JP7183560B2 - Purifying Agent for Nickel-Containing Aqueous Solution and Method for Purifying Nickel-Containing Aqueous Solution - Google Patents
Purifying Agent for Nickel-Containing Aqueous Solution and Method for Purifying Nickel-Containing Aqueous Solution Download PDFInfo
- Publication number
- JP7183560B2 JP7183560B2 JP2018069870A JP2018069870A JP7183560B2 JP 7183560 B2 JP7183560 B2 JP 7183560B2 JP 2018069870 A JP2018069870 A JP 2018069870A JP 2018069870 A JP2018069870 A JP 2018069870A JP 7183560 B2 JP7183560 B2 JP 7183560B2
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- aqueous solution
- containing aqueous
- purifying
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Removal Of Specific Substances (AREA)
Description
本発明は、ニッケルと錯生成能力を持つ化合物、及びニッケルを含有する水溶液から、ニッケルを除去することを可能にする浄化方法に関するものである。 The present invention relates to a compound capable of complexing with nickel and to a purification method that makes it possible to remove nickel from aqueous solutions containing nickel.
ニッケルを含有した水溶液は、排水処理設備に送り、例えば鉄イオンを添加してアルカリ性にし、ニッケルイオン等を鉄イオンやその他含有されるイオンと共に水酸化物として沈殿させるなどの処理を行い、水溶液から分離した後に放流する方法などが行われてきた。 An aqueous solution containing nickel is sent to a wastewater treatment facility, for example, iron ions are added to make it alkaline, nickel ions and the like are precipitated as hydroxide together with iron ions and other ions contained, and the aqueous solution is treated. A method of releasing after separation has been practiced.
ニッケルは、化学物質排出把握管理促進法において第1種指定化学物質に指定される有害な重金属であり、水質汚濁に係る環境基準における要監視項目として設定されており、排水処理の重要性が高まっている。 Nickel is a hazardous heavy metal designated as a Class 1 Designated Chemical Substance under the Chemical Substance Emission Control Promotion Law, and is set as a monitoring item in environmental standards related to water pollution, increasing the importance of wastewater treatment. ing.
ところで、めっき工場、電子部品・機械部品製造工場、自動車工場、火力発電所、ごみ焼却場等からの排水には、クエン酸、グルコン酸などの有機酸、エチレンジアミン四酢酸(以下、EDTAと略す)、シアン、アミン、アンモニア及びポリ燐酸など、ニッケルと錯生成能力を持つ化合物が含まれ、上記のような水酸化物法では処理できない事例が多くなっている。 By the way, wastewater from plating factories, electronic parts and machine parts manufacturing factories, automobile factories, thermal power plants, waste incineration plants, etc. contains organic acids such as citric acid and gluconic acid, and ethylenediaminetetraacetic acid (hereinafter abbreviated as EDTA). , cyanide, amines, ammonia, and polyphosphoric acid, which have the ability to form complexes with nickel, and there are many cases in which the above-mentioned hydroxide method cannot be used for treatment.
これに対し、ニッケルと錯生成能力を持つ化合物を化学的に処理した後に、ニッケルを不溶化処理する方法が知られている。しかしながら、例えば、塩素系薬剤による酸化法、電解酸化法、過酸化水素-第一鉄塩法、オゾン酸化法、湿式酸化法等の化学的処理を用いても、共存する重金属元素による酸化反応の阻害、スケールの生成等の問題から、十分な浄化処理が行えない状況である。 On the other hand, a method is known in which nickel is chemically treated with a compound capable of forming a complex with nickel, and then nickel is insolubilized. However, even if a chemical treatment such as an oxidation method using a chlorine-based chemical, an electrolytic oxidation method, a hydrogen peroxide-ferrous salt method, an ozone oxidation method, or a wet oxidation method is used, the oxidation reaction due to the coexisting heavy metal elements does not occur. Due to problems such as inhibition and scale formation, it is not possible to carry out sufficient purification treatment.
排水中に含まれる各種の重金属元素を除去する技術としては、例えば、無機凝集剤又は有機凝集剤の添加による凝集分離除去法、電解による除去法、活性炭、無機吸着剤又は有機高分子材料による吸着除去法、排水を加熱蒸発させる乾固法、膜を用いた逆浸透法、電気透析又は限外ろ過法等が提案されている。 Techniques for removing various heavy metal elements contained in wastewater include, for example, a coagulation separation removal method by adding an inorganic coagulant or an organic coagulant, a removal method by electrolysis, adsorption by activated carbon, an inorganic adsorbent, or an organic polymer material. A removal method, a drying method in which waste water is heated and evaporated, a reverse osmosis method using a membrane, an electrodialysis method, an ultrafiltration method, and the like have been proposed.
上記した諸方法を用いた場合であっても、以下のような問題が多々あり、いずれの方法もそれらに対する改善の必要性があった。例えば、
(1)凝集分離除去法ではニッケルを充分に処理できない、
(2)吸着除去法等は、例えニッケルを吸着できたとしても処理後に多量の固形成分が発生する、
(3)逆浸透法、電気透析又は限外ろ過法等は、排水中に有機物を含有すると除去が困難であり、また、その処理コストが高い、
(4)加熱蒸発による乾固法は、処理法が煩雑かつ処理コストが高い、
等である。
Even when the various methods described above are used, there are many problems as described below, and there is a need for improvement in each method. for example,
(1) Nickel cannot be sufficiently treated by the flocculation and separation removal method,
(2) Adsorption and removal methods generate a large amount of solid components after treatment, even if nickel can be adsorbed.
(3) Reverse osmosis, electrodialysis, ultrafiltration, etc. are difficult to remove if organic matter is contained in the waste water, and the treatment cost is high.
(4) The drying method by heating evaporation is complicated and the processing cost is high.
etc.
ところで、無機硫化物を排水中の重金属処理剤として使用する方法が提案されている(例えば、特許文献1~5参照)。しかしながら、これら特許文献に記載の方法では、重金属と錯生成能力を持つ化合物を含むニッケル含有排水からの当該重金属の浄化処理効果が十分なものではなかった。 By the way, methods of using inorganic sulfides as agents for treating heavy metals in wastewater have been proposed (see, for example, Patent Documents 1 to 5). However, the methods described in these patent documents are not sufficiently effective in purifying heavy metals from nickel-containing waste water containing compounds capable of forming complexes with heavy metals.
本発明の目的は、ニッケルと錯生成能力を持つ化合物、及びニッケルを含有する水溶液のニッケル濃度を低減するニッケル含有水溶液の浄化方法を提供することにある。 An object of the present invention is to provide a compound capable of forming a complex with nickel and a method for purifying an aqueous nickel-containing solution that reduces the nickel concentration of the aqueous solution containing nickel.
本発明者等は、上記の課題を解決すべく鋭意検討を重ねた結果、本発明で示す新規なニッケル含有水溶液の浄化方法を用いることにより、ニッケルと錯生成能力を持つ化合物、及びニッケルを含有する水溶液を簡便な方法で、ニッケル濃度を低減できることを見出し、本発明を完成するに至った。 As a result of extensive studies to solve the above problems, the present inventors have found that, by using the novel method for purifying a nickel-containing aqueous solution shown in the present invention, a compound capable of forming a complex with nickel and a nickel-containing The present inventors have found that the concentration of nickel can be reduced by a simple method using an aqueous solution that dissolves, and have completed the present invention.
すなわち、本発明は、以下の要旨を有するものである。 That is, the present invention has the following gists.
[1]無機硫化物100重量部に対し、窒素原子を3~8有するポリアミンを20重量部以上、及びアルカリ土類金属化合物を含んでなることを特徴とするニッケル含有水溶液用浄化剤。 [1] A cleaning agent for a nickel-containing aqueous solution, comprising 100 parts by weight of an inorganic sulfide, 20 parts by weight or more of a polyamine having 3 to 8 nitrogen atoms, and an alkaline earth metal compound.
[2]ニッケル含有水溶液に、上記[1]に記載のニッケル含有水溶液用浄化剤を添加した後、生成した固形物を除去することを特徴とするニッケル含有水溶液の浄化方法。 [2] A method for purifying a nickel-containing aqueous solution, which comprises adding the nickel-containing aqueous solution purifying agent according to [1] to the nickel-containing aqueous solution, and then removing the produced solid matter.
[3]ニッケル含有水溶液が、さらにニッケルと錯生成能力を持つ化合物を含むことを特徴とする上記[2]に記載のニッケル含有水溶液の浄化方法。 [3] The method for purifying a nickel-containing aqueous solution according to [2] above, wherein the nickel-containing aqueous solution further contains a compound capable of forming a complex with nickel.
[4]ニッケルと錯生成能力を持つ化合物が、カルボキシル基及びアミノ基からなる群より選ばれる官能基を分子内に有する化合物であることを特徴とする上記[3]に記載のニッケル含有水溶液の浄化方法。 [4] The nickel-containing aqueous solution according to [3] above, wherein the compound having the ability to form a complex with nickel is a compound having a functional group selected from the group consisting of a carboxyl group and an amino group in the molecule. purification method.
[5]固形物を除去する前に、無機凝集剤を添加することを特徴とする上記[2]~[4]のいずれかに記載のニッケル含有水溶液の浄化方法。 [5] The method for purifying a nickel-containing aqueous solution according to any one of [2] to [4] above, wherein an inorganic flocculant is added before removing the solid matter.
[6]固形物を除去する前に、無機凝集剤及び高分子凝集剤を添加することを特徴とする上記[2]~[4]のいずれかに記載のニッケル含有水溶液の浄化方法。 [6] The method for purifying a nickel-containing aqueous solution according to any one of [2] to [4] above, wherein an inorganic flocculant and a polymer flocculant are added before removing solid matter.
[7]無機凝集剤が、鉄化合物及びアルミニウム化合物からなる群より選択されることを特徴とする上記[5]又は[6]に記載のニッケル含有水溶液の浄化方法。 [7] The method for purifying a nickel-containing aqueous solution according to [5] or [6] above, wherein the inorganic flocculant is selected from the group consisting of iron compounds and aluminum compounds.
以下、本発明を詳細に説明する。 The present invention will be described in detail below.
本発明のニッケル含有水溶液用浄化剤は、無機硫化物100重量部に対し、窒素原子を3~8有するポリアミンを20重量部以上、及びアルカリ土類金属化合物を含んでなることを特徴とする。 The cleaning agent for a nickel-containing aqueous solution of the present invention is characterized by comprising 20 parts by weight or more of a polyamine having 3 to 8 nitrogen atoms and an alkaline earth metal compound per 100 parts by weight of an inorganic sulfide.
硫化物の塩としては、例えば、硫化ナトリウム、硫化水素ナトリウム、硫化カリウム、硫化水素カリウム、硫化カルシウム、硫化水素カルシウム、硫化水素マグネシウム、硫化アンモニウム等が挙げられる。これらのうち経済性の点で、硫化水素ナトリウムが好ましい。 Examples of sulfide salts include sodium sulfide, sodium hydrogen sulfide, potassium sulfide, potassium hydrogen sulfide, calcium sulfide, calcium hydrogen sulfide, magnesium hydrogen sulfide, and ammonium sulfide. Of these, sodium hydrogen sulfide is preferred from the point of view of economy.
窒素原子を3~8有するポリアミンとしては、例えば、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ヘプタエチレンオクタミン等の重量平均分子量が300以下のポリエチレンイミン類が挙げられるが、ジエチレントリアミンが特に好ましい。 Examples of polyamines having 3 to 8 nitrogen atoms include polyethyleneimines having a weight-average molecular weight of 300 or less, such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, and heptaethyleneoctamine. is particularly preferred.
無機硫化物100重量部に対する、窒素原子を3~8有するポリアミンの添加量は、20重量部以上が好ましく、100重量部以上添加することにより、十分なニッケルの処理能力が得られる。 The amount of the polyamine having 3 to 8 nitrogen atoms to be added to 100 parts by weight of the inorganic sulfide is preferably 20 parts by weight or more, and by adding 100 parts by weight or more, a sufficient nickel treating capacity can be obtained.
アルカリ土類金属化合物としては、例えば、フッ化ベリリウム、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、酸化ベリリウム、水酸化ベリリウム、炭酸ベリリウム、硝酸ベリリウム、硫酸ベリリウム、硫化ベリリウム、フッ化カルシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、酸化カルシウム、水酸化カルシウム、炭酸カルシウム、炭酸水素カルシウム、硝酸カルシウム、硫酸カルシウム、硫化カルシウム、リン酸カルシウム、酢酸カルシウム、シュウ酸カルシウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、炭酸水素マグネシウム、硝酸マグネシウム、硫酸マグネシウム、硫化マグネシウム、リン酸マグネシウム、酢酸マグネシウム、フッ化ストロンチウム、塩化ストロンチウム、臭化ストロンチウム、ヨウ化ストロンチウム、酸化ストロンチウム、水酸化ストロンチウム、炭酸ストロンチウム、硝酸ストロンチウム、硫酸ストロンチウム、硫化ストロンチウム、リン酸ストロンチウム、酢酸ストロンチウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、酸化バリウム、水酸化バリウム、炭酸バリウム、硝酸バリウム、硫酸バリウム、硫化バリウム、リン酸バリウム、酢酸バリウム、塩化ラジウム、臭化ラジウム等が挙げられる。 Examples of alkaline earth metal compounds include beryllium fluoride, beryllium chloride, beryllium bromide, beryllium iodide, beryllium oxide, beryllium hydroxide, beryllium carbonate, beryllium nitrate, beryllium sulfate, beryllium sulfide, calcium fluoride, and calcium chloride. , calcium bromide, calcium iodide, calcium oxide, calcium hydroxide, calcium carbonate, calcium hydrogen carbonate, calcium nitrate, calcium sulfate, calcium sulfide, calcium phosphate, calcium acetate, calcium oxalate, magnesium chloride, magnesium bromide, iodide magnesium, magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium hydrogen carbonate, magnesium nitrate, magnesium sulfate, magnesium sulfide, magnesium phosphate, magnesium acetate, strontium fluoride, strontium chloride, strontium bromide, strontium iodide, strontium oxide, Strontium hydroxide, strontium carbonate, strontium nitrate, strontium sulfate, strontium sulfide, strontium phosphate, strontium acetate, barium chloride, barium bromide, barium iodide, barium oxide, barium hydroxide, barium carbonate, barium nitrate, barium sulfate, Barium sulfide, barium phosphate, barium acetate, radium chloride, radium bromide and the like.
アルカリ土類金属化合物は、0.05g/L以上加えればニッケル処理能力が得られるが、5g/L以上加えてもニッケル処理能力は一定となるため、アルカリ土類金属化合物の添加量を多くすることは、ニッケル排水処理費用が高くなり、経済的ではない。 If the alkaline earth metal compound is added in an amount of 0.05 g/L or more, the nickel processing capacity can be obtained. However, even if 5 g/L or more is added, the nickel processing capacity remains constant, so the amount of the alkaline earth metal compound added should be increased. This means that nickel wastewater treatment costs are high, which is not economical.
本発明の浄化剤は、ニッケル含有水溶液の浄化処理に特に有用である。 The cleaning agent of the present invention is particularly useful for cleaning nickel-containing aqueous solutions.
本発明のニッケル含有水溶液の浄化方法は、ニッケル含有水溶液に、上記した本発明の浄化剤を添加した後、生成した固形物を除去することを特徴とする。ここで、生成した固形物には、本発明の浄化剤により固定化されたニッケルが含まれる。 The method for purifying a nickel-containing aqueous solution of the present invention is characterized by adding the above-described purifying agent of the present invention to the nickel-containing aqueous solution, and then removing the produced solid matter. Here, the produced solid contains nickel immobilized by the cleaning agent of the present invention.
本発明の浄化方法は、ニッケルの処理が難しいニッケル含有水溶液(例えば、ニッケルと錯生成能力を持つ化合物)、及びニッケルを含有する水溶液に対して特に有効である。 The purification method of the present invention is particularly effective for nickel-containing aqueous solutions in which nickel is difficult to treat (for example, compounds capable of complexing with nickel) and nickel-containing aqueous solutions.
ニッケルと錯生成能力を持つ化合物としては、ニッケルと錯体を形成する化合物であれば特に限定されない。例えば、分子内にカルボキシル基及びアミノ基からなる群より選ばれる官能基を有する化合物が挙げられる。具体的には、EDTA、ポリ燐酸等が挙げられ、特にニッケルと強固な錯体を形成する化合物として、EDTAが挙げられる。 The compound capable of forming a complex with nickel is not particularly limited as long as it is a compound that forms a complex with nickel. Examples thereof include compounds having a functional group selected from the group consisting of a carboxyl group and an amino group in the molecule. Specific examples thereof include EDTA and polyphosphoric acid, and particularly, EDTA is an example of a compound that forms a strong complex with nickel.
無機硫化物と窒素原子を3~8有するポリアミンとアルカリ土類金属化合物をニッケル含有水溶液中にそれぞれ別々に添加する場合、添加する順番は特に限定されない。 When the inorganic sulfide, the polyamine having 3 to 8 nitrogen atoms, and the alkaline earth metal compound are separately added to the nickel-containing aqueous solution, the order of addition is not particularly limited.
固形物の除去を速やかに行うために、固形物を除去する前に、凝集剤を添加することが好ましい。凝集剤としては、例えば、無機凝集剤、高分子凝集剤が挙げられ、無機凝集剤と高分子凝集剤を併用することがより好ましい。 In order to remove the solids quickly, it is preferable to add a flocculant before removing the solids. Examples of the flocculant include inorganic flocculants and polymer flocculants, and it is more preferable to use an inorganic flocculant and a polymer flocculant in combination.
無機凝集剤としては、市販されている無機凝集剤を使用でき、特に限定されない。例えば、塩化第二鉄等の鉄化合物、硫酸アルミニウム、ポリ塩化アルミニウム等のアルミニウム化合物、等が挙げられる。 Commercially available inorganic flocculants can be used as the inorganic flocculant, and there is no particular limitation. Examples thereof include iron compounds such as ferric chloride, and aluminum compounds such as aluminum sulfate and polyaluminum chloride.
ニッケル含有水溶液がニッケルと錯生成能力を持つ化合物を含む場合、無機凝集剤の添加量は、ニッケル含有水溶液中に含まれるニッケル錯生成能力を持つ化合物の含有量以上とすることが好ましい。無機凝集剤の添加量をニッケルと錯生成能力を持つ化合物の含有量以上とすることで、凝集性が増し、処理後の水溶液のニッケル濃度を低減することが容易となる。 When the nickel-containing aqueous solution contains a compound capable of forming a complex with nickel, the amount of the inorganic flocculant added is preferably equal to or greater than the content of the compound capable of forming a nickel complex contained in the nickel-containing aqueous solution. By setting the amount of the inorganic flocculant added to be equal to or greater than the content of the compound capable of forming a complex with nickel, the aggregating property is increased, and the nickel concentration in the aqueous solution after treatment can be easily reduced.
ニッケル含有水溶液中の、ニッケルと錯生成能力を持つ化合物の含有量は、ニッケル含有水溶液中のニッケル錯生成能力を持つ化合物の濃度を、例えば、HPLC、ガスクロマトグラフィー、滴定等の分析を行うことで算出することができる。 The content of the compound capable of forming a complex with nickel in the nickel-containing aqueous solution is obtained by analyzing the concentration of the compound capable of forming a nickel complex in the nickel-containing aqueous solution by, for example, HPLC, gas chromatography, titration, etc. can be calculated by
高分子凝集剤としては、市販されている高分子凝集剤を使用でき、特に限定されない。例えば、アクリル酸ポリマー、アクリルアミドポリマー、ジメチルアミノエチルメタアクリレートポリマー等が挙げられる。凝集性能の点で、弱アニオン性のアクリル酸ポリマーが好ましい。固形物を除去する前に高分子凝集剤を添加することにより、除去する固形物のハンドリングが容易となる場合がある。 Commercially available polymer flocculants can be used as the polymer flocculant, and are not particularly limited. Examples include acrylic acid polymer, acrylamide polymer, dimethylaminoethyl methacrylate polymer, and the like. A weakly anionic acrylic acid polymer is preferred in terms of flocculation performance. Adding a polymer flocculant before removing the solids may facilitate handling of the removed solids.
無機凝集剤と高分子凝集剤を併用する場合、これらの凝集剤を添加する順番は特に限定されないが、無機凝集剤を添加し、次に高分子凝集剤を添加することが好ましい。 When an inorganic flocculant and a polymer flocculant are used together, the order of adding these flocculants is not particularly limited, but it is preferable to add the inorganic flocculant and then add the polymer flocculant.
固形物を除去する方法としては特に限定されず、例えば、ろ過、遠心分離、及び固形物を沈降させた後、上澄み液と分離する方法等が挙げられる。 The method for removing the solid matter is not particularly limited, and examples thereof include filtration, centrifugation, and a method of sedimenting the solid matter and then separating it from the supernatant.
本発明のニッケル水溶液用の浄化剤は、ニッケルの浄化処理が難しいニッケル含有水溶液(例えば、ニッケルと錯生成能力を持つ化合物、及びニッケルを含有する水溶液)であっても、ニッケル濃度を低減することができる。 The cleaning agent for nickel aqueous solution of the present invention can reduce the nickel concentration even in a nickel-containing aqueous solution that is difficult to purify nickel (for example, a compound having the ability to form a complex with nickel and an aqueous solution containing nickel). can be done.
以下に、本発明を具体的に説明するが、本発明はこれらの実施例により限定して解釈されるものではない。 The present invention will be specifically described below, but the present invention should not be construed as being limited to these examples.
(分析方法)
水溶液中のニッケルイオン濃度は、ICP発光分光分析装置(ICPE-9800、島津製作所社製)で測定した。
(analysis method)
The nickel ion concentration in the aqueous solution was measured with an ICP emission spectrometer (ICPE-9800, manufactured by Shimadzu Corporation).
(無機硫化物)
無機硫化物として、キシダ化学社製硫化水素ナトリウムを使用した。
(Inorganic sulfide)
Sodium hydrogen sulfide manufactured by Kishida Chemical Co., Ltd. was used as the inorganic sulfide.
(ポリアミン)
ポリアミンとして、以下の東ソー製エチレンアミン類、日本触媒製ポリエチレンイミン類を使用した。
(polyamine)
As polyamines, the following ethyleneamines manufactured by Tosoh and polyethyleneimines manufactured by Nippon Shokubai Co., Ltd. were used.
エチレンジアミン(以下、EA(2)と略す)。 ethylenediamine (hereinafter abbreviated as EA(2));
ジエチレントリアミン(以下、EA(3)と略す)。 diethylenetriamine (hereinafter abbreviated as EA(3));
ポリエチレンイミンの重量平均分子量1800品(以下、PEI(1800)と略す)。 Polyethyleneimine with a weight average molecular weight of 1800 (hereinafter abbreviated as PEI (1800)).
(アルカリ土類金属)
アルカリ土類金属として、キシダ化学社製塩化カルシウムを使用した。
(alkaline earth metal)
Calcium chloride manufactured by Kishida Chemical Co., Ltd. was used as the alkaline earth metal.
(無機凝集剤)
無機凝集剤として、以下の水溶液を使用した。
(Inorganic flocculant)
The following aqueous solutions were used as inorganic flocculants.
キシダ化学社製ポリ塩化アルミニウム30gを水に加え、合計100gにした水溶液(30重量%ポリ塩化アルミニウム水溶液)。 30 g of polyaluminum chloride manufactured by Kishida Chemical Co., Ltd. was added to water to make a total of 100 g aqueous solution (30% by weight polyaluminum chloride aqueous solution).
キシダ化学社製38重量%塩化第二鉄水溶液。 38% by weight ferric chloride aqueous solution manufactured by Kishida Chemical Co., Ltd.;
(高分子凝集剤)
高分子凝集剤として、オルガノ社製OA-23(弱アニオンポリマー)を使用した。
(Polymer flocculant)
As a polymer flocculant, OA-23 (weak anionic polymer) manufactured by Organo Co., Ltd. was used.
実施例1
500mLビーカーに、ジャーテスター(Jar Tester)を設置し、ニッケルイオン10mg/LとEDTA25mg/Lを含む水溶液を500mL添加した。次いで、150rpmで攪拌しながら、硫化水素ナトリウムを200mg/L、ジエチレントリアミン(EA(3))を200mg/L、塩化カルシウムを1g/L加え、pH11に調整し、150rpmで1時間攪拌した。次いで、30重量%ポリ塩化アルミニウム(以下、PACと略す)水溶液を1000mg/L加え、pH7に調整し、150rpmで5分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常に所定のpHとなるように調整した。攪拌終了後、10分間静置し、アドバンテック社製5Aのろ紙で水溶液をろ別し、処理後の水溶液のニッケル濃度を測定した。
Example 1
A jar tester was installed in a 500 mL beaker, and 500 mL of an aqueous solution containing 10 mg/L of nickel ions and 25 mg/L of EDTA was added. Then, while stirring at 150 rpm, 200 mg/L of sodium hydrogen sulfide, 200 mg/L of diethylenetriamine (EA(3)) and 1 g/L of calcium chloride were added, the pH was adjusted to 11, and the mixture was stirred at 150 rpm for 1 hour. Then, 1000 mg/L of a 30% by weight polyaluminum chloride (hereinafter abbreviated as PAC) aqueous solution was added, the pH was adjusted to 7, and the mixture was stirred at 150 rpm for 5 minutes. The pH of the aqueous solution was adjusted so as to always have a predetermined pH using a minute amount of hydrochloric acid and sodium hydroxide. After stirring, the mixture was allowed to stand still for 10 minutes, and the aqueous solution was filtered through Advantech 5A filter paper, and the nickel concentration of the treated aqueous solution was measured.
比較例1
500mLビーカーに、ジャーテスター(Jar Tester)を設置し、ニッケルイオン10mg/LとEDTA25mg/Lを含む水溶液を500mL添加した。次いで、pH11に調整し、150rpmで1時間攪拌した。次いで、30重量%PAC水溶液を1000mg/L加え、pH7に調整し、150rpmで5分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常に所定のpHとなるように調整した。攪拌終了後、10分間静置し、アドバンテック社製5Aのろ紙で水溶液をろ別し、処理後の水溶液のニッケル濃度を測定した。
Comparative example 1
A jar tester was installed in a 500 mL beaker, and 500 mL of an aqueous solution containing 10 mg/L of nickel ions and 25 mg/L of EDTA was added. The pH was then adjusted to 11 and stirred at 150 rpm for 1 hour. Then, 1000 mg/L of 30% by weight PAC aqueous solution was added to adjust the pH to 7, and the mixture was stirred at 150 rpm for 5 minutes. The pH of the aqueous solution was adjusted so as to always have a predetermined pH using a minute amount of hydrochloric acid and sodium hydroxide. After stirring, the mixture was allowed to stand still for 10 minutes, and the aqueous solution was filtered through Advantech 5A filter paper, and the nickel concentration of the treated aqueous solution was measured.
比較例2~9
添加する薬剤を表1に示す薬剤に変更した以外、比較例1と同様にして、処理後の水溶液のニッケル濃度を測定した。これらの結果を表1に併せて示す。
Comparative Examples 2-9
The nickel concentration of the aqueous solution after the treatment was measured in the same manner as in Comparative Example 1, except that the chemicals to be added were changed to those shown in Table 1. These results are also shown in Table 1.
実施例1は、EDTA含有排水の処理後水溶液のニッケル濃度を1.5mg/Lに低減することができ、ニッケルを処理することができた。 Example 1 was able to reduce the nickel concentration of the post-treatment aqueous solution of EDTA-containing waste water to 1.5 mg/L, and was able to treat nickel.
比較例1は、アルミニウムイオンを添加して中和し、ニッケルイオンをアルミニウムイオンと共に水酸化物として沈殿させる処理方法の例である。処理後の水溶液のニッケル濃度は7.0mg/Lであり、ニッケルを低減することができなかった。 Comparative Example 1 is an example of a treatment method in which aluminum ions are added for neutralization, and nickel ions are precipitated as hydroxide together with aluminum ions. The nickel concentration of the aqueous solution after treatment was 7.0 mg/L, and nickel could not be reduced.
比較例2は、塩化カルシウムのみを添加して処理した例である。処理後の水溶液のニッケル濃度は5.3mg/Lであり、ニッケルを低減することができなかった。 Comparative Example 2 is an example in which only calcium chloride was added for treatment. The nickel concentration of the aqueous solution after treatment was 5.3 mg/L, and nickel could not be reduced.
比較例3は、硫化水素ナトリウムのみを添加して処理した例である。処理後の水溶液のニッケル濃度は7.0mg/Lであり、ニッケルを十分低減することができなかった。 Comparative Example 3 is an example in which only sodium hydrogen sulfide was added for treatment. The nickel concentration of the aqueous solution after treatment was 7.0 mg/L, and nickel could not be sufficiently reduced.
比較例4は、硫化水素ナトリウムと塩化カルシウムを添加して処理した例である。処理後の水溶液のニッケル濃度は5.5mg/Lであり、ニッケルを低減することができなかった。 Comparative Example 4 is an example treated by adding sodium hydrogen sulfide and calcium chloride. The nickel concentration of the aqueous solution after treatment was 5.5 mg/L, and nickel could not be reduced.
比較例5は、ポリアミンのみを添加して処理した例である。処理後の水溶液のニッケル濃度は、薬剤を添加する前と同値の10mg/Lであり、ニッケルを低減することができなかった。 Comparative Example 5 is an example in which only polyamine was added for treatment. The nickel concentration in the aqueous solution after treatment was 10 mg/L, the same value as before the addition of the chemical, and nickel could not be reduced.
比較例6は、ポリアミンと塩化カルシウムを添加して処理した例である。処理後の水溶液のニッケル濃度は、薬剤を添加する前と同値の10mg/Lであり、ニッケルを低減することができなかった。 Comparative Example 6 is an example treated by adding polyamine and calcium chloride. The nickel concentration in the aqueous solution after treatment was 10 mg/L, the same value as before the addition of the chemical, and nickel could not be reduced.
比較例7は、硫化水素ナトリウムとポリアミンを添加して処理した例である。処理後の水溶液のニッケル濃度は6.4mg/Lであり、ニッケルを十分に低減することができなかった。 Comparative Example 7 is an example treated by adding sodium hydrogen sulfide and polyamine. The nickel concentration of the aqueous solution after treatment was 6.4 mg/L, and nickel could not be sufficiently reduced.
比較例8は、硫化水素ナトリウムと、本発明の範囲外であるEA(2)と塩化カルシウムを添加して処理した例であるが、処理後水溶液のニッケル濃度は、EA(2)を加えなかった比較例4と比較し、ニッケルの処理に改善効果は見られなかった。 Comparative Example 8 is an example in which sodium hydrogen sulfide, EA (2), which is outside the scope of the present invention, and calcium chloride were added for treatment. Compared with Comparative Example 4, no improvement effect was observed in the treatment of nickel.
比較例9は、硫化水素ナトリウムと、本発明の範囲外であるPEI(1800)と塩化カルシウムを添加して処理した例であるが、処理後水溶液のニッケル濃度は10mg/Lであり、ニッケルを低減することができなかった。 Comparative Example 9 is an example in which sodium hydrogen sulfide, PEI (1800) outside the scope of the present invention, and calcium chloride were added for treatment. could not be reduced.
実施例2~3、比較例10
添加する薬剤を表2に示す薬剤に変更した以外、実施例1と同様にして、処理後の水溶液のニッケル濃度を測定した。これらの結果を表2に併せて示す。
Examples 2-3, Comparative Example 10
The nickel concentration of the aqueous solution after treatment was measured in the same manner as in Example 1, except that the chemicals to be added were changed to those shown in Table 2. These results are also shown in Table 2.
実施例2~3は、ポリアミンの重量部を本発明の範囲内で変化させて処理した例である。ポリアミンの重量部によらず、ニッケルの濃度を2.7mg/L以下に低減することができ、ニッケルを処理することができた。 Examples 2 and 3 are examples in which the parts by weight of the polyamine were varied within the scope of the present invention. Regardless of the weight part of the polyamine, the concentration of nickel could be reduced to 2.7 mg/L or less, and the nickel could be treated.
比較例10は、硫化水素ナトリウムと、本発明の範囲を下回る量のポリアミンを添加した例であるが、ニッケルの十分な低減効果は見られなかった。 Comparative Example 10 is an example in which sodium hydrogen sulfide and an amount of polyamine below the range of the present invention were added, but a sufficient effect of reducing nickel was not observed.
実施例4
500mLビーカーに、ジャーテスター(Jar Tester)を設置し、ニッケルイオン10mg/LとEDTA25mg/Lを含む水溶液を500mL添加した。次いで、150rpmで攪拌しながら、硫化水素ナトリウムを200mg/L、ジエチレントリアミン(EA(3))を200mg/L、塩化カルシウム1g/Lを加え、pH11に調整し、150rpmで1時間攪拌した。次いで、30重量%PAC水溶液を1000mg/L加え、pH7に調整し、150rpmで5分間攪拌した。次いで、高分子凝集剤として0.1重量%OA-23水溶液を2000mg/L加え、pH7に調整し、50rpmで5分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常に所定のpHとなるように調整した。攪拌終了後、10分間静置し、アドバンテック社製5Aのろ紙で水溶液をろ別し、処理後の水溶液のニッケル濃度を測定した。結果を表3に示す。
Example 4
A jar tester was installed in a 500 mL beaker, and 500 mL of an aqueous solution containing 10 mg/L of nickel ions and 25 mg/L of EDTA was added. Then, while stirring at 150 rpm, 200 mg/L of sodium hydrogen sulfide, 200 mg/L of diethylenetriamine (EA(3)) and 1 g/L of calcium chloride were added to adjust the pH to 11 and stirred at 150 rpm for 1 hour. Then, 1000 mg/L of 30% by weight PAC aqueous solution was added to adjust the pH to 7, and the mixture was stirred at 150 rpm for 5 minutes. Then, 2000 mg/L of 0.1% by weight OA-23 aqueous solution was added as a polymer flocculant, the pH was adjusted to 7, and the mixture was stirred at 50 rpm for 5 minutes. The pH of the aqueous solution was adjusted so as to always have a predetermined pH using a minute amount of hydrochloric acid and sodium hydroxide. After stirring, the mixture was allowed to stand still for 10 minutes, and the aqueous solution was filtered through Advantech 5A filter paper, and the nickel concentration of the treated aqueous solution was measured. Table 3 shows the results.
実施例5
30重量%PAC水溶液を38重量%塩化鉄水溶液に変更した以外、実施例4と同様にして、処理後の水溶液のニッケル濃度を測定した。結果を表3に示す。
Example 5
The nickel concentration of the treated aqueous solution was measured in the same manner as in Example 4, except that the 30% by weight PAC aqueous solution was changed to a 38% by weight iron chloride aqueous solution. Table 3 shows the results.
実施例4は、実施例1に高分子凝集剤を添加した例である。処理後の水溶液のニッケル濃度は、高分子凝集剤を添加しない場合と同値であり、ニッケルの処理が十分であった。 Example 4 is an example in which a polymer flocculant is added to Example 1. The nickel concentration of the aqueous solution after the treatment was the same as when no polymer flocculant was added, indicating sufficient nickel treatment.
実施例5は、無機凝集剤として、塩化第二鉄水溶液を用いた例である。処理後の水溶液のニッケル濃度は、1.7mg/Lであり、無機凝集剤の種類によらず、ニッケルの処理が十分であった。 Example 5 is an example using an aqueous ferric chloride solution as an inorganic flocculant. The nickel concentration of the aqueous solution after the treatment was 1.7 mg/L, and the nickel treatment was sufficient regardless of the type of inorganic coagulant.
本発明のニッケル含有水溶液の浄化方法によれば、ニッケルの処理が難しい、ニッケルと錯生成能力を持つ化合物、及びニッケルを含有する水溶液であっても、ニッケル濃度を低減できるため、新規なニッケル含有水溶液の浄化方法として、めっき工場、電子部品・機械部品製造工場、自動車工場などからのニッケル含有排水の処理方法として使用される可能性を有している。 According to the method for purifying a nickel-containing aqueous solution of the present invention, it is possible to reduce the nickel concentration even in an aqueous solution containing a compound having the ability to form a complex with nickel, which is difficult to treat nickel, and nickel. As a method for purifying an aqueous solution, it has the potential to be used as a method for treating nickel-containing wastewater from plating factories, electronic and mechanical parts manufacturing factories, automobile factories, and the like.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018069870A JP7183560B2 (en) | 2018-03-30 | 2018-03-30 | Purifying Agent for Nickel-Containing Aqueous Solution and Method for Purifying Nickel-Containing Aqueous Solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018069870A JP7183560B2 (en) | 2018-03-30 | 2018-03-30 | Purifying Agent for Nickel-Containing Aqueous Solution and Method for Purifying Nickel-Containing Aqueous Solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019177375A JP2019177375A (en) | 2019-10-17 |
JP7183560B2 true JP7183560B2 (en) | 2022-12-06 |
Family
ID=68277426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018069870A Active JP7183560B2 (en) | 2018-03-30 | 2018-03-30 | Purifying Agent for Nickel-Containing Aqueous Solution and Method for Purifying Nickel-Containing Aqueous Solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7183560B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118545869B (en) * | 2024-06-07 | 2024-12-13 | 湖北中碧环保科技有限责任公司 | Nickel-containing waste liquid treatment method and device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003311280A (en) | 2002-04-19 | 2003-11-05 | Ebara Corp | Method and apparatus for recovering metal |
US20140124447A1 (en) | 2012-11-06 | 2014-05-08 | Thatcher Company | Formulations and methods for removing heavy metals from waste solutions containing chelating agents |
JP2017080740A (en) | 2011-01-20 | 2017-05-18 | 三菱レイヨン株式会社 | Waste water treatment apparatus, waste water treatment method, and waste water treatment system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63294986A (en) * | 1987-05-26 | 1988-12-01 | Miyoshi Oil & Fat Co Ltd | Treatment of heavy metal-containing waste water |
JPH0790403A (en) * | 1993-09-10 | 1995-04-04 | Nippon Parkerizing Co Ltd | Method for capturing valuable metals in plating solution |
JPH09227855A (en) * | 1996-02-20 | 1997-09-02 | Miyoshi Oil & Fat Co Ltd | Method for trapping metal |
JPH11116938A (en) * | 1997-10-09 | 1999-04-27 | Miyoshi Oil & Fat Co Ltd | Metal collector composition |
-
2018
- 2018-03-30 JP JP2018069870A patent/JP7183560B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003311280A (en) | 2002-04-19 | 2003-11-05 | Ebara Corp | Method and apparatus for recovering metal |
JP2017080740A (en) | 2011-01-20 | 2017-05-18 | 三菱レイヨン株式会社 | Waste water treatment apparatus, waste water treatment method, and waste water treatment system |
US20140124447A1 (en) | 2012-11-06 | 2014-05-08 | Thatcher Company | Formulations and methods for removing heavy metals from waste solutions containing chelating agents |
Also Published As
Publication number | Publication date |
---|---|
JP2019177375A (en) | 2019-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7509253B2 (en) | Purifying agent for nickel-containing aqueous solution and method for purifying nickel-containing aqueous solution | |
JP6969076B2 (en) | Purifying agent for heavy metal-containing aqueous solution, and method for purifying heavy metal-containing aqueous solution | |
JP2013163144A (en) | Treatment method for cyanide-containing wastewater | |
CN108726648A (en) | Water body removes thallium system and its application | |
JP7183560B2 (en) | Purifying Agent for Nickel-Containing Aqueous Solution and Method for Purifying Nickel-Containing Aqueous Solution | |
JP6862660B2 (en) | Purifying agent for nickel-containing aqueous solution and purification method for nickel-containing aqueous solution | |
JP6862659B2 (en) | How to purify nickel-containing aqueous solution | |
JP6744526B2 (en) | Wastewater treatment method and wastewater treatment agent | |
JP2019025481A (en) | Agent for purifying nickel-containing aqueous solution and method for purifying nickel-containing aqueous solution | |
JP2018043232A (en) | Purification agent for mercury-containing aqueous solution, and method of purifying mercury-containing aqueous solution | |
JP6565268B2 (en) | Method and apparatus for treating inorganic carbon-containing water | |
JP7031176B2 (en) | Purifying agent for nickel-containing aqueous solution and purification method for nickel-containing aqueous solution | |
JP6607561B2 (en) | Method for removing molybdenum from wastewater | |
JP2019076840A (en) | Purification agent for heavy metal-containing aqueous solution, and method for purifying heavy metal-containing aqueous solution | |
CN112209469B (en) | Method for removing complex copper in high-salinity wastewater by using sulfur-modified nano zero-valent iron | |
TW200305543A (en) | Effluent water treatment method | |
JPH11235595A (en) | Treatment of boron-containing waste water | |
JP6891653B2 (en) | Wastewater purification agent for heavy metal-containing aqueous solution | |
CA1087329A (en) | Process for the removal of metals from solutions | |
CN116143337A (en) | Method for treating acetone-containing high-fluorine wastewater | |
JP4576560B2 (en) | Phosphorous adsorbent | |
JPH1147766A (en) | Arsenic fixing agent and treatment of drainage containing arsenic | |
JP7189744B2 (en) | Water treatment method and water treatment equipment | |
JP2016209861A (en) | Method for cleaning cadmium-containing water solution | |
JP4034218B2 (en) | Wastewater treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221025 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221107 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7183560 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |