[go: up one dir, main page]

JP7215433B2 - battery - Google Patents

battery Download PDF

Info

Publication number
JP7215433B2
JP7215433B2 JP2020004472A JP2020004472A JP7215433B2 JP 7215433 B2 JP7215433 B2 JP 7215433B2 JP 2020004472 A JP2020004472 A JP 2020004472A JP 2020004472 A JP2020004472 A JP 2020004472A JP 7215433 B2 JP7215433 B2 JP 7215433B2
Authority
JP
Japan
Prior art keywords
electrode
tab
insulating
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020004472A
Other languages
Japanese (ja)
Other versions
JP2021111589A (en
Inventor
泰正 小熊
学 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020004472A priority Critical patent/JP7215433B2/en
Publication of JP2021111589A publication Critical patent/JP2021111589A/en
Application granted granted Critical
Publication of JP7215433B2 publication Critical patent/JP7215433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本願は電池を開示する。 The present application discloses a battery.

複数の電極体を直列接続する際、短絡防止のため、電極体の間に絶縁体を配置する場合がある。例えば、特許文献1に開示された技術では、導電性の接続部材と絶縁性の接続部材と絶縁性の固定部材とを組み合わせて用いることで、電極体のタブ同士の直列接続と電極体のタブ間の絶縁とを両立している。また、特許文献2には、正極タブと負極タブとを超音波溶接する技術が開示されている。さらに、特許文献3には、はんだ等の導電性材料を用いて電池の接続部を形成する技術が開示されている。 When connecting a plurality of electrode bodies in series, an insulator may be placed between the electrode bodies to prevent a short circuit. For example, in the technique disclosed in Patent Document 1, by using a combination of a conductive connecting member, an insulating connecting member, and an insulating fixing member, the tabs of the electrode body are connected in series and the tabs of the electrode body are connected. It is compatible with insulation between Further, Patent Literature 2 discloses a technique of ultrasonically welding a positive electrode tab and a negative electrode tab. Furthermore, Patent Document 3 discloses a technique of forming a connection portion of a battery using a conductive material such as solder.

特開2016-136504号公報JP 2016-136504 A 特開2014―167881号公報JP 2014-167881 A 特開2017-152415号公報JP 2017-152415 A

特許文献1に開示された技術のように接続部材や固定部材を別途用いる場合、電池の重量及び体積が大きくなってしまう。特許文献2に開示された技術のように超音波溶接を行うと、絶縁部材が破損する虞がある。特許文献3に開示された技術のようにはんだ等の導電性材料を用いてタブの接続を行うことで、電池の重量及び体積の増加を抑えることができ、絶縁部材の破損も抑制できるものと考えられる。しかしながら、加熱によってはんだを溶融させてタブを接続する際、タブから電極部へと伝熱して、電池性能が劣化する虞がある。 When a connection member and a fixing member are separately used as in the technology disclosed in Patent Document 1, the weight and volume of the battery are increased. If ultrasonic welding is performed as in the technique disclosed in Patent Document 2, the insulating member may be damaged. By connecting the tabs using a conductive material such as solder as in the technique disclosed in Patent Document 3, it is possible to suppress an increase in the weight and volume of the battery, and to suppress damage to the insulating member. Conceivable. However, when the tabs are connected by melting the solder by heating, the heat may be transferred from the tabs to the electrodes, degrading the battery performance.

本願は上記課題を解決するための手段の一つとして、
複数の電極体と、前記複数の電極体の間の各々に配置された絶縁体とを備え、
前記電極体が、電極部と、前記電極部から突出した正極タブ及び負極タブとを備え、
前記絶縁体が、電極部絶縁部と、前記電極部絶縁部から突出した絶縁タブとを備え、
前記電極部絶縁部の熱伝導率よりも前記絶縁タブの熱伝導率のほうが高く、
一の前記絶縁体を挟んで隣接する一方の前記電極体を第1電極体とし、他方の前記電極体を第2電極体とした場合に、前記第1電極体の前記正極タブと前記第2電極体の前記負極タブとが加熱接合され、前記第1電極体の負極タブと前記第2電極体の正極タブとの間に前記絶縁体の前記絶縁タブが配置され、前記第1電極体の前記電極部と前記第2電極体の前記電極部との間に前記絶縁体の前記電極部絶縁部が配置される、
電池を開示する。
As one means for solving the above problems, the present application provides
comprising a plurality of electrode bodies and an insulator disposed between each of the plurality of electrode bodies;
The electrode body includes an electrode portion, and a positive electrode tab and a negative electrode tab protruding from the electrode portion,
The insulator comprises an electrode part insulating part and an insulating tab protruding from the electrode part insulating part,
The thermal conductivity of the insulating tab is higher than the thermal conductivity of the electrode portion insulating portion,
When one of the electrode bodies adjacent to each other with one of the insulators interposed therebetween is a first electrode body and the other electrode body is a second electrode body, the positive electrode tab of the first electrode body and the second electrode body The negative electrode tab of the electrode body is joined by heating, the insulating tab of the insulator is disposed between the negative electrode tab of the first electrode body and the positive tab of the second electrode body, and the first electrode body is The electrode part insulating part of the insulator is arranged between the electrode part and the electrode part of the second electrode body,
Disclose the battery.

本開示の電池によれば、正極タブと負極タブとが加熱接合されており、接続部材や固定部材を別途用いる必要がない。また、電極体の間に配置される絶縁体において、電極部絶縁部よりも絶縁タブのほうが高い熱伝導率を有することから、加熱接合の際、電極体の電極部よりもタブ部が優先的に加熱され、短時間で加熱接合が可能であり、電極部への伝熱を抑制して電池性能の劣化を抑制することができる。 According to the battery of the present disclosure, the positive electrode tab and the negative electrode tab are heat-bonded, and there is no need to separately use a connecting member or a fixing member. In addition, in the insulator arranged between the electrode bodies, the insulating tab has a higher thermal conductivity than the insulating part of the electrode part. It is possible to heat and bond in a short time, and it is possible to suppress heat transfer to the electrode part and suppress deterioration of battery performance.

電池の各構成要素を分解して示す概略図である。両矢印を示したタブ同士が加熱接合されている。It is the schematic which shows each component of a battery disassembled. The tabs indicated by double arrows are heat-bonded. タブが突出する電池側面の積層構造を示す概略図である。両矢印を示したタブ同士が加熱接合されている。FIG. 4 is a schematic diagram showing a stacking structure of a side surface of a battery from which tabs protrude; The tabs indicated by double arrows are heat-bonded. 電極体の外観を示す概略図である。FIG. 4 is a schematic diagram showing the appearance of an electrode assembly; タブが突出する電極体側面の積層構造を示す概略図である。FIG. 4 is a schematic diagram showing a laminated structure on the side surface of an electrode body from which a tab protrudes; 絶縁体の面形状を示す概略図である。It is a schematic diagram showing a surface shape of an insulator. 絶縁タブが突出する絶縁体側部の構造を示す概略図である。FIG. 4 is a schematic diagram showing the structure of the insulator side from which the insulating tab protrudes; 電池の製造方法を示す概略図である。It is a schematic diagram showing a manufacturing method of a battery.

1.電池
図1~6に本開示の電池100の構成を概略的に示す。図1及び2に示されるように、電池100は、複数の電極体10と、複数の電極体10の間の各々に配置された絶縁体20とを備える。図2~4に示されるように、電極体10は、電極部10aと、電極部10aから突出した正極タブ10b及び負極タブ10cとを備える。図2、5及び6に示されるように、絶縁体20は、電極部絶縁部20aと、電極部絶縁部20aから突出した絶縁タブ20bとを備える。ここで、電極部絶縁部20aの熱伝導率よりも絶縁タブ20bの熱伝導率のほうが高い。また、図1及び2に示されるように、電池100においては、一の絶縁体20を挟んで隣接する一方の電極体10を第1電極体(X)とし、他方の電極体10を第2電極体(Y)とした場合に、第1電極体(X)の正極タブ10bと第2電極体(Y)の負極タブ10cとが加熱接合され、第1電極体(X)の負極タブ10cと第2電極体(Y)の正極タブ10bとの間に絶縁体20の絶縁タブ20bが配置され、第1電極体(X)の電極部10aと第2電極体(Y)の電極部10aとの間に絶縁体20の電極部絶縁部20aが配置される。
1. Battery FIGS. 1-6 schematically illustrate the construction of a battery 100 of the present disclosure. As shown in FIGS. 1 and 2 , battery 100 includes a plurality of electrode bodies 10 and insulators 20 disposed between each of the plurality of electrode bodies 10 . As shown in FIGS. 2 to 4, the electrode body 10 includes an electrode portion 10a, and a positive electrode tab 10b and a negative electrode tab 10c projecting from the electrode portion 10a. As shown in FIGS. 2, 5 and 6, the insulator 20 includes an electrode section insulating portion 20a and an insulating tab 20b protruding from the electrode section insulating portion 20a. Here, the thermal conductivity of the insulating tab 20b is higher than the thermal conductivity of the electrode insulating portion 20a. Further, as shown in FIGS. 1 and 2, in the battery 100, one of the electrode bodies 10 adjacent to each other with one insulator 20 interposed therebetween is the first electrode body (X), and the other electrode body 10 is the second electrode body (X). When the electrode body (Y) is formed, the positive electrode tab 10b of the first electrode body (X) and the negative electrode tab 10c of the second electrode body (Y) are joined by heating, and the negative electrode tab 10c of the first electrode body (X) is joined. and the positive electrode tab 10b of the second electrode body (Y). and the electrode portion insulating portion 20a of the insulator 20 is arranged between them.

1.1 電極体
図2~4に示されるように、電極体10は、電極部10aと、電極部10aから突出した正極タブ10b及び負極タブ10cとを備える。
1.1 Electrode Body As shown in FIGS. 2 to 4, the electrode body 10 includes an electrode portion 10a, and a positive electrode tab 10b and a negative electrode tab 10c projecting from the electrode portion 10a.

1.1.1 電極部
電極部10aにおいて電気化学的な反応を生じさせて発電を行う。電極部10aの構成は従来と同様でよい。例えば、図4に示されるように、電極部10aは正極タブ10bを有する正極集電体1、負極タブ10cを有する負極集電体2、正極活物質層3、負極活物質層4及び電解質層5を備えてもよい。
1.1.1 Electrode Section Electricity is generated by causing an electrochemical reaction in the electrode section 10a. The configuration of the electrode portion 10a may be the same as the conventional one. For example, as shown in FIG. 4, the electrode part 10a includes a positive electrode current collector 1 having a positive electrode tab 10b, a negative electrode current collector 2 having a negative electrode tab 10c, a positive electrode active material layer 3, a negative electrode active material layer 4, and an electrolyte layer. 5 may be provided.

正極集電体1は、金属箔や金属メッシュ等により構成すればよい。取扱い性等に優れる観点からは、正極集電体1を金属箔としてもよい。正極集電体1は複数枚の金属箔からなっていてもよい。正極集電体1を構成する金属としては、Cu、Ni、Cr、Au、Pt、Ag、Al、Fe、Ti、Zn、Co、ステンレス鋼等が挙げられる。正極集電体1は、その表面に、抵抗を調整すること等を目的として、何らかのコート層を有していてもよい。また、正極集電体1が複数枚の金属箔からなる場合、当該複数枚の金属箔間に何らかの層を有していてもよい。正極集電体1の厚みは特に限定されるものではない。例えば、0.1μm以上であってもよいし、1μm以上であってもよく、1mm以下であってもよいし、100μm以下であってもよい。 The positive electrode current collector 1 may be made of metal foil, metal mesh, or the like. From the standpoint of excellent handleability, the positive electrode current collector 1 may be a metal foil. The positive electrode current collector 1 may consist of a plurality of sheets of metal foil. Examples of metals forming the positive electrode current collector 1 include Cu, Ni, Cr, Au, Pt, Ag, Al, Fe, Ti, Zn, Co, stainless steel, and the like. The positive electrode current collector 1 may have some kind of coating layer on its surface for the purpose of adjusting the resistance. Moreover, when the positive electrode current collector 1 is composed of a plurality of metal foils, there may be some layer between the plurality of metal foils. The thickness of the positive electrode current collector 1 is not particularly limited. For example, it may be 0.1 μm or more, 1 μm or more, 1 mm or less, or 100 μm or less.

負極集電体2は、金属箔や金属メッシュ等により構成すればよい。取扱い性等に優れる観点からは、負極集電体2を金属箔としてもよい。負極集電体2は複数枚の金属箔からなっていてもよい。負極集電体2を構成する金属としては、Cu、Ni、Cr、Au、Pt、Ag、Al、Fe、Ti、Zn、Co、ステンレス鋼等が挙げられる。負極集電体2と正極集電体1とは同じ材質からなるものであってもよいし、異なる材質からなるものであってもよい。負極集電体2は、その表面に、抵抗を調整すること等を目的として、何らかのコート層を有していてもよい。また、負極集電体2が複数枚の金属箔からなる場合、当該複数枚の金属箔間に何らかの層を有していてもよい。負極集電体2の厚みは特に限定されるものではない。例えば、0.1μm以上であってもよいし、1μm以上であってもよく、1mm以下であってもよいし、100μm以下であってもよい。 The negative electrode current collector 2 may be made of metal foil, metal mesh, or the like. From the viewpoint of excellent handleability, etc., the negative electrode current collector 2 may be a metal foil. The negative electrode current collector 2 may consist of a plurality of sheets of metal foil. Examples of metals forming the negative electrode current collector 2 include Cu, Ni, Cr, Au, Pt, Ag, Al, Fe, Ti, Zn, Co, and stainless steel. The negative electrode current collector 2 and the positive electrode current collector 1 may be made of the same material, or may be made of different materials. The negative electrode current collector 2 may have some kind of coating layer on its surface for the purpose of adjusting the resistance. Moreover, when the negative electrode current collector 2 is composed of a plurality of metal foils, some layer may be provided between the plurality of metal foils. The thickness of the negative electrode current collector 2 is not particularly limited. For example, it may be 0.1 μm or more, 1 μm or more, 1 mm or less, or 100 μm or less.

正極活物質層3は、少なくとも正極活物質を含む層である。電池100を固体電池とする場合は、正極活物質に加えて、さらに任意に固体電解質、バインダー及び導電助剤等を含ませることができる。また、電池100を電解液系の電池とする場合は、正極活物質に加えて、さらに任意にバインダー及び導電助剤等を含ませることができる。正極活物質は公知の活物質を用いればよい。公知の活物質のうち、所定のイオンを吸蔵放出する電位(充放電電位)の異なる2つの物質を選択し、貴な電位を示す物質を正極活物質とし、卑な電位を示す物質を後述の負極活物質として、それぞれ用いることができる。例えば、リチウムイオン電池を構成する場合は、正極活物質としてコバルト酸リチウム、ニッケル酸リチウム、LiNi1/3Co1/3Mn1/3、マンガン酸リチウム、スピネル系リチウム化合物等の各種のリチウム含有複合酸化物を用いることができる。電池100を固体電池とする場合、正極活物質は表面がニオブ酸リチウム層やチタン酸リチウム層やリン酸リチウム層等の酸化物層で被覆されていてもよい。また、電池100を固体電池とする場合、固体電解質は無機固体電解質であってもよい。無機固体電解質は有機ポリマー電解質と比較してイオン伝導度が高い。また、有機ポリマー電解質と比較して、耐熱性に優れる。さらに、有機ポリマー電解質と比較して、硬質で剛性に優れ、電池100をより容易に構成できる。無機固体電解質としては、例えば、ランタンジルコン酸リチウム、LiPON、Li1+XAlGe2-X(PO、Li-SiO系ガラス、Li-Al-S-O系ガラス等の酸化物固体電解質;LiS-P、LiS-SiS、LiI-LiS-SiS、LiI-SiS-P、LiS-P-LiI-LiBr、LiI-LiS-P、LiI-LiS-P、LiI-LiPO-P、LiS-P-GeS等の硫化物固体電解質を例示することができる。特に、硫化物固体電解質が好ましく、LiS-Pを含む硫化物固体電解質がより好ましい。正極活物質層3に含まれ得るバインダーとしては、例えば、ブタジエンゴム(BR)系バインダー、ブチレンゴム(IIR)系バインダー、アクリレートブタジエンゴム(ABR)系バインダー、ポリフッ化ビニリデン(PVdF)系バインダー、ポリテトラフルオロエチレン(PTFE)系バインダー等が挙げられる。正極活物質層3に含まれ得る導電助剤としてはアセチレンブラックやケッチェンブラック等の炭素材料やニッケル、アルミニウム、ステンレス鋼等の金属材料が挙げられる。正極活物質層3における各成分の含有量は従来と同様とすればよい。正極活物質層3の形状も従来と同様とすればよい。特に、電池100を容易に構成できる観点から、シート状の正極活物質層3が好ましい。正極活物質層3の厚みは、特に限定されるものではない。例えば、0.1μm以上2mm以下としてもよい。下限は1μm以上であってもよく、上限は1mm以下であってもよい。 The positive electrode active material layer 3 is a layer containing at least a positive electrode active material. When the battery 100 is a solid battery, in addition to the positive electrode active material, it can optionally contain a solid electrolyte, a binder, a conductive aid, and the like. Moreover, when the battery 100 is an electrolytic solution-based battery, in addition to the positive electrode active material, a binder, a conductive aid, and the like can be optionally included. A known active material may be used as the positive electrode active material. Among known active materials, two substances having different potentials (charge/discharge potentials) at which predetermined ions are occluded and released are selected. Each can be used as a negative electrode active material. For example, when constructing a lithium ion battery, various kinds of lithium cobalt oxide, lithium nickel oxide, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , lithium manganate, spinel-based lithium compounds, etc. are used as the positive electrode active material. A lithium-containing composite oxide can be used. When the battery 100 is a solid battery, the surface of the positive electrode active material may be covered with an oxide layer such as a lithium niobate layer, a lithium titanate layer, or a lithium phosphate layer. Moreover, when the battery 100 is a solid battery, the solid electrolyte may be an inorganic solid electrolyte. Inorganic solid electrolytes have higher ionic conductivity than organic polymer electrolytes. In addition, it has excellent heat resistance as compared with organic polymer electrolytes. Furthermore, compared to the organic polymer electrolyte, it is hard and excellent in rigidity, and the battery 100 can be constructed more easily. Examples of inorganic solid electrolytes include oxide solid electrolytes such as lithium lanthanum zirconate, LiPON, Li 1+X Al X Ge 2-X (PO 4 ) 3 , Li—SiO glass, and Li—Al—S—O glass. Li2SP2S5 , Li2S - SiS2 , LiI - Li2S - SiS2 , LiI - Si2SP2S5 , Li2SP2S5 - LiI - LiBr, Sulfide solids such as LiI-Li 2 SP 2 S 5 , LiI-Li 2 SP 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 -GeS 2 Electrolytes can be exemplified. In particular, a sulfide solid electrolyte is preferred, and a sulfide solid electrolyte containing Li 2 SP 2 S 5 is more preferred. Examples of binders that can be contained in the positive electrode active material layer 3 include butadiene rubber (BR) binders, butylene rubber (IIR) binders, acrylate butadiene rubber (ABR) binders, polyvinylidene fluoride (PVdF) binders, polytetra Examples include fluoroethylene (PTFE) binders. Examples of conductive aids that can be contained in the positive electrode active material layer 3 include carbon materials such as acetylene black and Ketjenblack, and metal materials such as nickel, aluminum, and stainless steel. The content of each component in the positive electrode active material layer 3 may be the same as the conventional one. The shape of the positive electrode active material layer 3 may also be the same as the conventional one. In particular, the sheet-like positive electrode active material layer 3 is preferable from the viewpoint that the battery 100 can be easily constructed. The thickness of the positive electrode active material layer 3 is not particularly limited. For example, it may be 0.1 μm or more and 2 mm or less. The lower limit may be 1 μm or more, and the upper limit may be 1 mm or less.

負極活物質層4は、少なくとも負極活物質を含む層である。電池100を固体電池とする場合は、負極活物質に加えて、さらに任意に固体電解質、バインダー及び導電助剤等を含ませることができる。また、電池100を電解液系の電池とする場合は、負極活物質に加えて、さらに任意にバインダー及び導電助剤等を含ませることができる。負極活物質は公知の活物質を用いればよい。例えば、リチウムイオン電池を構成する場合は、負極活物質としてSiやSi合金や酸化ケイ素等のシリコン系活物質;グラファイトやハードカーボン等の炭素系活物質;チタン酸リチウム等の各種酸化物系活物質;金属リチウムやリチウム合金等を用いることができる。固体電解質、バインダー及び導電助剤は正極活物質層3に用いられるものとして例示したものの中から適宜選択して用いることができる。負極活物質層4における各成分の含有量は従来と同様とすればよい。負極活物質層4の形状も従来と同様とすればよい。特に、電池100を容易に構成できる観点から、シート状の負極活物質層4が好ましい。負極活物質層4の厚みは、特に限定されるものではない。例えば、0.1μm以上2mm以下としてもよい。下限は1μm以上であってもよく、上限は1mm以下であってもよい。 The negative electrode active material layer 4 is a layer containing at least a negative electrode active material. When the battery 100 is a solid battery, in addition to the negative electrode active material, it can optionally contain a solid electrolyte, a binder, a conductive aid, and the like. Further, when the battery 100 is an electrolytic solution-based battery, in addition to the negative electrode active material, a binder, a conductive aid, and the like can be optionally included. A known active material may be used as the negative electrode active material. For example, when constructing a lithium ion battery, silicon-based active materials such as Si, Si alloys and silicon oxides as negative electrode active materials; carbon-based active materials such as graphite and hard carbon; various oxide-based active materials such as lithium titanate. Substance: metal lithium, lithium alloy, or the like can be used. The solid electrolyte, the binder, and the conductive aid can be appropriately selected and used from those exemplified as those used for the positive electrode active material layer 3 . The content of each component in the negative electrode active material layer 4 may be the same as the conventional one. The shape of the negative electrode active material layer 4 may also be the same as the conventional one. In particular, the sheet-like negative electrode active material layer 4 is preferable from the viewpoint of facilitating the construction of the battery 100 . The thickness of the negative electrode active material layer 4 is not particularly limited. For example, it may be 0.1 μm or more and 2 mm or less. The lower limit may be 1 μm or more, and the upper limit may be 1 mm or less.

電解質層5は、少なくとも電解質を含む層である。電池100を固体電池とする場合、電解質層5は、固体電解質と任意にバインダーとを含む固体電解質層とすることができる。固体電解質は上述した無機固体電解質、特に硫化物固体電解質が好ましい。バインダーは正極活物質層3に用いられるものとして例示したものの中から適宜選択して用いることができる。固体電解質層における各成分の含有量は従来と同様とすればよい。固体電解質層の形状も従来と同様とすればよい。特に、電池100を容易に構成できる観点から、シート状の固体電解質層が好ましい。この場合、固体電解質層の厚みは、例えば、0.1μm以上2mm以下としてもよい。下限は1μm以上であってもよく、上限は1mm以下であってもよい。一方で、電池100を電解液系電池とする場合、電解質層5は電解液とセパレータとを含み得る。電解液やセパレータは公知のものを用いればよい。 The electrolyte layer 5 is a layer containing at least an electrolyte. If the battery 100 is a solid battery, the electrolyte layer 5 can be a solid electrolyte layer containing a solid electrolyte and optionally a binder. The solid electrolyte is preferably the above inorganic solid electrolyte, particularly a sulfide solid electrolyte. The binder can be appropriately selected and used from those exemplified as those used for the positive electrode active material layer 3 . The content of each component in the solid electrolyte layer may be the same as in the conventional case. The shape of the solid electrolyte layer may also be the same as the conventional one. In particular, a sheet-like solid electrolyte layer is preferable from the viewpoint that the battery 100 can be easily constructed. In this case, the thickness of the solid electrolyte layer may be, for example, 0.1 μm or more and 2 mm or less. The lower limit may be 1 μm or more, and the upper limit may be 1 mm or less. On the other hand, when the battery 100 is an electrolyte-based battery, the electrolyte layer 5 may include an electrolyte and a separator. Known electrolytes and separators may be used.

1.1.2 正極タブ
正極タブ10bの材質は、正極集電体1の材質と同じであってもよいし、異なっていてもよい。正極タブ10bの厚みは、正極集電体1の厚みと同じであってもよいし、異なっていてもよい。正極タブ10bは正極集電体1から突出した形状であればよい。正極タブ10bの突出形状は、多角形状、半円形状、線状等、種々の形状を採用し得る。正極集電体1に正極タブ10bを設ける方法は特に限定されるものではない。例えば、正極集電体1の一部を切り欠くことで正極タブ10bを形成してもよいし、正極集電体1に正極タブ10bを溶接等によって接合してもよい。
1.1.2 Positive Electrode Tab The material of the positive electrode tab 10b may be the same as that of the positive electrode current collector 1, or may be different. The thickness of the positive electrode tab 10b may be the same as the thickness of the positive electrode current collector 1, or may be different. The positive electrode tab 10b may have any shape as long as it protrudes from the positive electrode current collector 1 . Various shapes such as a polygonal shape, a semicircular shape, and a linear shape can be adopted for the projecting shape of the positive electrode tab 10b. The method of providing the positive electrode tab 10b on the positive electrode current collector 1 is not particularly limited. For example, the positive electrode tab 10b may be formed by partially notching the positive electrode current collector 1, or the positive electrode tab 10b may be joined to the positive electrode current collector 1 by welding or the like.

1.1.3 負極タブ
負極タブ10cの材質は、負極集電体2の材質と同じであってもよいし、異なっていてもよい。負極タブ10cの厚みは、負極集電体1の厚みと同じであってもよいし、異なっていてもよい。負極タブ10cは負極集電体2から突出した形状であればよい。負極タブ10cの突出形状は、多角形状、半円形状、線状等、種々の形状を採用し得る。負極集電体2に負極タブ10cを設ける方法は特に限定されるものではない。例えば、負極集電体2の一部を切り欠くことで負極タブ10cを形成してもよいし、負極集電体2に負極タブ10cを溶接等によって接合してもよい。
1.1.3 Negative Electrode Tab The material of the negative electrode tab 10c may be the same as that of the negative electrode current collector 2, or may be different. The thickness of the negative electrode tab 10c may be the same as or different from the thickness of the negative electrode current collector 1 . The negative electrode tab 10c may have any shape as long as it protrudes from the negative electrode current collector 2 . Various shapes, such as a polygonal shape, a semicircular shape, and a linear shape, can be adopted for the projecting shape of the negative electrode tab 10c. The method of providing the negative electrode tab 10c on the negative electrode current collector 2 is not particularly limited. For example, the negative electrode tab 10c may be formed by partially notching the negative electrode current collector 2, or the negative electrode tab 10c may be joined to the negative electrode current collector 2 by welding or the like.

1.1.4 補足
電極体10は公知の方法により作製可能である。全固体電池とする場合は、例えば、集電体の一面側に乾式又は湿式法で活物質層Aを積層し、当該活物質層Aの一面側に乾式又は湿式法で固体電解質層を積層し、当該固体電解質層の一面側に乾式又は湿式法で活物質層Bを積層し、さらに活物質層Bの一面側に集電体を積層することで、電極体10が得られる。各層の積層順はこれに限定されるものではない。
1.1.4 Supplementary The electrode body 10 can be produced by a known method. In the case of an all-solid-state battery, for example, an active material layer A is laminated on one side of a current collector by a dry or wet method, and a solid electrolyte layer is laminated on one side of the active material layer A by a dry or wet method. , the electrode body 10 is obtained by laminating the active material layer B on one side of the solid electrolyte layer by a dry or wet method, and further laminating a current collector on one side of the active material layer B. The stacking order of each layer is not limited to this.

尚、図1~4においては、1つの負極集電体2の両面に負極活物質層4、4が設けられ、各々の負極活物質層4、4に電解質層5、5が設けられ、各々の電解質層5、5に正極活物質層3、3が設けられ、各々の正極活物質層3、3に正極集電体1、1が設けられる形態を例示したが、電極体10の形態はこれに限定されるものではない。1つの正極集電体1の両面に正極活物質層3、3、電解質層5、5、負極活物質層4、4及び負極集電体2、2を順次設けて電極体を構成してもよいし、1つの正極集電体層1と1つの負極集電体2との間に正極活物質層3、固体電解質層5及び負極活物質層4を設けて電極体を構成してもよい。或いは、正極集電体層1と負極集電体2との間にバイポーラ集電体を設けてバイポーラ電極体を構成してもよい。 1 to 4, the negative electrode active material layers 4, 4 are provided on both sides of one negative electrode current collector 2, and the electrolyte layers 5, 5 are provided on the respective negative electrode active material layers 4, 4. The positive electrode active material layers 3, 3 are provided on the electrolyte layers 5, 5, and the positive electrode current collectors 1, 1 are provided on the positive electrode active material layers 3, 3, respectively. It is not limited to this. An electrode body may be constructed by sequentially providing positive electrode active material layers 3, 3, electrolyte layers 5, 5, negative electrode active material layers 4, 4, and negative electrode current collectors 2, 2 on both sides of one positive electrode current collector 1. Alternatively, the electrode body may be configured by providing a positive electrode active material layer 3, a solid electrolyte layer 5, and a negative electrode active material layer 4 between one positive electrode current collector layer 1 and one negative electrode current collector 2. . Alternatively, a bipolar electrode body may be configured by providing a bipolar current collector between the positive electrode current collector layer 1 and the negative electrode current collector 2 .

1.2.絶縁体
図2、5及び6に示されるように、絶縁体20は電極部絶縁部20aと、電極部絶縁部20aから突出した絶縁タブ20bとを備える。ここで、電極部絶縁部20aの熱伝導率よりも絶縁タブ20bの熱伝導率のほうが高い。
1.2. Insulator As shown in FIGS. 2, 5 and 6, the insulator 20 comprises an electrode section insulation portion 20a and an insulation tab 20b protruding from the electrode section insulation portion 20a. Here, the thermal conductivity of the insulating tab 20b is higher than the thermal conductivity of the electrode insulating portion 20a.

1.2.1 電極部絶縁部
電極部絶縁部20aは、電極体10の電極部10a間に配置され、電極部10a同士の導通を防ぐ。電極部10aには拘束圧力がかかる場合があり、この場合、電極部絶縁部20aは、高い荷重がかかった中でも破損しないことが求められる。また、電極体10同士の伝熱を抑制することを考慮して、電極部絶縁部20aを大きな熱抵抗を有する材料によって構成してもよい。例えば、ポリエチレンテレフタラートやポリイミド等の樹脂によって電極部絶縁部20aを構成することができる。電極部絶縁部20aの形状は、例えば、シート状とすることができる。電極部絶縁部20aの厚みは、電極部10a同士の接触及び導通を防ぐことが可能である限り、特に限定されるものではない。例えば、電極部絶縁部20aの厚みを0.1μm以上2mm以下としてもよい。電極部絶縁部20aを構成する材料の熱伝導率は例えば0.1W/mK以上1.0W/mK以下であってもよい。
1.2.1 Electrode Insulating Portion The electrode insulating portion 20a is arranged between the electrode portions 10a of the electrode body 10 to prevent conduction between the electrode portions 10a. Confining pressure may be applied to the electrode portion 10a, and in this case, the electrode portion insulating portion 20a is required not to be damaged even when a high load is applied. In consideration of suppressing heat transfer between the electrode bodies 10, the electrode section insulating section 20a may be made of a material having a large thermal resistance. For example, the electrode section insulating section 20a can be made of a resin such as polyethylene terephthalate or polyimide. The shape of the electrode portion insulating portion 20a can be, for example, a sheet shape. The thickness of the electrode insulating portion 20a is not particularly limited as long as it is possible to prevent contact and conduction between the electrode portions 10a. For example, the thickness of the electrode portion insulating portion 20a may be 0.1 μm or more and 2 mm or less. The thermal conductivity of the material forming the electrode insulating portion 20a may be, for example, 0.1 W/mK or more and 1.0 W/mK or less.

1.2.2 絶縁タブ
絶縁タブ20bは、電極体10のタブ間に配置され、タブ10b、10c同士の導通を防ぐ。絶縁タブ20bは絶縁性を有するとともに、電極部絶縁部20aよりも熱伝導率の高い材質からなる。例えば、熱伝導フィラーと樹脂との混合物によって絶縁タブ20bを構成することができる。熱伝導フィラーとしてはアルミナ粒子等の無機酸化物粒子が挙げられる。樹脂としてはポリエチレンテレフタラートやポリイミドやシリコーン等が挙げられる。絶縁タブ20bは電極部絶縁部20aに対して突出していればよく、その突出形状は、多角形状、半円形状等、種々の形状を採用し得る。絶縁タブ20bの形状は、タブ10b、10c同士の導通を防ぐことが可能なように、タブ10b、10cと対応する形状を有していてもよい。また、絶縁タブ20bはタブ10b、10cよりも大きな面積を有していてもよい。絶縁タブ20bの厚みは、電極部絶縁部20aの厚みと同じであってもよいし、異なっていてもよい。絶縁タブ20bの厚みは、電極部絶縁部20aの厚み以下であってもよい。絶縁タブ20bを構成する材料の熱伝導率は例えば1.0W/mK超10.0W/mK以下であってもよい。
1.2.2 Insulating Tab The insulating tab 20b is arranged between the tabs of the electrode body 10 to prevent conduction between the tabs 10b and 10c. The insulating tab 20b has insulating properties and is made of a material having a higher thermal conductivity than the electrode insulating portion 20a. For example, the insulating tab 20b can be made of a mixture of thermally conductive filler and resin. Thermally conductive fillers include inorganic oxide particles such as alumina particles. Examples of resins include polyethylene terephthalate, polyimide, and silicone. The insulating tab 20b only needs to protrude with respect to the electrode part insulating portion 20a, and various shapes such as a polygonal shape and a semicircular shape can be adopted for the projecting shape. The insulating tab 20b may have a shape corresponding to that of the tabs 10b and 10c so as to prevent conduction between the tabs 10b and 10c. Also, insulating tab 20b may have a larger area than tabs 10b and 10c. The thickness of the insulating tab 20b may be the same as or different from the thickness of the electrode insulating portion 20a. The thickness of the insulating tab 20b may be less than or equal to the thickness of the electrode insulating portion 20a. The thermal conductivity of the material forming the insulating tab 20b may be, for example, more than 1.0 W/mK and less than or equal to 10.0 W/mK.

1.2.3 補足
絶縁体20は公知の手段・方法により作製可能である。例えば、樹脂をフィルム状に成形して電極部絶縁部20aを得る一方、熱伝導フィラー含有樹脂組成物をタブ形状に成形して絶縁タブ20bとし、電極部絶縁部20aに絶縁タブ20bを接着或いは溶着させることで絶縁体20を作製してもよいし、電極部絶縁部20aを構成する樹脂と絶縁タブ20bを構成する熱伝導フィラー含有樹脂組成物とを同時に一体成形して絶縁体20を作製してもよい。
1.2.3 Supplementary Information The insulator 20 can be produced by known means and methods. For example, while obtaining the electrode portion insulating portion 20a by molding a resin into a film, a resin composition containing a thermally conductive filler is formed into a tab shape to form an insulating tab 20b, and the insulating tab 20b is adhered or adhered to the electrode portion insulating portion 20a. The insulator 20 may be produced by welding, or the insulator 20 may be produced by integrally molding the resin forming the electrode insulating portion 20a and the resin composition containing the thermally conductive filler forming the insulating tab 20b at the same time. You may

1.3.電極体と絶縁体との配置構造及び接合構造
図1及び2に示されるように、電池100においては、一の絶縁体20を挟んで隣接する一方の電極体10を第1電極体(例えば、図2の10x)とし、他方の電極体10を第2電極体(例えば、図2の10y)とした場合に、第1電極体10xの正極タブ10bと第2電極体10yの負極タブ10cとが加熱接合され、第1電極体10xの負極タブ10cと第2電極体10yの正極タブ10bとの間に絶縁体20の絶縁タブ20bが配置され、第1電極体10xの電極部10aと第2電極体10yの電極部10aとの間に絶縁体20の電極部絶縁部20aが配置される。
1.3. Arrangement Structure and Bonding Structure of Electrode Body and Insulator As shown in FIGS. 10x in FIG. 2) and the other electrode body 10 is the second electrode body (for example, 10y in FIG. 2), the positive electrode tab 10b of the first electrode body 10x and the negative electrode tab 10c of the second electrode body 10y are heat-bonded, the insulating tab 20b of the insulator 20 is arranged between the negative electrode tab 10c of the first electrode body 10x and the positive electrode tab 10b of the second electrode body 10y, and the electrode portion 10a of the first electrode body 10x and the second An electrode portion insulating portion 20a of the insulator 20 is arranged between the electrode portion 10a of the two-electrode body 10y.

図1及び2にて両矢印で示したように、第1電極体10xの正極タブ10bと第2電極体10yの負極タブ10cとが加熱接合されることで、第1電極体10xと第2電極体10yとが直列に接続されることとなる。タブ10b、10cが加熱接合されたものか否かは、目視で容易に判断できる。タブ10b、10cは、例えば、はんだ等の加熱によって溶融する導電材料を介して加熱接合されていてもよい。一方、第1電極体10xの負極タブ10cと第2電極体10yの正極タブ10bとの間には絶縁タブ20bが配置され、第1電極体10xの負極タブ10cと第2電極体10yの正極タブ10bとが絶縁される。 As indicated by the double arrows in FIGS. 1 and 2, the positive electrode tab 10b of the first electrode body 10x and the negative electrode tab 10c of the second electrode body 10y are thermally joined to each other, thereby forming the first electrode body 10x and the second electrode body 10x. The electrode body 10y is connected in series. Whether or not the tabs 10b and 10c are heat-bonded can be easily visually determined. The tabs 10b and 10c may be joined by heating via a conductive material such as solder that melts when heated. On the other hand, an insulating tab 20b is arranged between the negative electrode tab 10c of the first electrode body 10x and the positive electrode tab 10b of the second electrode body 10y. It is insulated from the tab 10b.

電池100は、このような第1電極体10xと、第2電極体10yと、第1電極体10x及び第2電極体10yの間に配置された絶縁体20とからなる組み合わせが複数設けられる。図1及び2に示されるように、第1電極体10xと第2電極体10yとは、表裏の向きが互いに逆向きであってもよい。すなわち、第1電極体10xの面の向きを表向きとした場合、第2電極体10yの面の向きは裏向きであってよい。このように、同一形状を有する電極体10x、10yを、絶縁体20を介して表裏が逆となるように積層することで、電池100をより容易に構成することができる。 The battery 100 is provided with a plurality of such combinations of the first electrode body 10x, the second electrode body 10y, and the insulator 20 disposed between the first electrode body 10x and the second electrode body 10y. As shown in FIGS. 1 and 2, the front and back sides of the first electrode body 10x and the second electrode body 10y may be opposite to each other. That is, when the surface of the first electrode body 10x faces forward, the surface of the second electrode body 10y may face backward. In this manner, the electrode bodies 10x and 10y having the same shape are stacked upside down with the insulator 20 interposed therebetween, so that the battery 100 can be configured more easily.

尚、電池100において、電極体10の数は特に限定されるものではない。目的とする電池性能に応じて、電極体10の数を適宜決定すればよい。 In addition, in the battery 100, the number of the electrode bodies 10 is not particularly limited. The number of electrode bodies 10 may be appropriately determined according to the intended battery performance.

以上の通り、電池100によれば、正極タブ10bと負極タブ10cとが加熱接合されており、接続部材や固定部材等の別途の部材は不要である。また、電極体10、10の間に配置される絶縁体20において、電極部絶縁部20aよりも絶縁タブ20bのほうが高い熱伝導率を有することから、加熱接合の際、電極体10の電極部10aよりもタブ10b、10cのほうが優先的に加熱され、短時間で加熱接合が可能となる。結果として、電極部10aへの伝熱が抑制され、熱による電池性能の劣化が抑制される。 As described above, according to the battery 100, the positive electrode tab 10b and the negative electrode tab 10c are joined by heating, and separate members such as connecting members and fixing members are unnecessary. In the insulator 20 arranged between the electrode bodies 10, 10, the insulating tab 20b has a higher thermal conductivity than the electrode part insulating part 20a. The tabs 10b and 10c are preferentially heated over the tabs 10a, and heat bonding can be performed in a short time. As a result, heat transfer to the electrode portion 10a is suppressed, and deterioration of battery performance due to heat is suppressed.

尚、電池100の作動時、通電によってタブ10b、10cが発熱する場合があるが、このような場合も、発熱したタブから絶縁タブ20bを介して他のタブへと優先的に熱を伝搬させて、電極部10aへの伝熱を抑制することができるものと考えられる。すなわち、電池100は、電池製造時における電極部10aの熱劣化を抑える効果だけでなく、電池作動時の電極部10aの熱劣化を抑える効果も発揮するものと考えられる。 When the battery 100 is in operation, the tabs 10b and 10c may generate heat due to energization. Therefore, it is considered that the heat transfer to the electrode portion 10a can be suppressed. That is, it is considered that the battery 100 exhibits not only the effect of suppressing thermal deterioration of the electrode portion 10a during battery manufacturing, but also the effect of suppressing thermal deterioration of the electrode portion 10a during battery operation.

2.電池の製造方法
上述の通り、本開示の電池100においては、複数の電極体10の一部のタブ同士を加熱接合する一方、一部のタブ間に絶縁体20を配置して絶縁する。このような電池100は、例えば、図7に示されるような方法を経て製造することができる。
2. Method of Manufacturing Battery As described above, in the battery 100 of the present disclosure, some tabs of the plurality of electrode bodies 10 are heat-bonded to each other, and the insulator 20 is arranged between some of the tabs for insulation. Such a battery 100 can be manufactured, for example, through a method as shown in FIG.

まず、上述した電極体10を複数用意し、且つ、上述した絶縁体20を複数用意し、電極体10と絶縁体20とを交互に積層して積層体30を得る。積層体30においては、一の絶縁体20を挟んで隣接する一方の電極体10(第1電極体10x)と他方の電極体10(第2電極体10y)との表裏の向きを互いに逆向きとする。すなわち、電極体10x、10yを、絶縁体20を介して表裏が逆となるように積層する。言うまでもないが、積層体30において、電極体10xと電極体10yとは同じ方向にタブを突出させる。このようにして得られた積層体に対してタブ同士をはんだ付け等によって加熱接合する。 First, a plurality of the electrode bodies 10 described above are prepared, and a plurality of the insulators 20 described above are prepared, and the electrode bodies 10 and the insulators 20 are alternately laminated to obtain the laminate 30 . In the laminate 30, one electrode body 10 (first electrode body 10x) and the other electrode body 10 (second electrode body 10y), which are adjacent to each other with one insulator 20 interposed therebetween, are oriented opposite to each other. and That is, the electrode bodies 10x and 10y are laminated with the insulator 20 interposed therebetween so that the front and back sides are reversed. Needless to say, in the laminate 30, the tabs of the electrode bodies 10x and 10y protrude in the same direction. The tabs of the laminated body thus obtained are heat-bonded by soldering or the like.

加熱接合の際は、積層体30の少なくともタブが存在する部分を、積層方向両側から加熱して、積層体の側面から突出するタブ同士の複数を一度に加熱接合するとよい。例えば、図7に示されるように、積層体の積層方向一端側及び他端側の各々にヒートバーを配置し、積層方向両端から中心に向かってタブ部を加熱することで、積層体30のタブ同士の複数を一度に加熱接合することができる。ここで、積層体30を構成する絶縁体20は、上述の通り電極部絶縁部20aよりも絶縁タブ20bのほうが高い熱伝導率を有することから、ヒートバーによる加熱の際、電極体10の電極部10aよりもタブ10b、10cにおいて積層方向に速やかに伝熱し、タブ10b、10cが短時間で加熱接合される。そのため、タブ10b、10cから電極部10aへの伝熱を抑制することができ、熱による電池性能の劣化を抑えることができる。 At the time of heat bonding, it is preferable to heat at least the portion of the laminate 30 where the tabs are present from both sides in the stacking direction, and heat bond a plurality of tabs protruding from the side surfaces of the laminate at a time. For example, as shown in FIG. 7, a heat bar is arranged on each of one end side and the other end side of the stack in the stacking direction, and by heating the tab portion from both ends in the stacking direction toward the center, the tab of the stack 30 is heated. A plurality of them can be heat-bonded at once. Here, in the insulator 20 constituting the laminate 30, the insulating tab 20b has a higher thermal conductivity than the electrode insulating portion 20a as described above. The tabs 10b and 10c transfer heat more quickly in the stacking direction than the tabs 10a, and the tabs 10b and 10c are heat-bonded in a short time. Therefore, heat transfer from the tabs 10b and 10c to the electrode portion 10a can be suppressed, and deterioration of battery performance due to heat can be suppressed.

本開示の電池は、携帯機器用等の小型電源から車搭載用等の大型電源まで、広く利用できる。特に、車搭載用等の大型電源として好適である。 The battery of the present disclosure can be widely used from small power sources for mobile devices to large power sources for vehicles. In particular, it is suitable as a large-sized power source for mounting on a vehicle.

10 電極体
10a 電極部
1 正極集電体
2 負極集電体
3 正極活物質層
4 負極活物質層
5 電解質層
10b 正極タブ
10c 負極タブ
20 絶縁体
20a 電極部絶縁部
20b 絶縁タブ
100 電池
REFERENCE SIGNS LIST 10 Electrode body 10a Electrode part 1 Positive electrode current collector 2 Negative electrode current collector 3 Positive electrode active material layer 4 Negative electrode active material layer 5 Electrolyte layer 10b Positive electrode tab 10c Negative electrode tab 20 Insulator 20a Electrode part insulating part 20b Insulating tab 100 Battery

Claims (1)

複数の電極体と、前記複数の電極体の間の各々に配置された絶縁体とを備え、
前記電極体が、電極部と、前記電極部から突出した正極タブ及び負極タブとを備え、
前記絶縁体が、電極部絶縁部と、前記電極部絶縁部から突出した絶縁タブとを備え、
前記電極部絶縁部の熱伝導率よりも前記絶縁タブの熱伝導率のほうが高く、
一の前記絶縁体を挟んで隣接する一方の前記電極体を第1電極体とし、他方の前記電極体を第2電極体とした場合に、前記第1電極体の前記正極タブと前記第2電極体の前記負極タブとが加熱接合され、前記第1電極体の負極タブと前記第2電極体の正極タブとの間に前記絶縁体の前記絶縁タブが配置され、前記第1電極体の前記電極部と前記第2電極体の前記電極部との間に前記絶縁体の前記電極部絶縁部が配置される、
電池。
comprising a plurality of electrode bodies and an insulator disposed between each of the plurality of electrode bodies;
The electrode body includes an electrode portion, and a positive electrode tab and a negative electrode tab protruding from the electrode portion,
The insulator comprises an electrode part insulating part and an insulating tab protruding from the electrode part insulating part,
The thermal conductivity of the insulating tab is higher than the thermal conductivity of the electrode portion insulating portion,
When one of the electrode bodies adjacent to each other with one of the insulators interposed therebetween is a first electrode body and the other electrode body is a second electrode body, the positive electrode tab of the first electrode body and the second electrode body The negative electrode tab of the electrode body is joined by heating, the insulating tab of the insulator is disposed between the negative electrode tab of the first electrode body and the positive tab of the second electrode body, and the first electrode body is The electrode part insulating part of the insulator is arranged between the electrode part and the electrode part of the second electrode body,
battery.
JP2020004472A 2020-01-15 2020-01-15 battery Active JP7215433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020004472A JP7215433B2 (en) 2020-01-15 2020-01-15 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020004472A JP7215433B2 (en) 2020-01-15 2020-01-15 battery

Publications (2)

Publication Number Publication Date
JP2021111589A JP2021111589A (en) 2021-08-02
JP7215433B2 true JP7215433B2 (en) 2023-01-31

Family

ID=77060208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020004472A Active JP7215433B2 (en) 2020-01-15 2020-01-15 battery

Country Status (1)

Country Link
JP (1) JP7215433B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273348A (en) 2006-03-31 2007-10-18 Toyota Motor Corp Stacked battery
JP2013093291A (en) 2011-10-27 2013-05-16 Toyota Motor Corp battery
JP2013093216A (en) 2011-10-26 2013-05-16 Toyota Motor Corp Battery
JP2014534580A (en) 2011-10-31 2014-12-18 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Battery cell, manufacturing method thereof, and battery module including the same
WO2018061458A1 (en) 2016-09-28 2018-04-05 株式会社日立製作所 All-solid state battery
JP2018195528A (en) 2017-05-22 2018-12-06 トヨタ自動車株式会社 All-solid battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273348A (en) 2006-03-31 2007-10-18 Toyota Motor Corp Stacked battery
JP2013093216A (en) 2011-10-26 2013-05-16 Toyota Motor Corp Battery
JP2013093291A (en) 2011-10-27 2013-05-16 Toyota Motor Corp battery
JP2014534580A (en) 2011-10-31 2014-12-18 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Battery cell, manufacturing method thereof, and battery module including the same
WO2018061458A1 (en) 2016-09-28 2018-04-05 株式会社日立製作所 All-solid state battery
JP2018195528A (en) 2017-05-22 2018-12-06 トヨタ自動車株式会社 All-solid battery

Also Published As

Publication number Publication date
JP2021111589A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
CN108695555B (en) Laminated battery
JP2004139775A (en) Laminated battery, battery pack and vehicle
JP2017143003A (en) Power storage device
CN110120489A (en) Layer-built battery
JP2006185662A (en) Energy device and manufacturing method thereof
JP7279632B2 (en) All-solid battery
US20240154276A1 (en) Bipolar battery stack
CN110474105B (en) Laminated battery
JP7243665B2 (en) solid state battery
US20240063515A1 (en) Secondary battery
JP2018181521A (en) Stacked battery
JP7215433B2 (en) battery
JP7435091B2 (en) solid state battery
CN113451585B (en) Battery and method for manufacturing battery
JP7600980B2 (en) battery
JP7528873B2 (en) battery
JP7338488B2 (en) battery
JP2019140079A (en) Stacked battery
JP2023098417A (en) battery
JP2024043363A (en) Sulfide solid-state battery, printed circuit board with sulfide solid-state battery, and manufacturing method of sulfide solid-state battery
JP2011181531A (en) Energy device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220216

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230102

R151 Written notification of patent or utility model registration

Ref document number: 7215433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151