JP7192844B2 - Hybrid vehicle control device - Google Patents
Hybrid vehicle control device Download PDFInfo
- Publication number
- JP7192844B2 JP7192844B2 JP2020200966A JP2020200966A JP7192844B2 JP 7192844 B2 JP7192844 B2 JP 7192844B2 JP 2020200966 A JP2020200966 A JP 2020200966A JP 2020200966 A JP2020200966 A JP 2020200966A JP 7192844 B2 JP7192844 B2 JP 7192844B2
- Authority
- JP
- Japan
- Prior art keywords
- engine
- rotation speed
- motor generator
- motor
- predetermined value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Hybrid Electric Vehicles (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Description
本発明は、ハイブリッド車両の制御装置に関する。 The present invention relates to a hybrid vehicle control device.
従来、モータジェネレータのモータトルクとエンジンのエンジントルクとを、動力伝達機構を介して駆動軸に出力するハイブリッド車両として、特許文献1に記載されたものが知られている。特許文献1に記載のものは、2つのモータジェネレータと、エンジンとを備えており、車両が急減速したときにエンジン回転速度が低下してエンジンがストールすることを防止するようになっている。
2. Description of the Related Art Conventionally, as a hybrid vehicle that outputs a motor torque of a motor generator and an engine torque of an engine to a drive shaft via a power transmission mechanism, one described in
具体的には、特許文献1に記載のものは、エンジンのストール限界回転速度よりも高い回転速度を下限値として設定しておき、この下限値よりもエンジン回転速度が低くならないようにモータジェネレータおよびエンジンを制御している。
Specifically, in
しかしながら、特許文献1に記載の技術では、車両の急減速時にエンジンのストールを防止することはできても、エンジン回転速度がエンジンの共振領域まで低下してしまうことは防止できない。このため、特許文献1に記載のものは、エンジン回転速度が共振領域まで低下してエンジンが振動してしまうおそれがあった。
However, although the technique described in
そこで、本発明は、エンジン回転速度の低下中にエンジンが共振領域に留まって振動することを防止することができるハイブリッド車両の制御装置を提供することを目的としている。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a control device for a hybrid vehicle that can prevent the engine from vibrating due to staying in the resonance region while the engine rotation speed is decreasing.
上記課題を解決するハイブリッド車両の制御装置の発明の一態様は、モータジェネレータおよびエンジンを制御する制御部を備え、前記モータジェネレータのモータトルクを前記エンジンに伝達可能なハイブリッド車両の制御装置であって、前記制御部は、前記エンジンが共振する共振領域において前記モータトルクによって前記エンジンのエンジン回転速度を降下させる共振防止制御と、前記モータジェネレータが前記モータトルクを発生せずに前記エンジンのエンジントルクにより前記エンジン回転速度を自律的に調整するエンジン自律制御と、を実行可能であり、前記共振領域の上限値よりも大きい第1の所定値と、前記第1の所定値より大きい第2の所定値と、を有し、前記エンジン回転速度が降下して前記第2の所定値以下になった場合に前記エンジン自律制御を禁止し、ブレーキ踏み込み量が増加することによって前記エンジン回転速度が降下して前記第1の所定値以下になった場合に、前記エンジンが停止した状態で前記モータトルクにより走行するEV走行モードに移行し、かつ、前記共振防止制御を実行することを特徴とする。 One aspect of the hybrid vehicle control device for solving the above problem is a hybrid vehicle control device that includes a control unit that controls a motor generator and an engine, and is capable of transmitting motor torque of the motor generator to the engine. , the control unit performs resonance prevention control for reducing the engine rotation speed of the engine by the motor torque in a resonance region where the engine resonates, and by the engine torque of the engine without the motor generator generating the motor torque. a first predetermined value greater than an upper limit value of the resonance region; and a second predetermined value greater than the first predetermined value. and, when the engine rotation speed drops and becomes equal to or less than the second predetermined value, the engine autonomous control is prohibited, and the brake depression amount is increased, thereby causing the engine rotation speed to drop. When the vehicle becomes equal to or less than the first predetermined value, the vehicle is shifted to an EV driving mode in which the vehicle is driven by the motor torque while the engine is stopped, and the resonance prevention control is executed.
このように本発明の一態様によれば、エンジン回転速度の低下中にエンジンが共振領域に留まって振動することを防止することができる。 Thus, according to one aspect of the present invention, it is possible to prevent the engine from staying in the resonance region and vibrating while the engine rotation speed is decreasing.
以下、図面を参照して、本発明の実施の形態について詳細に説明する。図1に示すように、本発明の実施の形態に係る制御装置を搭載したハイブリッド車両(以下、単に「車両」という)1は、内燃機関型のエンジン2と、第1モータジェネレータ4と、第2モータジェネレータ5と、駆動輪6と、駆動輪6に動力を伝達可能に連結された駆動軸7と、第1遊星歯車機構8と、第2遊星歯車機構9と、第1インバータ19と、第2インバータ20と、ハイブリッドECU(Electronic Control Unit)32と、エンジンECU(Electronic Control Unit)33と、モータECU(Electronic Control Unit)34と、バッテリECU(Electronic Control Unit)35とを含んで構成される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, a hybrid vehicle (hereinafter simply referred to as "vehicle") 1 equipped with a control device according to an embodiment of the present invention includes an internal combustion engine 2, a
エンジン2は、吸気行程、圧縮行程、膨張行程及び排気行程からなる一連の4行程を行う4サイクルのエンジンによって構成されている。エンジン2の出力軸3は、第1遊星歯車機構8と第2遊星歯車機構9とに連結されている。
The engine 2 is a four-cycle engine that performs a series of four strokes consisting of an intake stroke, a compression stroke, an expansion stroke and an exhaust stroke. An output shaft 3 of the engine 2 is connected to a first planetary gear mechanism 8 and a second
第1モータジェネレータ4は、ロータ軸13と、ロータ14と、ステータ15とを有している。ロータ14には、複数の永久磁石が埋め込まれている。ステータ15は、ステータコア及びステータコアに巻き掛けられた三相コイルを有している。ステータ15の三相コイルは、第1インバータ19に接続されている。
The
このように構成された第1モータジェネレータ4において、ステータ15の三相コイルに三相交流電力が供給されると、ステータ15によって回転磁界が形成される。この回転磁界にロータ14に埋め込まれた永久磁石が引かれることにより、ロータ14がロータ軸13周りに回転駆動される。すなわち、第1モータジェネレータ4は、電動機として機能し、車両1を駆動する駆動力を生成することができる。
In the
また、ロータ14がロータ軸13周りに回転すると、ロータ14に埋め込まれた永久磁石によって回転磁界が形成され、この回転磁界によりステータ15の三相コイルに誘導電流が流れることにより、三相の交流電力が発生する。すなわち、第1モータジェネレータ4は、発電機としても機能する。
When the
第1インバータ19は、モータECU34の制御により、バッテリ21などから供給された直流の電力を三相の交流電力に変換する。この三相の交流電力は、第1モータジェネレータ4のステータ15の三相コイルに供給される。
The
第1インバータ19は、モータECU34の制御により、第1モータジェネレータ4によって生成された三相の交流電力を直流の電力に変換する。この直流の電力は、例えば、バッテリ21を充電する。
The
第2モータジェネレータ5は、ロータ軸16と、ロータ17と、ステータ18とを有している。ロータ17には、複数の永久磁石が埋め込まれている。ステータ18は、ステータコア及びステータコアに巻き掛けられた三相コイルを有している。ステータ18の三相コイルは、第2インバータ20に接続されている。
The second motor generator 5 has a
このように構成された第2モータジェネレータ5において、ステータ18の三相コイルに三相交流電力が供給されると、ステータ18によって回転磁界が形成される。この回転磁界にロータ17に埋め込まれた永久磁石が引かれることにより、ロータ17がロータ軸16周りに回転駆動される。すなわち、第2モータジェネレータ5は、電動機として機能し、車両1を駆動する駆動力を生成することができる。
In the second motor generator 5 configured as described above, when three-phase AC power is supplied to the three-phase coils of the
また、ロータ17がロータ軸16周りに回転すると、ロータ17に埋め込まれた永久磁石によって回転磁界が形成され、この回転磁界によりステータ18の三相コイルに誘導電流が流れることにより、三相の交流電力が発生する。すなわち、第2モータジェネレータ5は、発電機としても機能する。
When the
第2インバータ20は、モータECU34の制御により、バッテリ21などから供給された直流の電力を三相の交流電力に変換する。この三相の交流電力は、第2モータジェネレータ5のステータ18の三相コイルに供給される。
The
第2インバータ20は、モータECU34の制御により、第2モータジェネレータ5によって生成された三相の交流電力を直流の電力に変換する。この直流の電力は、例えば、バッテリ21を充電する。
The
第1遊星歯車機構8は、サンギア22と、サンギア22に噛み合う複数のプラネタリギア23と、複数のプラネタリギア23に噛み合うリングギア25と、プラネタリギア23を自転可能に支持するプラネタリキャリア24とを備えている。
The first planetary gear mechanism 8 includes a
第2遊星歯車機構9は、サンギア26と、サンギア26に噛み合う複数のプラネタリギア27と、複数のプラネタリギア27に噛み合うリングギア29と、プラネタリギア27を自転可能に支持するプラネタリキャリア28とを備えている。
The second
第1遊星歯車機構8のサンギア22は、第1モータジェネレータ4のロータ14と一体に回転するように、中空のロータ軸13に連結されている。第1遊星歯車機構8のプラネタリキャリア24と、第2遊星歯車機構9のサンギア26とは、エンジン2の出力軸3と一体に回転するように連結されている。
The
第1遊星歯車機構8のリングギア25には、第2遊星歯車機構9のプラネタリギア27がロータ軸13周りに公転するようにプラネタリキャリア28を介して連結されている。また、第1遊星歯車機構8のリングギア25は、図示しないデファレンシャルギア及びその他のギアを含むギア機構31を介して駆動軸7を回転させるように設けられている。第2遊星歯車機構9のリングギア29は、第2モータジェネレータ5のロータ17と一体に回転するようにロータ軸16に連結されている。
A
第1遊星歯車機構8及び第2遊星歯車機構9は、動力伝達機構10を構成する。動力伝達機構10は、エンジン2の出力軸3と、第1モータジェネレータ4のロータ軸13と、第2モータジェネレータ5のロータ軸16と、駆動軸7とが連結された遊星歯車機構を構成する。
The first planetary gear mechanism 8 and the second
このように、動力伝達機構10は、エンジン2と、第1モータジェネレータ4と、第2モータジェネレータ5と、駆動軸7との間で駆動力を授受させるようになっている。例えば、動力伝達機構10は、エンジン2と、第1モータジェネレータ4と、第2モータジェネレータ5とによって生成された動力を駆動軸7に伝達するようになっている。
In this manner, the
ハイブリッドECU32、エンジンECU33、モータECU34及びバッテリECU35は、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)と、バックアップ用のデータなどを保存するフラッシュメモリと、入力ポートと、出力ポートとを備えたコンピュータユニットによってそれぞれ構成されている。
The
これらのコンピュータユニットのROMには、各種定数や各種マップ等とともに、当該コンピュータユニットをハイブリッドECU32、エンジンECU33、モータECU34及びバッテリECU35としてそれぞれ機能させるためのプログラムが格納されている。
The ROMs of these computer units store programs for causing the computer units to function as the
すなわち、CPUがRAMを作業領域としてROMに格納されたプログラムを実行することにより、これらのコンピュータユニットは、本実施の形態におけるハイブリッドECU32、エンジンECU33、モータECU34及びバッテリECU35としてそれぞれ機能する。
That is, when the CPU executes programs stored in the ROM using the RAM as a work area, these computer units function as the
車両1には、CAN(Controller Area Network)等の規格に準拠した車内LAN(Local Area Network)を形成するためのCAN通信線39が設けられている。ハイブリッドECU32、エンジンECU33、モータECU34及びバッテリECU35は、CAN通信線39を介して制御信号等の信号の送受信を相互に行う。
The
ハイブリッドECU32は、主として、エンジンECU33、モータECU34及びバッテリECU35などの各種ECUを統括的に制御する。エンジンECU33は、主として、エンジン2を制御する。
The
モータECU34は、主として、第1インバータ19及び第2インバータ20を介して第1モータジェネレータ4と、第2モータジェネレータ5を制御する。バッテリECU35は、主として、バッテリ21の状態を管理する。
The
本実施形態において、ハイブリッドECU32の入力ポートには、アクセル開度センサ41、シフトポジションセンサ42、車速センサ43を含む各種センサ類が接続されている。
In this embodiment, an input port of the
アクセル開度センサ41は、運転者による図示しないアクセルペダルの踏み込み量をアクセル開度として検出する。シフトポジションセンサ42は、運転者によるシフトレバーの操作により選択されたシフト位置を検出する。
The
本実施形態では、車両1は、シフト位置として、Pレンジ(駐車位置)、Rレンジ(後進位置)、Nレンジ(ニュートラル位置)、Dレンジ(前進の通常走行位置)、Bレンジ(エンジンブレーキ発生位置)を備えている。なお、Bレンジは、Dレンジよりも大きなエンジンブレーキを発生させるシフト位置である。シフトポジションセンサ42は本発明におけるシフト位置検出部を構成する。
In this embodiment, the
車速センサ43は、例えば、駆動軸7の回転速度から車速を検出する。車速センサ43は、車両1が前進方向に進んでいる場合は正の車速を出力し、車両が後進方向に進んでいる場合は負の車速を出力する。
The
エンジンECU33は、ハイブリッドECU32からのトルク指令信号により、エンジン2の発生するエンジントルクがトルク指令信号に設定されたトルク指令値になるようにエンジン2を制御する。エンジンECU33は、不図示のインジェクタやスロットルバルブを制御することにより燃料噴射量や吸入空気量を制御する。そして、エンジンECU33は、燃料噴射量や吸入空気量を制御することにより、エンジン2の発生するエンジントルクを制御する。
The
バッテリECU35の入力ポートには、バッテリ状態検出センサ45が接続されている。バッテリ状態検出センサ45は、バッテリ21の充放電電流、電圧及びバッテリ温度を検出する。バッテリECU35は、バッテリ状態検出センサ45から入力される充放電電流の値、電圧の値及びバッテリ温度の値に基づき、バッテリ21の充電状態(以下SOCという)などを検出する。
A battery
バッテリ状態検出センサ45は、例えば、バッテリ21の充放電電流を検出する電流センサに、電圧を検出する電圧センサ及びバッテリ温度を検出するバッテリ温度センサを付設した構成を用いることができる。なお、電流センサと電圧センサとバッテリ温度センサとを別に設けてもよい。
For the battery
このような車両1において、ハイブリッドECU32は、アクセル開度センサ41により検出されたアクセル開度と、シフトポジションセンサ42により検出されたシフト位置と、車速センサ43により検出された車速などに基づいて目標駆動パワーを算出し、目標駆動パワーを駆動軸7に出力させるようにエンジン2、第1モータジェネレータ4、第2モータジェネレータ5を制御する。
In such a
なお、本実施形態において、パワーとは、トルクに回転速度を乗算した値に比例する動力のことを示し、エンジン2、第1モータジェネレータ4,第2モータジェネレータ5、駆動軸7それぞれの回転体におけるトルク及び回転速度の組み合わせによって一意に決まる。 In this embodiment, the power means the power proportional to the value obtained by multiplying the torque by the rotation speed. is uniquely determined by the combination of torque and rotational speed at
ハイブリッドECU32は、例えば、アクセル開度と、シフト位置と、車速とに対する目標駆動トルクの相関を定めたトルクマップを参照して、目標駆動トルクを決定する。そして、ハイブリッドECU32は、目標駆動トルクと車速とから目標駆動パワーを決定する。トルクマップは、予め実験等により求められ、ハイブリッドECU32のROMに記憶されている。
The
ハイブリッドECU32は、目標駆動パワーを満たすように、車両状態等に応じた適切な配分で、目標エンジンパワーと目標モータパワーを算出する。そして、ハイブリッドECU32は、目標エンジンパワーに基づいて目標エンジン回転速度と目標エンジントルクを算出し、目標モータパワーに基づいて目標モータ回転速度と目標モータトルクを算出する。
The
ハイブリッドECU32により目標エンジン回転速度と目標エンジントルクが決定されると、エンジンECU33は、これらの目標値をスロットルバルブ開度や点火時期等の制御量に変換し、目標エンジン回転速度と目標エンジントルクを実現するようにエンジン2を制御する。
When the target engine speed and the target engine torque are determined by the
ハイブリッドECU32により目標モータ回転速度と目標モータトルクが決定されると、モータECU34は、これらの目標値を第1モータジェネレータ4および第2モータジェネレータ5の制御量に変換し、目標モータ回転速度と目標モータトルクを実現するように第1モータジェネレータ4および第2モータジェネレータ5を制御する。
When the
ハイブリッドECU32は、例えば、エンジントルクとエンジン回転速度とに対するエンジンパワーの相関を定めたパワーマップを参照して、目標エンジン回転速度と目標エンジントルクを決定する。ハイブリッドECU32は、図示しないパワーマップの最適燃費ラインに基づいて、目標エンジン回転速度と目標エンジントルクを決定する。このパワーマップは、予め実験等により求められ、ハイブリッドECU32のROMに記憶されている。ハイブリッドECU32は、パワーマップの最適燃費ライン上を推移するようにエンジン2の動作点を制御する。
The
図2、図3は、車両1の共線図である。図2は車両停止時の共線図である。図3は、車両1の急減速前と急減速中の共線図である。図2、図3の共線図において、各縦軸は、図中、左から第1モータジェネレータ4(図中、MG1と記す)の回転速度、エンジン2(図中、engineと記す)の回転速度(エンジン回転速度)、駆動軸7(図中、outputと記す)の回転速度、第2モータジェネレータ5(図中、MG2と記す)の回転速度をそれぞれ表している。
2 and 3 are alignment charts of the
なお、共線図上では、第1モータジェネレータ4、第2モータジェネレータ5、駆動軸7の回転速度は、車両1を前進させる方向の回転を正としている。
In the collinear chart, the rotational speeds of the
ここで、エンジン回転速度をNeng、駆動軸7の回転速度をNout、第1モータジェネレータ4の回転速度をNmg1、第2モータジェネレータ5の回転速度をNmg2としたとき、これらの各回転速度の間には、次の式(1)、式(2)の関係が成り立っている。
Here, assuming that the engine speed is Neng, the speed of the
なお、式(1)、式(2)では、エンジン2と駆動軸7の間のレバー長を1とし、エンジン2と第1モータジェネレータ4の間のレバー長をk1とし、駆動軸7と第2モータジェネレータ5の間のレバー長をk2としている。
In equations (1) and (2), the lever length between the engine 2 and the
Nmg1=(1+k1)Neng-k1・Nout...(1)
Nmg2=(1+k2)Nout-k2・Neng...(2)
また、図2の共線図において、横軸における各軸間の距離比(レバー長の比)は、第1遊星歯車機構8及び第2遊星歯車機構9の各ギアの歯数の比により定まる。ここで、k1は、第1遊星歯車機構8のリングギア歯数Zr1とサンギア歯数Zs1の比、Zr1/Zs1である。k2は、第2遊星歯車機構9のサンギア歯数Zs2とリングギア歯数Zr2の比、Zs2/Zr2である。
Nmg1=(1+k1)Neng−k1·Nout...(1)
Nmg2=(1+k2)Nout−k2·Neng...(2)
In the nomographic chart of FIG. 2, the distance ratio (lever length ratio) between the axes on the horizontal axis is determined by the ratio of the number of teeth of the gears of the first planetary gear mechanism 8 and the second
図3に実線で示すように、車両1の急減速前の状態では、第1モータジェネレータ4の回転速度(Nmg1)、エンジン2の回転速度(Neng)、第2モータジェネレータ5の回転速度(Nmg2)、駆動軸7の回転速度(Nout)が正の値となっている。
As shown by the solid lines in FIG. 3, before the
この状態では、エンジン2が運転しており、エンジン2のエンジントルクと、第1モータジェネレータ4および第2モータジェネレータ5の両方のモータトルクと、によって車両1が走行している。
In this state, the engine 2 is running, and the
その後、ドライバの急制動操作により車両1が急減速したため、図3に破線で示すように、駆動軸7の回転速度(Nout)が減少する。図3の共線図では、第2モータジェネレータ5のイナーシャが大きいことにより、駆動軸7の回転速度が減少しても、第2モータジェネレータ5の回転速度(Nmg2)が急減速前から変化していない。一方、第2モータジェネレータ5を支点にするように、第1モータジェネレータ4の回転速度、駆動軸7の回転速度、エンジン回転速度が低下する。
After that, the
このように車両1が急減速する場合、共振領域までエンジン回転速度(Neng)が低下してしまうことがあり得る。共振領域とは、エンジン2が共振するエンジン回転速度の領域である。より詳しくは、共振領域は、低いエンジン回転速度の領域である。
When the
エンジン回転速度が低下してエンジン2が共振した場合、乗員に違和感を与えてしまう。このため、本実施形態では、ハイブリッドECU32が次のような各種の制御を実施することでエンジン2の共振を防止している。ハイブリッドECU32は、本発明における制御部を構成している。
When the engine rotation speed decreases and the engine 2 resonates, the passenger feels uncomfortable. For this reason, in the present embodiment, the
ハイブリッドECU32は、エンジン2のエンジン回転速度が低下して第1の所定値以下になった場合に、モータトルクによりエンジン2を停止させるように第1モータジェネレータ4および第2モータジェネレータ5を制御する。第1の所定値は、共振領域の上限値よりも大きい値である。
The
ハイブリッドECU32は、エンジン自律制御を実施可能である。エンジン自律制御とは、第1モータジェネレータ4および第2モータジェネレータ5がモータトルクを発生せず、かつ、エンジン2のエンジントルクによりエンジン回転速度を自律的に調整する制御である。
The
ハイブリッドECU32は、このエンジン自律制御として、自律アイドルスピード制御を実施する。自律アイドルスピード制御は、第1モータジェネレータ4および第2モータジェネレータ5がモータトルクを発生せず、かつ、エンジン2のエンジントルクによりアイドル回転速度を自律的に調整する制御である。
The
ハイブリッドECU32は、エンジン自律制御の実行中に、エンジン回転速度が低下して第1の所定値よりも大きい第2の所定値以下になった場合に、エンジン自律制御を禁止する。
The
また、ハイブリッドECU32は、エンジン自律制御を禁止する場合、モータトルクによりエンジン回転速度を上昇させるように第1モータジェネレータ4および第2モータジェネレータ5を制御する。
Further, when the
また、ハイブリッドECU32は、シフト位置がPレンジまたはNレンジであることがシフトポジションセンサ42により検出されており、かつ、エンジン回転速度が低下して第2の所定値以下となった場合に、エンジン自律制御を禁止する。
Further, the
また、ハイブリッドECU32は、シフト位置がRレンジであることがシフトポジションセンサ42により検出されており、かつ、エンジン回転速度が上昇して共振領域の下限値よりも小さい値である第3の所定値以上になった場合、モータトルクによりエンジン回転速度を低下させるように第1モータジェネレータ4および第2モータジェネレータ5を制御する。
In addition, the
また、ハイブリッドECU32は、エンジン2のエンジン回転速度が低下して第1の所定値以下になった場合に、HEV走行モードからEV走行モードに走行モードを変更する。HEV走行モードは、エンジン2のエンジントルク、第1モータジェネレータ4のモータトルク、第2モータジェネレータ5のモータトルクの3つのトルクのうち、少なくとも2つのトルクにより車両1を走行可能なモードである。EV走行モードは、エンジン2が停止した状態でモータトルクにより走行するモードである。
In addition, the
以上のように構成された本実施形態に係るハイブリッド車両の制御装置においてハイブリッドECU32が実施する共振防止制御について、図4、図5、図6のフローチャートを参照して説明する。なお、図4、図5、図6に示す動作は、ハイブリッドECU32の起動とともに開始される。
Resonance prevention control performed by the
図4のフローチャートにおいて、ハイブリッドECU32は、シフト位置がPレンジまたはNレンジであるか否かを判別する(ステップS11)。
In the flowchart of FIG. 4, the
ステップS11でシフト位置がPレンジまたはNレンジであると判別した場合、ハイブリッドECU32は、エンジン回転速度(図中、Negと記す)が第2の所定値以下であるか否かを判別する(ステップS12)。
When it is determined in step S11 that the shift position is in the P range or the N range, the
ステップS11でシフト位置がPレンジまたはNレンジではないと判別した場合、ハイブリッドECU32は、後述するステップS15に処理を進める。
When determining in step S11 that the shift position is not in the P range or the N range, the
ステップS12の判別がYESの場合(エンジン回転速度が第2の所定値以下の場合)、ハイブリッドECU32は、エンジン自律制御を禁止し(ステップS13)、ステップS15に処理を進める。
When the determination in step S12 is YES (when the engine rotation speed is equal to or lower than the second predetermined value), the
エンジン回転速度フィードバック制御が有効のときは、ハイブリッドECU32は、エンジン2がストールしそうになったときに、エンジン回転速度を上昇させてエンジン2が自律回転を継続するように、モータECU34を介して第1モータジェネレータ4、第2モータジェネレータ5を制御する。
When the engine rotation speed feedback control is effective, the
ステップS12の判別がNOの場合(エンジン回転速度が第2の所定値より大きい場合)、ハイブリッドECU32は、エンジン自律制御を許可し(ステップS14)、今回の動作を終了する。
When the determination in step S12 is NO (when the engine rotation speed is greater than the second predetermined value), the
ステップS15では、ハイブリッドECU32は、エンジン回転速度が第1の所定値以下であるか否かを判別する。第1の所定値は、第2の所定値より小さい値に設定されている。また、第1の所定値は、エンジン2の共振領域の上限より大きい値に設定されている。したがって、エンジン回転速度が第1の所定値以下である場合は、エンジン回転速度が共振領域の近くまで低下していることを意味する。
In step S15, the
ステップS15でエンジン回転速度が第1の所定値以下であると判別した場合、ハイブリッドECU32は、エンジン2を停止し(ステップS16)、今回の動作を終了する。
If it is determined in step S15 that the engine rotation speed is equal to or lower than the first predetermined value, the
ステップS16では、ハイブリッドECU32は、エンジン2を停止させるためのモータトルクを第1モータジェネレータ4及び第2モータジェネレータ5に発生させる。これにより、第1モータジェネレータ4及び第2モータジェネレータ5のモータトルクによってエンジン回転速度が急低下し、エンジン2は、共振領域を速やかに通過して停止する。
In step S<b>16 , the
ステップS15でエンジン回転速度が第1の所定値より大きいと判別した場合、ハイブリッドECU32は、今回の動作を終了する。
When determining in step S15 that the engine rotation speed is greater than the first predetermined value, the
図5のフローチャートにおいて、ハイブリッドECU32は、シフト位置がRレンジであるか否かを判別する(ステップS21)。
In the flowchart of FIG. 5, the
ステップS21でシフト位置がRレンジであると判別した場合、ハイブリッドECU32は、エンジン回転速度(図中、Negと記す)が第3の所定値以下であるか否かを判別する(ステップ22)。
If it is determined in step S21 that the shift position is in the R range, the
ステップS21でシフト位置がRレンジではないと判別した場合、ハイブリッドECU32は、今回の動作を終了する。
If it is determined in step S21 that the shift position is not in the R range, the
ステップS22でエンジン回転速度が第3の所定値以下であると判別した場合、ハイブリッドECU32は、エンジン2を停止し(ステップS23)、今回の動作を終了する。
If it is determined in step S22 that the engine rotation speed is equal to or lower than the third predetermined value, the
具体的には、ハイブリッドECU32は、第1モータジェネレータ4及び第2モータジェネレータ5のモータトルクによってエンジン2を停止させる。このため、エンジン回転速度が共振領域に入ることが回避される。
Specifically, the
ステップS22でエンジン回転速度が第3の所定値より大きいと判別した場合、ハイブリッドECU32は、今回の動作を終了する。
When determining in step S22 that the engine rotation speed is greater than the third predetermined value, the
図6のフローチャートにおいて、ハイブリッドECU32は、シフト位置がDレンジであるか否かを判別する(ステップS31)。
In the flowchart of FIG. 6, the
ステップS31でシフト位置がDレンジであると判別した場合、ハイブリッドECU32は、目標駆動力が既定値より小さく、かつ、SOCが既定値より大きいか否かを判別する(ステップS32)。
When it is determined in step S31 that the shift position is in the D range, the
ステップS31でシフト位置がDレンジではないと判別した場合、ハイブリッドECU32は、今回の動作を終了する。
If it is determined in step S31 that the shift position is not in the D range, the
ステップS32の判別がNOの場合(目標駆動力が既定値より大きい、または、SOCが既定値より小さい場合)ハイブリッドECU32は、車両1の減速度が既定値より大きいか否かを判別する(ステップS33)。
If the determination in step S32 is NO (if the target driving force is greater than the default value or the SOC is less than the default value), the
ステップS32の判別がYESの場合(目標駆動力が既定値より小さい、かつ、SOCが既定値より大きい場合)ハイブリッドECU32は、ステップS35に処理を進める。
If the determination in step S32 is YES (if the target driving force is smaller than the default value and the SOC is larger than the default value), the
ステップS33の判別がYESの場合(車両1の減速度が既定値より大きい場合)、ハイブリッドECU32は、エンジン回転速度(図中、Negと記す)が第1の所定値以下であるか否かを判別する(ステップS34)。
If the determination in step S33 is YES (if the deceleration of the
ステップS34でエンジン回転速度が第1の所定値以下であると判別した場合、ハイブリッドECU32は、ステップS35を実行し、その後、今回の動作を終了する。ステップS35では、ハイブリッドECU32は、走行モードをEV走行モードに変更する(ステップS35)。
If it is determined in step S34 that the engine rotation speed is equal to or lower than the first predetermined value, the
ステップS33の判別がNOの場合、およびステップS34の判別がNOの場合、ハイブリッドECU32は、走行モードをHEV走行モードに維持したまま、今回の動作を終了する。
If the determination in step S33 is NO, and if the determination in step S34 is NO, the
次に、図4、図5、図6の共振防止制御が行われたときの車両状態および制御状態の推移について、図7、図8、図9、図10のタイムチャートを参照して説明する。図中、実線で示すエンジン回転速度は本実施形態の制御による遷移を示している。また、破線で示すエンジン回転速度は従来技術の制御による遷移を示している。 Next, changes in the vehicle state and control state when the resonance prevention control shown in FIGS. 4, 5 and 6 are performed will be described with reference to the time charts shown in FIGS. 7, 8, 9 and 10. . In the figure, the engine rotation speed indicated by a solid line indicates the transition due to the control of this embodiment. Also, the engine rotation speed indicated by the dashed line indicates the transition due to the conventional control.
図7、図8は、シフト位置がPレンジまたはNレンジでありエンジン自律制御(図中、ISC制御と記す)を実施しているときに、ドライバの急ブレーキ操作によりエンジン回転速度が急減少した場合を示している。 7 and 8, when the shift position is in the P range or the N range and the engine autonomous control (indicated as ISC control in the figure) is being performed, the engine rotation speed suddenly decreases due to the driver's sudden brake operation. indicates the case.
図7において、時刻t11では、アクセル開度およびブレーキ踏み込み量がともに0であり、車両1が惰性走行している。この時刻t11では、車速が緩やかに低下している。
In FIG. 7, at time t11, the accelerator opening and the brake depression amount are both 0, and the
その後、時刻t12では、ドライバにより急ブレーキ操作が行われてブレーキ踏み込み量が増加したため、車速およびエンジン回転速度が急減少し始める。 After that, at time t12, the driver performs a sudden brake operation and the amount of brake depression increases, so the vehicle speed and the engine rotation speed start to decrease rapidly.
その後、時刻t13では、エンジン回転速度が第2の所定値より小さくなったことに応じて、本実施形態では、エンジン自律制御が禁止される。そして、エンジン自律制御が禁止されたことにより、エンジン回転速度フィードバック制御が行われる。その後、エンジン回転速度フィードバック制御が行われたことで、エンジン回転速度は、上昇を開始し、時刻t11でのエンジン回転速度と同等の回転速度まで復帰する。 After that, at time t13, the engine autonomous control is prohibited in this embodiment in response to the engine rotation speed becoming smaller than the second predetermined value. Since the engine autonomous control is prohibited, the engine speed feedback control is performed. After that, the engine rotation speed feedback control is performed, so that the engine rotation speed starts to increase and returns to a rotation speed equivalent to the engine rotation speed at time t11.
一方、従来技術では、時刻t13でエンジン自律制御を禁止していないため、破線で示すように時刻t3以降もエンジン回転速度が0に向かって低下し続ける。エンジン回転速度が0まで低下する過程で、エンジン回転速度が共振領域を通過してしまう。 On the other hand, in the conventional technology, since the engine autonomous control is not prohibited at time t13, the engine rotation speed continues to decrease toward 0 after time t3 as indicated by the dashed line. While the engine speed is decreasing to zero, the engine speed passes through the resonance region.
図8において、時刻t21では、アクセル開度およびブレーキ踏み込み量がともに0であり、車両1が惰性走行している。この時刻t21では、車速が緩やかに低下している。
In FIG. 8, at time t21, both the accelerator opening and the brake depression amount are 0, and the
その後、時刻t22では、ドライバにより急ブレーキ操作が行われてブレーキ踏み込み量が増加したため、車速およびエンジン回転速度が急減少し始める。 After that, at time t22, the driver performs a sudden brake operation and the amount of brake depression increases, so the vehicle speed and the engine rotation speed start to decrease rapidly.
その後、時刻t23では、エンジン回転速度が第2の所定値より小さくなったことに応じて、本実施形態では、エンジン自律制御が禁止される。そして、エンジン自律制御が禁止されたことにより、エンジン回転速度フィードバック制御が行われる。図8では、エンジン回転速度の減速度が大きい等の理由により、エンジン回転速度フィードバック制御が行われたにも関わらず、時刻t23以降もエンジン回転速度が低下し続けている。 After that, at time t23, the engine autonomous control is prohibited in the present embodiment in response to the engine rotation speed becoming smaller than the second predetermined value. Since the engine autonomous control is prohibited, the engine speed feedback control is performed. In FIG. 8, the engine rotation speed continues to decrease after time t23 even though the engine rotation speed feedback control has been performed for reasons such as a large deceleration of the engine rotation speed.
その後、時刻t24では、エンジン回転速度が第1の所定値よりも小さくなったことに応じて、本実施形態では、エンジン2を停止させるためのモータトルクを第1モータジェネレータ4及び第2モータジェネレータ5に発生させる。これにより、時刻t24から時刻t25において、第1モータジェネレータ4及び第2モータジェネレータ5のモータトルクによってエンジン回転速度が急低下し、エンジン2は、共振領域を速やかに通過して停止する。
After that, at time t24, in response to the engine rotation speed becoming smaller than the first predetermined value, in the present embodiment, the motor torque for stopping the engine 2 is set to the
一方、従来技術では、破線で示すように時刻t24以降も車速の低下に伴ってエンジン回転速度が低下し続ける。このため、エンジン回転速度が0に低下する過程で、本実施形態と比較してエンジン回転速度が共振領域に長い時間留まってしまう。 On the other hand, in the conventional technology, the engine rotation speed continues to decrease after time t24 as the vehicle speed decreases, as indicated by the dashed line. Therefore, while the engine speed is decreasing to 0, the engine speed stays in the resonance region for a longer time than in the present embodiment.
図9は、シフト位置がDレンジまたはBレンジでありエンジン自律制御(図中、ISC制御と記す)を実施していないときに、ドライバの急ブレーキ操作によりエンジン回転速度が急減少した場合を示している。 FIG. 9 shows a case where the engine speed suddenly decreases due to a sudden brake operation by the driver when the shift position is in the D range or the B range and the engine autonomous control (referred to as ISC control in the figure) is not being performed. ing.
図9において、時刻t31でアクセル開度が0になり、時刻t32でドライバにより急ブレーキ操作が行われてブレーキ踏み込み量が増加している。これにより、時刻t33以降で、車速およびエンジン回転速度が急減少し始める。 In FIG. 9, the accelerator opening becomes 0 at time t31, and the driver performs a sudden braking operation at time t32, increasing the amount of brake depression. As a result, after time t33, the vehicle speed and the engine rotation speed begin to rapidly decrease.
その後、時刻t33では、エンジン回転速度が第1の所定値より小さくなったことに応じて、本実施形態では、走行モードがHEV走行モードからEV走行モードに切り替わり、エンジン2を停止させるためのモータトルクを第1モータジェネレータ4及び第2モータジェネレータ5に発生させる。これにより、時刻t33から時刻t34において、第1モータジェネレータ4及び第2モータジェネレータ5のモータトルクによってエンジン回転速度が急低下し、エンジン2は、共振領域を速やかに通過して停止する。
After that, at time t33, in response to the engine rotation speed becoming smaller than the first predetermined value, in the present embodiment, the driving mode is switched from the HEV driving mode to the EV driving mode, and the motor for stopping the engine 2 is switched. Torque is generated in the
その後、時刻t35ではアクセル開度や車速に応じて、本実施形態では、走行モードがEV走行モードからHEV走行モードに切り替わり、エンジン2が燃料噴射を行って再始動を行い、エンジン2の回転速度を上昇させるためのモータトルクを第1モータジェネレータ4及び第2モータジェネレータ5に発生させる。
これにより、時刻t35から時刻t36において、エンジン回転速度が急上昇し、エンジン2は、共振領域を速やかに通過する。
After that, at time t35, in this embodiment, the driving mode switches from the EV driving mode to the HEV driving mode according to the accelerator opening and the vehicle speed, the engine 2 performs fuel injection and restarts, and the rotational speed of the engine 2 is generated in the first motor-
As a result, the engine rotation speed rapidly increases from time t35 to time t36, and the engine 2 quickly passes through the resonance region.
一方、従来技術では、破線で示すように時刻t33以降も車速の低下に伴ってエンジン回転速度が0に向かって低下し続ける。このため、エンジン回転速度が0に低下する過程で、本実施形態と比較してエンジン回転速度が共振領域に長い時間留まってしまう。
また、従来技術では、破線で示すようにHEV走行モードである状態において時刻t35でエンジン2が再始動される。このため、本実施形態と比較してエンジン回転速度が上昇する過程で、エンジン回転速度が共振領域に長い時間留まってしまう。
On the other hand, in the conventional technology, the engine rotation speed continues to decrease toward 0 as the vehicle speed decreases after time t33 as indicated by the dashed line. Therefore, while the engine speed is decreasing to 0, the engine speed stays in the resonance region for a longer time than in the present embodiment.
Further, in the conventional technology, the engine 2 is restarted at time t35 in the HEV running mode, as indicated by the dashed line. Therefore, the engine rotation speed remains in the resonance region for a long time while the engine rotation speed is increasing compared to the present embodiment.
図10は、シフト位置がRレンジでありエンジン自律制御(図中、ISC制御と記す)を実施しているときに、ドライバの急ブレーキ操作によりエンジン回転速度が急減少した場合を示している。 FIG. 10 shows a case where the engine speed suddenly decreases due to a sudden brake operation by the driver when the shift position is in the R range and the engine autonomous control (indicated as ISC control in the figure) is being executed.
図10において、時刻t41以前は、アクセル開度が0の状態で車速が一定になっている。また、エンジン回転速度は、共振領域より低い一定の回転速度となっている。 In FIG. 10, before time t41, the accelerator opening is 0 and the vehicle speed is constant. Also, the engine rotation speed is a constant rotation speed lower than the resonance region.
その後、時刻t41では、アクセル開度が増加したことで、エンジン回転速度および車速が増加し始める。 After that, at time t41, the engine rotation speed and the vehicle speed start to increase due to the increase in the accelerator opening.
その後、時刻t42では、エンジン回転速度が第3の所定値まで増加したことに応じて、本実施形態では、エンジン回転速度を低下させるためのモータトルクを第1モータジェネレータ4及び第2モータジェネレータ5に発生させる。
After that, at time t42, in response to the engine rotation speed increasing to the third predetermined value, in the present embodiment, the motor torque for decreasing the engine rotation speed is set to the
これにより、時刻t42から時刻t43において、第1モータジェネレータ4及び第2モータジェネレータ5のモータトルクによってエンジン回転速度が時刻t41以前の回転速度まで低下する。このため、エンジン回転速度が共振領域に入ることが回避される。
As a result, from time t42 to time t43, the motor torque of the
一方、従来技術では、破線で示すように時刻t42以降も車速の増加に伴ってエンジン回転速度が増加し続ける。このため、エンジン回転速度が増加する過程で、本実施形態と比較してエンジン回転速度が共振領域に長い時間留まってしまう。 On the other hand, in the conventional technology, the engine rotation speed continues to increase as the vehicle speed increases after time t42 as indicated by the dashed line. Therefore, in the process of increasing the engine speed, the engine speed stays in the resonance region for a longer time than in the present embodiment.
ここで、エンジン2のエンジントルクをTeg、第1モータジェネレータ4のモータトルクをTmg1、第2モータジェネレータ5のモータトルクをTmg2としたとき、これらのトルクの間には、次の式(3)が成り立つ。
Here, when the engine torque of the engine 2 is Teg, the motor torque of the
Tmg1×(k1+1)+Teg×1=Tmg2×k2...(3)
第1モータジェネレータ4のモータトルクTmg1、および第2モータジェネレータ5のモータトルクTmg2は、式(3)においてエンジン停止またはエンジン回転速度が低下した場合にTegが減少するように制御される。また、エンジン回転速度が増加した場合にTegが増加するように制御される。
Tmg1×(k1+1)+Teg×1=Tmg2×k2 (3)
The motor torque Tmg1 of the first motor-
ここで、エンジントルク式(3)を満たすように第1モータジェネレータ4および第2モータジェネレータ5がそれぞれモータトルクを発生し、かつ、エンジントルクが負の値になった場合であっても、エンジン2のイナーシャの影響によってエンジン回転速度を速やかに減少させることができない場合がある。
Here, even if the
そこで、エンジン2のイナーシャ分を第1モータジェネレータ4および第2モータジェネレータ5が負担する必要がある。このため、ハイブリッドECU32は、第1モータジェネレータ4がTmg1+エンジンのイナーシャ分のモータトルクを発生し、第2モータジェネレータ5がTmg2+エンジンのイナーシャ分のモータトルクを発生するように制御している。
Therefore, the inertia of the engine 2 must be borne by the
具体的には、ハイブリッドECU32は、エンジン2のイナーシャ分を補正するため、次の式(4)で示すモータトルクを発生するように第1モータジェネレータ4を制御する。また、ハイブリッドECU32は、次の式(5)で示すモータトルクを発生するように第2モータジェネレータ5を制御する。
Specifically, in order to correct the inertia of the engine 2, the
なお、式(4)、式(5)において、エンジン2の慣性モーメントをIeとし、エンジン2の角加速度をωとしている。このωは、エンジン2を停止させるときの回転速度の変化率に相当する。また、式(4)、式(5)において、第1モータジェネレータ4の慣性モーメントをImg1とし、第2モータジェネレータ5の慣性モーメントをImg2としている。
Note that in equations (4) and (5), the moment of inertia of the engine 2 is Ie, and the angular acceleration of the engine 2 is ω. This ω corresponds to the change rate of the rotation speed when the engine 2 is stopped. Also, in equations (4) and (5), the moment of inertia of the
Tmg1+{(1+k2)/(1+k1+k2)×Ie×ω+Img1×(1+k1)×ω}...(4)
Tmg2+{k1/(1+k1+k2)×Ie×ω-Img2×k2×ω}...(5)
すなわち、ハイブリッドECU32は、式(4)で示す値を第1モータジェネレータ4の目標モータトルクに設定し、式(5)で示す値を第2モータジェネレータ5の目標モータトルクに設定する。
Tmg1+{(1+k2)/(1+k1+k2)*Ie*ω+Img1*(1+k1)*ω}...(4)
Tmg2+{k1/(1+k1+k2)×Ie×ω−Img2×k2×ω} (5)
That is, the
このように、上述の実施形態では、ハイブリッドECU32は、エンジン2のエンジン回転速度が低下して第1の所定値以下になった場合に、モータトルクによりエンジン2を停止させるように第1モータジェネレータ4および第2モータジェネレータ5を制御している。
Thus, in the above-described embodiment, the
これにより、エンジン回転速度が低下して第1の所定値以下になった場合、モータトルクによりエンジン2を停止させるように第1モータジェネレータ4および第2モータジェネレータ5が制御される。このため、エンジン回転速度の低下中にエンジン2が共振領域に留まって振動することを防止することができる。
As a result, when the engine rotation speed drops below the first predetermined value, the
また、上述の実施形態では、第1の所定値は、エンジン2が共振するエンジン回転速度の領域である共振領域の上限値よりも大きい値である。 Further, in the above-described embodiment, the first predetermined value is a value larger than the upper limit value of the resonance region, which is the region of the engine rotation speed in which the engine 2 resonates.
これにより、エンジン回転速度が、共振領域よりも大きい第1の所定値以下に低下した場合に、エンジン2を停止させるよう第1モータジェネレータ4および第2モータジェネレータ5の各モータトルクが制御されるため、エンジン回転速度が共振領域に留まってエンジン2が振動することを防止することができる。
As a result, the motor torques of the
また、上述の実施形態では、ハイブリッドECU32は、第1モータジェネレータ4および第2モータジェネレータ5がモータトルクを発生せず、かつ、エンジン2のエンジントルクによりエンジン回転速度を自律的に調整するエンジン自律制御を実行可能である。そして、ハイブリッドECU32は、エンジン自律制御の実行中に、エンジン回転速度が低下して第1の所定値よりも大きい第2の所定値以下になった場合に、エンジン自律制御を禁止している。
In the above-described embodiment, the
これにより、エンジン自律制御の実行中に、エンジン回転速度が低下して第2の所定値以下になった場合にエンジン自律制御が禁止されるため、モータトルクによりエンジン回転速度を調整するときにエンジン自律制御が介入してしまうのを防止できる。このため、エンジン回転速度が低下して共振領域に留まることのないように、モータトルクによってエンジン回転速度を速やかに調整できる。 As a result, if the engine speed drops below the second predetermined value during execution of the engine autonomous control, the engine autonomous control is prohibited. Intervention by autonomous control can be prevented. Therefore, the engine rotation speed can be quickly adjusted by the motor torque so that the engine rotation speed does not drop and remain in the resonance region.
また、上述の実施形態では、ハイブリッドECU32は、エンジン自律制御を禁止する場合、モータトルクによりエンジン回転速度を上昇させるように第1モータジェネレータ4および第2モータジェネレータ5を制御している。
Further, in the above-described embodiment, the
これにより、エンジン自律制御を禁止する場合、モータトルクによりエンジン回転速度を上昇させるように第1モータジェネレータ4および第2モータジェネレータ5が制御されるため、エンジン回転速度が共振領域まで低下してエンジン2が振動することを防止することができる。
As a result, when the engine autonomous control is prohibited, the
また、上述の実施形態では、シフト位置を検出するシフトポジションセンサ42を車両1が備え、ハイブリッドECU32は、シフト位置がPレンジまたはNレンジであることがシフトポジションセンサ42により検出されており、かつ、エンジン回転速度が低下して第2の所定値以下となった場合に、エンジン自律制御を禁止している。
Further, in the above-described embodiment, the
これにより、シフト位置がPレンジまたはNレンジの場合、エンジン回転速度が第2の所定値以下になった場合にエンジン自律制御が禁止されるため、エンジン回転速度が共振領域まで低下してエンジン2が振動することを防止することができる。 As a result, when the shift position is in the P range or the N range, the engine autonomous control is prohibited when the engine rotation speed becomes equal to or lower than the second predetermined value. can be prevented from vibrating.
また、上述の実施形態では、ハイブリッドECU32は、シフト位置がRレンジであることがシフトポジションセンサ42により検出されており、かつ、エンジン回転速度が上昇して共振領域の下限値よりも小さい値である第3の所定値以上になった場合、モータトルクによりエンジン回転速度を低下させるように第1モータジェネレータ4および第2モータジェネレータ5を制御している。
Further, in the above-described embodiment, the
これにより、シフト位置がRレンジの場合、エンジン回転速度が上昇して第3の所定値以上になった場合にモータトルクによりエンジン回転速度を低下させるように第1モータジェネレータ4および第2モータジェネレータ5が制御されるため、エンジン回転速度が共振領域まで上昇してエンジン2が振動することを防止することができる。
As a result, when the shift position is in the R range, the
また、上述の実施形態では、ハイブリッドECU32は、エンジン2のエンジン回転速度が低下して第1の所定値以下になった場合に、エンジン2が停止した状態でモータトルクにより走行するEV走行モードに走行モードを変更している。
Further, in the above-described embodiment, the
これにより、エンジン回転速度が第1の所定値以下となった場合に、EV走行モードに変更するため、エンジン2が共振領域で回転し続けて振動することを防止することができる。また、エンジン2の再始動が必要になった場合に、EV走行モードからHEV走行モードに切り替わる過程でエンジン2が再始動されるため、エンジン回転速度が緩やかに上昇してエンジン2が共振領域に長時間留まって振動してしまうのを防止できる。 As a result, when the engine rotation speed becomes equal to or lower than the first predetermined value, the mode is changed to the EV running mode, so it is possible to prevent the engine 2 from continuously rotating in the resonance region and vibrating. Further, when the engine 2 needs to be restarted, the engine 2 is restarted in the process of switching from the EV driving mode to the HEV driving mode, so the engine rotation speed rises gently and the engine 2 enters the resonance region. It can be prevented from staying for a long time and vibrating.
すなわち、Dレンジにおいて、エンジン回転速度が急降下する状況では、エンジン2を停止させる動作が間に合わずに勝手にエンジン2が停止する可能性が高いため、エンジン2を停止させるだけでなく走行モードをHEV走行モードからEV走行モードに変更することが好ましい。 That is, in a situation where the engine rotation speed drops sharply in the D range, there is a high possibility that the operation to stop the engine 2 will not be in time and the engine 2 will stop on its own. It is preferable to change from the running mode to the EV running mode.
また、仮に、走行モードをHEV走行モードからEV走行モードに変更しないままエンジン2を停止した場合、Nレンジのときはエンジン2が停止し続けるが、Dレンジのときはエンジン2が再始動されることがある。HEV走行モードでエンジン2が再始動された場合、エンジン回転速度が緩やかに上昇するため、エンジン回転速度が共振領域に滞在する時間が長くなってしまう。 Also, if the engine 2 is stopped without changing the driving mode from the HEV driving mode to the EV driving mode, the engine 2 continues to be stopped in the N range, but is restarted in the D range. Sometimes. When the engine 2 is restarted in the HEV running mode, the engine rotation speed gently increases, so the time for which the engine rotation speed stays in the resonance region becomes longer.
そこで、本実施形態では、EV走行モードに変更することで、エンジン2が再始動する際に始動モードとして振る舞うことになり、HEV走行モードでエンジン2が再始動される時と比較してエンジン回転速度が素早く上昇し、共振領域に滞在する時間を短くできる。 Therefore, in the present embodiment, by changing to the EV driving mode, when the engine 2 is restarted, it behaves as the starting mode, and the engine speed is lower than when the engine 2 is restarted in the HEV driving mode. Increases speed quickly and shortens the time spent in the resonance area.
本発明の実施形態を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正及び等価物が次の請求項に含まれることが意図されている。 Although embodiments of the present invention have been disclosed, it will be apparent that modifications may be made by those skilled in the art without departing from the scope of the invention. All such modifications and equivalents are intended to be included in the following claims.
1 車両(ハイブリッド車両)
2 エンジン
4 第1モータジェネレータ(モータジェネレータ)
5 第2モータジェネレータ(モータジェネレータ)
7 駆動軸
10 動力伝達機構
42 シフトポジションセンサ(シフト位置検出部)
32 ハイブリッドECU(制御部)
1 vehicle (hybrid vehicle)
2
5 Second motor generator (motor generator)
7 drive
32 hybrid ECU (control unit)
Claims (3)
前記制御部は、
前記エンジンが共振する共振領域において前記モータトルクによって前記エンジンのエンジン回転速度を降下させる共振防止制御と、
前記モータジェネレータが前記モータトルクを発生せずに前記エンジンのエンジントルクにより前記エンジン回転速度を自律的に調整するエンジン自律制御と、を実行可能であり、
前記共振領域の上限値よりも大きい第1の所定値と、前記第1の所定値より大きい第2の所定値と、を有し、
前記エンジン回転速度が降下して前記第2の所定値以下になった場合に前記エンジン自律制御を禁止し、
ブレーキ踏み込み量が増加することによって前記エンジン回転速度が降下して前記第1の所定値以下になった場合に、前記エンジンが停止した状態で前記モータトルクにより走行するEV走行モードに移行し、かつ、前記共振防止制御を実行することを特徴とするハイブリッド車両の制御装置。 A control device for a hybrid vehicle, comprising a control unit that controls a motor generator and an engine, and capable of transmitting motor torque of the motor generator to the engine,
The control unit
Resonance prevention control for reducing the engine rotation speed of the engine by the motor torque in a resonance region where the engine resonates;
an engine autonomous control in which the motor generator autonomously adjusts the engine rotation speed by the engine torque of the engine without generating the motor torque,
having a first predetermined value greater than the upper limit value of the resonance region and a second predetermined value greater than the first predetermined value;
prohibiting the engine autonomous control when the engine rotation speed drops below the second predetermined value;
when the engine rotation speed drops below the first predetermined value due to an increase in the brake depression amount , the vehicle is shifted to an EV travel mode in which the vehicle travels with the motor torque while the engine is stopped; and a control device for a hybrid vehicle, which executes the resonance prevention control.
前記制御部は、前記シフト位置が、通常前進位置であるDレンジ、またはエンジンブレーキ発生位置であるBレンジであることが前記シフト位置検出手段により検出されており、かつ、前記エンジン回転速度が降下して前記第1の所定値以下になった場合に、前記EV走行モードに移行し、かつ、前記共振防止制御を実行することを特徴とする請求項1または請求項2に記載のハイブリッド車両の制御装置。 A shift position detection means for detecting a shift position is provided,
In the control unit, the shift position detection means detects that the shift position is the D range, which is a normal forward position, or the B range, which is an engine braking position, and the engine rotation speed is decreased. 3. The hybrid vehicle according to claim 1 or 2, wherein the vehicle is shifted to the EV driving mode and the resonance prevention control is executed when the vehicle speed becomes equal to or less than the first predetermined value. Control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020200966A JP7192844B2 (en) | 2020-12-03 | 2020-12-03 | Hybrid vehicle control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020200966A JP7192844B2 (en) | 2020-12-03 | 2020-12-03 | Hybrid vehicle control device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016085259A Division JP6884989B2 (en) | 2016-04-21 | 2016-04-21 | Hybrid vehicle control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021049982A JP2021049982A (en) | 2021-04-01 |
JP7192844B2 true JP7192844B2 (en) | 2022-12-20 |
Family
ID=75156886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020200966A Active JP7192844B2 (en) | 2020-12-03 | 2020-12-03 | Hybrid vehicle control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7192844B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2023187916A1 (en) * | 2022-03-28 | 2023-10-05 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002195070A (en) | 2000-12-27 | 2002-07-10 | Aisin Aw Co Ltd | Hybrid vehicle and its control method |
JP2006046541A (en) | 2004-08-05 | 2006-02-16 | Toyota Motor Corp | Control device for vehicle drive device |
JP2006299993A (en) | 2005-04-22 | 2006-11-02 | Nissan Motor Co Ltd | Hybrid vehicle |
JP2009208700A (en) | 2008-03-06 | 2009-09-17 | Nissan Motor Co Ltd | Controller for hybrid car |
JP2010089771A (en) | 2008-09-11 | 2010-04-22 | Toyota Motor Corp | Controller for vehicle drive |
JP2012071699A (en) | 2010-09-29 | 2012-04-12 | Toyota Motor Corp | Hybrid vehicle drive control device |
JP2013112265A (en) | 2011-11-30 | 2013-06-10 | Daimler Ag | Engine stop control apparatus for hybrid vehicle |
US20150032309A1 (en) | 2013-07-26 | 2015-01-29 | Ford Global Technologies, Llc | Engine speed control apparatus and method for a hybrid vehicle |
JP2015024762A (en) | 2013-07-26 | 2015-02-05 | トヨタ自動車株式会社 | Power transmission device |
JP2015161285A (en) | 2014-02-28 | 2015-09-07 | 三菱自動車工業株式会社 | Vehicle control device |
-
2020
- 2020-12-03 JP JP2020200966A patent/JP7192844B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002195070A (en) | 2000-12-27 | 2002-07-10 | Aisin Aw Co Ltd | Hybrid vehicle and its control method |
JP2006046541A (en) | 2004-08-05 | 2006-02-16 | Toyota Motor Corp | Control device for vehicle drive device |
JP2006299993A (en) | 2005-04-22 | 2006-11-02 | Nissan Motor Co Ltd | Hybrid vehicle |
JP2009208700A (en) | 2008-03-06 | 2009-09-17 | Nissan Motor Co Ltd | Controller for hybrid car |
JP2010089771A (en) | 2008-09-11 | 2010-04-22 | Toyota Motor Corp | Controller for vehicle drive |
JP2012071699A (en) | 2010-09-29 | 2012-04-12 | Toyota Motor Corp | Hybrid vehicle drive control device |
JP2013112265A (en) | 2011-11-30 | 2013-06-10 | Daimler Ag | Engine stop control apparatus for hybrid vehicle |
US20150032309A1 (en) | 2013-07-26 | 2015-01-29 | Ford Global Technologies, Llc | Engine speed control apparatus and method for a hybrid vehicle |
JP2015024762A (en) | 2013-07-26 | 2015-02-05 | トヨタ自動車株式会社 | Power transmission device |
JP2015161285A (en) | 2014-02-28 | 2015-09-07 | 三菱自動車工業株式会社 | Vehicle control device |
Also Published As
Publication number | Publication date |
---|---|
JP2021049982A (en) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4086018B2 (en) | HYBRID VEHICLE, ITS CONTROL METHOD, AND POWER OUTPUT DEVICE | |
JP4321530B2 (en) | Vehicle and control method thereof | |
JP4135681B2 (en) | POWER OUTPUT DEVICE, HYBRID VEHICLE HAVING THE SAME AND CONTROL METHOD THEREOF | |
JP2009126450A (en) | Hybrid vehicle and control method of hybrid vehicle | |
JP2008162491A (en) | Vehicle and control method thereof | |
JP4201001B2 (en) | Vehicle and control method thereof | |
JP4479458B2 (en) | Vehicle and control method thereof | |
JP2007168637A (en) | Power output device and vehicle mounted with the same and method for controlling power output device | |
JP4347071B2 (en) | Vehicle and control method thereof | |
JP2009143315A (en) | POWER OUTPUT DEVICE, VEHICLE MOUNTING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE | |
JP7192844B2 (en) | Hybrid vehicle control device | |
JP3968894B2 (en) | Hybrid vehicle and control method thereof | |
JP4297108B2 (en) | Vehicle and control method thereof | |
JP5074932B2 (en) | VEHICLE, DRIVE DEVICE, AND CONTROL METHOD THEREOF | |
JP4345765B2 (en) | Vehicle and control method thereof | |
JP2005210841A (en) | Automobile and control method thereof | |
JP6884989B2 (en) | Hybrid vehicle control device | |
JP5796384B2 (en) | Control device for hybrid vehicle | |
JP6443229B2 (en) | Control device for hybrid vehicle | |
JP2009274553A (en) | Vehicle and control method for the same | |
JP3894159B2 (en) | POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND AUTOMOBILE | |
JP3936341B2 (en) | Vehicle and control method thereof | |
JP3998002B2 (en) | Hybrid vehicle and control method thereof | |
JP7010068B2 (en) | Hybrid car | |
JP4066985B2 (en) | Power output apparatus, automobile equipped with the same, and control method of power output apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220517 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221121 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7192844 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |