JP7209994B2 - アンモニア脱離方法、アンモニア回収方法、及びアンモニア回収装置 - Google Patents
アンモニア脱離方法、アンモニア回収方法、及びアンモニア回収装置 Download PDFInfo
- Publication number
- JP7209994B2 JP7209994B2 JP2018113010A JP2018113010A JP7209994B2 JP 7209994 B2 JP7209994 B2 JP 7209994B2 JP 2018113010 A JP2018113010 A JP 2018113010A JP 2018113010 A JP2018113010 A JP 2018113010A JP 7209994 B2 JP7209994 B2 JP 7209994B2
- Authority
- JP
- Japan
- Prior art keywords
- ammonia
- desorption
- adsorbent
- adsorption
- kpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Separation Of Gases By Adsorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
[1] 下記一般式(1)で表される化合物にアンモニアが吸着されたアンモニア吸着体から、アンモニアを脱離させるアンモニア脱離工程を含むアンモニア脱離方法であって、
前記アンモニア脱離工程が、前記アンモニア吸着体を加熱する加熱処理、前記アンモニア吸着体を減圧条件下にさらす減圧処理、前記アンモニア吸着体を除湿条件下にさらす除湿処理、及び前記アンモニア吸着体を加湿条件下にさらす加湿処理からなる群から選択される少なくとも1種の処理を含む、アンモニア脱離方法。
AxM[M’(CN)6]y・zH2O・・・(1)
式(1)中、xは0~3の数であり、yは0.1~1.5の数であり、zは0~6の数であり、Aはアルカリ金属イオン及びアルカリ土類金属イオンからなる群から選択される少なくとも1種の陽イオンであり、M、及びM’はそれぞれ独立に、原子番号3~83の原子からなる群から選択される少なくとも1種の陽イオン(ただし、アルカリ金属イオン及びアルカリ土類金属イオンを除く。)である。
[2] 下記一般式(1)で表される化合物にアンモニアが吸着されたアンモニア吸着体から、アンモニアを脱離させるアンモニア脱離工程を含むアンモニア脱離方法であって、
前記アンモニア脱離工程が、前記アンモニア吸着体を加熱する加熱処理、前記アンモニア吸着体を減圧条件下にさらす減圧処理、前記アンモニア吸着体を除湿条件下にさらす除湿処理、及び前記アンモニア吸着体を加湿条件下にさらす加湿処理からなる群から選択される少なくとも1種の処理を含む、アンモニア脱離方法。
AxM[M’(CN)6]y・zH2O・・・(1)
式(1)中、xは0~3の数であり、yは0.1~1.5の数であり、zは0~6の数であり、Aはアルカリ金属イオン及びアルカリ土類金属イオンからなる群から選択される少なくとも1種の陽イオンであり、M、及びM’はそれぞれ独立に、周期律表3~13族の原子からなる群から選択される少なくとも1種の陽イオンである。
[3] 式(1)中、Mが亜鉛又はコバルトであり、M’が鉄又はコバルトである、[1]又は[2]に記載のアンモニア脱離方法。
[4] 前記アンモニア脱離工程が、加熱処理を含み、
前記加熱処理が、前記アンモニア吸着体を100℃以上の条件下にさらすことである、[1]~[3]のいずれか一項に記載のアンモニア脱離方法。
[5] 前記アンモニア脱離工程が、加熱処理を含み、
前記加熱処理が、前記アンモニア吸着体を200℃以上の条件下にさらすことである、[1]~[4]のいずれか一項に記載のアンモニア脱離方法。
[6] 前記アンモニア脱離工程が、減圧処理を含み、
前記減圧処理が、前記アンモニア吸着体を100kPa未満の条件下にさらすことである、[1]~[5]のいずれか一項に記載のアンモニア脱離方法。
[7] 式(1)中、Mが亜鉛であり、
前記アンモニア脱離工程が、除湿処理を含み、
前記除湿処理が、前記アンモニア吸着体を湿度40%RH以下の条件下にさらすことである、[1]~[6]のいずれか一項に記載のアンモニア脱離方法。
[8] 式(1)中、Mがコバルトであり、
前記アンモニア脱離工程が、加湿処理を含み、
前記加湿処理が、前記アンモニア吸着体を湿度70%RH以上の条件下にさらすことである、[1]~[6]のいずれか一項に記載のアンモニア脱離方法。
[9] 下記一般式(1)で表される化合物にアンモニアを吸着させてアンモニア吸着体を得るアンモニア吸着工程と、
前記アンモニア吸着体から前記アンモニアを脱離させるアンモニア脱離工程と、を含むアンモニア回収方法であって、
前記アンモニア脱離工程が、前記アンモニア吸着体を加熱する加熱処理、前記アンモニア吸着体を減圧条件下にさらす減圧処理、前記アンモニア吸着体を除湿条件下にさらす除湿処理、及び前記アンモニア吸着体を加湿条件下にさらす加湿処理からなる群から選択される少なくとも1種の処理を含む、アンモニア回収方法。
AxM[M’(CN)6]y・zH2O・・・(1)
式(1)中、xは0~3の数であり、yは0.1~1.5の数であり、zは0~6の数であり、Aはアルカリ金属イオン及びアルカリ土類金属イオンからなる群から選択される少なくとも1種の陽イオンであり、M、及びM’はそれぞれ独立に、原子番号3~83の原子からなる群から選択される少なくとも1種の陽イオン(ただし、アルカリ金属イオン及びアルカリ土類金属イオンを除く。)である。
[10] 下記一般式(1)で表される化合物にアンモニアを吸着させてアンモニア吸着体を得るアンモニア吸着工程と、
前記アンモニア吸着体から前記アンモニアを脱離させるアンモニア脱離工程と、を含むアンモニア回収方法であって、
前記アンモニア脱離工程が、前記アンモニア吸着体を加熱する加熱処理、前記アンモニア吸着体を減圧条件下にさらす減圧処理、前記アンモニア吸着体を除湿条件下にさらす除湿処理、及び前記アンモニア吸着体を加湿条件下にさらす加湿処理からなる群から選択される少なくとも1種の処理を含む、アンモニア回収方法。
AxM[M’(CN)6]y・zH2O・・・(1)
式(1)中、xは0~3の数であり、yは0.1~1.5の数であり、zは0~6の数であり、Aはアルカリ金属イオン及びアルカリ土類金属イオンからなる群から選択される少なくとも1種の陽イオンであり、M、及びM’はそれぞれ独立に、周期律表3~13族の原子からなる群から選択される少なくとも1種の陽イオンである。
[11] 下記一般式(1)で表される化合物を有し、前記化合物にアンモニアを吸着させてアンモニア吸着体を得るアンモニア吸着部と、
前記アンモニア吸着体から前記アンモニアを脱離させるアンモニア脱離部と、を備えるアンモニア回収装置であって、
前記アンモニア脱離部が、前記アンモニア吸着体を加熱する加熱部、前記アンモニア吸着体を減圧条件下にさらす減圧部、前記アンモニア吸着体を除湿条件下にさらす除湿部、及び前記アンモニア吸着体を加湿条件下にさらす加湿部からなる群から選択される少なくとも1種を有する、アンモニア回収装置。
AxM[M’(CN)6]y・zH2O・・・(1)
式(1)中、xは0~3の数であり、yは0.1~1.5の数であり、zは0~6の数であり、Aはアルカリ金属イオン及びアルカリ土類金属イオンからなる群から選択される少なくとも1種の陽イオンであり、M、及びM’はそれぞれ独立に、原子番号3~83の原子からなる群から選択される少なくとも1種の陽イオン(ただし、アルカリ金属イオン及びアルカリ土類金属イオンを除く。)である。
[12] 下記一般式(1)で表される化合物を有し、前記化合物にアンモニアを吸着させてアンモニア吸着体を得るアンモニア吸着部と、
前記アンモニア吸着体から前記アンモニアを脱離させるアンモニア脱離部と、を備えるアンモニア回収装置であって、
前記アンモニア脱離部が、前記アンモニア吸着体を加熱する加熱部、前記アンモニア吸着体を減圧条件下にさらす減圧部、前記アンモニア吸着体を除湿条件下にさらす除湿部、及び前記アンモニア吸着体を加湿条件下にさらす加湿部からなる群から選択される少なくとも1種を有する、アンモニア回収装置。
AxM[M’(CN)6]y・zH2O・・・(1)
式(1)中、xは0~3の数であり、yは0.1~1.5の数であり、zは0~6の数であり、Aはアルカリ金属イオン及びアルカリ土類金属イオンからなる群から選択される少なくとも1種の陽イオンであり、M、及びM’はそれぞれ独立に、周期律表3~13族の原子からなる群から選択される少なくとも1種の陽イオンである。
本発明のアンモニア脱離方法は、特定の化合物にアンモニアが吸着されたアンモニア吸着体から、アンモニアを脱離させるアンモニア脱離工程を含む。
特定の化合物としては、下記式(1)で表される化合物(以下、「化合物(1)」ともいう。)が挙げられる。
AxM[M’(CN)6]y・zH2O・・・(1)
化合物(1)は、いわゆるプルシアンブルー及びプルシアンブルー類似体から選ばれる1種以上の化合物である。プルシアンブルー(以下、「PB」ともいう。)は、式(1)におけるMが第一鉄イオン(Fe2+)又は第二鉄イオン(Fe3+)であり、式(1)におけるM’がFe2+又はFe3+である化合物である。PBは、いわゆる紺青と呼ばれる濃青色の錯体である。プルシアンブルー類似体(以下、「PB類似体」ともいう。)は、プルシアンブルーと同様の構造を有し、式(1)におけるM又はM’を鉄以外の遷移金属元素の陽イオンに置き換えた化合物である。PB類似体は、ヘキサシアノ金属イオンを有する金属シアノ錯体である。
式(1)において、yは0.1~1.5であり、0.2~1.3が好ましく、0.3~1.0がより好ましい。
式(1)において、zは0~6であり、0~5が好ましく、0~4がより好ましい。
これらの処理を行うことにより、アンモニア吸着体からアンモニアを脱離することができる。
加熱処理においては、アンモニア吸着体を100℃以上の条件にさらすことが好ましく、200℃以上の条件にさらすことがより好ましい。
加熱処理は、0.5~100分間行うことが好ましく、1~30分間行うことがより好ましい。
減圧処理においては、アンモニア吸着体を5MPa以下の条件下にさらすことが好ましく、100kPa未満の条件下にさらすことがより好ましい。
減圧処理は、0.5~200分間行うことが好ましく、1~60分間行うことがより好ましい。
除湿処理においては、アンモニア吸着体を湿度40%RH以下の条件下にさらすことが好ましく、湿度10%RH以下の条件下にさらすことがより好ましい。
除湿処理は、0.5~200分間行うことが好ましく、1~60分間行うことがより好ましい。
式(1)におけるMが亜鉛である場合には、除湿処理を行うことが好ましい。
加湿処理においては、アンモニア吸着体を湿度50%RH以上の条件下にさらすことが好ましく、湿度70%RH以上の条件下にさらすことがより好ましい。
加湿処理は、0.5~100分間行うことが好ましく、1~30分間行うことがより好ましい。
式(1)におけるMがコバルトである場合には、加湿処理を行うことが好ましい。
式(1)中のMがコバルトである場合、アンモニア脱離工程は、加熱処理、減圧処理、及び加湿処理からなる群から選択される少なくとも1種を含むことが好ましい。
図1は、アンモニア回収装置の概略構成を示す模式図である。
図1のアンモニア回収装置1は、液体又は気体のアンモニアを含む被処理流体を供給するアンモニア供給源10と、アンモニアを化合物(1)に吸着させてアンモニア吸着体を得て、得られたアンモニア吸着体からアンモニアを脱離するアンモニア吸脱着部20と、脱離したアンモニアを回収するアンモニア回収タンク30と、を備える。
アンモニア吸脱着部20は、アンモニア吸着部22、及びアンモニア脱離部21を備える。
アンモニア吸着部22は、化合物(1)を含む。
アンモニア脱離部21は、加熱部、減圧部、除湿部、及び加湿部からなる群から選択される少なくとも1種の手段を備える。
アンモニア吸脱着部20とアンモニア回収タンク30は、配管によって接続されている。配管には第二バルブB2が設けられている。
アンモニア吸脱着部20には外部に通じる配管が接続されている。配管には第三バルブB3が設けられている。
減圧部は、アンモニア吸着体を減圧条件下にさらすものであれば特に限定されず、例えば、バルブ、アスピレーター等が挙げられる。
除湿部は、アンモニア吸着体を除湿条件下にさらすものであれば特に限定されず、例えば、除湿器、シリカゲル等が挙げられる。
加湿部は、アンモニア吸着体を加湿条件下にさらすものであれば特に限定されず、例えば、加湿器等が挙げられる。
本発明のアンモニア回収方法は、化合物(1)にアンモニアを吸着させてアンモニア吸着体を得るアンモニア吸着工程と、アンモニア吸着体からアンモニアを脱離させるアンモニア脱離工程と、を含む。
アンモニア回収装置1を用いたアンモニア回収方法について、図1に基づいて説明する。
まず、第一バルブB1を開け、第二バルブB2を閉め、第三バルブB3を開け、ポンプP1を加圧し、アンモニア供給源10からアンモニア吸脱着部20にアンモニアを含有する被処理流体を供給する。
アンモニア吸脱着部20へと流入した被処理流体は、アンモニア吸着部22中の化合物(1)と接触し、アンモニアが化合物(1)に吸着される。アンモニアを吸着した化合物(1)はアンモニア吸着体となる。被処理流体は、アンモニアが除去されて処理済流体となり、第三バルブB3を経て外部に流出する。
被処理流体は、液体でも気体でもよい。
アンモニア吸着部22の内部温度は、20~200℃が好ましく、50~150℃がより好ましい。
アンモニア吸着部22の内部圧力は、10~35MPaが好ましく、10~20MPaがより好ましい。
アンモニア吸着部22の内部湿度は、10~100%RHが好ましく、30~90%RHがより好ましい。
続いて、第一バルブB1を閉め、第三バルブB3を閉め、アンモニア吸脱着部20中のアンモニア吸着体を、アンモニア脱離部21で処理することにより、アンモニア吸着体からアンモニアを脱離させる。
例えば、アンモニア脱離部21で、アンモニア吸着部22内をアンモニアが脱離する条件にして、アンモニア吸着体からアンモニアを脱離させる。
アンモニア脱離部21が加熱部を備える場合、アンモニア吸脱着部20の内部温度を、100~300℃に加熱することが好ましく、150~250℃に加熱することがより好ましい。
アンモニア脱離部21が減圧部を備える場合、アンモニア吸着部22内の内部圧力を、0~5MPaに減圧することが好ましく、0.1MPa未満に減圧することがより好ましい。
アンモニア脱離部21が除湿部を備える場合、アンモニア吸着部22内の内部湿度を、0~40%RHに除湿することが好ましく、0~10%RHに除湿することがより好ましい。
アンモニア脱離部21が加湿部を備える場合、アンモニア吸着部22内の内部湿度を、50~100%RHに加湿することが好ましく、70~100%RHに加湿することがより好ましい。
定されるものではない。なお、実施例1~7は参考例である。
以下、[FeII(CN)6]4-をHCF、[CoIII(CN)6]3-をHCC、と略称する。
筒状の遠心分離用のプラスティックチューブ中、濃度25mMのK4-HCF水溶液10mLに、濃度50mMのZnCl2水溶液10mLを室温にて一気に混合し、振盪機により、室温にて24時間振盪した。
沈殿した懸濁液中の化合物は、遠心分離機(テーブルトップ高速冷却遠心機、Sigma(R) 3-3-K)により上澄み液と分離し、上澄み液を除去し、沈殿物に超純水を加え振盪して洗浄した。この洗浄作業を3回繰り返した。最後の上澄み液を除去した後、得られた沈澱物をオーブン(Oven OFW-450B)にて、100kPa、室温条件下、3日間乾燥した。
筒状の遠心分離用のプラスティックチューブ中、濃度60mMのK3-HCC水溶液5mLに、濃度91.2mMのZnCl2水溶液5mLを室温にて一気に混合し、振盪機により、室温にて24時間振盪した。
沈殿した懸濁液中の化合物は、遠心分離機(テーブルトップ高速冷却遠心機、Sigma(R) 3-3-K)により上澄み液と分離し、上澄み液を除去し、沈殿物に超純水を加え振盪して洗浄した。この洗浄作業を3回繰り返した。最後の上澄み液を傾けて除去した後、得られた沈澱物をオーブン(Oven OFW-450B)にて、100kPa、室温条件下、3日間乾燥した。
ガラス製のビーカー中、濃度40mMのK3-HCC水溶液5mLに、濃度60mMのCoCl2の水溶液5mLを室温にて一気に混合した。ビーカーにテフロン(登録商標)コーティングしたスターラーバーを入れ、マグネティックスターラーにより、室温にて一晩(16時間)攪拌した。
沈殿した懸濁液中の化合物は、遠心分離機(テーブルトップ高速冷却遠心機、Sigma(R) 3-3-K)により上澄み液と分離し、上澄み液を除去し、沈殿物に超純水を加え振盪して洗浄した。この洗浄作業を3回繰り返した。最後の上澄み液を傾けて除去した後、得られた沈澱物をオーブン(Oven OFW-450B)にて、100kPa、60℃の条件下、2時間乾燥した。
得られた各化合物について、X線回折装置(XRD,Phaser D2 [Bruker])で分析した。ZnHCF、ZnHCC、CoHCCの場合、17.5度、25度、36度付近等にメインピークを持つ結晶であることがわかった。これらは、データベース中のFe[Fe(CN)6]0.75ピーク位置と一致した。すなわち、得られたZnHCF、ZnHCC、CoHCCは、PBの結晶構造と同一の結晶構造を有することが分かった。
得られた各化合物について、理想的な真空下におけるアンモニア吸脱着の評価を、ガス吸脱着装置(BelsorpMax [マイクロトラックベル社])により行った。化合物の粉末10mgをBelsorpMax装置用のサンプル管に入れ、純アンモニアガスボンべから供給されるアンモニアガスを用い、管内のアンモニアガスの圧力を少しずつ変化させ、その直後から管内のアンモニアガスの圧力変化の測定を行った。
10mgのZnHCF粉末をBelsorpMax装置用のサンプル管に入れ、アンモニア吸脱着の評価を行った。アンモニアの圧力は0kPaから100kPaの間で変化させ、その際のアンモニア吸脱着の量を測定した。始めに0kPaから100kPaへアンモニアの圧力を増加させアンモニア吸着量を測定し、その後、100kPaから0kPaへアンモニアの圧力を減少させアンモニア脱離量を測定した。この吸脱着の測定温度は、室温(20℃)と100℃の2通りで行った。その結果、ZnHCFは、0kPaから100kPaに加圧すると、室温(20℃)と100℃の両条件ともにアンモニアを吸着した(20℃:図2の1B、100℃:図2の1D)。20℃でアンモニアを吸着させたアンモニア吸着体を、20℃の条件下、100kPaから30kPaに減圧することで、吸着したアンモニアの一部を脱離した(図2の1A)。また、100℃でアンモニアを吸着させたアンモニア吸着体を、100℃の条件下、100kPaから30kPaに減圧することで、吸着したアンモニアの一部を脱離した(図2の1C)。30kPaから100kPaの圧力範囲において、20℃のアンモニア吸着量(1B)と、100℃のアンモニア吸着量(1D)を比較することで、20℃から100℃に加熱することで、吸着したアンモニアの約77%が脱離することが分かった。
このことから、加熱処理により、アンモニアを脱離できることが分かった。さらに減圧条件と加熱条件とを組み合わせることにより、アンモニア脱離能をより高めることができることが分かった。
10mgのZnHCC粉末をBelsorpMax装置用のサンプル管に入れ、アンモニア吸脱着の評価を行った。アンモニアの圧力は0から100kPaの間で変化させ、その際のアンモニア吸脱着の量を測定した。始めに0kPaから100kPaへアンモニアの圧力を増加させアンモニア吸着量を測定し、その後、100kPaから0kPaへアンモニアの圧力を減少させアンモニア脱離量を測定した。この吸脱着の測定温度は、100℃で行った。その結果、ZnHCCは、100℃の条件において、0kPaから100kPaに加圧するとアンモニアを吸着した(図3の2B)。100℃でアンモニアを吸着させたアンモニア吸着体を、100℃の条件下、100kPaから20kPaに減圧すると、吸着したアンモニアの約40%が脱離した(図3の2A)。
このことから、減圧処理により、アンモニアを脱離できることが分かった。
10mgのZnHCC粉末をBelsorpMax装置用のサンプル管に入れ、アンモニア吸脱着の評価を行った。アンモニアの圧力は0kPaから100kPaの間で変化させ、その際のアンモニア吸脱着の量を測定した。始めに0kPaから100kPaへアンモニアの圧力を増加させアンモニア吸着量を測定し、その後、100kPaから0kPaへアンモニアの圧力を減少させアンモニア脱離量を測定した。この吸脱着の測定温度は、室温(20℃)と250℃の2通りで行った。
その結果、ZnHCCは、20℃の条件下において、4kPaから100kPaに加圧するとアンモニアを大量に吸着した(図4の3A)。また、ZnHCCは、250℃の条件下において、20kPaから100kPaに加圧すると、20℃の条件下に比べて非常に少ないアンモニアを吸着した(図4の3C)。
20℃でアンモニアを吸着させたアンモニア吸着体を、20℃の条件下、100kPaから4kPaに減圧すると、アンモニアの一部を脱離した(図4の3B)。また、250℃でアンモニアを吸着させたアンモニア吸着体を、250℃の条件下、100kPaから2kPaに減圧すると、アンモニアの一部を脱離した(図4の3D)。さらに、30kPaから100kPaの圧力範囲において、20℃のアンモニア吸着量(3A)と、250℃のアンモニア吸着量(3C)を比較することで、20℃から250℃に加熱することで、吸着したアンモニアの90%が脱離することが分かった。
尚、ZnHCCは、Thermogravimetry測定により、250℃に温度を上昇させても分解することはなく、250℃付近の高温において安定であることが分かった。
このことから、加熱処理、減圧処理により、アンモニアを脱離できることが分かった。
10mgのCoHCC粉末をBelsorpMax装置用のサンプル管に入れ、アンモニア吸脱着の評価を行った。アンモニアの圧力は0から100kPaの間で変化させ、その際のアンモニア吸脱着の量を測定した。始めに0kPaから100kPaへアンモニアの圧力を増加させアンモニア吸着量を測定し、その後、100kPaから0kPaへアンモニアの圧力を減少させアンモニア脱離量を測定した。この吸脱着の測定温度は、室温(20℃)、100℃、250℃の3通りで行った。その結果、CoHCCは、20℃の条件下において、0kPaから100kPaに加圧するとアンモニアを吸着した(図5の4A)。CoHCCは、100℃の条件下において、0kPaから100kPaに加圧するとアンモニアを吸着した(図5の4C)。CoHCCは、250℃の条件下において、0kPaから100kPaに加圧するとアンモニアを吸着した(図5の4E)。
20℃でアンモニアを吸着させたアンモニア吸着体を、20℃の条件下、100kPaから4kPaに減圧すると、アンモニアの一部を脱離した(図5の4B)。100℃でアンモニアを吸着させたアンモニア吸着体を、100℃の条件下、100kPaから0kPaに減圧すると、アンモニアの一部を脱離した(図5の4D)。20℃でアンモニアを吸着させたアンモニア吸着体を、250℃の条件下、100kPaから0kPaに減圧すると、アンモニアの一部を脱離した(図5の4F)。さらに、20kPaから100kPaの圧力範囲において、20℃のアンモニア吸着量(4A)と、100℃のアンモニア吸着量(4C)を比較することで、温度を20℃から100℃に加熱することでアンモニアの吸着量が約40%、また、20℃のアンモニア吸着量(4A)と、250℃のアンモニア吸着量(4E)を比較することで、温度を20℃から250℃に加熱することでアンモニアの吸着量が約90%、大幅に減少することがわかった。
尚、CoHCCは、Thermogravimetry測定により、250℃に温度を上昇させても分解することはなく、250℃付近の高温において安定であることがわかった。
このことから、加熱処理、減圧処理により、アンモニアを脱離できることが分かった。
純水中に分散させた各化合物(ZnHCF、ZnHCC、CoHCC)のサスペンションを、フッ化バリウム、又はシリコンウェハの基板に滴下し、オーブン(Oven OFW-450B)にて数分乾燥して基板上に膜を形成した。得られた基板を、以下のIR測定、すなわちフーリエ変換赤外分光測定(FTIR)測定に用いた。
得られた各化合物、及びアンモニアの吸着状態を、真空ではない環境下、すなわち酸素かつ水が存在する条件下、フーリエ変換赤外分光測定(FTIR、サーモフィッシャー社製、Nicolet iS5)を用い、測定される吸収ピークにより評価した。特に本FTIR測定においては、アンモニアガスのベースガスとして室内空気を用い、温度変化、圧力変化、湿度変化のよるFTIRスペクトル変化を調査した。
IRスペクトル中のアンモニアの吸脱着について、上述のシリコンウェハ基板上に作製したZnHCCの膜を用いて、加熱の効果を調査した。膜調製直後では、アンモニアは、ほとんど観測されなかったが、室温条件下、湿度35%RHの空気をベースとする約7体積%アンモニアガスとZnHCC膜をビニール袋中、接触させ、その後、該基板を取り出し、IR装置にセットし測定すると1100~1300cm-1付近に吸着したアンモニアが観測された(図6の5A)。1100~1300cm-1付近のピークは、主にZnHCC内に配位結合、又はその他の結合形式(水素結合やファンデアワールス力等)にて吸着しているアンモニア分子と考えられる。鋭意検討した結果、1100~1300cm-1付近に吸着したアンモニアの中には、比較的強く吸着しているアンモニアと比較的弱く吸着しているアンモニアが存在していると考えられる。次に、アンモニアが吸着した後のZnHCC膜を、100度に温度上昇し、かつ、乾燥窒素雰囲気下すると、1100~1300cm-1付近に吸着したアンモニアを効率よく脱離できることがわかった(図6の5B)。実験から明らかとなった、1300cm-1付近に比較的強く吸着していると考えられるアンモニアは、完全に脱離させることはできなかった。
このことから、加熱処理によりアンモニアを脱離できることが分かった。
IRスペクトル中のアンモニアの吸脱着について、上述のシリコンウェハ基板上に作製したZnHCCの膜を用いて、加熱の効果を調査した。膜調製直後では、アンモニアは、ほとんど観測されなかったが、室温条件下、湿度35%RHの空気をベースとする7体積%アンモニアガスとZnHCC膜を接触させ、1100~1300cm-1付近のアンモニアの内、1300cm-1付近にピークを有する比較的強く吸着しているアンモニアのみを吸着させたZnHCC膜を準備した(図7の6A)。次に、アンモニア吸着後のZnHCC膜を、280℃に温度上昇すると、加熱開始から16分後には、1300cm-1付近のアンモニアの内、約20%程度脱離できることがわかった(図7の6B)。
このことから、加熱処理によりアンモニアを脱離できることが分かった。
IRスペクトル中のアンモニアの吸脱着について、上述のフッ化バリウム基板上に作製したCoHCCの膜を用いて、加熱の効果を調査した。室温条件下、湿度35%RHの空気をベースとする7%アンモニアガスとCoHCC膜を接触させると、1410cm-1及び1150cm-1付近にピークを有するアンモニアが観測された(図8の7A)。1410cm-1及び1150cm-1付近のピークは、CoHCC内に吸着しているアンモニウムイオン及びアンモニア分子と考えられる。次に、アンモニア吸着後のCoHCC膜を、260度に温度上昇すると、加熱開始から3分後には、1410cm-1及び1150cm-1付近のピークが大幅に減少し、アンモニアを脱離できることがわかった(図8の7B)。CoHCC膜は、調整直後から1260cm-1付近のピークを有していたため、これは、CoHCC膜に元から比較的強く吸着しているアンモニアと考えられる。
このことから、加熱処理によりアンモニアを脱離できることが分かった。
IRスペクトル中のアンモニアの吸脱着について、上述のシリコンウェハ基板上に作製したCoHCCの膜を用いて、湿度の効果を調査した。膜調製直後では、アンモニアは、ほとんど観測されなかったが、室温条件下、湿度36%RHの空気をベースとする7体積%アンモニアガスとCoHCC膜を接触させると、1410cm-1及び1150cm-1付近にピークを有するアンモニアが観測された(図9の8A)。次に、アンモニア吸着後のCoHCC膜を、室温条件下、高湿度(湿度76%RH)の空気に接触させると、加湿開始から2分後には、1150cm-1付近のピークが減少し、アンモニアを脱離できることがわかった(図9の8B)。1150cm-1付近にピークは、CoHCC内に吸着しているアンモニア分子と考えられる。この傾向は、フッ化バリウム基板上に調整したCoHCC膜でも観測された。
このことから、加湿処理によりアンモニアを脱離できることが分かった。
Claims (7)
- 下記一般式(1)で表される化合物にアンモニアが吸着されたアンモニア吸着体から、アンモニアを脱離させるアンモニア脱離工程を含むアンモニア脱離方法であって、
前記アンモニア脱離工程が、前記アンモニア吸着体を湿度70%RH以上の条件下にさらす加湿処理を含む、アンモニア脱離方法。
AxM[M’(CN)6]y・zH2O・・・(1)
式(1)中、xは0~3の数であり、yは0.1以上1.0未満の数であり、zは0~6の数であり、Aはアルカリ金属イオン及びアルカリ土類金属イオンからなる群から選択される少なくとも1種の陽イオンであり、Mは亜鉛又はコバルトであり、M’は鉄又はコバルトである。 - 前記アンモニア脱離工程が、さらに加熱処理を含み、
前記加熱処理が、前記アンモニア吸着体を100℃以上の条件下にさらすことである、請求項1に記載のアンモニア脱離方法。 - 前記アンモニア脱離工程が、さらに加熱処理を含み、
前記加熱処理が、前記アンモニア吸着体を200℃以上の条件下にさらすことである、請求項1に記載のアンモニア脱離方法。 - 前記アンモニア脱離工程が、さらに減圧処理を含み、
前記減圧処理が、前記アンモニア吸着体を100kPa未満の条件下にさらすことである、請求項1~3のいずれか一項に記載のアンモニア脱離方法。 - 式(1)中、Mがコバルトである、請求項1~4のいずれか一項に記載のアンモニア脱離方法。
- 下記一般式(1)で表される化合物にアンモニアを吸着させてアンモニア吸着体を得るアンモニア吸着工程と、
前記アンモニア吸着体から前記アンモニアを脱離させるアンモニア脱離工程と、を含むアンモニア回収方法であって、
前記アンモニア脱離工程が、前記アンモニア吸着体を湿度70%RH以上の条件下にさらす加湿処理を含む、アンモニア回収方法。
AxM[M’(CN)6]y・zH2O・・・(1)
式(1)中、xは0~3の数であり、yは0.1以上1.0未満の数であり、zは0~6の数であり、Aはアルカリ金属イオン及びアルカリ土類金属イオンからなる群から選択される少なくとも1種の陽イオンであり、Mは亜鉛又はコバルトであり、M’は鉄又はコバルトである。 - 下記一般式(1)で表される化合物を有し、前記化合物にアンモニアを吸着させてアンモニア吸着体を得るアンモニア吸着部と、
前記アンモニア吸着体から前記アンモニアを脱離させるアンモニア脱離部と、を備えるアンモニア回収装置であって、
前記アンモニア脱離部が、前記アンモニア吸着体を湿度70%RH以上の条件下にさらす加湿部を有する、アンモニア回収装置。
AxM[M’(CN)6]y・zH2O・・・(1)
式(1)中、xは0~3の数であり、yは0.1以上1.0未満の数であり、zは0~6の数であり、Aはアルカリ金属イオン及びアルカリ土類金属イオンからなる群から選択される少なくとも1種の陽イオンであり、Mは亜鉛又はコバルトであり、M’は鉄又はコバルトである。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018113010A JP7209994B2 (ja) | 2018-06-13 | 2018-06-13 | アンモニア脱離方法、アンモニア回収方法、及びアンモニア回収装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018113010A JP7209994B2 (ja) | 2018-06-13 | 2018-06-13 | アンモニア脱離方法、アンモニア回収方法、及びアンモニア回収装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019214498A JP2019214498A (ja) | 2019-12-19 |
JP7209994B2 true JP7209994B2 (ja) | 2023-01-23 |
Family
ID=68918881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018113010A Active JP7209994B2 (ja) | 2018-06-13 | 2018-06-13 | アンモニア脱離方法、アンモニア回収方法、及びアンモニア回収装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7209994B2 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000140654A (ja) | 1998-08-31 | 2000-05-23 | Toyobo Co Ltd | 被処理ガスまたは被処理水の処理方法、及び処理装置 |
JP2000317246A (ja) | 1999-03-10 | 2000-11-21 | Japan Pionics Co Ltd | アンモニアの回収方法及び回収装置 |
JP2003095644A (ja) | 2001-09-27 | 2003-04-03 | Nippon Shokubai Co Ltd | アンモニアの回収方法 |
JP2007307558A (ja) | 2007-06-25 | 2007-11-29 | Jfe Engineering Kk | 特定の金属ハロゲン化物の組み合わせを用いたアンモニアの吸脱着剤、分離方法及び貯蔵方法 |
WO2015186819A1 (ja) | 2014-06-06 | 2015-12-10 | 国立研究開発法人産業技術総合研究所 | アンモニア吸着材 |
JP2017166665A (ja) | 2016-03-18 | 2017-09-21 | 株式会社Kri | アンモニア貯蔵供給装置及びアンモニア燃料タンク |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4645516A (en) * | 1985-05-24 | 1987-02-24 | Union Carbide Corporation | Enhanced gas separation process |
-
2018
- 2018-06-13 JP JP2018113010A patent/JP7209994B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000140654A (ja) | 1998-08-31 | 2000-05-23 | Toyobo Co Ltd | 被処理ガスまたは被処理水の処理方法、及び処理装置 |
JP2000317246A (ja) | 1999-03-10 | 2000-11-21 | Japan Pionics Co Ltd | アンモニアの回収方法及び回収装置 |
JP2003095644A (ja) | 2001-09-27 | 2003-04-03 | Nippon Shokubai Co Ltd | アンモニアの回収方法 |
JP2007307558A (ja) | 2007-06-25 | 2007-11-29 | Jfe Engineering Kk | 特定の金属ハロゲン化物の組み合わせを用いたアンモニアの吸脱着剤、分離方法及び貯蔵方法 |
WO2015186819A1 (ja) | 2014-06-06 | 2015-12-10 | 国立研究開発法人産業技術総合研究所 | アンモニア吸着材 |
JP2017166665A (ja) | 2016-03-18 | 2017-09-21 | 株式会社Kri | アンモニア貯蔵供給装置及びアンモニア燃料タンク |
Also Published As
Publication number | Publication date |
---|---|
JP2019214498A (ja) | 2019-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106470758B (zh) | 氨吸附材料 | |
US20100069234A1 (en) | Gas adsorption on metal-organic frameworks | |
Hu et al. | MOF supraparticles for atmosphere water harvesting at low humidity | |
EP3897921B1 (en) | Method for co2 adsorption on metal organic framework | |
JP7300173B2 (ja) | 酸化ケイ素を基質としたプルシアンブルー誘導体含有複合体、該複合体を用いるアンモニア吸着・脱離方法、およびアンモニア回収装置 | |
Yang et al. | Adsorption of humic acid by acid-modified granular activated carbon and powder activated carbon | |
Wu et al. | Fe–Co controlled super-hygroscopic hydrogels toward efficient atmospheric water harvesting | |
KR20210001745A (ko) | 수분안정성이 향상된 mof의 제조방법, 이에 따라 제조된 mof 및 이의 용도 | |
Sun et al. | Cucurbit [6] uril@ MIL-101-Cl: loading polar porous cages in mesoporous stable host for enhanced SO 2 adsorption at low pressures | |
KR20240010002A (ko) | 암모니아 함유 가스 또는 암모니아 함유액으로부터의 암모니아 리사이클 방법, 암모니아 리사이클 장치 및 암모니아 가스 저장 장치 | |
JP7209994B2 (ja) | アンモニア脱離方法、アンモニア回収方法、及びアンモニア回収装置 | |
Wang et al. | Heavy‐Metal Ions Removal and Iodine Capture by Terpyridine Covalent Organic Frameworks | |
JP7093582B2 (ja) | 二酸化炭素を用いたアンモニア化学種脱離方法、アンモニア化学種供給剤、およびアンモニア化学種吸着・脱離装置 | |
Li et al. | The introduction of Mn component improves the selectivity of NO adsorption separation in simulated flue gas of Co‐MOF‐74 at ambient conditions | |
Rani et al. | Adsorption behavior of zirconium metal–organic frameworks in multicomponent metal-ion solutions | |
WO2021052484A1 (zh) | 一种回收含金废水之材料 | |
Murge et al. | Zirconium fumarate-based sorbents for CO2 capture: synthesis, characterization and performance evaluation | |
JP7316654B2 (ja) | 高温におけるアンモニア吸着脱離能を有する酸化ケイ素を基質としたイオン混合体、該イオン混合体を用いるアンモニア吸着・脱離方法、およびアンモニア回収装置 | |
CN113801146B (zh) | 一种锌(ii)配合物单晶及其制备方法和应用 | |
JP4631022B2 (ja) | 新規アルミニウムケイ酸塩及びその合成方法 | |
CN116351397B (zh) | 一种对甲醛具有高效捕集的复合材料制备方法及应用 | |
JP2006043567A (ja) | 水蒸気吸着用吸着材、吸着ヒートポンプ用吸着材、デシカント空調装置用吸着材、吸着ヒートポンプ及びデシカント空調装置 | |
CN113786805A (zh) | 钴基金属有机骨架衍生磁性碳复合材料的制备方法及其应用 | |
JP2024518281A (ja) | 水捕捉および水放出のための結晶性ソーベント材料 | |
JPH08243386A (ja) | 新規な複合体およびその製造方法、ならびに該複合体よりなる酸素吸着剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220412 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220608 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220816 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221109 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20221109 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20221117 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20221122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7209994 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |