[go: up one dir, main page]

JP7202948B2 - Gas leak inspection method and gas leak inspection device - Google Patents

Gas leak inspection method and gas leak inspection device Download PDF

Info

Publication number
JP7202948B2
JP7202948B2 JP2019061014A JP2019061014A JP7202948B2 JP 7202948 B2 JP7202948 B2 JP 7202948B2 JP 2019061014 A JP2019061014 A JP 2019061014A JP 2019061014 A JP2019061014 A JP 2019061014A JP 7202948 B2 JP7202948 B2 JP 7202948B2
Authority
JP
Japan
Prior art keywords
gas
sealing material
inspected
outside
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019061014A
Other languages
Japanese (ja)
Other versions
JP2020159935A (en
Inventor
健 原田
洋 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2019061014A priority Critical patent/JP7202948B2/en
Publication of JP2020159935A publication Critical patent/JP2020159935A/en
Application granted granted Critical
Publication of JP7202948B2 publication Critical patent/JP7202948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

本発明は、ガス漏れ検査方法及びガス漏れ検査装置に関する。 The present invention relates to a gas leakage inspection method and a gas leakage inspection device.

従来より、例えば、固体高分子型燃料電池の単位セルにおいては、固体高分子電解質膜の両側に触媒層を密着させた膜電極接合体(MEA)に対して、その外側に設けられたガス拡散層を介して、各セパレータの反応ガス流路から、燃料ガスと、酸化剤である酸素または空気とが導入される。燃料ガスはアノードに導入され、酸素または空気はカソードに導入される。燃料ガスとしては、例えば、水素が用いられる(例えば、特許文献1参照)。また、水素の漏れを抑えるために、シール材が用いられる。 Conventionally, for example, in a unit cell of a solid polymer fuel cell, a gas diffusion Fuel gas and oxygen or air as an oxidant are introduced from the reactant gas flow path of each separator through the layers. A fuel gas is introduced to the anode and oxygen or air is introduced to the cathode. Hydrogen, for example, is used as the fuel gas (see Patent Document 1, for example). Also, a sealing material is used to suppress leakage of hydrogen.

特開2005-276729号公報JP 2005-276729 A

上述のように、固体高分子型燃料電池の単位セルのアノードには、燃料ガスとして例えば水素を導入するため、燃料ガスの漏れを圧力検査により測定しておく必要がある。水素分子はサイズが小さいため、僅かな量ではあるがシール材を透過する。このため、燃料ガスの漏れとしては、シール材の透過によるものと、シール材と他の部材との間に生じている隙間によるものとがあるが、圧力検査においては、水素がシール材を透過しているのか、シール材と他の部材との間の隙間から漏れているのかの切り分けができず、漏れ量(リーク量)の総和での評価を行わざるを得なかった。 As described above, since hydrogen, for example, is introduced as a fuel gas into the anode of the unit cell of the polymer electrolyte fuel cell, it is necessary to measure leakage of the fuel gas by pressure inspection. Since hydrogen molecules are small in size, they permeate the sealing material, albeit in a very small amount. For this reason, fuel gas leaks are caused by permeation of the seal material and by gaps between the seal material and other members. However, it was not possible to determine whether the leakage occurred from the gap between the sealing material and other members, and there was no choice but to evaluate the total amount of leakage (leak amount).

このため、透過量規定とリーク量規定に対する評価ができず、固体高分子型燃料電池を備える製品の出荷段階で、当該製品において水素が漏れておらずシール材の透過のみがある、という要件の設定ができない。この結果、耐久試験による透過量の経年変化試験が必要となり、多大な工数が必要となる。 For this reason, it is not possible to evaluate the amount of permeation and the amount of leakage, and at the shipping stage of a product equipped with a polymer electrolyte fuel cell, there is a requirement that hydrogen does not leak from the product and that only the sealing material permeates. Cannot set. As a result, it is necessary to conduct a durability test of permeation amount over time, which requires a large number of man-hours.

本発明は、燃料ガスの漏れが、シール材の透過によるものか、シール材と他の部材との間に生じている隙間によるものかの切り分けが可能なガス漏れ検査方法及びガス漏れ検査装置を提供することを目的とする。 The present invention provides a gas leakage inspection method and a gas leakage inspection device that can distinguish whether fuel gas leakage is due to permeation of the sealing material or due to a gap between the sealing material and other members. intended to provide

上記目的を達成するため本発明は、被検査対象部材(例えば、後述の燃料電池10)の内側に検査対象ガスを導入し、前記被検査対象部材をシールするシール材(例えば、後述のシール材101)の外側への検査対象ガスを測定して、前記シール材の外側へのガス漏れを検査するガス漏れ検査方法であって、前記測定する工程は、時系列で前記シール材の外側へのガス量を測定するガス量測定工程と、前記検査対象ガスを導入してから所定時間経過後の単位時間当たりの外側へのガス量が、所定値よりも大きいときに、前記被検査対象部材と前記シール材との間に隙間があるリーク状態と判定し、前記所定値以下のときに、前記シール材から前記検査対象ガスが透過している透過状態と判定する判定工程と、を有するガス漏れ検査方法を提供する。 In order to achieve the above object, the present invention introduces a gas to be inspected into the inside of a member to be inspected (for example, a fuel cell 10 to be described later), and provides a sealing material (for example, a sealing material to be described later) for sealing the member to be inspected. 101) is a gas leakage inspection method for measuring gas to be inspected to the outside to inspect gas leakage to the outside of the sealing material, wherein the measuring step comprises measuring the gas leakage to the outside of the sealing material in chronological order. a gas quantity measuring step of measuring a gas quantity; determining a leak state in which there is a gap between the gas leakage and the sealing material, and determining a permeation state in which the gas to be inspected is permeating through the sealing material when the gap is equal to or less than the predetermined value. Provide an inspection method.

本発明によれば、所定の時間を経過した後に、リークが生じているのか、透過のみであるのかの切り分けが可能となる。このため、一度の検査を行うことで、透過量規定とリーク量規定とのそれぞれに対する良否判定が可能となり、被検査対象部材を備える製品の出荷段階で、当該製品において検査対象ガスが漏れておらずシール材の透過のみがある、という要件の設定が可能となる。この結果、耐久試験による透過量の経年変化試験が緩和でき、耐久試験の工数の低減を図ることが可能となる。 According to the present invention, it is possible to determine whether leakage occurs or only transmission occurs after a predetermined period of time has elapsed. For this reason, it is possible to determine the quality of each of the permeation amount regulation and the leakage amount regulation by performing the inspection once, and at the shipping stage of the product including the inspection object parts, the inspection target gas is not leaked from the product. It is possible to set the requirement that only the sealant permeates. As a result, it is possible to relax the permeation amount aging test in the endurance test, and to reduce the man-hours of the endurance test.

また、本発明は、被検査対象部材(例えば、後述の燃料電池10)の内側に検査対象ガスを導入し、前記被検査対象部材をシールするシール材(例えば、後述のシール材101)の外側への検査対象ガスを測定して、前記シール材の外側へのガス漏れを検査するガス漏れ検査方法であって、前記測定する工程は、時系列で前記シール材の外側へのガス量を測定するガス量測定工程と、前記検査対象ガスを導入してから所定時間の近傍の時間帯に、単位時間当たりの外側へのガス量の傾きに変曲点を検出した場合には、前記被検査対象部材と前記シール材との間に隙間があるリーク状態、かつ前記シール材から前記検査対象ガスが透過している透過状態の両方の状態にあると判定する判定工程と、を有するガス漏れ検査方法を提供する。 In addition, the present invention introduces a gas to be inspected into the inside of a member to be inspected (for example, a fuel cell 10 described later), and the outside of a sealing material (for example, a sealing material 101 to be described later) that seals the member to be inspected. A gas leakage inspection method for inspecting gas leakage to the outside of the sealing material by measuring a gas to be inspected to the sealing material, wherein the measuring step measures the amount of gas flowing to the outside of the sealing material in chronological order. and when an inflection point is detected in the inclination of the gas amount to the outside per unit time in a time zone near a predetermined time after the introduction of the inspection object gas, the inspection object gas is detected. a determination step of determining that the gas leak inspection is in both a leak state in which there is a gap between the target member and the sealing material, and a permeation state in which the gas to be inspected is permeating through the sealing material. provide a way.

本発明によれば、所定の時間の近傍の時間帯に、リーク状態と透過状態との両方の状態にあることを判定することができる。この結果、より確実にリーク状態と透過状態を判定することができ、燃料ガスの漏れが、シール材の透過によるものか、シール材と他の部材との間に生じている隙間によるものかの切り分けが可能となる。 According to the present invention, it can be determined that the state is in both the leak state and the transmission state in a time zone near a predetermined time. As a result, the leak state and the permeation state can be determined more reliably, and it is possible to determine whether the fuel gas leak is due to permeation of the seal material or due to a gap between the seal material and other members. Separation becomes possible.

そして、前記ガス量測定工程では、前記シール材を備える前記被検査対象部材を気密に取り囲むようにして前記シール材の外側の前記検査対象ガスの圧力を測定して、前記シール材の外側のガス漏れを検査する。 In the gas amount measuring step, the pressure of the gas to be inspected outside the sealing material is measured so as to airtightly surround the member to be inspected provided with the sealing material, and the gas outside the sealing material is measured. Check for leaks.

このため、シール材を備える被検査対象部材を気密に取り囲むようにして、シール材の外側の検査対象ガスの圧力を測定することにより、被検査対象部材における検査対象ガスについて、簡易な方法で透過量規定とリーク量規定とのそれぞれに対する良否判定が可能となる。 Therefore, by airtightly surrounding a member to be inspected provided with a sealing material and measuring the pressure of the gas to be inspected outside the sealing material, the gas to be inspected in the member to be inspected can be permeated by a simple method. It is possible to determine the quality of each of the amount regulation and the leakage amount regulation.

また、本発明は、被検査対象部材(例えば、後述の燃料電池10)の内側に検査対象ガスを導入するガス導入部と、前記被検査対象部材をシールするシール材(例えば、後述のシール材101)の外側への検査対象ガスを測定するガス測定部(例えば、後述の圧力計22)と、を備えるガス漏れ検査装置(例えば、後述のガス漏れ検査装置1)であって、前記ガス測定部は、時系列で前記シール材の外側へのガス量を測定し、前記検査対象ガスを導入してから所定時間経過後の単位時間当たりの外側へのガス量が、所定値よりも大きいときに、前記被検査対象部材と前記シール材との間に隙間があるリーク状態と判定し、前記所定値以下のときに、前記シール材から前記検査対象ガスが透過している透過状態と判定する判定部(例えば、後述の判定部51)を備えるガス漏れ検査装置を提供する。 Further, the present invention includes a gas introduction portion for introducing a gas to be inspected into the inside of a member to be inspected (for example, a fuel cell 10 described later), and a sealing material for sealing the member to be inspected (for example, a sealing material to be described later). 101), and a gas measurement unit (for example, a pressure gauge 22 to be described later) for measuring the gas to be inspected to the outside of the gas leakage inspection device (for example, the gas leakage inspection device 1 to be described later), wherein the gas measurement The part measures the amount of gas to the outside of the sealing material in chronological order, and when the amount of gas to the outside per unit time after the passage of a predetermined time from the introduction of the gas to be inspected is greater than a predetermined value a leak state in which there is a gap between the member to be inspected and the seal material, and when the gap is equal to or less than the predetermined value, a permeation state in which the inspection target gas is transmitted through the seal material is determined. A gas leak inspection device is provided that includes a determination unit (for example, a determination unit 51 to be described later).

本発明によれば、所定の時間を経過した後に、リークが生じているのか、透過のみであるのかの切り分けが可能となる。このため、一度の検査を行うことで、透過量規定とリーク量規定とのそれぞれに対する良否判定が可能となり、被検査対象部材を備える製品の出荷段階で、当該製品において検査対象ガスが漏れておらずシール材の透過のみがある、という要件の設定が可能となる。この結果、耐久試験による透過量の経年変化試験が緩和でき、耐久試験の工数の低減を図ることが可能となる。 According to the present invention, it is possible to determine whether leakage occurs or only transmission occurs after a predetermined period of time has elapsed. For this reason, it is possible to determine the quality of each of the permeation amount regulation and the leakage amount regulation by performing the inspection once, and at the shipping stage of the product including the inspection object parts, the inspection target gas is not leaked from the product. It is possible to set the requirement that only the sealant permeates. As a result, it is possible to relax the permeation amount aging test in the endurance test, and to reduce the man-hours of the endurance test.

また、本発明は、被検査対象部材(例えば、後述の燃料電池10)の内側に検査対象ガスを導入するガス導入部と、前記被検査対象部材をシールするシール(例えば、後述のシール材101)材の外側への検査対象ガスを測定するガス測定部と、を備えるガス漏れ検査装置(例えば、後述のガス漏れ検査装置1)であって、前記ガス測定部は、時系列で前記シール材の外側へのガス量を測定し、前記検査対象ガスを導入してから所定時間の近傍の時間帯に、単位時間当たりの外側へのガス量の傾きに変曲点を検出した場合には、前記被検査対象部材と前記シール材との間に隙間があるリーク状態、かつ前記シール材から前記検査対象ガスが透過している透過状態の両方の状態にある判定すると判定部(例えば、後述の判定部51)を備えるガス漏れ検査装置を提供する。 In addition, the present invention includes a gas introduction portion for introducing a gas to be inspected into the inside of a member to be inspected (for example, a fuel cell 10 described later), and a seal (for example, a sealing material 101 to be described later) for sealing the member to be inspected. ) gas measurement unit for measuring the gas to be inspected to the outside of the sealing material (for example, the gas leakage inspection device 1 described later), wherein the gas measurement unit measures the sealing material in chronological order. is measured, and an inflection point is detected in the slope of the outward gas amount per unit time in a time zone near a predetermined time after the gas to be inspected is introduced, A determination unit (for example, a A gas leak inspection device is provided that includes a determination unit 51).

本発明によれば、所定の時間の近傍の時間帯に、リーク状態と透過状態との両方の状態にあることを判定することができる。この結果、より確実にリーク状態と透過状態を判定することができ、燃料ガスの漏れが、シール材の透過によるものか、シール材と他の部材との間に生じている隙間によるものかの切り分けが可能となる。 According to the present invention, it can be determined that the state is in both the leak state and the transmission state in a time zone near a predetermined time. As a result, the leak state and the permeation state can be determined more reliably, and it is possible to determine whether the fuel gas leak is due to permeation of the seal material or due to a gap between the seal material and other members. Separation becomes possible.

そして、前記ガス測定部は、前記被検査対象部材を気密に取り囲み、前記シール材の外側の前記検査対象ガスの圧力を測定して、前記シール材の外側のガス漏れを検査するシール材外側検査部(例えば、後述のシール材外側検査部11)を備える。 The gas measuring unit airtightly surrounds the member to be inspected, measures the pressure of the gas to be inspected outside the sealing material, and inspects gas leakage outside the sealing material. section (for example, a sealing material outer inspection section 11 to be described later).

このため、シール材を備える被検査対象部材を気密に取り囲むようにしてシール材外側検査部を設けて、シール材の外側であって、シール材外側検査部の被検査対象ガスの圧力を測定することにより、被検査対象部材における検査対象ガスについて、簡易な方法で透過量規定とリーク量規定とのそれぞれに対する良否判定が可能となる。 For this reason, a sealing member outer inspection portion is provided so as to airtightly surround a member to be inspected including the sealing member, and the pressure of the inspection target gas is measured in the sealing member outer inspection portion outside the sealing member. As a result, it is possible to determine whether the gas to be inspected in the member to be inspected is passable or not with respect to both the permeation amount regulation and the leak amount regulation by a simple method.

本発明によれば、燃料ガスの漏れが、シール材の透過によるものか、シール材と他の部材との間に生じている隙間によるものかの切り分けが可能なガス漏れ検査方法及びガス漏れ検査装置を提供することができる。 According to the present invention, a gas leakage inspection method and a gas leakage inspection capable of distinguishing whether fuel gas leakage is due to permeation of the sealing material or due to a gap between the sealing material and another member. Equipment can be provided.

本発明の一実施形態によるガス漏れ検査装置を示す概略図である。1 is a schematic diagram showing a gas leak inspection device according to an embodiment of the present invention; FIG. 本発明の一実施形態によるガス漏れ検査装置を示すブロック図である。1 is a block diagram showing a gas leak inspection device according to one embodiment of the present invention; FIG. 本発明の一実施形態によるガス漏れ検査装置により検出されるリークを説明する図である。It is a figure explaining the leak detected by the gas leak inspection apparatus by one Embodiment of this invention. 本発明の一実施形態によるガス漏れ検査装置により検出される透過を説明する図である。It is a figure explaining permeation|transmission detected by the gas leak test|inspection apparatus by one Embodiment of this invention. 本発明の一実施形態によるガス漏れ検査装置により検出されるリークと透過との違いを説明するグラフである。4 is a graph explaining the difference between leak and permeation detected by the gas leak inspection device according to the embodiment of the present invention;

以下、本発明の実施形態について図面を参照して説明する。図1は、ガス漏れ検査装置1を示す概略図である。図2は、ガス漏れ検査装置1を示すブロック図である。図3は、ガス漏れ検査装置1により検出されるリークを説明する図である。図4は、ガス漏れ検査装置1により検出される透過を説明する図である。図5は、ガス漏れ検査装置1により検出されるリークと透過との違いを説明するグラフである。
ガス漏れ検査装置は、燃料電池システムにおける水素ガスの漏れを検出するための装置である。以下、ガス漏れ検査装置1、及び、ガス漏れ検査装置により検査が行われる燃料電池システムについて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing a gas leak inspection device 1. As shown in FIG. FIG. 2 is a block diagram showing the gas leak inspection device 1. As shown in FIG. FIG. 3 is a diagram for explaining leaks detected by the gas leak inspection device 1. FIG. FIG. 4 is a diagram for explaining permeation detected by the gas leak inspection device 1. FIG. FIG. 5 is a graph for explaining the difference between leak and permeation detected by the gas leak inspection device 1. FIG.
A gas leak inspection device is a device for detecting leakage of hydrogen gas in a fuel cell system. The gas leakage inspection device 1 and the fuel cell system to be inspected by the gas leakage inspection device will be described below.

燃料電池システムは、アノードガスとしての水素ガスおよびカソードガスとしてのエア(空気)を反応させて発電する燃料電池10と、燃料電池10に水素ガスを供給する水素ガス供給装置30と、燃料電池10にエアを供給する図示しないエア供給装置と、これらを制御する制御装置50とを有する。
また、ガス漏れ検査装置は、水素ガス供給装置30により構成されるガス導入部と、圧力計21、22により構成されるガス測定部と、制御装置50により構成される判定部51と、シール材外側検査部11とを有している。
The fuel cell system includes a fuel cell 10 that generates electricity by reacting hydrogen gas as an anode gas and air as a cathode gas, a hydrogen gas supply device 30 that supplies hydrogen gas to the fuel cell 10, and the fuel cell 10. It has an air supply device (not shown) that supplies air to and a control device 50 that controls them.
In addition, the gas leak inspection device includes a gas introduction section configured by the hydrogen gas supply device 30, a gas measurement section configured by the pressure gauges 21 and 22, a determination section 51 configured by the control device 50, and a sealing material and an outer inspection section 11 .

燃料電池10は、例えば、数十個から数百個のセルが積層されたスタック構造である。各セルは、膜電極構造体(MEA)を一対のセパレータで挟持して構成される。膜電極構造体は、アノード電極およびカソード電極の2つの電極と、これら電極に挟持された固体高分子電解質膜とで構成される。通常、両電極は、固体高分子電解質膜に接して酸化・還元反応を行う触媒層と、この触媒層に接するガス拡散層とから形成される。 The fuel cell 10 has, for example, a stack structure in which tens to hundreds of cells are stacked. Each cell is configured by sandwiching a membrane electrode assembly (MEA) between a pair of separators. A membrane electrode assembly is composed of two electrodes, an anode electrode and a cathode electrode, and a solid polymer electrolyte membrane sandwiched between these electrodes. Both electrodes are generally formed of a catalyst layer that is in contact with the solid polymer electrolyte membrane and performs an oxidation/reduction reaction, and a gas diffusion layer that is in contact with this catalyst layer.

このような燃料電池10は、アノード電極側に形成されたアノード流路に水素ガスが供給され、カソード電極側に形成された図示しないカソード流路に酸素を含むエアが供給されると、これらの電気化学反応により発電する。 In such a fuel cell 10, hydrogen gas is supplied to an anode flow path formed on the anode electrode side, and air containing oxygen is supplied to a cathode flow path (not shown) formed on the cathode electrode side. Electricity is generated by an electrochemical reaction.

ボンベにより構成される水素タンク32は、アノードガス供給路としての水素供給路35を介して、燃料電池10のアノード流路に水素ガスを供給する。水素タンク32と燃料電池10との間の水素供給路35の部分には、水素タンク32から供給される水素ガスを減圧するレギュレータ31と、圧力計21とが、この順で水素ガスの流れにおける上流側から下流側に向かって設けられている。 A hydrogen tank 32 constituted by a cylinder supplies hydrogen gas to the anode channel of the fuel cell 10 via a hydrogen supply channel 35 as an anode gas supply channel. In the portion of the hydrogen supply path 35 between the hydrogen tank 32 and the fuel cell 10, a regulator 31 for reducing the pressure of the hydrogen gas supplied from the hydrogen tank 32 and a pressure gauge 21 are arranged in this order in the flow of hydrogen gas. It is provided from the upstream side to the downstream side.

燃料電池10のアノード流路の他端側は、アノード流路を開閉する背圧弁12を介して図示しない希釈器に接続されている。この背圧弁12を開状態とすることにより、アノード流路の他端側を流通するガスを中流量で希釈器に排出可能である。 The other end of the anode channel of the fuel cell 10 is connected to a diluter (not shown) via a back pressure valve 12 that opens and closes the anode channel. By opening the back pressure valve 12, the gas flowing through the other end of the anode channel can be discharged to the diluter at a medium flow rate.

図示しない希釈器は、希釈器に導入された水素オフガスを希釈して、燃料電池システムの外部に放出する。 A diluter (not shown) dilutes the hydrogen off-gas introduced into the diluter and releases it to the outside of the fuel cell system.

シール材外側検査部11は、燃料電池10を気密に取り囲む容器により構成されている。 The sealing material outer inspection part 11 is configured by a container that airtightly surrounds the fuel cell 10 .

圧力計21は、レギュレータ31によって減圧された水素ガスの圧力を測定する。圧力計21は、制御装置50に電気的に接続されており、制御装置50によって、圧力計21により測定された圧力の値に基づいて、レギュレータ31から燃料電池10へ流れる水素ガスの量が算出される。 A pressure gauge 21 measures the pressure of the hydrogen gas reduced by the regulator 31 . The pressure gauge 21 is electrically connected to the control device 50, and the control device 50 calculates the amount of hydrogen gas flowing from the regulator 31 to the fuel cell 10 based on the pressure value measured by the pressure gauge 21. be done.

圧力計22は、シール材外側検査部11の内部の水素ガスの圧力を測定する。圧力計22は、制御装置50に電気的に接続されており、制御装置50によって、圧力計22により測定された圧力の値に基づいて、シール材外側検査部11の内部の水素ガスの量が算出される。 The pressure gauge 22 measures the pressure of the hydrogen gas inside the sealing material outer inspection portion 11 . The pressure gauge 22 is electrically connected to the control device 50 , and the control device 50 determines the amount of hydrogen gas inside the sealing material outer inspection portion 11 based on the pressure value measured by the pressure gauge 22 . Calculated.

制御装置50は、判定部51を有している。判定部51は、圧力計22により測定された圧力の値に基づくシール材外側検査部11の内部の水素ガスの量に基づいて、検査対象ガスとしての水素ガスを導入してから所定時間t1経過後の、単位時間当たりの燃料電池10及び燃料電池10のシール材101の外側、且つ、シール材外側検査部11の内側への水素ガスの量が、所定値よりも大きいときに、被検査対象部材である燃料電池10を構成する部材102及び部材103と、シール材101との間に、図3のように隙間があるリーク状態であると判定し、所定値以下のときに、図4のように隙間がなくシール材101から水素ガスが透過している透過状態であると判定する。この判定の詳細については後述する。 The control device 50 has a determination section 51 . Based on the amount of hydrogen gas inside the sealing material outer inspection unit 11 based on the pressure value measured by the pressure gauge 22, the determination unit 51 determines that a predetermined time t1 has elapsed since the hydrogen gas as the gas to be inspected was introduced. Later, when the amount of hydrogen gas per unit time to the outside of the fuel cell 10 and the sealing material 101 of the fuel cell 10 and to the inside of the sealing material outside inspection part 11 is larger than a predetermined value, the object to be inspected 3 between the member 102 and the member 103 constituting the fuel cell 10 and the sealing member 101. When the gap is below a predetermined value, it is determined that there is a leak as shown in FIG. It is determined that the sealing material 101 is in a permeable state in which there is no gap as shown in FIG. The details of this determination will be described later.

次に、ガス漏れ検査方法について説明する。
先ず、シール材外側検査部11により気密に収容された燃料電池10に設けられているシール材101において、図4に示すようにシール材101と燃料電池100を構成している部材102、103との間に隙間がない状態で水素ガスが透過している場合の水素ガスの透過量のグラフを予め取得する。具体的には、図5における「透過」の直線のグラフを予め取得する。
Next, a gas leak inspection method will be described.
First, as shown in FIG. A graph of the permeation amount of hydrogen gas is obtained in advance when hydrogen gas is permeated in a state where there is no gap between the . Specifically, a straight line graph of “transmission” in FIG. 5 is obtained in advance.

次に、被検査対象部材としての燃料電池10の内側(内部)に、水素タンク32から検査対象ガスである水素ガスを導入する。そして、ガス量測定工程を行う。ガス量測定工程では、シール材101の外側、即ち、シール材外側検査部11により気密に収容された燃料電池10の外側、且つ、シール材外側検査部11の内側の圧力を時系列に測定することにより、単位時間当たりの、シール材101の外側への水素ガスの量を測定する。 Next, hydrogen gas, which is the gas to be inspected, is introduced from the hydrogen tank 32 into the inside (inside) of the fuel cell 10, which is the member to be inspected. Then, the gas amount measurement process is performed. In the gas amount measurement process, the pressure outside the sealing material 101, that is, outside the fuel cell 10 hermetically accommodated by the sealing material outside inspection part 11 and inside the sealing material outside inspection part 11 is measured in time series. Thus, the amount of hydrogen gas to the outside of the sealing material 101 per unit time is measured.

即ち、シール材外側検査部11により気密に収容された燃料電池10に設けられているシール材101においては、前述のように、水素ガスの透過量の直線の傾き(図5中の「透過要件」の破線の傾き)は一定である。また、図4に示すように、シール材101と燃料電池100を構成している部材103との間に隙間が生じておらず、このため水素ガスがリークしておらず、シール材101を透過しているのみの場合には、水素タンク32から水素ガスを導入し始めてから所定の時間t1が経過するまでの間、図5の「透過」のグラフに示すように、水素ガスの透過は生じない。 That is, in the sealing material 101 provided in the fuel cell 10 airtightly accommodated by the sealing material outer inspection section 11, as described above, the slope of the straight line of the permeation amount of hydrogen gas ("permeation requirement ) is constant. In addition, as shown in FIG. 4, there is no gap between the sealing material 101 and the member 103 that constitutes the fuel cell 100. Therefore, the hydrogen gas does not leak and permeates the sealing material 101. 5, permeation of hydrogen gas occurs during the period from the start of introduction of hydrogen gas from the hydrogen tank 32 until the predetermined time t1 elapses, as shown in the graph of "permeation" in FIG. Absent.

これに対して図3に示すように、例えば、シール材101と燃料電池100を構成している部材103との間に隙間が生じている場合には、図5の「リーク」のグラフに示すように、水素タンク32から水素ガスを導入し始めると同時に、水素ガスが、シール材101の外側、且つ、シール材外側検査部11に漏れ始める。従って、図3に示すように、シール材101と燃料電池100を構成している部材103との間に隙間が生じている場合には、水素ガスの漏れ量のグラフは、図5の「リーク+透過」のグラフに示すように、変曲点が存在することになる。 On the other hand, as shown in FIG. 3, for example, when there is a gap between the sealing material 101 and the member 103 constituting the fuel cell 100, the graph of "leakage" in FIG. Thus, at the same time that hydrogen gas starts to be introduced from the hydrogen tank 32 , the hydrogen gas starts to leak outside the sealant 101 and into the sealant outside inspection section 11 . Therefore, as shown in FIG. 3, when there is a gap between the sealing material 101 and the member 103 that constitutes the fuel cell 100, the graph of the hydrogen gas leakage amount is different from the graph of FIG. There will be an inflection point as shown in the graph of +transmission.

次に、描かれたグラフに基づく判定工程を行う。判定工程では、水素ガスを導入してから所定時間t1経過後の単位時間当たりの外側へのガス量が、所定値(単位時間当たりの水素ガスのシール材101の透過量)よりも大きいとき、即ち、所定の時間t1以降において、得られた水素ガスの漏れ量のグラフの傾きが、図5の「透過要件(透過)」のグラフの傾きよりも大きいときに、部材103とシール材101との間に隙間があるリーク状態であると判定する。一方、水素ガスを導入してから所定時間t1経過後の単位時間当たりの外側へのガス量が、所定値(単位時間当たりの水素ガスのシール材101の透過量)以下のとき、即ち、所定の時間t1以降において、得られた水素ガスの漏れ量のグラフの傾きが、図5の「透過要件(透過)」のグラフの傾き以下のときに、部材103や部材102とシール材101との間に隙間がなくシール材101のみから水素ガスが透過している透過状態であると判定する。
なお、燃料電池やシール材の設計誤差を考慮して、上述した「リーク+透過」のグラフに示される変曲点を検出することでリーク状態または透過状態を判定してもよい。具体的には、判定工程では、水素ガスを導入してから所定時間t1経過後の単位時間当たりの外側へのガス量を時系列で取得し、所定の時間t1近傍の時間帯において、得られた水素ガスの漏れ量のグラフの傾きが、図5の「透過要件(透過)」のグラフの傾きよりも大きく、かつ「リーク+透過」のグラフに示される変曲点が検出されたときに、部材103とシール材101との間に隙間があるリーク状態かつ透過状態の両方の状態であると判定する。このようにすることで、より確実にリーク状態と透過状態を判定することができる。
Next, a determination process based on the drawn graph is performed. In the determination step, when the amount of gas flowing outward per unit time after a predetermined time t1 has elapsed from the introduction of the hydrogen gas is larger than a predetermined value (the amount of permeation of the hydrogen gas through the sealing material 101 per unit time), That is, after the predetermined time t1, when the slope of the obtained hydrogen gas leak amount graph is larger than the slope of the graph of the "permeation requirement (permeation)" in FIG. It is determined that there is a gap between and is in a leak state. On the other hand, when the amount of gas to the outside per unit time after the lapse of the predetermined time t1 from the introduction of the hydrogen gas is equal to or less than a predetermined value (amount of permeation of the hydrogen gas through the sealing material 101 per unit time), that is, a predetermined After time t1, when the slope of the graph of the obtained hydrogen gas leakage amount is equal to or less than the slope of the graph of "permeation requirement (permeation)" in FIG. It is determined that the hydrogen gas is permeating only through the sealing material 101 without any gap between them.
In consideration of design errors of the fuel cell and the sealing material, the leak state or the permeation state may be determined by detecting the inflection point shown in the above-described "leakage + permeation" graph. Specifically, in the determination step, the amount of gas to the outside per unit time after a predetermined time t1 has elapsed since the introduction of the hydrogen gas is obtained in chronological order, and in a time zone near the predetermined time t1, the obtained When the slope of the hydrogen gas leak amount graph is larger than the slope of the "permeation requirement (permeation)" graph in FIG. 5 and the inflection point shown in the "leak + permeation" graph is detected , it is determined that there is a gap between the member 103 and the sealing material 101, and that both the leak state and the transmission state are present. By doing so, it is possible to more reliably determine the leak state and the transmission state.

本実施形態によれば、以下の効果が奏される。
本実施形態によるガス漏れ検査方法は、検査対象ガスとして水素ガスを導入してから所定時間t1経過後の単位時間当たりの外側へのガス量が、所定値よりも大きいときに、被検査対象部材である部材103とシール材101との間に隙間があるリーク状態と判定し、所定値以下のときに、シール材101から水素ガスが透過している透過状態と判定する判定工程と、を有する。
また、本実施形態によるガス漏れ検査装置は、検査対象ガスとしての水素ガスを導入してから所定時間t1経過後の単位時間当たりの外側へのガス量が、所定値よりも大きいときに、被検査対象部材としての部材103とシール材101との間に隙間があるリーク状態と判定し、所定値以下のときに、シール材101から水素ガスが透過している透過状態と判定する判定部を備える。
According to this embodiment, the following effects are achieved.
In the gas leak inspection method according to the present embodiment, when the amount of gas to the outside per unit time after a predetermined time t1 has elapsed since hydrogen gas was introduced as the inspection target gas is larger than a predetermined value, the inspection target member and determining a leakage state in which there is a gap between the member 103 and the sealing material 101, and determining a permeation state in which hydrogen gas is permeating through the sealing material 101 when the gap is equal to or less than a predetermined value. .
Further, the gas leak inspection apparatus according to the present embodiment detects when the amount of gas flowing to the outside per unit time after the predetermined time t1 has elapsed since the introduction of the hydrogen gas as the gas to be inspected is greater than a predetermined value. A judgment unit that judges that there is a leak state in which there is a gap between the member 103 as a member to be inspected and the sealing material 101, and judges that it is in a permeation state that hydrogen gas is permeating through the sealing material 101 when the gap is equal to or less than a predetermined value. Prepare.

これにより、所定の時間t1を経過した後に、リークが生じているのか、透過のみであるのかの切り分けが可能となる。このため、一度の検査を行うことで、透過量規定とリーク量規定とのそれぞれに対する良否判定が可能となり、固体高分子型燃料電池を備える製品の出荷段階で、当該製品において水素が漏れておらずシール材101の透過のみがある、という要件の設定が可能となる。この結果、耐久試験による透過量の経年変化試験が緩和でき、耐久試験の工数の低減を図ることが可能となる。さらに、図5に示されるように透過状態の漏れ量よりも微量なリーク量(傾きa<傾きc)の場合でも部材103とシール材101との間に隙間があるリーク状態を判定することができる。 This makes it possible to determine whether leakage occurs or only transmission occurs after the predetermined time t1 has elapsed. For this reason, it is possible to determine whether the permeation amount regulation and the leakage amount regulation are satisfied by conducting a single inspection, and at the shipping stage of products equipped with polymer electrolyte fuel cells, it is possible to check whether hydrogen is leaking from the product. First, it is possible to set a requirement that there is only transmission through the sealant 101 . As a result, it is possible to relax the permeation amount aging test in the endurance test, and to reduce the man-hours of the endurance test. Furthermore, as shown in FIG. 5, even when the leak amount (slope a<slope c) is smaller than the leak amount in the permeation state, it is possible to determine the leak state in which there is a gap between the member 103 and the sealing material 101. can.

また、本実施形態によるガス漏れ検査方法のガス量測定工程では、シール材101の外側の検査対象ガスとしての水素ガスの圧力を測定して、シール材101の外側のガス漏れを検査する。また、前記被検査対象部材を気密に取り囲むシール材外側検査部を備え、本実施形態によるガス漏れ検査装置のガス測定部は、シール材101の外側の水素ガスの圧力を測定して、シール材101の外側のガス漏れを検査するシール材外側検査部を備える。 Further, in the gas amount measuring step of the gas leakage inspection method according to the present embodiment, the pressure of hydrogen gas as the inspection target gas outside the sealing material 101 is measured to inspect gas leakage outside the sealing material 101 . In addition, the gas measurement unit of the gas leakage inspection device according to the present embodiment is provided with a sealing material outer inspection part that airtightly surrounds the member to be inspected, and measures the pressure of hydrogen gas outside the sealing material 101 to A sealing material outer inspection part for inspecting the outside of 101 for gas leakage is provided.

これにより、シール材101を備える燃料電池10を気密に取り囲むようにしてシール材外側検査部11を設けて、シール材101の外側であって、シール材外側検査部11の内部の圧力を測定することにより、燃料電池10における水素ガスについて、簡易な方法で透過量規定とリーク量規定とのそれぞれに対する良否判定が可能となる。 As a result, the sealant outer inspection section 11 is provided so as to airtightly surround the fuel cell 10 having the sealant 101, and the pressure inside the sealant outer inspection section 11 outside the sealant 101 is measured. As a result, it is possible to judge whether the hydrogen gas in the fuel cell 10 is good or bad with respect to both the permeation amount regulation and the leakage amount regulation by a simple method.

本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
例えば被検査対象として固体高分子型燃料電池以外の燃料電池や、それ以外のガス利用装置にも好適に利用できる。同様に検査対象ガスとして水素ガス以外のガスの漏れ検査にも好適に利用できる。
例えば、本実施形態によるガス漏れ検査方法では、シール材101の外側の検査対象ガスとしての水素ガスの圧力を測定し、また、本実施形態によるガス測定部では、シール材101の外側の検査対象ガスとしての水素ガスの圧力を測定して、シール材101の外側のガス漏れを検査したが、この構成に限定されない。例えば、水素タンク32内の水素ガスが減った量を検出して、水素ガスが透過した又はリークしたことを判定してもよく、圧力以外の手法でガス量を測定するようにしてもよい。
また、上述した実施形態では、判定工程では、水素ガスの漏れ量のグラフの傾きが、所定値以上、かつ変曲点が検出されたときに、リーク状態かつ透過状態の両方の状態であると判定したが、被検査対象部材としての燃料電池10の内側(内部)に、水素タンク32から検査対象ガスである水素ガスを導入した後、所定時間t1の近傍の時間帯において、上述した「リーク+透過」のグラフに示される変曲点を検出することだけによりリーク状態かつ透過状態の両方の状態と判定してもよい。
The present invention is not limited to the above-described embodiments, and includes modifications, improvements, etc. within the scope of achieving the object of the present invention.
For example, the present invention can be suitably used for fuel cells other than polymer electrolyte fuel cells and other gas utilization devices as objects to be inspected. Similarly, it can be suitably used for leak detection of gases other than hydrogen gas as inspection target gases.
For example, in the gas leak inspection method according to the present embodiment, the pressure of hydrogen gas as the inspection target gas outside the sealing material 101 is measured. Although the pressure of hydrogen gas as gas was measured to check for gas leakage outside the sealing material 101, the configuration is not limited to this. For example, it may be determined that the hydrogen gas has permeated or leaked by detecting the reduced amount of hydrogen gas in the hydrogen tank 32, or the gas amount may be measured by a method other than pressure.
Further, in the above-described embodiment, in the determination step, when the slope of the hydrogen gas leak amount graph is equal to or greater than a predetermined value and an inflection point is detected, it is determined that both the leak state and the permeation state are present. However, after the hydrogen gas, which is the gas to be inspected, was introduced from the hydrogen tank 32 into the inside (inside) of the fuel cell 10, which is the member to be inspected, during a period of time near the predetermined time t1, the above-described "leakage Both the leak state and the transmission state may be determined only by detecting the inflection point shown in the graph of +transmission.

1…ガス漏れ検査装置
10…燃料電池
11…シール材外側検査部
21…圧力計
22…圧力計
30…水素ガス供給装置
31…レギュレータ
32…水素タンク
51…判定部
101…シール材
REFERENCE SIGNS LIST 1 gas leak inspection device 10 fuel cell 11 sealing material outer inspection unit 21 pressure gauge 22 pressure gauge 30 hydrogen gas supply device 31 regulator 32 hydrogen tank 51 determining unit 101 sealing material

Claims (4)

被検査対象部材の内側に検査対象ガスを導入し、
前記被検査対象部材をシールするシール材の外側への検査対象ガスを測定して、前記シール材の外側へのガス漏れを検査するガス漏れ検査方法であって、
前記測定する工程は、時系列で前記シール材の外側へのガス量を測定するガス量測定工程と、
前記検査対象ガスを導入してから所定時間の近傍の時間帯に、単位時間当たりの外側へのガス量の傾きに変曲点を検出した場合には、前記被検査対象部材と前記シール材との間に隙間があるリーク状態、かつ前記シール材から前記検査対象ガスが透過している透過状態の両方の状態にあると判定する判定工程と、を有するガス漏れ検査方法。
introducing a gas to be inspected inside the member to be inspected,
A gas leakage inspection method for inspecting gas leakage to the outside of the sealing material by measuring the inspection target gas to the outside of the sealing material that seals the inspection target member,
The step of measuring includes a gas amount measuring step of measuring the amount of gas flowing to the outside of the sealing material in chronological order;
When an inflection point is detected in the slope of the outward gas amount per unit time in a period of time near a predetermined time after the inspection target gas is introduced, the inspection target member and the sealing material are detected. a determination step of determining that both a leak state in which there is a gap therebetween and a permeation state in which the gas to be inspected is permeating through the sealing material.
前記ガス量測定工程では、前記シール材を備える前記被検査対象部材を気密に取り囲むようにして前記シール材の外側の前記検査対象ガスの圧力を測定して、前記シール材の外側のガス漏れを検査する請求項に記載のガス漏れ検査方法。 In the gas amount measuring step, the pressure of the gas to be inspected outside the sealing material is measured so as to airtightly surround the member to be inspected provided with the sealing material, and gas leakage outside the sealing material is detected. The gas leak inspection method according to claim 1 , wherein the inspection is performed. 被検査対象部材の内側に検査対象ガスを導入するガス導入部と、
前記被検査対象部材をシールするシール材の外側への検査対象ガスを測定するガス測定部と、を備えるガス漏れ検査装置であって、
前記ガス測定部は、時系列で前記シール材の外側へのガス量を測定し、
前記検査対象ガスを導入してから所定時間の近傍の時間帯に、単位時間当たりの外側へのガス量の傾きに変曲点を検出した場合には、前記被検査対象部材と前記シール材との間に隙間があるリーク状態、かつ前記シール材から前記検査対象ガスが透過している透過状態の両方の状態にある判定すると判定部を備えるガス漏れ検査装置。
a gas introduction unit that introduces the gas to be inspected into the inside of the member to be inspected;
A gas leakage inspection device comprising: a gas measuring unit for measuring a gas to be inspected to the outside of a sealing material that seals the member to be inspected,
The gas measurement unit measures the amount of gas to the outside of the sealing material in chronological order,
When an inflection point is detected in the slope of the outward gas amount per unit time in a period of time near a predetermined time after the inspection target gas is introduced, the inspection target member and the sealing material are detected. A gas leak inspection device comprising a determination unit that determines both a leak state in which there is a gap and a permeation state in which the gas to be inspected is permeated through the sealing material.
前記ガス測定部は、前記被検査対象部材を気密に取り囲み、前記シール材の外側の前記検査対象ガスの圧力を測定して、前記シール材の外側のガス漏れを検査するシール材外側検査部を備える請求項に記載のガス漏れ検査装置。
The gas measurement unit includes a seal material outer inspection unit that airtightly surrounds the member to be inspected, measures the pressure of the inspection target gas outside the seal material, and inspects gas leakage outside the seal material. The gas leak inspection device according to claim 3 .
JP2019061014A 2019-03-27 2019-03-27 Gas leak inspection method and gas leak inspection device Active JP7202948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019061014A JP7202948B2 (en) 2019-03-27 2019-03-27 Gas leak inspection method and gas leak inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019061014A JP7202948B2 (en) 2019-03-27 2019-03-27 Gas leak inspection method and gas leak inspection device

Publications (2)

Publication Number Publication Date
JP2020159935A JP2020159935A (en) 2020-10-01
JP7202948B2 true JP7202948B2 (en) 2023-01-12

Family

ID=72642955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019061014A Active JP7202948B2 (en) 2019-03-27 2019-03-27 Gas leak inspection method and gas leak inspection device

Country Status (1)

Country Link
JP (1) JP7202948B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116583729A (en) 2021-03-03 2023-08-11 Nok株式会社 Method, device and program for inspecting seal member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035445A (en) 2005-07-27 2007-02-08 Toyota Motor Corp Fuel cell system
JP2014228105A (en) 2013-05-24 2014-12-08 本田技研工業株式会社 High-pressure gas vessel and gas leakage determination method of high-pressure gas vessel seal part
US20180198141A1 (en) 2017-01-09 2018-07-12 GM Global Technology Operations LLC Method to detect fuel cell gas leak

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097476U (en) * 1983-12-08 1985-07-03 石川島播磨重工業株式会社 high temperature isolation valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035445A (en) 2005-07-27 2007-02-08 Toyota Motor Corp Fuel cell system
JP2014228105A (en) 2013-05-24 2014-12-08 本田技研工業株式会社 High-pressure gas vessel and gas leakage determination method of high-pressure gas vessel seal part
US20180198141A1 (en) 2017-01-09 2018-07-12 GM Global Technology Operations LLC Method to detect fuel cell gas leak

Also Published As

Publication number Publication date
JP2020159935A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US6638650B1 (en) Method and apparatus for detecting transfer leaks in fuel cells and fuel cell stacks
CA2395015C (en) Gas leak detection method for fuel cell
US6492043B1 (en) Method and apparatus for detecting a leak within a fuel cell
US6475651B1 (en) Method and apparatus for detecting transfer leaks in fuel cells
CN111418102B (en) Fuel cell system with integrated gas interface
US9252441B2 (en) Method for detecting the permeability state of the ion exchanger polymer membrane of a fuel cell
JP2013054925A (en) Inspection method and inspection device of fuel cell
US20210399320A1 (en) Determining the mass flow of an exhaust gas constituent of a fuel cell
JP2004199918A (en) Diagnosis method of fuel cell
US9413015B2 (en) Non-destructive method for testing the seal of an electrolyte of an electrochemical cell
US11545683B2 (en) Methods and apparatus for detecting electrical short circuits in fuel cell stacks
US20050064252A1 (en) Method for operating polymer electrolyte fuel cell
US6662633B2 (en) Method and apparatus for locating internal transfer leaks within fuel cell stacks
JP7202948B2 (en) Gas leak inspection method and gas leak inspection device
US6874352B2 (en) Method and apparatus for locating internal transfer leaks within fuel cell stacks
US8314622B2 (en) Method and apparatus for examining ion-conductive electrolyte membrane
JP7050027B2 (en) Gas leak inspection method and gas leak inspection equipment
JPH11260389A (en) Inspection method for fuel cell separator
KR20090047841A (en) Gasket Test Equipment and Method for Fuel Cell
CN116072936A (en) An on-line detection device and method for proton exchange membrane fuel cell stack leakage
US8951690B2 (en) Apparatus and method of in-situ measurement of membrane fluid crossover
JP7489507B1 (en) Leak inspection device and leak inspection method
JP5508633B2 (en) Fuel cell abnormality detection device, fuel cell device, and fuel cell abnormality detection method
JP2022003629A (en) Inspection method of fuel battery cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221109

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221124

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221226

R150 Certificate of patent or registration of utility model

Ref document number: 7202948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150