[go: up one dir, main page]

JP7172717B2 - Electrode plate for plasma processing equipment - Google Patents

Electrode plate for plasma processing equipment Download PDF

Info

Publication number
JP7172717B2
JP7172717B2 JP2019031426A JP2019031426A JP7172717B2 JP 7172717 B2 JP7172717 B2 JP 7172717B2 JP 2019031426 A JP2019031426 A JP 2019031426A JP 2019031426 A JP2019031426 A JP 2019031426A JP 7172717 B2 JP7172717 B2 JP 7172717B2
Authority
JP
Japan
Prior art keywords
electrode plate
plasma processing
region
outer peripheral
vent hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019031426A
Other languages
Japanese (ja)
Other versions
JP2020136596A (en
Inventor
祐樹 松澤
浩司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019031426A priority Critical patent/JP7172717B2/en
Publication of JP2020136596A publication Critical patent/JP2020136596A/en
Application granted granted Critical
Publication of JP7172717B2 publication Critical patent/JP7172717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Description

本発明は、プラズマ処理装置において、プラズマ生成用ガスを厚さ方向に通過させながら放電するプラズマ処理装置用電極板に関する。 TECHNICAL FIELD The present invention relates to an electrode plate for a plasma processing apparatus that discharges while passing a plasma generating gas in the thickness direction.

半導体デバイス製造プロセスに使用されるプラズマエッチング装置やプラズマCVD装置等のプラズマ処理装置は、高周波電源に接続された一対の電極が真空チャンバー内に上下方向に対向配置された構成を有している。この構成において、被処理基板を下側電極上に配置し、この被処理基板に向けて上側電極に形成された複数の通気孔を通じてプラズマ生成用ガスを流通させながら、上下電極間に高周波電圧を印加してプラズマを発生させることにより、被処理基板にエッチング等の処理が行われる。 2. Description of the Related Art A plasma processing apparatus such as a plasma etching apparatus or a plasma CVD apparatus used in a semiconductor device manufacturing process has a configuration in which a pair of electrodes connected to a high frequency power supply are vertically opposed in a vacuum chamber. In this configuration, the substrate to be processed is placed on the lower electrode, and a high-frequency voltage is applied between the upper and lower electrodes while the plasma generation gas is circulated toward the substrate to be processed through a plurality of ventilation holes formed in the upper electrode. By applying the voltage to generate plasma, the substrate to be processed is subjected to processing such as etching.

このようなプラズマ処理装置に使用される上側電極として、同径の通気孔が複数形成されたシリコン製の電極板が一般に使用される。この電極板は、プラズマ処理中に上昇する熱を逃がすため、プラズマにさらされる面とは反対側(背面側)に冷却板が固定される。
この電極板において、長時間プラズマ処理を行うと、プラズマ反応による副生成物が固形物として表面に付着し(この付着物をデポ物という)、堆積したデポ物が脱落することによりパーティクルとなり、被処理基板に付着して不良の原因となることがあるため、パーティクルの発生を抑制した電極板が求められている。
As an upper electrode used in such a plasma processing apparatus, an electrode plate made of silicon and having a plurality of vent holes of the same diameter is generally used. A cooling plate is fixed on the opposite side (rear side) of the electrode plate to the side exposed to the plasma in order to release the heat that rises during plasma processing.
In this electrode plate, when the plasma treatment is performed for a long time, the by-products of the plasma reaction adhere to the surface as solid matter (this adherent matter is referred to as deposit matter). There is a demand for an electrode plate that suppresses the generation of particles, since they may adhere to the substrate to be processed and cause defects.

このようなパーティクルの発生を抑制した電極板として、特許文献1又は特許文献2に記載のものがある。
特許文献1には、パーティクルがシリコン電極板を支持するシールド支持電極の支持突起部とシリコン電極板との接触部から発生するとの認識の下、表面の中心線表面粗さRaが1μm以下の鏡面を有する円板状のシリコン電極板において、少なくともシールド支持電極の支持部上面により覆われる部分の中心線表面粗さRaを1μm越え~1.6μmの粗面にすることが記載されている。
特許文献2には、エッチングガスを流通させる通気孔の内面に付着したデポ物が脱落してパーティクルになるとの認識の下、通気孔(貫通細孔)の内壁面を、表面粗さが大きい面部分(粗面部分)と表面粗さが小さい面部分(平滑面部分)とから構成し、粗面部分を通気孔のエッチングガス流入側内壁面に形成し、平滑部分を通気孔のエッチングガス流出側内壁面に形成することが記載されている。この特許文献2では、粗面部分にデポ物を付着させて脱落しないようにしている。
Patent document 1 or patent document 2 discloses an electrode plate that suppresses the generation of such particles.
In Patent Document 1, based on the recognition that particles are generated from the contact portion between the support protrusion of the shield support electrode that supports the silicon electrode plate and the silicon electrode plate, a mirror surface with a center line surface roughness Ra of 1 μm or less is disclosed. In the disk-shaped silicon electrode plate having the above, at least the portion covered with the upper surface of the support portion of the shield support electrode has a center line surface roughness Ra of more than 1 μm to 1.6 μm.
In Patent Document 2, based on the recognition that deposits adhering to the inner surface of the ventilation hole through which the etching gas flows fall off and become particles, the inner wall surface of the ventilation hole (through pore) is treated as a surface with a large surface roughness. The rough surface portion is formed on the inner wall surface of the ventilation hole on the etching gas inflow side, and the smooth portion is formed on the etching gas outflow side of the ventilation hole. Formation on the side inner wall surface is described. In Patent Literature 2, a deposit is attached to the rough surface portion so as not to fall off.

特開2008-85027号公報JP 2008-85027 A 特開2006-196491号公報JP 2006-196491 A

特許文献1記載の技術は、パーティクルの発生源をなくそうとするものであり、それ自体は有効であるも、パーティクルの発生を完全には解消できない。一方、特許文献2記載の技術は、パーティクルの原因となるデポ物を通気孔の背面側(プラズマ面とは反対側)の内面に付着させてしまい、飛散しないようにするものであるが、通気孔は例えば直径が0.5mmであり、その内表面積も小さく、付着固定できるデポ物の量には限界がある。 The technique described in Patent Document 1 attempts to eliminate the source of particle generation, and although it is effective in itself, it cannot completely eliminate the generation of particles. On the other hand, the technique described in Patent Document 2 is intended to prevent particles from scattering by causing deposits that cause particles to adhere to the inner surface of the ventilation hole on the back side (opposite side to the plasma surface). The pores have a diameter of 0.5 mm, for example, and have a small inner surface area, which limits the amount of deposits that can be adhered and fixed.

本発明は、このような事情に鑑みてなされたもので、プラズマ処理中に発生するデポ物を効率的に捕捉してパーティクルの発生を防止することができるプラズマ処理装置用電極板を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an electrode plate for a plasma processing apparatus that can efficiently trap deposits generated during plasma processing and prevent the generation of particles. With the goal.

本発明のプラズマ処理装置用電極板は、プラズマ処理装置にリング状のシールド支持電極により片面の外周領域が支持固定されるプラズマ処理装置用電極板であって、前記片面は、前記シールド支持電極に覆われる前記外周領域の内周縁と、多数の通気孔が形成された通気孔形成領域の外周縁との間に、中心線平均粗さRaが前記通気孔形成領域よりも大きい0.5μm以上20μm以下でありプラズマ処理空間に露出する環状領域を径方向及び周方向に沿って設けている。 An electrode plate for a plasma processing apparatus according to the present invention is an electrode plate for a plasma processing apparatus, the outer peripheral region of one side of which is supported and fixed to a plasma processing apparatus by a ring-shaped shield supporting electrode, wherein the one side is attached to the shield supporting electrode. Between the inner peripheral edge of the covered outer peripheral area and the outer peripheral edge of the vent hole forming area in which a large number of vent holes are formed, the center line average roughness Ra is 0.5 μm or more and 20 μm larger than the vent hole forming area. An annular region is provided along the radial direction and the circumferential direction and is exposed to the plasma processing space .

通気孔形成領域の外側は、プラズマの影響が少なく、プラズマガスの流れの影響も受けにくいため、デポ物が付着し易い。このため、通気孔形成領域の外側に中心線平均粗さRaの大きい環状領域を設けることにより、デポ物を付着し易く、かつ脱落しにくい形状とした。この場合、中心線平均粗さRaが0.5μm未満であると、付着したデポ物が脱落し易く、20μmを超えるほどに粗い面であると、プラズマによる損耗によって逆にパーティクルが発生するおそれがある。 The outer side of the vent hole forming region is less affected by plasma and less affected by the flow of plasma gas, so deposits tend to adhere. For this reason, by providing an annular region having a large center line average roughness Ra outside the air hole formation region, the shape is such that deposits can easily adhere and are less likely to come off. In this case, if the center line average roughness Ra is less than 0.5 μm, the attached deposits are likely to fall off, and if the surface is rough enough to exceed 20 μm, particles may be generated due to plasma wear. be.

このプラズマ処理装置用電極板において、前記通気孔形成領域の外周縁から前記環状領域の内周縁までの距離は3mm以上であるとよい。環状領域の内周縁が通気孔形成領域の外周縁に近すぎると、付着したデポ物が通気孔からのプラズマガスに巻き込まれて脱落するおそれがある。このため、環状領域は通気孔形成領域の外周縁から3mm以上離れているのが好ましい。 In this electrode plate for a plasma processing apparatus, the distance from the outer peripheral edge of the vent hole formation region to the inner peripheral edge of the annular region is preferably 3 mm or more. If the inner peripheral edge of the annular region is too close to the outer peripheral edge of the vent hole formation region, there is a risk that the adhered deposits will be caught in the plasma gas from the vent hole and fall off. For this reason, it is preferable that the annular region is separated from the outer peripheral edge of the vent forming region by 3 mm or more.

また、前記環状領域の半径方向の幅は5mm以上であるとよい。デポ物を付着する領域の面積は大きい方がよく、5mm以上の幅で形成されているのが好ましい。 Moreover, it is preferable that the radial width of the annular region is 5 mm or more. The larger the area of the region where the deposition material is attached, the better, and it is preferably formed with a width of 5 mm or more.

さらに、前記通気孔形成領域の中心線平均粗さは0.5μm未満であるとよく、平滑面に形成されていると、異常放電などの不具合の発生が防止され、パーティクルの発生も抑制される。 Furthermore, the center line average roughness of the vent hole formation region is preferably less than 0.5 μm, and when formed on a smooth surface, the occurrence of defects such as abnormal discharge is prevented, and the generation of particles is also suppressed. .

本発明によれば、プラズマ処理中に発生するデポ物を効率的に捕捉してパーティクルの発生を防止することができる。 According to the present invention, it is possible to efficiently capture deposits generated during plasma processing and prevent the generation of particles.

本発明に係るプラズマ処理装置用電極板の一実施形態を示す平面図である。1 is a plan view showing one embodiment of an electrode plate for a plasma processing apparatus according to the present invention; FIG. 図1のプラズマ処理装置用電極板をシールド支持電極に支持した状態の縦断面図である。2 is a vertical cross-sectional view of the electrode plate for the plasma processing apparatus of FIG. 1 supported by a shield support electrode; FIG. プラズマ処理装置用電極板の製造方法の例を示す工程図である。It is process drawing which shows the example of the manufacturing method of the electrode plate for plasma processing apparatuses.

図1に示すように、プラズマ処理装置用電極板(以下、単に電極板という)10は円板状に形成され、その外周部を除く中央部分に厚さ方向に貫通する多数の通気孔11を有している。
この電極板10は厚さ8~12mm、直径200~600mmの円板である。各通気孔11の内径は直径0.5~1.0mm、通気孔11同士の各中心間距離は5~10mmである。
この通気孔11は、電極板10の外周部を除く中央部分の円形の領域に形成されている。この通気孔形成領域は直径199~330mm程度である。また、電極板10の外周部は、図2に示すように、リング状のシールド支持電極20によりプラズマ処理装置(図示略)に固定されるようになっている。このシールド支持電極20は、円筒部21と、円筒部21の下端から半径方向内方に内向きフランジ状に延びる支持部22とが一体に形成された形状である。そして、電極板10は、シールド支持電極21の支持部22の上面に外周部が載置され、支持部22の内周縁より内側で通気孔11を開放状態として支持される。
As shown in FIG. 1, an electrode plate for a plasma processing apparatus (hereinafter simply referred to as an electrode plate) 10 is formed in a disc shape and has a large number of vent holes 11 penetrating in the thickness direction in the central portion thereof excluding the outer peripheral portion. have.
This electrode plate 10 is a disk having a thickness of 8 to 12 mm and a diameter of 200 to 600 mm. The inner diameter of each ventilation hole 11 is 0.5 to 1.0 mm, and the center-to-center distance between the ventilation holes 11 is 5 to 10 mm.
This vent hole 11 is formed in a circular area in the central portion of the electrode plate 10 excluding the outer peripheral portion. This air hole forming region has a diameter of about 199 to 330 mm. 2, the outer peripheral portion of the electrode plate 10 is fixed to a plasma processing apparatus (not shown) by a ring-shaped shield support electrode 20. As shown in FIG. The shield support electrode 20 has a shape in which a cylindrical portion 21 and a support portion 22 extending radially inward from the lower end of the cylindrical portion 21 in an inward flange shape are integrally formed. The outer peripheral portion of the electrode plate 10 is placed on the upper surface of the support portion 22 of the shield support electrode 21, and is supported inside the inner peripheral edge of the support portion 22 with the ventilation holes 11 open.

この場合、電極板10において、通気孔11が形成されている円形領域を通気孔形成領域A1とすると、シールド支持電極20の支持部22の内周縁よりも半径方向内方に離間して通気孔形成領域A1の外周縁が配置される。そして、通気孔形成領域A1は、その外周縁よりも若干半径方向外側までの範囲で、中心線平均粗さRaが0.5μm未満に形成されている。このRaが0.5μm未満の領域を平滑領域A2とする。 In this case, if the circular area in which the vent hole 11 is formed in the electrode plate 10 is defined as the vent hole forming area A1, the vent hole is spaced radially inward from the inner peripheral edge of the support portion 22 of the shield support electrode 20 . An outer peripheral edge of the formation area A1 is arranged. The vent hole forming area A1 is formed to have a center line average roughness Ra of less than 0.5 μm in a range slightly radially outward from the outer peripheral edge. This Ra is less than 0.5 μm is defined as a smooth area A2.

一方、この平滑領域A2の外周縁とシールド支持電極20の支持部22の内周縁との間に形成される環状領域A3は、中心線平均粗さRaが0.5μm以上20.0μm以下とされる。この環状領域A3は、通気孔形成領域A1の外周縁から若干の間隔をあけた外側の領域、具体的には平滑領域A2の外周縁からシールド支持電極20の支持部22の内周縁までの領域である。通気孔形成領域A1の外周縁から環状領域A3の内周縁(平滑領域A2の外周縁)までの距離Lは3mm以上であり、環状領域A3の半径方向の幅Wは5mm以上である。
また、シールド支持電極20の支持部22により覆われた状態となる電極板10の外周部を外周領域A4とすると、その中心線平均粗さRaは1.0μmを超え1.6μm以下に形成される。
On the other hand, the annular region A3 formed between the outer peripheral edge of the smooth region A2 and the inner peripheral edge of the support portion 22 of the shield support electrode 20 has a center line average roughness Ra of 0.5 μm or more and 20.0 μm or less. be. The annular region A3 is an outer region slightly spaced from the outer peripheral edge of the vent forming region A1, specifically, the region from the outer peripheral edge of the smooth region A2 to the inner peripheral edge of the support portion 22 of the shield support electrode 20. is. The distance L from the outer peripheral edge of the vent hole forming area A1 to the inner peripheral edge of the annular area A3 (the outer peripheral edge of the smooth area A2) is 3 mm or more, and the radial width W of the annular area A3 is 5 mm or more.
Further, when the outer peripheral portion of the electrode plate 10 covered with the support portion 22 of the shield supporting electrode 20 is defined as the outer peripheral region A4, the center line average roughness Ra is formed to be more than 1.0 μm and 1.6 μm or less. be.

なお、通気孔11の内表面は、例えば中心線平均粗さRaが0.5μm未満の範囲で全長にわたって均一な表面粗さでもよいが、プラズマに晒される面(プラズマ面)10a側とその反対面側(背面10b側)とで異なる表面粗さに設定してもよい。例えば、プラズマ面10a側を中心線平均粗さRaが0.5μm未満の平滑面、背面10b側を中心線平均粗さRaが0.5μm以上20μm以下としてもよい。この平滑面を設ける場合、平滑面の長さとしては、電極板10全体の厚さの1/3以上2/3以下の寸法とするとよい。 The inner surface of the vent hole 11 may have a uniform surface roughness over the entire length within a range of, for example, a center line average roughness Ra of less than 0.5 μm. Different surface roughness may be set on the surface side (back surface 10b side). For example, the plasma surface 10a side may be a smooth surface with a center line average roughness Ra of less than 0.5 μm, and the back surface 10b side may be a center line average roughness Ra of 0.5 μm or more and 20 μm or less. When the smooth surface is provided, the length of the smooth surface should be 1/3 or more and 2/3 or less of the thickness of the entire electrode plate 10 .

このように構成される電極板10は、図3に示すように、単結晶シリコンのシリコンインゴットを形成するインゴット形成工程(S1)と、そのシリコンインゴットをスライスして円板状の素板を形成するスライス工程(S2)と、素板に熱処理を施す熱処理工程(S3)と、素板に通気孔を加工する通気孔形成工程(S4)と、通気孔を形成した孔あき素板にエッチング処理を施すエッチング工程(S5)と、エッチング処理後に孔あき素板の上面及び下面を研磨するポリッシング工程(S6)と、ポリッシング処理の後に孔あき素板のプラズマ面10a側の外周部分(環状領域A3及び外周領域A4)を粗面化する粗面化工程(S7)と、を経て製造される。 As shown in FIG. 3, the electrode plate 10 configured in this manner is produced by an ingot forming step (S1) of forming a silicon ingot of single crystal silicon, and slicing the silicon ingot to form a disk-shaped base plate. a slicing step (S2), a heat treatment step (S3) in which the base plate is heat-treated, a vent hole forming step (S4) in which vent holes are formed in the base plate, and an etching process on the perforated base plate in which the vent holes are formed a polishing step (S6) of polishing the upper and lower surfaces of the perforated base plate after the etching process; and an outer peripheral portion (annular region A3 and a roughening step (S7) of roughening the outer peripheral region A4).

これら工程のうち、通気孔形成工程では、素板の一方の面から厚さ方向に平行にドリルを下降させながら、各通気孔11を形成するが、通気孔11の内周面の表面粗さをプラズマ面10a側と背面10b側とで異ならせる場合は、例えばドリルの加工速度を変えることによって加工表面の表面粗さを調整する。加工速度が速いよりも遅い場合に、平滑な表面が得られる。
また、エッチング工程では、スライス加工や通気孔形成加工において生じた表面のダメージ部(マイクロクラック等)をエッチングにより除去する。エッチング液としては、フッ酸(HF)、硝酸(HNO)、酢酸(CHCOOH)を混合したフッ硝酢酸が用いられる。
Among these processes, in the vent hole forming process, each vent hole 11 is formed while descending a drill parallel to the thickness direction from one surface of the base plate. is different between the plasma surface 10a side and the back surface 10b side, the surface roughness of the machined surface is adjusted by changing the machining speed of the drill, for example. A smooth surface is obtained when the machining speed is slower than fast.
Also, in the etching process, damaged portions (such as microcracks) on the surface caused by the slicing process and the vent hole forming process are removed by etching. As an etchant, hydrofluoric nitric acid, which is a mixture of hydrofluoric acid (HF), nitric acid (HNO 3 ), and acetic acid (CH 3 COOH), is used.

ポリッシング工程では、回転する研磨パッドの上にダイヤモンド砥粒等の研磨材を含有したスラリーを供給しながら素板を載せて研磨する。このポリッシング処理工程において、素板の表面は、中心線平均粗さRaが0.5μm未満に形成される。
次いで、粗面化工程では、素板の片面(プラズマ面10a)において、通気孔形成領域の外周縁よりも若干半径方向外側までの範囲の領域(平滑化領域A2)を除き、その外側部分に研削加工を施して粗面化する。この場合、前述した環状領域A3と、その外側の外周領域A4とでそれぞれ前述した表面粗さの範囲となるように、研削速度等を変えて加工する。研削加工に代えて、ブラスト処理等によって粗面化してもよい。ブラスト処理の場合も、環状領域A3と外周領域A4とでブラスト粒子の径を変えて行う。
In the polishing step, the base plate is placed on a rotating polishing pad and polished while supplying a slurry containing an abrasive such as diamond abrasive grains. In this polishing process, the surface of the base plate is formed to have a center line average roughness Ra of less than 0.5 μm.
Next, in the surface roughening step, on one side (plasma surface 10a) of the base plate, except for a region (smoothed region A2) slightly radially outward from the outer peripheral edge of the vent hole forming region, the outer portion is The surface is roughened by grinding. In this case, the grinding speed or the like is changed so that the annular region A3 and the outer peripheral region A4 outside thereof have the aforementioned surface roughness ranges. Instead of grinding, the surface may be roughened by blasting or the like. Also in the case of blasting, the diameter of the blast particles is changed between the annular area A3 and the outer peripheral area A4.

このようにして製造された電極板10は最後に洗浄して使用に供される。
そして、この電極板10がプラズマ処理装置に装着されると、その外周部がシールド支持電極20の支持部22に覆われた状態で、その内側の表面がプラズマ処理空間に露出することになる。この露出表面(プラズマ面10a)において、通気孔形成領域A1がプラズマ環境に晒される。この通気孔形成領域A1は、中心線平均粗さRaが0.5μm未満の平滑面に形成されているので、異常放電等の不具合の発生が防止されるとともに、この平滑面からのパーティクルの発生も抑制される。
Finally, the electrode plate 10 manufactured in this manner is washed before use.
When the electrode plate 10 is installed in the plasma processing apparatus, its inner surface is exposed to the plasma processing space while its outer peripheral portion is covered with the support portion 22 of the shield support electrode 20 . On this exposed surface (plasma surface 10a), the vent forming region A1 is exposed to the plasma environment. Since the vent hole formation region A1 is formed on a smooth surface having a center line average roughness Ra of less than 0.5 μm, problems such as abnormal discharge are prevented from occurring, and particles are generated from this smooth surface. is also suppressed.

一方、環状領域A3においては、プラズマ環境側に露出した状態となるが、通気孔形成領域A1の外側であるためプラズマの影響は少ない。このため、プラズマ処理を継続すると、図2の二点鎖線で示すように通気孔形成領域A1が主として損耗し、その外側の環状領域A3は損耗が少ない。したがって、この環状領域A3にデポ物が付着し易い。また、この環状領域A3は、通気孔形成領域A1の外周縁から電極板10の面方向に離れており、かつシールド支持電極20の支持部22の表面との段差により、プラズマガスが回り込みにくく、通気孔11の出口から流出するプラズマガスの流れの影響も受けにくい。 On the other hand, the annular area A3 is exposed to the plasma environment side, but is less affected by the plasma because it is outside the air vent formation area A1. For this reason, if the plasma treatment is continued, as indicated by the chain double-dashed line in FIG. 2, the ventilation hole forming area A1 is mainly worn, and the outer annular area A3 is little worn. Therefore, deposits are likely to adhere to this annular region A3. In addition, the annular region A3 is separated from the outer peripheral edge of the vent hole forming region A1 in the surface direction of the electrode plate 10, and the difference in level with the surface of the support portion 22 of the shield support electrode 20 makes it difficult for the plasma gas to flow around. It is also less susceptible to the flow of plasma gas flowing out from the outlet of the ventilation hole 11 .

そこで、この環状領域A3の中心線平均粗さRaを通気孔形成領域A1よりも大きい0.5μm以上20.0μm以下とし、デポ物を強固に付着させ、脱落しにくいようにしている。この場合、中心線平均粗さRaが0.5μm未満であると、付着したデポ物が脱落し易く、20μmを超えるほどに粗い面であると、プラズマによる損耗によって逆にパーティクル発生の原因となるおそれがある。 Therefore, the central line average roughness Ra of the annular region A3 is set to 0.5 μm or more and 20.0 μm or less, which is larger than that of the vent hole forming region A1, so that the deposits are firmly adhered and are difficult to fall off. In this case, if the center line average roughness Ra is less than 0.5 μm, the attached deposits are likely to fall off, and if the surface is rough enough to exceed 20 μm, plasma wear will conversely cause particle generation. There is a risk.

ただし、環状領域A3の内周縁が通気孔形成領域A1の外周縁に近すぎると、付着したデポ物が通気孔11からのプラズマガスに巻き込まれて脱落するおそれがあるので、環状領域A3は通気孔形成領域A1の外周縁からの距離Lが3mm以上あるのが好ましい。また、環状領域A3の半径方向の幅Wは5mm以上であれば、デポ物を付着する領域として大きい面積を確保することができる。
このような環状領域A3を形成したことにより、長時間プラズマ処理を行っても、付着したデポ物の脱落が防止され、パーティクルの発生を抑えることができ、安定して高品質のプラズマ処理を行うことができる。
However, if the inner peripheral edge of the annular area A3 is too close to the outer peripheral edge of the vent hole formation area A1, there is a risk that the adhered deposits will be caught in the plasma gas from the vent hole 11 and fall off. It is preferable that the distance L from the outer peripheral edge of the pore forming region A1 is 3 mm or more. Further, if the radial width W of the annular region A3 is 5 mm or more, a large area can be secured as the region for depositing the deposit.
By forming such an annular region A3, even if the plasma processing is performed for a long time, the adhered deposits can be prevented from coming off, the generation of particles can be suppressed, and the plasma processing can be performed stably and with high quality. be able to.

なお、本発明は前記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、通気孔11の内周面の表面粗さをプラズマ面10a側と背面10b側とで異なるように形成したが、環状領域A3でデポ物を捕捉できるので、通気孔11の内周面は全長にわたって平滑面としてもよい。
The present invention is not limited to the configurations of the above-described embodiments, and various modifications can be made to the detailed configurations without departing from the gist of the present invention.
For example, the surface roughness of the inner peripheral surface of the vent hole 11 is formed to be different between the plasma surface 10a side and the back surface 10b side. It may be a smooth surface over the entire length.

直径:300mmの単結晶シリコンインゴットを用意し、このインゴットをダイヤモンドバンドソーにより厚さ:10mmに輪切り切断して単結晶シリコン円板からなる素板を作製し、この素板の片面からダイヤモンドドリルにより直径:0.5mmの穿孔を行い表面粗さRaが10μmの粗面部分とし、ついでこの粗面部分の穴を明けた単結晶シリコン板の反対側の片面からダイヤモンドドリルにより、加工速度を変えて直径:0.5mmの穿孔を行って表面粗さRaが0.3μmの平滑面部分とすることにより、通気孔内面に電極板の厚さに対する比率で1/2の長さにわたって粗面部分を有する電極板を作製した。通気孔形成領域A1は直径199mm、通気孔中心間距離は7mmとした。 A single-crystal silicon ingot with a diameter of 300 mm was prepared, and this ingot was sliced into 10-mm thick single-crystal silicon disks with a diamond band saw. : 0.5 mm perforated to form a rough surface portion with a surface roughness Ra of 10 μm, and then from the opposite side of the single crystal silicon plate in which the hole was made in this rough surface portion, a diamond drill was used to change the processing speed to obtain a diameter : A hole of 0.5 mm is made to have a smooth surface portion with a surface roughness Ra of 0.3 μm, so that the inner surface of the vent hole has a rough surface portion over a length of 1/2 at a ratio to the thickness of the electrode plate. An electrode plate was produced. The air hole formation area A1 had a diameter of 199 mm, and the center-to-center distance of the air holes was 7 mm.

続いて、電極板10の表面全体が、表1の通気孔形成領域A1に示す中心線平均粗さRaとなるように、表面研磨を施した。
さらに、通気孔形成領域A1から所定距離外側の環状領域A3と、プラズマ処理装置のシールド支持電極20の支持部22の上面に接触する外周領域A4とを研削することにより、表1に示される中心線平均粗さRaを有する粗面を形成した。外周領域A4については、すべての電極板共通で、表面粗さRa1.3μmとした。環状領域A3については、通気孔形成領域A1の外周縁からの距離Lとその幅(シールド支持電極20の支持部22の内周縁からの幅)Wが、表1に示す寸法となるように粗面を形成した。
Subsequently, the entire surface of the electrode plate 10 was subjected to surface polishing so as to have the center line average roughness Ra shown in the air hole formation region A1 in Table 1.
Further, by grinding the annular region A3 outside the vent hole formation region A1 by a predetermined distance and the outer peripheral region A4 in contact with the upper surface of the support portion 22 of the shield support electrode 20 of the plasma processing apparatus, the center shown in Table 1 A rough surface having a line average roughness Ra was formed. The outer peripheral region A4 had a surface roughness Ra of 1.3 μm common to all electrode plates. For the annular region A3, the distance L from the outer peripheral edge of the vent hole forming region A1 and its width (the width from the inner peripheral edge of the support portion 22 of the shield support electrode 20) W are roughened so as to have the dimensions shown in Table 1. formed the surface.

作製した電極板10を、シールド支持電極20の支持部22の上面にセットし、さらに被処理基板としてシリコンウエハを載置し、
チャンバー内圧力:10-1Torr
エッチングガス組成:90sccmCHF+4sccmO+150sccmHe
高周波電力:2kW
周波数:20kHz
の条件で、500時間プラズマエッチングを行なった。なお、sccmとは、standard cc/minの略であり、1atm(大気圧1013Pa)で、0℃あるいは25℃などの一定温度で規格化された1分間あたりの流量(cc)をいう。
The prepared electrode plate 10 is set on the upper surface of the support portion 22 of the shield support electrode 20, and a silicon wafer is placed as a substrate to be processed,
Chamber pressure: 10 -1 Torr
Etching gas composition: 90 sccm CHF 3 +4 sccm O 2 +150 sccm He
RF power: 2kW
Frequency: 20kHz
Plasma etching was performed for 500 hours under the conditions of . Note that sccm is an abbreviation for standard cc/min, and refers to the flow rate (cc) per minute normalized at a constant temperature such as 0°C or 25°C at 1 atm (atmospheric pressure 1013 Pa).

エッチング開始から200時間、300時間、400時間、500時間経過した時点でのシリコンウエハ上のパーティクル数を測定し、その結果を表に示した。パーティクル数の測定は、株式会社トプコン製のパーティクルカウンター(WM-3000)を使用し、ウエハ表面をレーザ光により走査し、付着したパーティクルからの光散乱強度を測定することによりパーティクルの位置と大きさを認識することにより行った。
その結果を表1に示す。
The number of particles on the silicon wafer was measured after 200 hours, 300 hours, 400 hours and 500 hours from the start of etching, and the results are shown in the table. The number of particles is measured by scanning the wafer surface with a laser beam using a particle counter (WM-3000) manufactured by Topcon Co., Ltd., and measuring the light scattering intensity from the adhering particles to determine the position and size of the particles. by recognizing the
Table 1 shows the results.

Figure 0007172717000001
Figure 0007172717000001

表1の結果からわかるように、シールド支持電極に覆われる外周部の内周縁と、通気孔形成領域の外周縁との間に、中心線平均粗さRaが通気孔形成領域よりも大きい0.5μm以上20μm以下の環状領域が周方向に沿って設けられていると、パーティクルの発生が抑えられている。
これに対し、環状領域と通気孔形成領域の中心線平均粗さRaが同一で、Ra5μmとなっている比較例1では、通気孔形成領域がプラズマにより損耗するため、また、Ra0.3μmとなっている比較例2では、環状領域にデポ物が付着しにくく脱落しやすいため、パーティクルが多く発生している。
また、環状領域と通気孔形成領域との距離が3mm未満となっている実施例4では、環状領域に付着したデポ物通気孔からのガスの流れに巻き込まれて脱落するため、エッチング初期の段階ではパーティクル発生は少ないが、長時間経過すると、実施例2と比べて、少しパーティクルが発生しやすくなっている。
通気孔形成領域の中心線平均粗さRaが0.5μm以上となっている実施例5では、異常放電が生じやすいため、実施例2と比べて、少しパーティクルが発生しやすくなっている。
環状領域の幅が5mm未満となっている実施例6では、エッチング初期の段階ではパーティクル発生は少ないが、デポ物を付着可能な面積が少ないため、長時間経過すると、実施例2と比べて、少しパーティクルが発生しやすくなっている。
As can be seen from the results in Table 1, between the inner peripheral edge of the outer peripheral portion covered with the shield supporting electrode and the outer peripheral edge of the air hole forming region, the center line average roughness Ra was 0.00% larger than that of the air hole forming region. Particle generation is suppressed when the annular region of 5 μm or more and 20 μm or less is provided along the circumferential direction.
On the other hand, in Comparative Example 1 in which the central line average roughness Ra of the annular region and the vent hole forming region is the same and is Ra 5 μm, the vent hole forming region is worn by the plasma, and the Ra is 0.3 μm. In Comparative Example 2, a large number of particles are generated because deposits are less likely to adhere to the annular region and more likely to fall off.
In addition, in Example 4, in which the distance between the annular region and the vent hole forming region is less than 3 mm, the deposition material adhering to the annular region is caught in the gas flow from the vent hole and falls off, so the deposit is in the initial stage of etching. However, after a long time, particles are more likely to be generated than in Example 2.
In Example 5, in which the center line average roughness Ra of the vent hole forming region is 0.5 μm or more, abnormal discharge is likely to occur, and thus particles are more likely to be generated than in Example 2.
In Example 6, in which the width of the annular region is less than 5 mm, few particles are generated in the initial stage of etching, but since the area to which the deposited material can adhere is small, after a long period of time, compared to Example 2, Particles are generated a little more easily.

10 プラズマ処理装置用電極板
11 通気孔
20 シールド支持電極
22 支持部
A1 通気孔形成領域
A2 平滑領域
A3 環状領域
A4 外周領域(外周部)
10 plasma processing apparatus electrode plate 11 vent hole 20 shield support electrode 22 support part A1 vent hole forming area A2 smooth area A3 annular area A4 outer peripheral area (peripheral part)

Claims (4)

プラズマ処理装置にリング状のシールド支持電極により片面の外周領域が支持固定されるプラズマ処理装置用電極板であって、前記片面は、前記シールド支持電極に覆われる前記外周領域の内周縁と、多数の通気孔が形成された通気孔形成領域の外周縁との間に、中心線平均粗さRaが前記通気孔形成領域よりも大きい0.5μm以上20μm以下でありプラズマ処理空間に露出する環状領域を径方向及び周方向に沿って設けていることを特徴とするプラズマ処理装置用電極板。 An electrode plate for a plasma processing apparatus having an outer peripheral region on one side supported and fixed to a plasma processing device by a ring-shaped shield supporting electrode, wherein the one side includes an inner peripheral edge of the outer peripheral region covered with the shield supporting electrode and a plurality of and an annular region exposed to the plasma processing space and having a central line average roughness Ra greater than that of the vent hole forming region and being 0.5 μm or more and 20 μm or less. are provided along the radial direction and the circumferential direction. 前記通気孔形成領域の外周縁から前記環状領域の内周縁までの距離は3mm以上であることを特徴とする請求項1記載のプラズマ処理装置用電極板。 2. The electrode plate for a plasma processing apparatus according to claim 1, wherein the distance from the outer peripheral edge of said vent hole forming area to the inner peripheral edge of said annular area is 3 mm or more. 前記環状領域の半径方向の幅は5mm以上であることを特徴とする請求項1又は2記載のプラズマ処理装置用電極板。 3. The electrode plate for a plasma processing apparatus according to claim 1, wherein said annular region has a radial width of 5 mm or more. 前記通気孔形成領域の中心線平均粗さは0.5μm未満であることを特徴とする請求項1から3のいずれか一項記載のプラズマ処理装置用電極板。 4. The electrode plate for a plasma processing apparatus according to any one of claims 1 to 3, wherein the central line average roughness of said vent hole forming region is less than 0.5 [mu]m.
JP2019031426A 2019-02-25 2019-02-25 Electrode plate for plasma processing equipment Active JP7172717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019031426A JP7172717B2 (en) 2019-02-25 2019-02-25 Electrode plate for plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019031426A JP7172717B2 (en) 2019-02-25 2019-02-25 Electrode plate for plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2020136596A JP2020136596A (en) 2020-08-31
JP7172717B2 true JP7172717B2 (en) 2022-11-16

Family

ID=72279058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019031426A Active JP7172717B2 (en) 2019-02-25 2019-02-25 Electrode plate for plasma processing equipment

Country Status (1)

Country Link
JP (1) JP7172717B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7585900B2 (en) 2021-03-15 2024-11-19 三菱マテリアル株式会社 Electrode plate for plasma processing apparatus and method for manufacturing same
JP2024113345A (en) * 2023-02-09 2024-08-22 三菱マテリアル株式会社 Electrode plate for plasma processing apparatus and method for manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345343A (en) 1999-06-03 2000-12-12 Tokyo Electron Ltd Film forming device
JP2004289003A (en) 2003-03-24 2004-10-14 Seiko Epson Corp Quartz ring, plasma processing apparatus, and semiconductor device manufacturing method
JP2008007350A (en) 2006-06-28 2008-01-17 Covalent Materials Corp Yttria ceramic sintered body
JP2008085027A (en) 2006-09-27 2008-04-10 Mitsubishi Materials Corp Silicone electrode plate with a few partices produced for plasma etching apparatus
JP2012142329A (en) 2010-12-28 2012-07-26 Toshiba Corp Processing equipment
JP2014022517A (en) 2012-07-17 2014-02-03 Tokyo Electron Ltd Upper electrode and plasma processing apparatus
US20190032215A1 (en) 2017-07-28 2019-01-31 Taiwan Semiconductor Manufacturing Co., Ltd. Deposition device structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345343A (en) 1999-06-03 2000-12-12 Tokyo Electron Ltd Film forming device
JP2004289003A (en) 2003-03-24 2004-10-14 Seiko Epson Corp Quartz ring, plasma processing apparatus, and semiconductor device manufacturing method
JP2008007350A (en) 2006-06-28 2008-01-17 Covalent Materials Corp Yttria ceramic sintered body
JP2008085027A (en) 2006-09-27 2008-04-10 Mitsubishi Materials Corp Silicone electrode plate with a few partices produced for plasma etching apparatus
JP2012142329A (en) 2010-12-28 2012-07-26 Toshiba Corp Processing equipment
JP2014022517A (en) 2012-07-17 2014-02-03 Tokyo Electron Ltd Upper electrode and plasma processing apparatus
US20190032215A1 (en) 2017-07-28 2019-01-31 Taiwan Semiconductor Manufacturing Co., Ltd. Deposition device structure

Also Published As

Publication number Publication date
JP2020136596A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
KR100625928B1 (en) Method and apparatus for processing semiconductor substrates
JP2009060035A (en) Electrostatic chuck member, its manufacturing method, and electrostatic chuck apparatus
JP7172717B2 (en) Electrode plate for plasma processing equipment
JP2017212374A (en) Substrate holding device and manufacturing method thereof
JP2018006573A (en) Electrostatic chuck, manufacturing method thereof and reproduction method for electrostatic chuck
JP3919409B2 (en) Focus ring of plasma processing apparatus and semiconductor manufacturing apparatus
JP2018014515A (en) Electrostatic chuck and manufacturing method therefor, and generation method for electrostatic chuck
JP5879069B2 (en) Method for manufacturing upper electrode of plasma processing apparatus
JP2010042991A (en) Silica glass jig used in process for manufacturing semiconductor
US10836014B2 (en) Annular grinding stone
JP2000315720A (en) Semiconductor manufacturing jig made of ceramics
JP7585900B2 (en) Electrode plate for plasma processing apparatus and method for manufacturing same
KR20210057170A (en) Silicon wafer heat treatment method
CN113373513B (en) Base and equipment for manufacturing wafers including the base
JP2010069612A (en) Conditioner for semiconductor polishing cloth, method for manufacturing conditioner for semiconductor polishing cloth, and semiconductor polishing apparatus
JPH09129605A (en) Plasma etching single crystal silicon electrode plate
JP4517370B2 (en) Silicon ring for plasma etching equipment
JP3854017B2 (en) Plasma processing apparatus and plasma processing method
KR101087029B1 (en) CMP pad conditioner and manufacturing method thereof
JP2010536172A (en) Method and apparatus for off-site seasoning of electronic device manufacturing process parts
JP4054259B2 (en) Silicon plate for plasma processing
JP2000306886A (en) Plasma etching electrode
JP7582924B2 (en) Manufacturing method of susceptor
JP7635606B2 (en) Electrode plate for plasma processing apparatus and method for manufacturing same
JP2004228500A (en) Shower plate for plasma processing and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7172717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150