries, melons, and watermelons. Since the plants to be irradiated are fruits and vegetables, out of the light emitted from the LED element 12, blue light is used to suppress stem elongation and growth (elongation). Flower bud formation effect can be expected. Also, among the light emitted by the LED element 12, the effect of increasing the photosynthetic rate can be expected by improving the amount of light absorbed by the interior of the leaf due to the green light. Furthermore, of the light emitted by the LED element 12, by compensating for the lack of light intensity of red, blue, and green due to daylight color light, the photosynthetic rate is increased, and the accumulation of photosynthetic products in leaves, stems, and roots increases. Proper translocation and distribution of photosynthetic products to the fruit may lead to early harvest and increased yield.

被照射植物は、果菜類の中でもトマト及び/又はイチゴであることが特に好ましい。被照射植物がトマト及び/又はイチゴを含むことにより、LED素子12が発光する昼光色の光がもたらす白色光は、視認性が良く収穫時の果実の表皮色を見て熟成度を推し量ることができる。 Tomatoes and/or strawberries are particularly preferred among fruit vegetables. Since the plants to be irradiated include tomatoes and/or strawberries, the white light produced by the daylight-colored light emitted by the LED element 12 has good visibility, and the degree of maturity can be estimated by looking at the skin color of the fruit at the time of harvest. .

果菜類の育成に適したスペクトルの実現に関し、発光素子のうち被育成植物へ照射する所定発光素子において、所定発光素子の数N、所定発光素子のうち赤色に発光可能な素子の数N、所定発光素子のうち青色に発光可能な素子の数N、所定発光素子のうち緑色に発光可能な素子の数N、及び所定発光素子のうち白色に発光可能な素子の数Nは、式(1)ないし(5)を充足する。
=N+N+N+N (1)
≦N/N≦U (2)
≦N/N≦U (3)
≦N/N≦U (4)
≦N/N≦U (5)
Regarding the realization of a spectrum suitable for growing fruits and vegetables, the number of predetermined light emitting elements among light emitting elements that irradiate plants to be grown is N T , and the number of elements capable of emitting red light among the predetermined light emitting elements is N R . , the number N B of predetermined light emitting elements capable of emitting blue light, the number N G of predetermined light emitting elements capable of emitting green light, and the number N W of predetermined light emitting elements capable of emitting white light are , satisfies equations (1) through (5).
N T = N R + N B + N G + N W (1)
L R ≤ N R /N T ≤ U R (2)
LBNB / NTUB (3)
LGNG / NTUG (4)
LW≤NW / NT≤UW ( 5 )

赤色に発光可能な素子の比率のN/Nは、36/216であることが好ましい。これにより、よりいっそう、開花の促進と実付きの改善とをよりいっそう両立することを見込み得る。N/Nを36/216とする理由は光子を多く含む赤色光ではあるが、青色光と緑色光よりも光強度が低いために光強度を増やすためである。 The ratio N R /N T of the elements capable of emitting red light is preferably 36/216. As a result, it can be expected that the promotion of flowering and the improvement of fruiting can be achieved at the same time. The reason why NR / NT is set to 36/216 is to increase the light intensity of red light, which contains many photons, but is lower in light intensity than blue light and green light.

青色に発光可能な素子の比率のN/Nは、18/216であることが好ましい。これにより、よりいっそう光合成が促進することを見込み得る。これを更にいっそう促進し、植物の茎の伸長抑制と肥大成長を更にいっそう改善することを見込み得る。 The ratio N B /N T of the elements capable of emitting blue light is preferably 18/216. This can be expected to further promote photosynthesis. It can be expected to further promote this and further improve the control of stem elongation and hypertrophic growth of plants.

緑色に発光可能な素子の比率のN/Nは、18/216であることが好ましい。これにより、よりいっそう植物の光利用効率を高め、光合成速度を増加させ光合成産物の増加を見込み得る。更に白色光強度(高輝度白色光LEDチップ)を高めて葉の表面が光飽和点に達した場合、葉の裏側での光合成速度を増やすことを見込み得る。 The ratio N G /N T of the elements capable of emitting green light is preferably 18/216. As a result, the light utilization efficiency of plants can be further increased, the rate of photosynthesis can be increased, and an increase in photosynthetic products can be expected. Furthermore, if the white light intensity (high brightness white light LED chip) is increased to reach the light saturation point on the leaf surface, it may be expected to increase the photosynthetic rate on the underside of the leaf.

白色に発光可能な素子の比率のN/Nは、144/216あることが好ましい。これにより、赤、緑、青の各色単色光の混合色白色光の光強度不足を光強度が高い白色に発光可能な白色単色光素子が光量不足を補うことにより、光合成速度が増加し、栽培期間の短縮と安定した果実の収量の増加が見込める。また、これら4色の素子から発光する混色光は演色性の高いRa95の昼光色光であり、視認性を高めることを見込み得る。これにより、栽培過程における葉面の病害発見と実の色付きによる成熟度合いの判別精度向上とをよりいっそう両立することを見込み得る。 The ratio N W /N T of the elements capable of emitting white light is preferably 144/216. As a result, the white monochromatic light element capable of emitting white light with high light intensity compensates for the lack of light intensity of mixed white light of red, green, and blue monochromatic lights, thereby increasing the photosynthetic rate and cultivating. Shortening of the period and increase in yield of stable fruits can be expected. In addition, the mixed color light emitted from these four color elements is daylight color light with a high color rendering property of Ra 95, and is expected to improve visibility. As a result, it can be expected that the detection of leaf disease during the cultivation process and the improvement in the accuracy of judging the degree of maturity based on the coloring of the fruit can be achieved at the same time.

なお、N/N、N/N、N/N、N/Nの値は上述したものであることが好ましいが、N/N、N/N、N/N、N/Nの値に幅があってもよい。N/Nの値の下限値Lが28/216、N/Nの値の上限値Uが44/216、N/Nの値の下限値Lが14/216、N/Nの値の上限値Uが22/216、N/Nの値の下限値Lが14/216、N/Nの値の上限値Uが22/216、N/Nの値の下限値L128/216、N/Nの値の上限値U160/216、の範囲であれば、上述した効果が見込み得る。 The values of NR / NT , NB / NT , NG / NT , and NW / NT are preferably those described above, but NR / NT , NB / NT , There may be a range in the values of N G /N T and N W /N T . The lower limit L R of the NR / NT value is 28/216, the upper limit UR of the NR / NT value is 44/216, and the lower limit L R of the NB / NT value is 14/216. , the upper limit UB of the value of NB / NT is 22/216, the lower limit LR of the value of NG / NT is 14/216, and the upper limit UG of the value of NG / NT is 22/216. 216, the lower limit L R of the value of N W /N T is 128/216 , and the upper limit U W of the value of N W /N T is 160/216 , the above effects can be expected.

各色の素子の数が上述の下限及び上限並びに式(1)ないし(5)を充足することにより、赤色に発光する素子の数、青色に発光する素子の数、緑色に発光する素子の数及び白色に発光する素子の数が上述の下限及び上限並びに上記(1)ないし(5)の式を満たす比率となる。これにより、光合成に必要な赤色発光及び青色発光と、植物の葉の内部への光吸収量を増す緑色発光と、を兼ね備えた本発明特有のスペクトルの光を植物に照射することが可能になり、果菜類の促成栽培と果実の収量の増加に適した植物育成用照明装置を提供することができる。 When the number of elements for each color satisfies the above lower and upper limits and formulas (1) to (5), the number of elements emitting red light, the number of elements emitting blue light, the number of elements emitting green light, and the number of elements emitting green light The number of elements that emit white light is the ratio that satisfies the above lower limit and upper limit and the above formulas (1) to (5). As a result, it becomes possible to irradiate the plant with the light of the spectrum peculiar to the present invention, which combines the red light emission and blue light emission necessary for photosynthesis and the green light emission that increases the amount of light absorbed into the interior of the plant leaves. Thus, it is possible to provide a plant-growing lighting device suitable for forcing cultivation of fruit vegetables and increasing the yield of fruits.

しかも、上記(1)ないし(5)の式を満たす比率で所定発光素子が各色に発光することにより、これらの単色光の混色光が太陽光に近い昼光色の視認性の高い白色光になる。この昼光色光は短期間栽培と果実の収量の増加となる光質のスペクトル光と高い光強度の光源であり、より光合成速度を増加させ、葉と茎と根へ蓄積(ソース)される光合成産物が、果実(シンク)へ分配と転流を促進する。 Moreover, the predetermined light-emitting elements emit light in each color at a ratio satisfying the above formulas (1) to (5), so that the mixed color light of these monochromatic lights becomes daylight-colored light with high visibility close to sunlight. This daylight light is a light quality spectrum light and high light intensity light source that leads to short-term cultivation and increased fruit yield, increasing the rate of photosynthesis and sourcing the photosynthetic products accumulated in the leaves, stems and roots. promotes partitioning and translocation to the fruit (sink).

複数のLED素子12における赤色、青色、緑色に発光するLED素子12は単色発光素子であり、単色発光素子は、調色可能な蛍光体発光素子をそれぞれの色で発光させた場合より強い単色光を照射できる。これにより、光合成に必要な赤色発光及び青色発光と、植物の葉の内部への光吸収量を増す緑色発光と、をよりいっそう兼ね備えた光を植物に照射することが可能となる。 The LED elements 12 that emit red, blue, and green light in the plurality of LED elements 12 are monochromatic light emitting elements, and the monochromatic light emitting elements emit stronger monochromatic light than when the color-tunable phosphor light emitting elements emit light in each color. can be irradiated. As a result, it is possible to irradiate the plant with light that further combines red light emission and blue light emission necessary for photosynthesis and green light emission that increases the amount of light absorbed into the interior of the plant leaves.

また、単色発光素子を用いることは、植物、特に果菜類、花卉類の育成に適したスペクトルを実現する点にも寄与する。複数の色の単色発光素子を組合せたものは、同数の白色発光素子を並べたものより単色発光素子それぞれが提供する波長域において、より鋭いピークスペクトルを有する。よって、単色発光素子を用いることにより、果菜類、花卉類の栽培により適したスペクトルを実現できる。 The use of monochromatic light emitting elements also contributes to the realization of a spectrum suitable for growing plants, especially fruit vegetables and flowering plants. A combination of monochromatic light-emitting elements of a plurality of colors has a sharper peak spectrum in the wavelength region provided by each monochromatic light-emitting element than an arrangement of the same number of white light-emitting elements. Therefore, by using a monochromatic light emitting element, a spectrum more suitable for cultivation of fruit vegetables and flowers can be realized.

また、所定発光素子が単色発光素子と白色発光素子との組合せであれば、発光素子を調色する制御手段等を備えた複雑な構成とすることを防ぎ得る。 Moreover, if the predetermined light emitting element is a combination of a monochromatic light emitting element and a white light emitting element, it is possible to prevent a complicated configuration including control means for adjusting the color of the light emitting element.

以下、LED素子12が単色光LED素子と白色光LED素子との組合せである場合について説明する。本実施形態の記載に接した当業者であれば、調色可能な発光素子を含む植物育成用照明装置についても、同様に構成可能であろう。 A case where the LED element 12 is a combination of a monochromatic light LED element and a white light LED element will be described below. A person skilled in the art who has access to the description of the present embodiment will be able to similarly configure a lighting device for growing a plant including a light-emitting element that can be adjusted in color.

なお、以下の説明において、図2に示すように、赤色に発光するLED素子12を赤色LED素子12R、青色に発光するLED素子12を青色LED素子12B、緑色に発光するLED素子12を緑色LED素子12G、青色LED素子と黄蛍光体との組合せで生成する白色に発光するLED素子12を白色LED素子12Wと称する。LED照明装置1が照射する光のCIE表色系(CIE RGB色空間)における色比は、消費電力のワット数の大小に関わらず、赤(R)15%:緑(G)79%:青(B)6%から赤(R)19%:緑(G)76%:青(B)5.0%までの範囲とする。 In the following description, as shown in FIG. 2, the LED element 12 emitting red light is a red LED element 12R, the LED element 12 emitting blue light is a blue LED element 12B, and the LED element 12 emitting green light is a green LED element. The element 12G and the LED element 12 which emits white light generated by the combination of the blue LED element and the yellow phosphor are referred to as the white LED element 12W. The color ratio in the CIE color system (CIE RGB color space) of the light emitted by the LED lighting device 1 is 15% red (R): 79% green (G): blue regardless of the wattage of power consumption. (B) 6% to red (R) 19%: green (G) 76%: blue (B) 5.0%.

本実施形態によれば、LED素子12として、例えば、SMD5730型のチップLEDが適用される。このチップLEDは、縦幅が5.7mm、横幅が3.0mmの略長方形であり、正極及び負極の両端子が互いに対向する方向がチップLEDの長手方向と略一致する。なお、LED素子12としては、35ルーメン/ワットと同等又はそれ以上の発光効率の素子であれば適用可能である。 According to this embodiment, for example, an SMD5730 type chip LED is applied as the LED element 12 . This chip LED has a substantially rectangular shape with a vertical width of 5.7 mm and a horizontal width of 3.0 mm. As the LED element 12, any element having a luminous efficiency equal to or higher than 35 lumens/watt can be applied.

本実施形態において、チップLEDの正極及び負極の両端子が互いに対向する方向と発光素子を配する向きとは、略直交することが好ましい。これにより、隣り合うチップLEDの間に配線等を配置する必要がなくなる。よって、チップLEDの発光部位間の間隔を短くすることが可能になる。これにより、更に照射光の色むらの少ない昼光色の光色を実現することができる。 In the present embodiment, it is preferable that the direction in which the positive and negative terminals of the chip LED face each other and the direction in which the light-emitting elements are arranged are substantially perpendicular to each other. This eliminates the need to arrange wiring or the like between adjacent chip LEDs. Therefore, it is possible to shorten the distance between the light emitting portions of the chip LED. As a result, it is possible to realize daylight color with less color unevenness of the irradiated light.

LED素子12がアルミ基板11の実装部112に実装された場合、隣り合うLED素子12、12において縦方向に延びる側面が互いに対向するように配列され、しかも互いに対向する側面の間に配線がないことが好ましい。このような配置では、LED素子12の正極及び負極の両端子が互いに対向する方向がアルミ基板11の長尺方向に沿うように、LED素子12を一列に配列するよりも、隣り合うLED素子12、12における発光部位間の間隔を短くすることができる。 When the LED elements 12 are mounted on the mounting portion 112 of the aluminum substrate 11, the vertically extending side surfaces of the adjacent LED elements 12, 12 are arranged to face each other, and there is no wiring between the mutually facing side surfaces. is preferred. In such an arrangement, rather than arranging the LED elements 12 in a row so that the direction in which the positive and negative terminals of the LED elements 12 face each other is along the longitudinal direction of the aluminum substrate 11, the adjacent LED elements 12 , 12 can be shortened.

本実施形態のLED照明装置1は、図2に示すように、所定数以下の所定発光素子を有する基本配置Lを複数配した発光部を含んでおり、この基本配置Lにおいて、上記(1)ないし(5)の式を満たす比率が達成される。よって、LED照明装置1が照射する範囲全体より狭い範囲に照射する基本配置Lにおいて、果菜類の促成栽培に適した本発明特有のスペクトルの光を実現できる。 As shown in FIG. 2, the LED lighting device 1 of the present embodiment includes a light-emitting portion in which a plurality of basic layouts L each having a predetermined number or less of predetermined light-emitting elements are arranged. A ratio satisfying equations (5) is achieved. Therefore, in the basic arrangement L that irradiates a range narrower than the entire range that the LED lighting device 1 irradiates, it is possible to realize the light of the spectrum peculiar to the present invention suitable for forcing cultivation of fruit vegetables.

このような照射光を、色むらなく一定の光量を1日あたり16時間連続照射することで、光合成量及び光合成速度を増加させる光を適切に照射することが可能になり、植物の生育を早めることができる。なお、長日植物、短日植物については植物の生育特性に合わせて照射時間を調整してもよい。 By continuously irradiating such irradiation light with a constant amount of light for 16 hours per day without color unevenness, it is possible to appropriately irradiate light that increases the amount of photosynthesis and the rate of photosynthesis, and accelerates the growth of plants. be able to. For long-day plants and short-day plants, the irradiation time may be adjusted according to the growth characteristics of the plants.

また、上述の基本配置Lを配した構成では、基本配置Lにおいて、果菜類の栽培に適した本発明特有のスペクトルの光を実現できるため、照射光の色むらを低減する意図で、LED照明装置1を被育成植物から離す必要がなくなる。これにより、植物育成用照明装置を被育成植物のより近くに配置することで多段式人工光栽培の照射効率の向上と棚間スペースの有効利用ができる。 In addition, in the configuration in which the above-described basic arrangement L is arranged, the light of the spectrum peculiar to the present invention suitable for cultivating fruits and vegetables can be realized in the basic arrangement L. It becomes unnecessary to separate the device 1 from the plant to be grown. As a result, by arranging the plant-growing lighting device closer to the plants to be grown, it is possible to improve the irradiation efficiency of the multi-stage artificial light cultivation and effectively utilize the space between the shelves.

また、上述した所定数、すなわち基本配置LのLED素子12の数は、12個に限定される。詳細については後述するが、12個のLED素子12によって、(1)ないし(5)式を満たす基本配置Lを実現することができる。このため、LED基板10に実装されるLED素子12の数を12の倍数とすることにより、(1)ないし(5)式を満たすLED基板10を実現することが可能になる。所定数を上述のように定めることにより、果菜類、花卉類のスペクトル構成と光強度が実現し、光合成速度を増加させる。 In addition, the predetermined number described above, that is, the number of LED elements 12 in the basic layout L is limited to twelve. Although the details will be described later, the 12 LED elements 12 can realize the basic layout L that satisfies the formulas (1) to (5). Therefore, by setting the number of LED elements 12 mounted on the LED board 10 to a multiple of 12, it is possible to realize the LED board 10 that satisfies the formulas (1) to (5). By setting the predetermined number as described above, the spectral composition and light intensity of fruit vegetables and flowers are realized, and the photosynthetic rate is increased.

この基本配置Lは、発光部において、赤色発光素子が略同一の間隔で配され、青色発光素子が略同一の間隔で配され、緑色発光素子が略同一の間隔で配され、赤色発光素子、青色発光素子、及び緑色発光素子を含む色付き発光素子が略同一の間隔で配されることが好ましく、アルミ基板11は、上述した配置を容易に構成可能な配線であることが好ましい。 In this basic arrangement L, red light emitting elements are arranged at approximately the same intervals in the light emitting section, blue light emitting elements are arranged at approximately the same intervals, green light emitting elements are arranged at approximately the same intervals, and red light emitting elements are arranged at approximately the same intervals. It is preferable that the colored light emitting elements including the blue light emitting element and the green light emitting element are arranged at approximately the same intervals, and the aluminum substrate 11 is preferably wiring that can easily configure the above-described arrangement.

上述の基本配置Lでは、発光部において、各色の発光素子が略同一の間隔で配されるため、照射光の色むらをよりいっそう低減できる。しかも、上述の基本配置Lによれば、発光部において、赤、緑、青の各単色光発光素子が略同一の間隔で配されるため、赤、緑、青の各単色光発光素子の間に白色単色光発光素子が配される配置となり、葉全体に均一に照射できる混合色白色光が実現できる。 In the basic layout L described above, the light-emitting elements of each color are arranged at approximately the same intervals in the light-emitting section, so that color unevenness of the irradiated light can be further reduced. Moreover, according to the basic layout L described above, since the red, green, and blue monochromatic light emitting elements are arranged at approximately the same intervals in the light emitting portion, the distance between the red, green, and blue monochromatic light emitting elements The white monochromatic light emitting element is arranged in each of the leaves, and the mixed color white light that can irradiate the whole leaf uniformly can be realized.

以下、各色の発光素子の数が(1)ないし(5)式を満たし、12個の発光素子(LED素子12)を含む基本配置Lを複数配した発光部(LED基板10)を有する構成の一例について、図2を参照しながら説明する。 Hereinafter, the number of light emitting elements of each color satisfies the formulas (1) to (5), and the configuration having a light emitting portion (LED substrate 10) in which a plurality of basic layouts L including 12 light emitting elements (LED elements 12) are arranged. An example will be described with reference to FIG.

複数のLED素子12は、アルミ基板11に、白色LED素子12W、赤色LED素子12R、2個の白色LED素子12W、緑色LED素子12G、2個の白色LED素子12W、赤色LED素子12R、2個の白色LED素子12W、青色LED素子12B、白色LED素子12W、の並びを基本配置Lとし、この基本配置Lを18個繋げることで、合計216個のLED素子12が直線状に実装される。すなわち、216個のLED素子12における赤色LED素子12Rの数と青色LED素子12Bの数と緑色LED素子12Gの数と白色LED素子12Wの数との比は2:1:1:8である。 The plurality of LED elements 12 are arranged on the aluminum substrate 11, a white LED element 12W, a red LED element 12R, two white LED elements 12W, a green LED element 12G, two white LED elements 12W, and two red LED elements 12R. The arrangement of the white LED elements 12W, blue LED elements 12B, and white LED elements 12W is defined as a basic arrangement L. By connecting 18 basic arrangements L, a total of 216 LED elements 12 are linearly mounted. That is, the ratio of the number of red LED elements 12R, the number of blue LED elements 12B, the number of green LED elements 12G, and the number of white LED elements 12W in the 216 LED elements 12 is 2:1:1:8.

上述の構成では、N=216、N=36、N=N=18、N=144である。よって、上述の構成におけるN、N、N、N、Nは、式(1)ないし(5)を満たす。また、上述の構成は、12個のLED素子12を含む基本配置Lを18個配置した発光部を構成している。該発光部において、赤色LED素子12R、青色LED素子12B、緑色LED素子12G、白色LED素子12Wのそれぞれは、略同一の間隔で配されている。 In the above configuration, N T =216, N R =36, N B =N G =18, and N W =144. Therefore, N T , N R , N B , N G , and N W in the above configuration satisfy equations (1) to (5). Moreover, the above-described configuration constitutes a light-emitting portion in which 18 basic arrangements L each including 12 LED elements 12 are arranged. In the light emitting portion, the red LED element 12R, the blue LED element 12B, the green LED element 12G, and the white LED element 12W are arranged at approximately the same intervals.

また、式(1)ないし(5)を満たす他の構成として、被照射植物の種類、栽培ステージ、栽培において重視する目標、等に応じて、色付き発光素子の数を増減した構成が挙げられる。例えば、赤色LED素子12Rの数を増やすことにより、光強度が高まり、よりいっそう花芽形成を促進することを見込み得る。青色LED素子12Bの数を増やすことにより、よりいっそう茎の伸長を抑え棚高の制限がある人工光型多段栽培に相応しいことを見込み得る。緑色LED素子12Gの数を増やすことにより、よりいっそう光利用効率を高めることを見込み得る。白色LED素子12Wの数を増やすことにより、よりいっそう光強度を高めることを見込み得る。 Another configuration that satisfies formulas (1) to (5) is a configuration in which the number of colored light-emitting elements is increased or decreased according to the type of irradiated plant, the cultivation stage, the objective of cultivation, and the like. For example, by increasing the number of red LED elements 12R, it is expected that the light intensity will be increased and flower bud formation will be further promoted. By increasing the number of blue LED elements 12B, it can be expected that the elongation of the stalk is further suppressed and that it is suitable for artificial light type multi-stage cultivation with limited shelf height. By increasing the number of green LED elements 12G, it can be expected to further improve the light utilization efficiency. By increasing the number of white LED elements 12W, it can be expected to further increase the light intensity.

更に、式(1)ないし(5)を満たす他の構成として、被照射植物の種類・配置・形状等に応じて、基本配置Lを配する数を変更し、所望の大きさの発光部とする構成が挙げられる。 Furthermore, as another configuration that satisfies formulas (1) to (5), the number of basic arrangements L to be arranged is changed according to the type, arrangement, shape, etc. of the plants to be irradiated, and the desired size of the light emitting part is obtained. configuration.

隣り合うLED素子12、12の間隔、すなわち互いに対向するLED素子12、12の側面の間隔は1.8~2.8mmが望ましい。本実施形態によれば、本体サイズが1150mm(基板1146mm)、LED照明の消費電力が18W、216チップのLED照明装置1である。ここで、チップLEDの横幅が3.0mmであることから、隣り合うLED素子12、12の間隔は2.0~2.3mmに設定されている。 The distance between the adjacent LED elements 12, 12, that is, the distance between the side surfaces of the LED elements 12, 12 facing each other, is preferably 1.8 to 2.8 mm. According to this embodiment, the main body size is 1150 mm (substrate is 1146 mm), the LED lighting power consumption is 18 W, and the LED lighting device 1 has 216 chips. Here, since the width of the chip LED is 3.0 mm, the interval between the adjacent LED elements 12, 12 is set to 2.0 to 2.3 mm.

なお、図1ないし図3に示す例においては、電源装置に対してLED基板10の複数のLED素子12が並列に接続されているが、直列接続であってもよい。 In addition, in the example shown in FIGS. 1 to 3, the plurality of LED elements 12 of the LED substrate 10 are connected in parallel to the power supply device, but they may be connected in series.

また、上述した実施形態によれば、LED本体サイズ1150mm18W(基板1146mm)チップ列1列216個(赤2:緑1:青1:白8 ×18)のLED照明装置1であるが、式(1)ないし(5)を満たすRGBWの4色のLED照明装置1であれば、本発明の範囲に属する。例えば、次の例1~4のLED照明装置も本発明の範囲に属する。
例1.LED本体サイズ850mm14W(基板846mm)チップ列1列168個(赤2:緑1:青1:白8 ×14)
例2.LED本体サイズ550mm9W(基板546mm)チップ列1列120個(赤2:緑1:青1:白8 ×10)
例3.LED本体サイズ1150mm36W(基板1146mm)チップ列2列432個(赤2:緑1:青1:白8 ×36)
例4.LED本体サイズ850mm28W(基板846mm)チップ列2列336個(赤2:緑1:青1:白8 ×28)
例5.LED本体サイズ550mm18W(基板546mm)チップ列2列120個(赤2:緑1:青1:白8 ×20)
LED本体サイズ1150mmのLED照明装置1は、棚板規格サイズ1200mm用である。LED本体サイズ850mmのLED照明装置1は、棚板規格サイズ900mm用である。LED本体サイズ550mmのLED照明装置1は、棚板規格サイズ600mm用である。
Further, according to the above-described embodiment, the LED lighting device 1 has an LED main body size of 1150 mm 18 W (substrate 1146 mm) and 216 chip rows per row (red 2: green 1: blue 1: white 8 × 18), but the formula ( Any four-color RGBW LED lighting device 1 that satisfies 1) to (5) falls within the scope of the present invention. For example, LED lighting devices of Examples 1 to 4 below also belong to the scope of the present invention.
Example 1. LED body size 850mm 14W (substrate 846mm) 168 chips per row (red 2: green 1: blue 1: white 8 x 14)
Example 2. LED body size 550mm 9W (substrate 546mm) 120 chips per row (2 red: 1 green: 1 blue: 8 x 10 white)
Example 3. LED body size 1150mm 36W (board 1146mm) 432 chips in 2 rows (red 2: green 1: blue 1: white 8 x 36)
Example 4. LED body size 850 mm 28 W (board 846 mm) 336 chips in two rows (red 2: green 1: blue 1: white 8 x 28)
Example 5. LED body size 550mm 18W (substrate 546mm) 120 chips in 2 rows (red 2: green 1: blue 1: white 8 x 20)
The LED lighting device 1 with an LED main body size of 1150 mm is for a shelf plate standard size of 1200 mm. The LED lighting device 1 with an LED main body size of 850 mm is for a shelf board standard size of 900 mm. The LED lighting device 1 with an LED main body size of 550 mm is for a shelf board standard size of 600 mm.

また、上述した実施形態によれば、SMD2835型のLEDチップを用いているが、他のLEDチップであってもよい。例えば、35ルーメン/ワットと同等又はそれ以上であれば、SMD2035型、SMD3030型のLEDチップであってもよい。 Further, according to the above-described embodiments, SMD2835 type LED chips are used, but other LED chips may be used. For example, SMD2035 type and SMD3030 type LED chips may be used as long as they are equivalent to or greater than 35 lumens/watt.

また、上述した実施形態によれば、複数のLEDチップが、LEDチップの長手方向に対して直角方向に並ぶように配列(横並び)されているが、本発明は、複数のLEDチップが、LEDチップの長手方向に沿って配列(縦並び)されているものを除外するものではない。 Further, according to the above-described embodiments, the plurality of LED chips are arranged (side-by-side) so as to be aligned in the direction perpendicular to the longitudinal direction of the LED chips. It is not excluded that they are arranged (tandemly) along the longitudinal direction of the chip.

図6は、LED照明装置1の発光スペクトルを示す図である。図6において、横軸は波長であり、縦軸は相対発光強度値である。図6に示すように、LED照明装置1の照射光のスペクトルは、440~460nmの範囲に第1のピーク波長と、510~530nmの範囲に第2のピーク波長と、640~660nmの範囲に第3のピーク波長を有しており、第2波長と第3波長の相対発光強度はほぼ同じで、第1ピーク波長は第2ピーク波長と第3ピーク波長の約1.6倍である。440~460nmは青色に相当し、510~530nmは緑色に相当し、640~660nmは赤色に相当する。このように、本実施形態のLED照明装置1は、光合成に必要な赤色と青色、葉の内部の光飽和に達していない葉緑体の光合成を駆動する緑色の波長の光を果菜類、花卉類の育成に適した割合で含む、本発明特有のスペクトルの光を照射することが可能になる。 FIG. 6 is a diagram showing the emission spectrum of the LED lighting device 1. As shown in FIG. In FIG. 6, the horizontal axis is the wavelength, and the vertical axis is the relative emission intensity value. As shown in FIG. 6, the spectrum of the illumination light of the LED lighting device 1 has a first peak wavelength in the range of 440 to 460 nm, a second peak wavelength in the range of 510 to 530 nm, and a second peak wavelength in the range of 640 to 660 nm. It has a third peak wavelength, the relative emission intensities of the second and third wavelengths are substantially the same, and the first peak wavelength is approximately 1.6 times the second and third peak wavelengths. 440-460 nm corresponds to blue, 510-530 nm corresponds to green, and 640-660 nm corresponds to red. In this way, the LED lighting device 1 of the present embodiment emits light of red and blue wavelengths necessary for photosynthesis, and green wavelengths of light that drives photosynthesis in chloroplasts that have not reached light saturation inside the leaves. It becomes possible to irradiate the light of the spectrum peculiar to the present invention, which contains the ratio suitable for the growth of the seed.

また、図6には、LED照明装置1において斜面部25及び反射面26がないヒートシンク20にLED基板10を装着したLED照明装置の発光スペクトルと、白色LED素子のみが実装されたLED基板を有するLED照明装置の発光スペクトルと、が合わせて示されている。 FIG. 6 also shows the emission spectrum of the LED lighting device 1 in which the LED substrate 10 is mounted on the heat sink 20 without the slope portion 25 and the reflecting surface 26, and the LED substrate on which only the white LED elements are mounted. are shown together with the emission spectrum of the LED lighting device.

図6に示すように、赤色、緑色、青色、白色のLED素子12を使用しているLED基板10による発光の方が、白色LED素子のみが実装されたLED基板による発光より、約660nmの波長の光、すなわち赤色波長領域の光量が多いことがわかる。また、反射面26がある場合と無い場合とを比較すると、ピークとなる波長がほぼ同じであるが、発光強度は、反射面26がある場合の方が大きいことがわかる。このように、赤色、緑色、青色、白色のLED素子12を使用することにより、光合成に必要な赤色と青色、植物の光利用効率を高める緑色の波長の光を果菜類、花卉類の育成に適した割合で含む、本発明特有のスペクトルの光を照射することが可能になる。また、反射面26を有することにより、LED素子12が発光する消費電力を増やすことなく、植物に照射する光量を増やすことが可能になる。よって照明器具として効率化、省電力化を図ることが可能になる。 As shown in FIG. 6, the light emitted by the LED board 10 using the red, green, blue, and white LED elements 12 has a wavelength of about 660 nm, compared to the light emitted by the LED board on which only the white LED elements are mounted. , that is, the amount of light in the red wavelength region is large. Further, comparing the case with and without the reflecting surface 26, the peak wavelengths are almost the same, but the emission intensity is higher with the reflecting surface 26. FIG. In this way, by using the red, green, blue, and white LED elements 12, the red and blue wavelengths necessary for photosynthesis and the green wavelength light that increases the light utilization efficiency of plants can be used to grow fruit vegetables and flowering plants. It is possible to irradiate light of the spectrum peculiar to the invention, containing in suitable proportions. Moreover, by having the reflective surface 26, it becomes possible to increase the amount of light irradiated to the plant without increasing the power consumption of the LED element 12 for light emission. Therefore, it is possible to improve efficiency and save power as a lighting fixture.

また、LED照明装置1は、赤色、緑色、青色、白色のLED素子12を上述したように配列したことによって、発光する光色は太陽光に近い昼光色(演色Ra95)となった。これにより、植物生育の速度が速まるとともに人工光型植物工場内における作業者による植物の視認性を向上させることが可能になる。また、LED照明装置1は、LED素子12の配列に規則性を持たせたことにより、照射光の色むらを低減することが可能になる。本実施形態によれば、照射対象に対して15~20cm程離れた所から光を照射しても、照射光の色むらが確認されなかった。 In addition, the LED lighting device 1 has the red, green, blue, and white LED elements 12 arranged as described above, so that the emitted light color is a daylight color (color rendering Ra 95) close to that of sunlight. As a result, it becomes possible to increase the speed of plant growth and improve the visibility of plants by workers in the artificial light type plant factory. In addition, the LED lighting device 1 can reduce color unevenness of the irradiated light by providing regularity to the arrangement of the LED elements 12 . According to this embodiment, even when the object was irradiated with light from a distance of about 15 to 20 cm, no color unevenness was observed in the irradiated light.

また、詳細については後述するが、実際に、トマトの播種から、本実施形態のLED照明装置1を1棚あたり3本用いて一定の気温と湿度と二酸化炭素濃度の下、1日あたり光を16時間照射しながらLED光栽培を行ったところ、果実が熟成するまで栽培期間が70~74日程度に短縮できた。ここで、試験栽培で播種したトマトの種子は、太陽光下のハウス栽培では、果実ができるまで100日程かかるものであることから、3割ぐらい早く果実ができることがわかった。また、本実施形態のLED照明装置1を使用した場合、白色光のみのLED照明装置を用いた場合と比較して、第1花房につくトマト実の数の割合も従来に比べて10~20%程多いことがわかった。 In addition, although the details will be described later, in practice, from the seeding of tomatoes, three LED lighting devices 1 of the present embodiment are used per shelf, and light is emitted per day under a constant temperature, humidity, and carbon dioxide concentration. When LED light cultivation was carried out while irradiating for 16 hours, the cultivation period until ripening of the fruit could be shortened to about 70 to 74 days. Here, it was found that the tomato seeds sown in the test cultivation can bear fruit about 30% faster than the others, because it takes 100 days to bear fruit when cultivated in a greenhouse under sunlight. In addition, when the LED lighting device 1 of the present embodiment is used, the ratio of the number of tomato seeds attached to the first flower cluster is 10 to 20 compared to the conventional case, compared to the case of using the LED lighting device that emits only white light. % was found to be higher.

本実施形態のLED照明装置1が照射する光のスペクトルは、色温度6500ケルビン、演色Ra95に相当し、赤色、青色、緑色それぞれに対応するピークを有する。赤色、青色、緑色それぞれに対応する単色発光素子を設けたことにより、当該スペクトルは、各色に対応するピーク、特に緑色・赤色に対応するピークの鋭さにおいても、従来の植物育成用照明装置のスペクトルと異なる。これにより、果菜類であるトマトの光合成速度、光合成産物、花芽形成をよりいっそう増すことができる。第一花房着生葉位は施設園芸ハウス栽培においては第8葉と第9葉の間であるが、本実施形態のLED照明装置1は第5葉と第6葉の間と低位となり結実までの期間と収量とを大幅に改善できたものと考えられる。 The spectrum of the light emitted by the LED lighting device 1 of this embodiment corresponds to a color temperature of 6500 Kelvin and a color rendering Ra of 95, and has peaks corresponding to red, blue, and green. By providing monochromatic light-emitting elements corresponding to red, blue, and green, respectively, the spectrum is similar to the spectrum of a conventional lighting device for growing plants, even in the sharpness of the peaks corresponding to each color, especially the peaks corresponding to green and red. different from As a result, the photosynthetic rate, photosynthetic products, and flower bud formation of tomatoes, which are fruit vegetables, can be further increased. The first inflorescence growing leaf position is between the eighth and ninth leaves in greenhouse horticulture. It is considered that the period and yield were greatly improved.

次に、本実施形態のLED照明装置1を使用した栽培試験について説明する。 Next, a cultivation test using the LED lighting device 1 of this embodiment will be described.

〔試験方法及び条件〕
栽培試験として選定した植物は、人工光で栽培ができる矮性低段ミニトマトと種子繁殖型イチゴ「よつぼし」とした。これは従前の閉鎖型植物工場において主体はレタスをはじめとした葉菜類であり、イチゴ、トマトなどの果菜類の収穫までの植物工場は少ない。その理由は播種から収穫までの栽培期間が葉菜類と比較して長いことにある。加えて、葉菜類よりも光量が必要で電力使用料が多く、費用対効果が見合わないことにある。
[Test method and conditions]
The plants selected for the cultivation test were a dwarf low-stage cherry tomato that can be cultivated under artificial light and a seed-propagating strawberry "Yotsuboshi". This is because the conventional closed-type plant factories mainly produce leafy vegetables such as lettuce, and there are few plant factories capable of harvesting fruit vegetables such as strawberries and tomatoes. The reason for this is that the cultivation period from sowing to harvesting is longer than that of leafy vegetables. In addition, it requires more light than leafy vegetables and consumes more electricity, so it is not cost-effective.

そこで、果菜類の栽培期間の短縮と果菜類の最適なスペクトルを見出すことを目的に次の条件で栽培試験を行った。 Therefore, a cultivation test was conducted under the following conditions for the purpose of shortening the cultivation period of fruit vegetables and finding the optimum spectrum of fruit vegetables.

まず、矮性低段ミニトマトを播種した25mm角の発芽用スポンジと、矮性低段ミニトマトを播種した25mm角の発芽用スポンジと、を用意する。播種した発芽用スポンジは、栽培棚に載置される。 First, a 25 mm square germination sponge seeded with dwarf low-stage cherry tomatoes and a 25 mm square germination sponge seeded with dwarf low-stage cherry tomatoes are prepared. The seeded germination sponges are placed on a cultivation shelf.

栽培棚は、高さが20cmと40cmとの2種類用意する。発芽から草丈15cmまでの生育期間は高さが20cmの栽培棚を使用し、草丈15cmから草丈25cmまでの生育期間は高さが40cmの栽培棚を使用する。 Two types of cultivation racks, 20 cm in height and 40 cm in height, are prepared. A cultivation rack with a height of 20 cm is used during the growth period from germination to a plant height of 15 cm, and a cultivation rack with a height of 40 cm is used during the growth period from a plant height of 15 cm to a plant height of 25 cm.

栽培棚の上面にLED照明装置を配置する。1棚あたりのLED照明装置は3本とする。1日当たりのLED照明装置による照明時間は16時間とする。 An LED lighting device is arranged on the top surface of the cultivation shelf. It is assumed that there are three LED lighting devices per shelf. The lighting time by the LED lighting device per day is assumed to be 16 hours.

LED照明装置は、次の4種類を用意した。
(1)白色高輝度LED照明、反射板なし(以下、白色光源反射板なし照明と称する)
素子サイズSMD2035型の高輝度白色LED素子168チップを横1列実装、消費電力18W、ル-メン値2800LM、演色RA82、色温度5000K
(2)白色高輝度LED照明、反射板有り(以下、白色光源反射板有り照明と称する)
素子サイズSMD2035型の高輝度白色LED素子168チップを横1列実装、消費電力18W、ル-メン値3050LM、演色RA82 色温度5000K
(3)RGBW4色混色光源白色LED照明、反射板なし(以下、4種類混色光反射板なし照明と称する)
素子サイズSMD2835型、赤色、緑色、青色、白色のLED素子及び高輝度白色LED素子216チップを縦1列実装、消費電力18W、ル-メン値2300LM、演色RA95 色温度6100K
(4)RGBW4色混色光源白色LED照明、反射板有り(以下、4種類混色光反射板有り照明と称する)
素子サイズSMD2835型、赤色、緑色、青色、白色のLED素子及び高輝度白色LED素子216チップを縦1列実装、消費電力18W、ル-メン値2600LM、演色RA95、色温度6200K
The following four types of LED lighting devices were prepared.
(1) White high-brightness LED lighting, no reflector (hereinafter referred to as white light source lighting without reflector)
168 chips of high-brightness white LED elements of element size SMD2035 are mounted in a row, power consumption 18W, lumen value 2800LM, color rendering RA82, color temperature 5000K
(2) White high-brightness LED lighting with reflector (hereinafter referred to as lighting with white light source and reflector)
168 chips of SMD2035 type high-brightness white LED elements are mounted in a horizontal row, power consumption is 18W, lumen value is 3050LM, color rendering is RA82, color temperature is 5000K.
(3) RGBW four-color mixed light source white LED lighting without reflector (hereinafter referred to as four-color mixed light without reflector)
Device size SMD2835, red, green, blue, and white LED devices and 216 high-brightness white LED devices mounted in a vertical row, power consumption 18W, lumen value 2300LM, color rendering RA95, color temperature 6100K
(4) RGBW four-color mixed light source white LED lighting with reflector (hereinafter referred to as lighting with four-color mixed light reflector)
Device size SMD 2835 type, red, green, blue, and white LED devices and 216 high-brightness white LED devices mounted in a vertical row, power consumption 18W, lumen value 2600LM, color rendering RA95, color temperature 6200K

上述した4種類のLED照明装置において、4種類混色光反射板有り照明が本実施形態のLED照明装置1に相当する。 Among the four types of LED lighting devices described above, lighting with four types of mixed-color light reflectors corresponds to the LED lighting device 1 of the present embodiment.

図7は、栽培棚における棚面の光の分布を示す図である。図7に示す数値は、光合成有効光量子束密度(photosynthetic photon flux density 以下PPFD値と呼ぶ)である。光合成有効光量子束密度とは、光合成に必要とされる400~700nmの波長に含まれる単位時間、単位面積あたりの光子数のことで、人工光による植物栽培においては、光合成に有効である光合成色素(クロロフィルとカロテノイド)に吸収される必要があり光強度の目安として使われている。PPFD値の単位はμmol・m-2・s-1である。図7に示すように、光量は、4種類混色光反射板有り照明が最も高く、以下、白色光源反射板有り照明、4種類混色光反射板なし照明、白色光源反射板なし照明の順で低くなることが分かる。すなわち、反射板(反射面26)によって光量が補われていることが分かる。 FIG. 7 is a diagram showing the distribution of light on the surface of a cultivation shelf. The numerical values shown in FIG. 7 are photosynthetic photon flux densities (hereinafter referred to as PPFD values). Photosynthetically effective photon flux density is the number of photons per unit time and unit area contained in the wavelength of 400 to 700 nm required for photosynthesis. (chlorophyll and carotenoids) and is used as a measure of light intensity. The unit of the PPFD value is μmol·m −2 ·s −1 . As shown in FIG. 7, the amount of light is the highest in the lighting with the 4-type mixed-color light reflector, followed by the lighting with the white light source reflector, the lighting without the 4-type mixed-color light reflector, and the lighting without the white light source reflector in descending order. I know it will be. That is, it can be seen that the amount of light is supplemented by the reflector (reflecting surface 26).

そして、図7に示す環境下に、矮性低段ミニトマトを播種した25mm角の発芽用スポンジ、及び種子繁殖系イチゴ「よつぼし」を播種した25mm角の発芽用スポンジを載置して、生育試験を行った。 Then, under the environment shown in FIG. 7, a 25 mm square germination sponge seeded with dwarf low-stage cherry tomatoes and a 25 mm square germination sponge seeded with seed-propagating strawberry "Yotsuboshi" were placed, A growth test was performed.

〔矮性低段ミニトマトの試験結果〕
播種から発芽までは4種類のLED照明において差異は見られず、1週間以内に90%以上が発芽した。
[Test results of dwarf low-stage mini tomatoes]
From seeding to germination, no difference was observed under the four types of LED lighting, and 90% or more of the seeds germinated within one week.

・栄養成長期(播種~開花)
(白色光源反射板なし照明)
発芽から40日目で第8葉目の葉の上の第1花房に蕾2個と開花1輪、葉と葉の間の茎はやや伸長し、茎は細い。
(白色光源反射板有り照明)
発芽から40日目で第8葉目の葉の上の第1花房に蕾4個と開花2輪、白色光源反射板なし照明よりも葉の面積が多いが、白色光源反射板なし照明と同様に葉と葉の間の茎は伸長し、茎はやや太め。
(4種類混色光反射板なし照明)
発芽から35日目で第6葉目の葉の上の第1花房に蕾2個と開花1輪、白色光源反射板有り照明と同様に葉の面積が多く、葉と葉の間の茎は短く、茎はやや太めで株張りがよい。
(4種類混色光反射板有り照明)
発芽から35日目で第6葉目の葉の上の第1花房に蕾4個と開花2輪、白色光源反射板有り照明と同様に葉の面積が多く、葉と葉の間の茎は短く、茎はやや太めで株張りがよい。
・Vegetative growth period (from sowing to flowering)
(Lighting without white light source reflector)
On the 40th day after germination, the first inflorescence on the leaf of the eighth leaf has two buds and one flower, and the stem between the leaves is slightly elongated and the stem is thin.
(Lighting with white light source reflector)
40 days after germination, 4 buds and 2 flowers in the first inflorescence on the leaf of the 8th leaf. The leaf area is larger than the lighting without the white light source reflector, but the same as the lighting without the white light source reflector. The stem between the leaves is elongated, and the stem is a little thick.
(Lighting without a 4-color mixed light reflector)
35 days after germination, 2 buds and 1 flower in the 1st inflorescence on the 6th leaf, with a white light source reflector. Short, slightly thick stems and good stock.
(Lighting with a 4-color mixed light reflector)
35 days after germination, 4 buds and 2 flowers in the 1st inflorescence on the 6th leaf, with a white light source reflector. Short, slightly thick stems and good stock.

・生殖成長期(開花~結実~収穫)
(白色光源反射板なし照明)
発芽から50日目で第1花房に開花2輪と結実1個、葉と葉の間の茎はやや伸長し、茎は細い。
発芽から60日目で第11葉目の葉の上の第2花房に蕾2個と開花3輪、葉と葉の間の茎はやや伸長し、葉の一部が黄化。
発芽から80日目で第1花房から果実3個を収穫。第2花房は結実5個。第2葉までは落葉。
(白色光源反射板有り照明)
発芽から50日目で第1花房に開花4輪と結実2個、葉と葉の間の茎はやや伸長し、茎はやや太くなる。
発芽から60日目で第11葉目の葉の上の第2花房に蕾6個と開花4輪、葉と葉の間の茎は伸長し、第14葉目の上に第3花房が8個の蕾が形成。
発芽から80日目で第1花房から果実6個を収穫。第2花房ではやや小ぶりで結実10個となる。第3花房では小ぶりで8個結実。第2葉までは落葉。

(4種類混色光反射板なし照明)
発芽から45日目で第1花房に開花2輪と結実1個、葉と葉の間の茎はやや伸長し、茎はやや細い。
発芽から55日目で第9葉目の葉の上の第2花房に蕾6個と開花4輪、葉と葉の間の茎は伸長し、第12葉目の上に第3花房が8個の蕾が形成。
発芽から75日目で第1花房から果実3個を収穫。第2花房では結実10個となる。第3花房が結実8個となる。
(4種類混色光反射板有り照明)
発芽から45日目で第1花房に開花4輪と結実2個、葉と葉の間の茎はやや伸長し、茎は太い。
発芽から55日目で第9葉目の葉の上の第2花房に蕾6個と開花4輪、葉と葉の間の茎は伸長し、第12葉目の上に第3花房が蕾8個形成。
発芽から75日目で第1花房から果実6個を収穫。第2花房ではやや小ぶりの結実10個となる。第3花房では8個結実。
・Reproductive growth period (flowering-fruiting-harvesting)
(Lighting without white light source reflector)
On the 50th day after germination, two flowering flowers and one fruiting appear in the first inflorescence, and the stem between the leaves is slightly elongated and thin.
On the 60th day after germination, 2 buds and 3 flowers were formed in the 2nd inflorescence on the 11th leaf, the stem between the leaves was slightly elongated, and part of the leaves turned yellow.
Three fruits were harvested from the first inflorescence on the 80th day after germination. The second flower cluster has 5 fruits. Deciduous until the second leaf.
(Lighting with white light source reflector)
On the 50th day after germination, 4 flowers and 2 fruits were formed in the first inflorescence, and the stem between the leaves was slightly elongated and thickened.
60 days after germination, 6 buds and 4 flowering clusters on the 2nd inflorescence on the 11th leaf, the stem between the leaves elongated, and the 3rd inflorescence on the 14th leaf, 8 Individual buds formed.
Six fruits were harvested from the first inflorescence on the 80th day after germination. The second flower cluster is rather small and produces 10 fruits. The 3rd flower cluster is small and bears 8 fruits. Deciduous until the second leaf.

(Lighting without a 4-color mixed light reflector)
On the 45th day after germination, two flowering flowers and one fruiting appear in the first inflorescence.
On the 55th day after germination, 6 buds and 4 flowering clusters were formed on the 2nd inflorescence on the 9th leaf, the stem between the leaves was elongated, and 8 3rd inflorescences were formed on the 12th leaf. Individual buds formed.
Three fruits were harvested from the first inflorescence on the 75th day after germination. The second flower cluster produces 10 fruits. The third inflorescence bears 8 fruits.
(Lighting with a 4-color mixed light reflector)
On the 45th day after germination, 4 flowers and 2 fruits were formed in the first inflorescence, and the stem between the leaves was slightly elongated and thick.
On the 55th day after germination, 6 buds and 4 flowers bloomed in the second inflorescence on the 9th leaf, the stem between the leaves elongated, and the 3rd inflorescence appeared on the 12th leaf. Form 8 pieces.
Six fruits were harvested from the first inflorescence on the 75th day after germination. In the second flower cluster, 10 slightly smaller fruits are produced. 8 fruiting in the third flower cluster.

〔考察〕
(生育について)
白色光源反射板なし照明については、栄養成長期において葉がやや細葉ではあるが、順調な生育である。
生殖成長期において開花はするが、結実した実が成熟前に落下しやすい。収穫数は少なく果実は直径20mm前後で小さい。葉も黄化し、葉面の緑はやや薄い。
白色光源反射板有り照明については、栄養成長期において葉は旺盛に生育するが、やや茎が細く徒長気味である。生殖成長期においては第1花房の果実は大きく直径25~30mm前後あるが、第2花房の果実は直径15mm~20mmと小さい。
4種類混色光反射板なし照明については、栄養成長期おいて葉は旺盛に生育する。茎はやや細いが葉面が広い。生殖成長期においては第1花房の実は大きく直径30mm前後あるが、第2花房の果実は直径20~25mmとやや小さい。
4種類混色光反射板有り照明については、栄養成長期において葉は旺盛に生育する。茎は太く葉面が広い。生殖成長期においては、第1花房の実は大きく直径30mm前後あるが、第2花房の果実は直径20~25mmとやや小さい。他の照明よりも収穫量が多い。
(収穫量(重量ベース)について)
4種類混色光反射板有り照明>4種類混色光反射板なし照明>白色光源反射板有り照明>白色光源反射板なし照明。
白色光源LED照射の場合、葉面の緑の色が薄く、葉はやや細葉であり、太陽光下の生育よりも光合成産物の形成がやや劣ると思われ、花芽形成は順調ではあるが、果実が成熟する前に果実が落ちやすい。
4種類混色光LED照射の場合、第1葉と第2葉の葉面の緑の色が濃く、葉は広く、葉面積(高い受光率)が有り、十分な光合成産物が形成されていると思われる。
[Discussion]
(About growth)
As for the lighting without a white light source reflector, the leaves are slightly thin in the vegetative growth period, but the growth is smooth.
It blooms during the reproductive growth period, but the fruits that bear fruit tend to drop before maturity. The number of harvests is small and the fruit is small with a diameter of around 20 mm. The leaves also turn yellow, and the leaf surface is slightly green.
As for the lighting with a white light source reflector, the leaves grow vigorously in the vegetative growth period, but the stems are rather thin and elongated. In the reproductive growth period, the fruit of the first inflorescence is large and has a diameter of about 25 to 30 mm, while the fruit of the second inflorescence is as small as 15 to 20 mm in diameter.
The leaves grow vigorously during the vegetative growth period under lighting without a four-color mixed light reflector. The stem is rather thin, but the leaves are wide. In the reproductive growth period, the fruit of the first inflorescence is large and has a diameter of about 30 mm, while the fruit of the second inflorescence is rather small, 20-25 mm in diameter.
The leaves grow vigorously during the vegetative growth period in the case of lighting with a four-color mixed light reflector. Stems are thick and leaves are wide. In the reproductive growth period, the fruit of the first inflorescence is large and has a diameter of about 30 mm, while the fruit of the second inflorescence is slightly smaller with a diameter of 20-25 mm. Higher yield than other lights.
(Regarding yield (weight basis))
Lighting with 4-type mixed-color light reflector > Lighting without 4-type mixed-color light reflector > Lighting with white light source reflector > Lighting without white light source reflector.
In the case of white light source LED irradiation, the green color of the leaf surface is pale and the leaves are somewhat thin, and the formation of photosynthetic products seems to be slightly inferior to the growth under sunlight, and the flower bud formation is smooth. Fruits tend to drop before they reach maturity.
In the case of 4-color mixed light LED irradiation, the leaf surface of the first and second leaves is dark green, the leaves are wide, there is a leaf area (high light receiving rate), and sufficient photosynthetic products are formed. Seem.

〔種子繁殖系イチゴ「よつぼし」の試験結果〕
播種から発芽まで、個体差が有り、播種後発芽まで1週間から2週間かかり生育差があるため、本葉が出現した時点を栽培開始日とした。
[Test results of seed-propagated strawberry “Yotsuboshi”]
There are individual differences from sowing to germination, and since it takes 1 to 2 weeks from sowing to germination and there are differences in growth, the cultivation start date was set at the time when true leaves appeared.

・栄養成長期(本葉~ランナー形成)
(白色光源反射板なし照明)
生長はせず、葉は白色化し、枯死。
(白色光源反射板有り照明)
本葉出現から60日目でランナーが2本出現、葉は10枚から11枚。
個体差があり、葉面にクロロシスが出現して葉面の緑の色が薄く、生長が鈍化して栽培中止した個体がある。
(4種類混色光反射板なし照明)
本葉出現から60日目でランナーが2本出現、葉は10枚。植物体の重量20g(培地25mm角のスポンジ重量を含む)。
(4種類混色光反射板有り照明)
本葉出現から60日目でランナーが2本出現、葉は11枚。植物体の重量22.5g(培地25mm角のスポンジ重量を含む)。葉面は4種類混色光反射板なし照明による葉面よりも大きい。
・ Vegetative growth period (true leaf to runner formation)
(Lighting without white light source reflector)
No growth, leaves turn white and die.
(Lighting with white light source reflector)
Sixty days after the emergence of true leaves, two runners appeared, and 10 to 11 leaves.
There are individual differences, and some individuals have been discontinued due to the appearance of chlorosis on the leaf surface, the green color of the leaf surface is pale, and the growth slows down.
(Lighting without a 4-color mixed light reflector)
On the 60th day from the emergence of true leaves, two runners appeared and 10 leaves. 20 g of plant weight (including the weight of a 25 mm square medium sponge).
(Lighting with a 4-color mixed light reflector)
On the 60th day from the emergence of true leaves, two runners appeared and 11 leaves. Plant weight 22.5 g (including the weight of a 25 mm square medium sponge). The leaf surface is larger than the leaf surface under illumination without the 4-color mixed light reflector.

なお、イチゴ「よつぼし」は種子繁殖系イチゴであり、長日性がある。このため、イチゴ「よつぼし」の本栽培試験において果実の形成までに至っていない。しかしながら、4種類混色光照明の場合が白色光源照明の場合よりも、収穫量が少なくなることはないということは、ここまでの実験結果で容易に推測可能である。また、ここまでの比較試験においては、1日あたりの照射時間を16時間の一定の照射であったため、花芽形成が葉芽形成となりランナーの出現となった。イチゴ(種子繁殖系)の人工光栽培における花成誘導技術は高度であり、詳細な説明は省略するが、本発明のLED照明に適した花芽形成に関する照射時間の変更及び気温、二酸化炭素濃度、肥料成分などを変化させる環境制御を行なえば、過去の試験結果から播種後110日~120日前後で果実の収穫の実現が見込まれる。 Strawberry 'Yotsuboshi' is a seed-propagating strawberry, and has long day life. For this reason, the strawberry "Yotsuboshi" did not form fruit in the main cultivation test. However, it can be easily inferred from the experimental results up to this point that the harvested amount is not less in the case of illumination with four kinds of mixed-color light than in the case of illumination with white light source. In addition, in the comparative tests so far, since the irradiation time per day was fixed at 16 hours, flower bud formation became leaf bud formation and runners appeared. Flowering induction technology in artificial light cultivation of strawberries (seed propagation system) is advanced, and detailed description is omitted, but the change in irradiation time and temperature, carbon dioxide concentration, and flower bud formation suitable for LED lighting of the present invention Based on past test results, it is expected that fruits will be harvested around 110 to 120 days after sowing if environmental control is carried out by changing fertilizer components.

〔考察〕
上述のイチゴ「よつぼし」の栽培試験は途中経過であるが、これまでに実施した栽培試験により、白色光源反射板付きのLED照明を使うよりも、4種類混色光反射板付きLED照明の方に優位性があることが分かる。また、果実収穫を目的の栽培以外でも、4種類混色光反射板有り照明は施設園芸ハウス栽培向けの苗生産の用途として苗生産栽培装置に適用できる。施設園芸ハウス栽培において、播種から定植苗(クラウン8mm以上)の生産は約3ケ月を要するが、4種類混色光反射板付きのLED照明装置を使用すれば、播種から定植苗まで70日前後の育苗で安定生産ができ、施設園芸ハウス栽培での育苗期間よりも20日前後、栽培期間の短縮ができる。更に施設園芸ハウス栽培においての育苗は数回の農薬散布を要するが、植物工場クリーンルーム内で本件、4種類混色光反射板付きのLED照明装置を使用すれば、イチゴ栽培に多く発生する炭疽病などの病害は発生することは無く、無農薬もしくは農薬散布の頻度を抑える事ができる。病害が発生しない理由は、光合成が健全に行われることにより、病害に対する抵抗力(病害抵抗性)がついたと推測される。
[Discussion]
The above-mentioned cultivation test of the strawberry “Yotsuboshi” is in progress, but the cultivation tests conducted so far have shown that LED lighting with four types of mixed-color light reflectors is preferred over LED lighting with white light source reflectors. It turns out that you have an advantage. In addition to cultivation for the purpose of fruit harvesting, lighting with a four-kind mixed-color light reflector can be applied to a seedling production and cultivation apparatus as a use for producing seedlings for facility gardening greenhouse cultivation. In greenhouse cultivation, it takes about 3 months from sowing to planting seedlings (crown 8 mm or more), but if LED lighting equipment with 4 types of mixed color light reflectors is used, it takes about 70 days from sowing to planting seedlings. Stable production can be achieved by raising seedlings, and the cultivation period can be shortened by around 20 days compared to the raising period of seedlings in a greenhouse. Furthermore, raising seedlings in greenhouse cultivation requires spraying pesticides several times. No pesticides occur, and the frequency of pesticide spraying can be reduced. It is presumed that the reason why disease does not occur is that photosynthesis is carried out in a healthy manner, resulting in resistance to disease (disease resistance).

図8は、4種類のLED照明装置を使用した栽培試験における種子繁殖系イチゴ「よつぼし」の生長具合を示す写真である。図9は、4種類のLED照明装置を使用した栽培試験における矮性低段ミニトマトの生長具合を示す写真である。図10は、図9の撮影を行ってから9日後の矮性低段ミニトマトの生長具合を示す写真である。図8~図10において、左側から白色光源反射板なし照明、白色光源反射板有り照明、4色反射板なし照明、4色反射板有り照明の順に並べられている。図8~図10に示されているように、4種類混色光LEDを使用した苗が良好に生育していることが明らかである。 FIG. 8 is a photograph showing the growth of the seed-propagated strawberry "Yotsuboshi" in cultivation tests using four types of LED lighting devices. FIG. 9 is a photograph showing the growth of dwarf low-row cherry tomatoes in a cultivation test using four types of LED lighting devices. FIG. 10 is a photograph showing the state of growth of dwarf low-stage cherry tomatoes nine days after the photographing of FIG. 9 was performed. 8 to 10, from left to right, illumination without a white light source reflector, illumination with a white light source reflector, illumination without a four-color reflector, and illumination with a four-color reflector are arranged in this order. As shown in FIGS. 8 to 10, it is clear that the seedlings using four kinds of mixed-color LEDs are growing well.

これまでにおいては、イチゴ、トマトなどの果菜類又は花卉類はPPFD値300~350μmol・m-2・s-1の光量を要するが、4種類混色光反射板有り照明で栽培すれば、200~300の値で栽培が可能である。これは葉緑体のすべてを光飽和点に達するには強い光強度を要するのに対し、緑色光を加える事で吸収の良いスペクトル光と吸収の良い照射光の色むらの無い均一な光照射により葉全体の大半の葉緑体が光飽和点に達していると考えられる。また、図7において、白色光源反射板有り照明の場合と4種類混色光反射板有り照明の場合とのように、同じようなPPFD値であってもスペクトル光の光質の違いで生育速度に大きな違いが生じることが分かる。 Until now, fruit vegetables such as strawberries and tomatoes or flowering plants require a light amount of 300 to 350 μmol・m −2・s −1 of PPFD value, but if cultivated with lighting with a 4-color mixed light reflector, 200 to 200 Cultivation is possible with a value of 300. This requires a strong light intensity to reach the light saturation point of all the chloroplasts, but by adding green light, the spectrum light with good absorption and the irradiation light with good absorption are uniformly irradiated without color unevenness. It is thought that most of the chloroplasts in the entire leaf have reached the light saturation point. In FIG. 7, even if the PPFD values are the same, the growth rate varies depending on the light quality of the spectrum light, as in the case of the illumination with the white light source reflector and the illumination with the four mixed color light reflectors. It can be seen that there is a big difference.

特に、矮性低段ミニトマトの栽培試験の結果、トマトにおいては赤色光もしくは緑色光のいずれかの光質が第1葉と第2葉の葉面積の拡大に影響を及ぼしていることがわかる。第1花房の開花直前ステージの草姿を比較した場合、第1葉と第2葉は本発明の混色光を植物体に照射した場合と白色単色光を植物体に照射した場合の葉面積の展開が異なる。本発明の混色光を照射した植物体は、第1葉と第2葉は葉面積の拡大が見られるが、白色単色光を照射した植物体の第1葉と第2葉は、葉面積の拡大があまりないままである。もしくは落葉する個体がある。また茎の肥大性を見ても、本発明の4種類混色光を照射した植物体の茎の直径が平均して約7mmに対して、白色単色光を照射した植物体の茎の直径が平均して約5.5mmであった。これは本発明の4種類混色光が白色単色光と比べて赤色光と緑色光の光強度が高いことと、第1葉、第2葉は第3葉から第6葉の影になり、LED光の特性である一方向にまっすぐに発光するために、陽葉となる第3葉から第6葉へ赤、青光が吸収され、第3葉から第6葉に吸収されなかった緑色光が陰葉となる第1葉と第2葉で吸収されたこととが、葉面積の拡大につながったと考えられる。すなわち、葉面積の拡大は受光率を高め光合成により、葉や茎に蓄えられた光合成産物が増加していると言える。 In particular, as a result of a cultivation test of dwarf low-stage cherry tomatoes, it can be seen that the light quality of either red light or green light affects the expansion of the leaf area of the first and second leaves in tomatoes. When comparing the appearance of the plant in the stage just before flowering of the first inflorescence, the first leaf and the second leaf show the leaf area when the plant is irradiated with the mixed color light of the present invention and when the plant is irradiated with the white monochromatic light. deployment is different. In the plant body irradiated with the mixed color light of the present invention, the first and second leaves have expanded leaf areas. There remains little expansion. Or there is an individual that sheds leaves. Also, looking at the stalk enlargement, the average diameter of the stem of the plant irradiated with the four kinds of mixed light of the present invention is about 7 mm, while the average diameter of the stem of the plant irradiated with the white monochromatic light is about 7 mm. was about 5.5 mm. This is because the light intensity of the red light and the green light is higher in the mixed four-color light of the present invention than in the white monochromatic light, and the first and second leaves are shadowed by the third to sixth leaves. In order to emit light straight in one direction, which is the characteristic of light, red and blue light are absorbed by the 3rd to 6th leaves, which are positive leaves, and green light that is not absorbed by the 3rd to 6th leaves is emitted. It is considered that the absorption by the first and second leaves, which serve as shade leaves, led to the expansion of the leaf area. In other words, it can be said that the expansion of the leaf area increases the light receiving rate, and the photosynthetic products stored in the leaves and stems increase through photosynthesis.

[作用効果]
以上、説明したように構成された本実施形態によれば、赤色LED素子12Rの数、青色LED素子12Bの数、緑色LED素子12Gの数及び白色LED素子12Wの数の比が式(1)ないし(5)を満たす比であることにより、光合成に必要な赤色発光及び青色発光と、植物の光利用効率を増す緑色発光と、これら単色光の光強度を補う白色光とを果菜類の育成に適した割合で含む、本発明特有のスペクトルの光を植物に照射することが可能になり、トマトやイチゴによって例示される果菜類の栽培に適した照明を行うことができる。しかも、赤色LED素子12Rの数と青色LED素子12Bの数と緑色LED素子12Gの数と白色LED素子12Wの数とが式(1)ないし(5)を満たす比率であることにより、植物の光合成が最大に活動できる昼光色を発光するLED照明装置1を提供することができる。また、LED素子12を使用することにより省電力化を図ることができる。
[Effect]
According to the present embodiment configured as described above, the ratio of the number of red LED elements 12R, the number of blue LED elements 12B, the number of green LED elements 12G, and the number of white LED elements 12W is given by formula (1) or (5), red light emission and blue light emission necessary for photosynthesis, green light emission that increases the light utilization efficiency of plants, and white light that supplements the light intensity of these monochromatic lights are used to grow fruits and vegetables. It becomes possible to irradiate the plants with the light of the spectrum peculiar to the present invention, which is included in a ratio suitable for , and it is possible to perform lighting suitable for cultivating fruit vegetables exemplified by tomatoes and strawberries. Moreover, the ratio of the number of red LED elements 12R, the number of blue LED elements 12B, the number of green LED elements 12G, and the number of white LED elements 12W satisfies the formulas (1) to (5). It is possible to provide the LED lighting device 1 that emits light in a daylight color that can be maximized. Moreover, by using the LED element 12, power saving can be achieved.

また本実施形態によれば、LED基板10が、2個の赤色LED素子12R、1個の青色LED素子12B、1個の緑色LED素子12G及び8個の白色LED素子12Wによる基本配置Lを、複数繰り返す配列であるため、太陽光に近くしかも均一な混合色の光色を実現することができる。このように、均一な光を照射することで、光合成を促進させることが可能になり、植物の生育を促進することができる。 Further, according to this embodiment, the LED substrate 10 has a basic arrangement L of two red LED elements 12R, one blue LED element 12B, one green LED element 12G, and eight white LED elements 12W. Since it is a multiple-repeating arrangement, it is possible to realize a mixed light color that is close to sunlight and is uniform. By irradiating light uniformly in this way, photosynthesis can be promoted, and the growth of plants can be promoted.

ここで、本実施形態によれば、白色LED素子12Wを使用しているが、白色LED素子12Wを使用せずに、赤色LED素子12R、青色LED素子12B、緑色LED素子12Gの混色光によって白色を形成することができる。しかし、これら赤、緑、青の単色光による白色では光強度不足となる。すなわち、理論的に消費電力18Wで216チップのLED照明装置において、216チップが赤、緑、青チップの場合の総ルーメン値が約400ルーメン、216チップが本発明である赤、緑、青、白チップの場合の総ルーメン値が約2500ルーメンとなり、後者の光強度の方が大きい。このように本実施形態によれば、白色LED素子12Wを付加することによって、この光強度不足を補うことが可能になる。 Here, according to this embodiment, the white LED element 12W is used, but instead of using the white LED element 12W, the mixed light of the red LED element 12R, blue LED element 12B, and green LED element 12G produces white light. can be formed. However, the light intensity of the white light produced by these monochromatic lights of red, green, and blue is insufficient. That is, in an LED lighting device with a theoretical power consumption of 18 W and 216 chips, when the 216 chips are red, green, and blue chips, the total lumen value is about 400 lumens. The total lumen value for the white chip is about 2500 lumens, and the light intensity of the latter is higher. Thus, according to the present embodiment, by adding the white LED element 12W, it is possible to compensate for the lack of light intensity.

また本実施形態によれば、基本配置Lが、赤色LED素子12R、2個の白色LED素子12W、緑色LED素子12G、2個の白色LED素子12W、赤色LED素子12R、2個の白色LED素子12W、青色LED素子12Bの順に並ぶ配列を含む。これにより、基本配置Lにおいて植物の光合成が最大に活動できる均一な昼光色の光色を実現することができる。 Further, according to this embodiment, the basic arrangement L consists of a red LED element 12R, two white LED elements 12W, a green LED element 12G, two white LED elements 12W, a red LED element 12R, and two white LED elements. 12W and blue LED elements 12B. As a result, in the basic layout L, it is possible to realize a uniform daylight color in which the photosynthesis of plants can be maximized.

また本実施形態によれば、LED素子12がチップLEDからなり、LED素子12は、アノード端子とカソード端子とが互いに対向する方向、すなわちチップLEDの長手方向をアルミ基板11の長尺方向に対して直角方向に向けて配置されるため、チップLEDの発光部位間の間隔を短くすることが可能になる。これにより、基本配置Lにおいて植物の光合成が最大に活動できる均一な昼光色の光源を実現することができる。 Further, according to this embodiment, the LED element 12 is a chip LED, and the LED element 12 has the direction in which the anode terminal and the cathode terminal face each other, that is, the longitudinal direction of the chip LED with respect to the longitudinal direction of the aluminum substrate 11 . Since the chip LEDs are arranged in the direction perpendicular to each other, it is possible to shorten the distance between the light emitting portions of the chip LED. As a result, in the basic arrangement L, a uniform daylight light source can be realized in which the photosynthesis of plants can be maximized.

また本実施形態によれば、LED素子12から被育成植物への方向と異なる方向へ照射される光の少なくとも一部を被育成植物へ向けて反射可能な反射面26を2以上備える。これにより、複数のLED素子12が発生した光において、LED素子12から植物の方向へ向かわない向きの光(例えば、斜め方向の光)を反射して被育成植物に照射することができるようになり、複数のLED素子12が発生した光量を維持しながら効率よく被育成植物に照射することができる。よって、LED素子12が発光する消費電力を増やすことなく、被育成植物に照射する光量を増やすことが可能になる。したがって、反射面26を備えることにより、照明器具として効率化、省電力化を図ることが可能になる。 Further, according to this embodiment, two or more reflecting surfaces 26 are provided that can reflect at least part of the light emitted from the LED element 12 in a direction different from the direction toward the plant to be grown, toward the plant to be grown. As a result, of the light emitted by the plurality of LED elements 12, the light directed not toward the plant from the LED elements 12 (for example, oblique light) can be reflected and irradiated to the plant to be grown. Thus, it is possible to efficiently irradiate the plant to be grown while maintaining the amount of light generated by the plurality of LED elements 12 . Therefore, it is possible to increase the amount of light applied to the plant to be grown without increasing the power consumption of light emitted by the LED element 12 . Therefore, by providing the reflective surface 26, it becomes possible to improve efficiency and save power as a lighting fixture.

また本実施形態によれば、図7に示すように、ヒートシンク20における収納部24の両側部に反射面26を設けることにより、LED素子からの散乱光を反射させて被育成植物に照射することができるため、より効率的に光を照射することが可能になる。なお、LED基板10を反射面26側に向けて、反射面26による反射光を被育成植物に照射するように構成してもよい。 Further, according to this embodiment, as shown in FIG. 7, by providing the reflecting surfaces 26 on both sides of the storage portion 24 in the heat sink 20, the scattered light from the LED elements is reflected and irradiated to the plant to be grown. Therefore, it is possible to irradiate light more efficiently. Alternatively, the LED substrate 10 may be directed toward the reflecting surface 26 so that the plant to be grown is irradiated with the light reflected by the reflecting surface 26 .

[変形例]
以上、本発明の一実施形態について説明したが、本発明の実施形態は上述した実施形態に限るものではない。
[Modification]
Although one embodiment of the present invention has been described above, the embodiment of the present invention is not limited to the above-described embodiment.

例えば、上述した実施形態においては、複数のLED素子12を1列に並べているが、図11に示すようにLED基板10を2つ並べて複数のLED素子12を2列以上にしてもよい。このように、2列以上のLED素子12を備えることにより、植物に照射する光量を増やすことが可能になり、照明器具として効率化、省電力化を図ることが可能になる。また、2列以上にすることにより、多段棚栽培の棚高を植物体の伸長に比例して上げた場合、株元に近い葉の光量不足を解消できる。例えば、矮性ミニトマトの場合、第1花房着生葉位の草丈は約20cm、第2花房着生葉位は約30cmとなり、棚高30cm以上で最低PPFD値200μmol・m-2・s-1以上を維持するにはLED照明装置1の設置本数を増やすか、LED照明装置1が2列以上のLED素子12を備えることが望ましい。なお、図11に示す例では、LED基板10を2つ並べて複数のLED素子12を2列としているが、図12に示すように、アルミ基板11に複数のLED素子12を2列以上実装してもよい。 For example, in the embodiment described above, the plurality of LED elements 12 are arranged in one row, but as shown in FIG. 11, two LED substrates 10 may be arranged to arrange the plurality of LED elements 12 in two or more rows. By providing two or more rows of the LED elements 12 in this way, it is possible to increase the amount of light that irradiates the plants, and it is possible to improve efficiency and save power as a lighting fixture. In addition, by providing two or more rows, when the shelf height in multi-shelf cultivation is increased in proportion to the elongation of the plant body, it is possible to eliminate the lack of light intensity on the leaves near the base of the plant. For example, in the case of dwarf cherry tomatoes, the plant height at the first inflorescence epiphytic leaf position is about 20 cm, and the second inflorescence epiphytic leaf position is about 30 cm . To maintain this, it is desirable to increase the number of installed LED lighting devices 1 or to provide the LED lighting device 1 with two or more rows of LED elements 12 . In the example shown in FIG. 11, two LED substrates 10 are arranged to form two rows of LED elements 12. However, as shown in FIG. may

図12は、変形例における1つのアルミ基板11に複数のLED素子12を2列実装する態様を示す説明図である。なお、図12に示すアルミ基板11において、図5に示すアルミ基板11と同一の部材或いは同一機能の部材については同一の符号を付して、詳細な説明については省略する。 FIG. 12 is an explanatory diagram showing a mode in which two rows of a plurality of LED elements 12 are mounted on one aluminum substrate 11 in a modification. In the aluminum substrate 11 shown in FIG. 12, the same members or members having the same functions as those of the aluminum substrate 11 shown in FIG.

図12に示すアルミ基板11は、矩形の配線部111fを更に備えている。配線部111fは配線部111a及び配線部111bに接続されていない。図12に示すアルミ基板11は、図5に示すアルミ基板11よりも幅が大きなものとし、配線部111aと配線部111bとの間隔を拡げている。また、図12に示すアルミ基板11は、配線部111cにおいて、配線部111aの長尺方向に対して直角方向に延びる中央部を長くすることによって、配線部111aの長尺方向に沿って延びる配線部111cの一端部と他端部との間隔を拡げており、一端部が配線部111bに対向し、他端部が配線部111aに対向している。 The aluminum substrate 11 shown in FIG. 12 further includes a rectangular wiring portion 111f. The wiring portion 111f is not connected to the wiring portion 111a and the wiring portion 111b. The width of the aluminum substrate 11 shown in FIG. 12 is larger than that of the aluminum substrate 11 shown in FIG. 5, and the distance between the wiring portion 111a and the wiring portion 111b is widened. In addition, in the wiring portion 111c of the aluminum substrate 11 shown in FIG. 12, the wiring extending along the lengthwise direction of the wiring portion 111a is elongated in the central portion extending in the direction perpendicular to the lengthwise direction of the wiring portion 111a. The distance between one end and the other end of the portion 111c is widened, with one end facing the wiring portion 111b and the other end facing the wiring portion 111a.

延出部111dと最初の配線部111cの一端部との間に最初の配線部111fが配置されている。また、最初の配線部111cの他端部と2番目の配線部111cの一端部との間に配線部111fが配置されている。以下同様に、配線部111cの他端部と次の配線部111cの一端部との間に配線部111fが配置され、23番目の配線部111cの他端部と延出部111eとの間に24番目の配線部111fが配置される。このように、配線部111aと配線部111bとの間に、1つの基本配置Lあたり24個の配線部111fが一列に配置される。これにより、延出部111dと最初の配線部111fとによって実装部112が形成され、最初の配線部111fと最初の配線部111cの一端部とによって実装部112が形成される。また、最初の配線部111cの他端部と2番目の配線部111fとによって実装部112が形成され、2番目の配線部111fと2番目の配線部111cの一端部とによって実装部112が形成される。以下同様に、N-1番目(Nは3以上23以下の自然数)の配線部111cの他端部とN番目の配線部111fとによって実装部112が形成され、N番目の配線部111fとN番目の配線部111cの一端部とによって実装部112が形成される。最後に、23番目の配線部111cの他端部と24番目の配線部111fとによって実装部112が形成され、24番目の配線部111fと延出部111eとによって実装部112が形成される。 A first wiring portion 111f is arranged between the extending portion 111d and one end of the first wiring portion 111c. A wiring portion 111f is arranged between the other end of the first wiring portion 111c and one end of the second wiring portion 111c. Similarly, the wiring portion 111f is arranged between the other end of the wiring portion 111c and one end of the next wiring portion 111c, and the wiring portion 111f is arranged between the other end of the 23rd wiring portion 111c and the extending portion 111e. A 24th wiring portion 111f is arranged. In this manner, 24 wiring portions 111f are arranged in a row for one basic layout L between the wiring portions 111a and 111b. Thus, the mounting portion 112 is formed by the extending portion 111d and the first wiring portion 111f, and the mounting portion 112 is formed by the first wiring portion 111f and one end portion of the first wiring portion 111c. The mounting portion 112 is formed by the other end of the first wiring portion 111c and the second wiring portion 111f, and the mounting portion 112 is formed by the second wiring portion 111f and one end of the second wiring portion 111c. be done. Similarly, the mounting portion 112 is formed by the other end portion of the N-1th (N is a natural number of 3 or more and 23 or less) wiring portion 111c and the Nth wiring portion 111f. The mounting portion 112 is formed with one end portion of the second wiring portion 111c. Finally, the mounting portion 112 is formed by the other end portion of the 23rd wiring portion 111c and the 24th wiring portion 111f, and the mounting portion 112 is formed by the 24th wiring portion 111f and the extension portion 111e.

このように1つの配線部111fに対して2つの実装部112が並んで形成され、配線部111fが一列に並ぶことによって、2列の実装部112がアルミ基板11上に形成される。この2列の実装部112にそれぞれLED素子12を実装することにより、1つの基本配置Lにおいて48個のLED素子12が直列に接続され、基本配置Lの単位で並列接続することが可能になる。 Thus, two mounting portions 112 are formed side by side for one wiring portion 111f, and two rows of mounting portions 112 are formed on the aluminum substrate 11 by arranging the wiring portions 111f in a row. By mounting the LED elements 12 on each of the two rows of mounting portions 112, 48 LED elements 12 can be connected in series in one basic layout L, and can be connected in parallel in units of the basic layout L. .

上述した実施形態においては、赤色、青色、緑色、白色のLED素子12を1列に並べているが、その並びの中に紫外線光LED素子(近紫外線光LED素子を含む)もしくは遠赤外線光LED素子もしくはこの両方のLED素子が含まれてもよい。或いは、アルミ基板11における赤色、青色、緑色、白色のLED素子12の列以外の任意の部位に、オンオフ可能な紫外線光LED素子もしくは遠赤外線光LED素子を設けてもよい。 In the above-described embodiment, the red, blue, green, and white LED elements 12 are arranged in a row. Alternatively, both LED elements may be included. Alternatively, ultraviolet light LED elements or far-infrared light LED elements that can be turned on and off may be provided at arbitrary positions other than the rows of the red, blue, green, and white LED elements 12 on the aluminum substrate 11 .

紫外線光LED素子においては、更に、人が栽培作業に携わらない時間帯のみ紫外線光LED素子の発光時間を制御可能にしてもよい。これにより、植物に悪影響を与えない程度の紫外線照射が可能になり、植物に付着した病気の原因となる菌やウィルスもしくは虫の卵を殺すことができる。したがって、人工光植物工場内もしくは人工光型苗生産装置において農薬を使用しない無病害虫苗の栽培が可能となる。 In the ultraviolet light LED element, the light emission time of the ultraviolet light LED element may be controlled only during a period when people are not engaged in cultivation work. As a result, it is possible to irradiate ultraviolet rays to an extent that does not adversely affect plants, and to kill disease-causing fungi, viruses, or insect eggs adhering to plants. Therefore, it is possible to cultivate pest-free seedlings without using pesticides in an artificial light plant factory or an artificial light type seedling production apparatus.

また、植物工場のイチゴ栽培における受粉作業は、筆を用いた人の手による作業で行うことが可能である。しかし、筆を用いた人の手による作業では奇形果となりやすいことから、品質向上のためには受粉作業に送粉昆虫を用いることが望ましい。ここで、ミツバチ、マルハナバチなどの送粉昆虫は、近紫外線下で活発に動くことが知られている。そこで、イチゴの開花ステージにおいて近紫外線の照射が望ましい。これにより、LED照明装置1によって照明された環境下で送粉昆虫が活発に動くようになり、受粉作業を効率よく行うことが可能になる。 In addition, pollination work in strawberry cultivation in a plant factory can be performed manually using a brush. However, manual work using a brush tends to produce malformed fruits, so it is desirable to use pollinating insects for pollination in order to improve quality. Here, pollinating insects such as honeybees and bumblebees are known to move actively under near-ultraviolet rays. Therefore, near-ultraviolet irradiation is desirable at the flowering stage of strawberries. As a result, the pollinating insects move actively in the environment illuminated by the LED lighting device 1, and pollination work can be efficiently performed.

ところで、図1に示すLED照明装置1による照明は、主に可視光領域の照明で有り、可視光領域の照明は植物生長の要因となる光合成の促進に寄与している。しかし、植物の光応答には光合成以外にも光形態形成がある。光形態形成は可視光域の光質と可視光域の光質以外にも近紫外線光、遠赤外線光を含む。可視光域の光質による人工光植物栽培では植物体の葉、茎が小さくなる傾向となる。これは遠赤外線光を含まないためである。 By the way, the illumination by the LED lighting device 1 shown in FIG. 1 is mainly illumination in the visible light range, and the illumination in the visible light range contributes to promotion of photosynthesis which is a factor in plant growth. However, the photoresponse of plants includes photomorphogenesis in addition to photosynthesis. Photomorphogenesis includes near-ultraviolet light and far-infrared light in addition to the light quality in the visible light range and the light quality in the visible light range. In artificial light plant cultivation with light quality in the visible light range, the leaves and stems of the plant tend to become smaller. This is because it does not contain far-infrared light.

一般的には生育には光合成おける遠赤外線においては植物の形状を左右する葉や茎の伸長は660nm(赤色光:R)と730nm(遠赤色光:FR)を中心とする二つの波長域に含まれる光子束比(R/FR比)と密接な関係があり、この値が大きいと葉面積や茎の背丈は小さくなる傾向がある。前述したように、植物体が光合成を行うにあたり葉面積の増加(受光率)が求められる。果菜類の光合成産物の蓄積のために光合成速度を増やし受光率を高めるには遠赤外線光を照射して光子束比の値を小さくすることで葉面積の増加と茎の伸長を促進効果が期待される。この光形態形成には近紫外線利用効果がある。例えば、イチゴの果実の着色が可視光域の光質ではやや劣るが、近紫外線光を熟成期に照射することによって果実の着色を鮮やかにさせることができる。同様にリーフレタスにおいては収穫直前に近紫外線を照射することで葉先を茶褐色に着色できる。 In general, in the far infrared rays in photosynthesis for growth, the elongation of leaves and stems that affect the shape of plants is divided into two wavelength ranges centered on 660 nm (red light: R) and 730 nm (far red light: FR). There is a close relationship with the included photon flux ratio (R/FR ratio), and when this value is large, the leaf area and stem height tend to be small. As described above, an increase in leaf area (light receiving rate) is required for photosynthesis of a plant body. In order to increase the rate of photosynthesis and increase the light-receiving rate for the accumulation of photosynthetic products in fruits and vegetables, it is expected to increase the leaf area and promote stem elongation by irradiating far-infrared light and reducing the value of the photon flux ratio. be done. This photomorphogenesis has the effect of utilizing near-ultraviolet rays. For example, the coloration of strawberry fruits is slightly inferior in light quality in the visible light region, but the coloration of the fruits can be made vivid by irradiating near-ultraviolet light during the ripening stage. Similarly, in leaf lettuce, the tips of the leaves can be colored brown by irradiating them with near-ultraviolet rays just before harvesting.

また、本発明の実施形態では、植物工場のような屋内でのLED照明装置1の使用を想定しているが、屋外でのLED照明装置1の使用を除外するものではない。例えば、施設園芸ハウス栽培において、天候不良による日照不足の解消及び長日植物の開花調整として、LED照明装置1を照射してイチゴなどの果菜類及び菊などの花卉類に照射する光を補うことも可能である。 Further, in the embodiment of the present invention, it is assumed that the LED lighting device 1 is used indoors such as a plant factory, but the use of the LED lighting device 1 outdoors is not excluded. For example, in greenhouse horticulture, in order to solve the lack of sunlight due to bad weather and to adjust the flowering of long-day plants, the LED lighting device 1 is irradiated to supplement the light irradiated to fruit vegetables such as strawberries and flowering plants such as chrysanthemums. is also possible.

なお、本発明の思想の範疇において、当業者であれば各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。例えば、前述の実施の形態に対して、当業者が適宜、構成要素の追加、削除もしくは設計変更を行ったもの、又は、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。 It should be noted that within the scope of the idea of the present invention, those skilled in the art can conceive of various modifications and modifications, and it is understood that these modifications and modifications also fall within the scope of the present invention. For example, additions, deletions, or design changes of components, or additions, omissions, or changes in conditions of the above-described embodiments by those skilled in the art are also included in the gist of the present invention. is included in the scope of the present invention as long as it has

1 LED照明装置
10 LED基板
11 アルミ基板
111、111a、111b 配線部
112 実装部
12 LED素子
12B 青色LED素子
12G 緑色LED素子
12R 赤色LED素子
12W 白色LED素子
20 ヒートシンク
24 収納部
25 斜面部
26 反射面
L 基本配置
1 LED lighting device 10 LED substrate 11 aluminum substrates 111, 111a, 111b wiring portion 112 mounting portion 12 LED element 12B blue LED element 12G green LED element 12R red LED element 12W white LED element 20 heat sink 24 storage portion 25 slope portion 26 reflective surface L basic layout

Claims (7)

複数の発光素子を備え、
前記発光素子のうち被育成植物へ照射する所定発光素子において、前記所定発光素子の数N、前記所定発光素子のうち赤色に発光可能な素子の数N、前記所定発光素子のうち青色に発光可能な素子の数N、前記所定発光素子のうち緑色に発光可能な素子の数N、及び前記所定発光素子のうち白色に発光可能な素子の数Nは、式(1)ないし(5)を充足する、果菜類向け植物育成用照明装置。
=N+N+N+N (1)
28/216≦N/N≦44/216 (2)
14/216≦N/N≦22/216 (3)
14/216≦N/N≦22/216 (4)
128/216≦N /N ≦160/216 (5)
Equipped with a plurality of light emitting elements,
Among the light emitting elements, among the light emitting elements , the number of the predetermined light emitting elements that irradiate the plant to be grown is N T , the number of the predetermined light emitting elements that can emit red light, the number of the predetermined light emitting elements that can emit blue light, and the predetermined light emitting elements that emit blue light. The number of elements capable of emitting light N B , the number of elements capable of emitting green light among the predetermined light emitting elements N G , and the number of elements capable of emitting white light among the predetermined light emitting elements N W A lighting device for growing plants for fruits and vegetables, which satisfies (5).
N T = N R + N B + N G + N W (1)
28/216≦N R /N T ≦44/216 (2)
14/216≦N B /N T ≦22/216 (3)
14/216≦ NG / NT ≦22/216 (4)
128/216≦N W /N T ≦160/216 (5)
前記赤色に発光可能な素子は、赤色発光素子であり、
前記青色に発光可能な素子は、青色発光素子であり、
前記緑色に発光可能な素子は、緑色発光素子であり、
前記白色に発光可能な素子は、白色発光素子である、
請求項1記載の植物育成用照明装置。
The element capable of emitting red light is a red light emitting element,
The device capable of emitting blue light is a blue light emitting device,
The device capable of emitting green light is a green light emitting device,
The device capable of emitting white light is a white light emitting device,
The plant-growing lighting device according to claim 1 .
12個の前記所定発光素子を有する基本配置を複数配した発光部を含む、請求項2記載の植物育成用照明装置。 3. The plant-growing lighting device according to claim 2, comprising a light-emitting portion in which a plurality of basic arrangements having 12 predetermined light-emitting elements are arranged. 前記基本配置は、前記発光部において、
前記赤色発光素子が略同一の間隔で配され、
前記青色発光素子が略同一の間隔で配され、
前記緑色発光素子が略同一の間隔で配され、
前記赤色発光素子、前記青色発光素子、及び前記緑色発光素子を含む色付き発光素子が略同一の間隔で配された、
配置を構成可能な配置である、
請求項3記載の植物育成用照明装置。
The basic arrangement is, in the light emitting unit,
The red light emitting elements are arranged at approximately the same intervals,
The blue light emitting elements are arranged at substantially the same intervals,
The green light emitting elements are arranged at substantially the same intervals,
Colored light emitting elements including the red light emitting element, the blue light emitting element, and the green light emitting element are arranged at substantially the same intervals,
is a configurable arrangement,
4. The lighting device for growing plants according to claim 3.
前記発光素子から前記被育成植物への方向と異なる方向へ照射される光の少なくとも一部を前記被育成植物へ向けて反射可能な反射板を2以上備える、請求項1記載の植物育成用照明装置。 2. The plant growing lighting according to claim 1, further comprising two or more reflectors capable of reflecting at least part of the light emitted from said light emitting element in a direction different from the direction toward said plant to be grown, toward said plant to be grown. Device. 前記複数の発光素子の少なくとも一部又は全部は、直線状に配され、前記直線状に配された発光素子のそれぞれは、略同形かつ略直方体形状のチップLEDからなり、前記直線状に配された発光素子のそれぞれにおいて、前記チップLEDの正極及び負極の両端子が互いに対向する方向と前記発光素子を配する向きとが略直交する、請求項1記載の植物育成用照明装置。 At least some or all of the plurality of light emitting elements are linearly arranged, and each of the linearly arranged light emitting elements is composed of chip LEDs having substantially the same shape and a substantially rectangular parallelepiped shape, and is linearly arranged. 2. The plant-growing lighting device according to claim 1, wherein, in each of said light emitting elements, the direction in which both positive and negative terminals of said chip LED face each other is substantially orthogonal to the direction in which said light emitting elements are arranged. 紫外線光LED素子及び遠赤外光LED素子の少なくともいずれか一方を更に含む、請求項1記載の果菜類向け植物育成用照明装置。 2. The lighting device for growing fruits and vegetables according to claim 1, further comprising at least one of an ultraviolet light LED element and a far infrared light LED element.
JP2022121883A 2022-07-29 2022-07-29 Lighting equipment for growing plants for fruits and vegetables Active JP7233781B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022121883A JP7233781B1 (en) 2022-07-29 2022-07-29 Lighting equipment for growing plants for fruits and vegetables
JP2023020195A JP2024018891A (en) 2022-07-29 2023-02-13 Lighting device for growing plants for fruits and vegetables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022121883A JP7233781B1 (en) 2022-07-29 2022-07-29 Lighting equipment for growing plants for fruits and vegetables

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023020195A Division JP2024018891A (en) 2022-07-29 2023-02-13 Lighting device for growing plants for fruits and vegetables

Publications (2)

Publication Number Publication Date
JP7233781B1 true JP7233781B1 (en) 2023-03-07
JP2024018502A JP2024018502A (en) 2024-02-08

Family

ID=85460143

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022121883A Active JP7233781B1 (en) 2022-07-29 2022-07-29 Lighting equipment for growing plants for fruits and vegetables
JP2023020195A Pending JP2024018891A (en) 2022-07-29 2023-02-13 Lighting device for growing plants for fruits and vegetables

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023020195A Pending JP2024018891A (en) 2022-07-29 2023-02-13 Lighting device for growing plants for fruits and vegetables

Country Status (1)

Country Link
JP (2) JP7233781B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100287830A1 (en) 2009-05-18 2010-11-18 Sinetics Associates International Taiwan Ltd. Full spectrum sunshine simulation apparatus for developing biological growth
JP2015099674A (en) 2013-11-19 2015-05-28 株式会社オーディーシー Led lighting tube and lighting device for plant cultivation
JP3198211U (en) 2015-04-10 2015-06-18 昭和電工株式会社 Light source for plant cultivation and light source device for plant cultivation
JP2020126786A (en) 2019-02-05 2020-08-20 大日本印刷株式会社 Led illumination device for animal and plant cultivation, led illumination module for animal and plant cultivation, shelf plate for cultivation shelf for animal and plant, cultivation shelf for animal and plant, and animal and plant cultivation factory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100287830A1 (en) 2009-05-18 2010-11-18 Sinetics Associates International Taiwan Ltd. Full spectrum sunshine simulation apparatus for developing biological growth
JP2015099674A (en) 2013-11-19 2015-05-28 株式会社オーディーシー Led lighting tube and lighting device for plant cultivation
JP3198211U (en) 2015-04-10 2015-06-18 昭和電工株式会社 Light source for plant cultivation and light source device for plant cultivation
JP2020126786A (en) 2019-02-05 2020-08-20 大日本印刷株式会社 Led illumination device for animal and plant cultivation, led illumination module for animal and plant cultivation, shelf plate for cultivation shelf for animal and plant, cultivation shelf for animal and plant, and animal and plant cultivation factory

Also Published As

Publication number Publication date
JP2024018502A (en) 2024-02-08
JP2024018891A (en) 2024-02-08

Similar Documents

Publication Publication Date Title
US9854749B2 (en) Plant growth lighting device and method
RU2636955C2 (en) Method for increasing nutritional value of edible plant part by means of light and lighting appliance designed for it
US10448579B2 (en) Lighting device capable of providing horticulture light and method of illuminating horticulture
Deram et al. Supplemental lighting orientation and red-to-blue ratio of light-emitting diodes for greenhouse tomato production
JP2020115880A (en) Photon modulation management system
US9549507B2 (en) Method for cultivating plant
US20040109302A1 (en) Method of cultivating plant and illuminator for cultivating plant
US20150313091A1 (en) Method for cultivating fruit vegetable
JP5779678B2 (en) Lamp for plant cultivation and plant cultivation method using the same
CN110234222A (en) The cultural method of plantling is carried out by artificial light
CN116171753B (en) A lighting device and method for mobile animal and plant breeding equipment
Lalge et al. The effects of red, blue and white light on the growth and development of Cannabis sativa L
US20140215913A1 (en) Method for cultivating plant
Lu et al. Supplemental lighting for greenhouse-grown fruiting vegetables
Dyśko et al. Effects of LED and HPS lighting on the growth, seedling morphology and yield of greenhouse tomatoes and cucumbers.
Tymoszuk et al. Application of wide-spectrum light-emitting diodes in the indoor production of cucumber and tomato seedlings
EP3968755B1 (en) Plant illumination method and system
JP7233781B1 (en) Lighting equipment for growing plants for fruits and vegetables
Rakutko et al. Comparative evaluation of tomato transplant growth parameters under led, fluorescent and high-pressure sodium lamps
JP2001258389A (en) Plant cultivation method
US9392751B2 (en) Method for cultivating plant
Stadler Áhrif LED lýsingar á vöxt, uppskeru og gæði gróðurhúsajarðarberja að vetri
Runkle Manipulating light quality to elicit desirable plant growth and flowering responses
JP2017046651A (en) Plant cultivation luminaire and plant cultivation method using the same
Stadler Áhrif LED topplýsingar á forræktun tómata, agúrku og papriku

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230215

R150 Certificate of patent or registration of utility model

Ref document number: 7233781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150