以下、実施形態を図に基づいて説明する。
(第1実施形態)
<車載システム>
先ず、図1に基づいてセンサユニット700の適用される車載システム100を説明する。車載システム100はハイブリッドシステムを構成している。
車載システム100はバッテリ200、電力変換装置300、および、モータ400を有する。また車載システム100はエンジン500と動力分配機構600を有する。電力変換装置300にセンサユニット700が含まれている。モータ400は第1MG401と第2MG402を有する。MGはmotor generatorの略である。
さらに車載システム100は図示しない複数のECUを有する。これら複数のECUはバス配線を介して相互に信号を送受信している。複数のECUは協調してハイブリッド自動車を制御している。複数のECUの協調制御により、バッテリ200のSOCに応じたモータ400の力行と発電(回生)、および、エンジン500の出力などが制御される。SOCはstate of chargeの略である。ECUはelectronic control unitの略である。
なお、ECUは、少なくとも1つの演算処理装置(CPU)と、プログラムおよびデータを記憶する記憶媒体としての少なくとも1つのメモリ装置(MMR)と、を有する。ECUはコンピュータで読み取り可能な記憶媒体を備えるマイクロコンピュータによって提供される。記憶媒体はコンピュータによって読み取り可能なプログラムを非一時的に格納する非遷移的実体的記憶媒体である。記憶媒体は半導体メモリまたは磁気ディスクなどによって提供され得る。以下、車載システム100の構成要素を個別に概説する。
バッテリ200は複数の二次電池を有する。これら複数の二次電池は直列接続された電池スタックを構成している。二次電池としてはリチウムイオン二次電池、ニッケル水素二次電池、および、有機ラジカル電池などを採用することができる。
二次電池は化学反応によって起電圧を生成する。二次電池は充電量が多すぎたり少なすぎたりすると劣化が促進する性質を有する。換言すれば、二次電池はSOCが過充電だったり過放電だったりすると劣化が促進する性質を有する。
バッテリ200のSOCは、上記の電池スタックのSOCに相当する。電池スタックのSOCは複数の二次電池のSOCの総和である。電池スタックのSOCの過充電や過放電は上記の協調制御により回避される。これに対して複数の二次電池それぞれのSOCの過充電や過放電は、複数の二次電池それぞれのSOCを均等化する均等化処理によって回避される。
均等化処理は複数の二次電池を個別に充放電することで成される。バッテリ200には、複数の二次電池を個別に充放電するためのスイッチを備える監視部が設けられている。またバッテリ200には、複数の二次電池それぞれのSOCを検出するための電圧センサや温度センサなどが設けられている。複数のECUのうちの1つの電池ECUはこれらセンサの出力などに基づいてスイッチを開閉制御する。これにより複数の二次電池それぞれのSOCが均等化される。なおSOCの検出は後述の電流センサ730の出力も活用される。
電力変換装置300はバッテリ200と第1MG401との間の電力変換を行う。また電力変換装置300はバッテリ200と第2MG402との間の電力変換も行う。電力変換装置300はバッテリ200の直流電力を第1MG401と第2MG402の力行に適した電圧レベルの交流電力に変換する。電力変換装置300は第1MG401と第2MG402の発電によって生成された交流電力をバッテリ200の充電に適した電圧レベルの直流電力に変換する。電力変換装置300については後で詳説する。
第1MG401、第2MG402、および、エンジン500それぞれは動力分配機構600に連結されている。第1MG401はエンジン500から供給される回転エネルギーによって発電する。この発電によって発生した交流電力は、電力変換装置300によって直流電力に変換されるとともに降圧される。この直流電力がバッテリ200に供給される。また直流電力はハイブリッド自動車に搭載された各種電気負荷にも供給される。
第2MG402はハイブリッド自動車の出力軸に連結されている。第2MG402の回転エネルギーは出力軸を介して走行輪に伝達される。逆に、走行輪の回転エネルギーは出力軸を介して第2MG402に伝達される。
第2MG402は電力変換装置300から供給される交流電力によって力行する。この力行によって発生した回転エネルギーは、動力分配機構600によってエンジン500や走行輪に分配される。これによりクランクシャフトのクランキングや走行輪への推進力の付与が成される。また第2MG402は走行輪から伝達される回転エネルギーによって回生する。この回生によって発生した交流電力は、電力変換装置300によって直流電力に変換されるとともに降圧される。この直流電力がバッテリ200や各種電気負荷に供給される。
なお第2MG402は第1MG401よりも定格電流が大きくなっている。第2MG402には第1MG401よりも多くの電流が流れやすくなっている。第1MG401が第1電動機に相当する。第2MG402が第2電動機に相当する。
エンジン500は燃料を燃焼駆動することで回転エネルギーを生成する。この回転エネルギーが動力分配機構600を介して第1MG401や第2MG402に分配される。これにより第1MG401の発電や走行輪への推進力の付与が成される。
動力分配機構600は遊星歯車機構を有する。動力分配機構600はサンギヤ、プラネタリーギヤ、プラネタリーキャリア、および、リングギヤを有する。
サンギヤとプラネタリーギヤそれぞれは円盤形状を成す。サンギヤとプラネタリーギヤそれぞれの円周面に複数の歯が周方向に並んで形成されている。
プラネタリーキャリアは環状を成す。プラネタリーキャリアとプラネタリーギヤそれぞれの平坦面が互いに対向する態様で、プラネタリーキャリアの平坦面に複数のプラネタリーギヤが連結されている。
複数のプラネタリーギヤはプラネタリーキャリアの回転中心を中心とする円周上に位置している。これら複数のプラネタリーギヤの隣接間隔は相等しくなっている。本実施形態では3つのプラネタリーギヤが120°間隔で並んでいる。
リングギヤは環状を成す。リングギヤの外周面と内周面それぞれに複数の歯が周方向に並んで形成されている。
サンギヤはリングギヤの中心に設けられている。サンギヤの外周面とリングギヤの内周面とが互いに対向している。両者の間に3つのプラネタリーギヤが設けられている。3つのプラネタリーギヤそれぞれの歯がサンギヤとリングギヤそれぞれの歯とかみ合わさっている。これにより、サンギヤ、プラネタリーギヤ、プラネタリーキャリア、および、リングギヤそれぞれの回転が相互に伝達可能になっている。
サンギヤに第1MG401のモータシャフトが連結されている。プラネタリーキャリアにエンジン500のクランクシャフトが連結されている。リングギヤに第2MG402のモータシャフトが連結されている。これにより第1MG401、エンジン500、および、第2MG402の回転数が共線図において直線の関係になっている。
電力変換装置300から第1MG401と第2MG402に交流電力が供給されることでサンギヤとリングギヤにトルクが発生する。エンジン500の燃焼駆動によってプラネタリーキャリアにトルクが発生する。これにより第1MG401の発電、第2MG402の力行と回生、および、走行輪への推進力の付与それぞれが行われる。
例えば、上記した複数のECUのうちの1つのMGECUは、ハイブリッド自動車に搭載された各種センサで検出される物理量、および、他のECUから入力される車両情報などに基づいて、第1MG401と第2MG402それぞれの目標トルクを決定する。そしてMGECUは第1MG401と第2MG402それぞれに生成されるトルクが目標トルクになるようにベクトル制御する。このMGECUは後述の制御回路基板に搭載されている。
<電力変換装置の回路構成>
次に電力変換装置300を説明する。図1に示すように電力変換装置300は電力変換回路の構成要素としてコンバータ310とインバータ320を備えている。コンバータ310は直流電力の電圧レベルを昇降圧する機能を果たす。インバータ320は直流電力を交流電力に変換する機能を果たす。インバータ320は交流電力を直流電力に変換する機能を果たす。
コンバータ310はバッテリ200の直流電力を第1MG401と第2MG402のトルク生成に適した電圧レベルに昇圧する。インバータ320はこの直流電力を交流電力に変換する。この交流電力が第1MG401と第2MG402に供給される。またインバータ320は第1MG401と第2MG402で生成された交流電力を直流電力に変換する。コンバータ310はこの直流電力をバッテリ200の充電に適した電圧レベルに降圧する。
図1に示すようにコンバータ310は正極バスバ301と負極バスバ302を介してバッテリ200と電気的に接続されている。コンバータ310はPバスバ303とNバスバ304を介してインバータ320と電気的に接続されている。
<コンバータ>
コンバータ310は電気素子として、フィルタコンデンサ311、A相スイッチモジュール312、および、A相リアクトル313を有する。
図1に示すように正極バスバ301の一端がバッテリ200の正極に接続されている。負極バスバ302の一端がバッテリ200の負極に接続されている。この正極バスバ301にフィルタコンデンサ311の有する2つの電極のうちの一方が接続されている。負極バスバ302にフィルタコンデンサ311の有する2つの電極のうちの他方が接続されている。
A相リアクトル313の一端が正極バスバ301の他端に接続されている。A相リアクトル313の他端が第1連結バスバ711を介してA相スイッチモジュール312に接続されている。これによりA相リアクトル313と第1連結バスバ711を介してバッテリ200の正極とA相スイッチモジュール312とが電気的に接続されている。なお図1では各種バスバの接続部位を白丸で示している。これら接続部位は例えばボルトや溶接などによって電気的に接続されている。
A相スイッチモジュール312はハイサイドスイッチ331とローサイドスイッチ332を有する。またA相スイッチモジュール312はハイサイドダイオード331aとローサイドダイオード332aを有する。これら半導体素子は図示しない封止樹脂によって被覆保護されている。
本実施形態では、ハイサイドスイッチ331とローサイドスイッチ332としてnチャネル型のIGBTを採用している。これらハイサイドスイッチ331とローサイドスイッチ332それぞれのコレクタ電極、エミッタ電極、および、ゲート電極それぞれに接続された端子の先端が上記の封止樹脂の外に露出されている。
図1に示すようにハイサイドスイッチ331のエミッタ電極とローサイドスイッチ332のコレクタ電極とが接続されている。これによりハイサイドスイッチ331とローサイドスイッチ332とが直列接続されている。
また、ハイサイドスイッチ331のコレクタ電極にハイサイドダイオード331aのカソード電極が接続されている。ハイサイドスイッチ331のエミッタ電極にハイサイドダイオード331aのアノード電極が接続されている。これによりハイサイドスイッチ331にハイサイドダイオード331aが逆並列接続されている。
同様にして、ローサイドスイッチ332のコレクタ電極にローサイドダイオード332aのカソード電極が接続されている。ローサイドスイッチ332のエミッタ電極にローサイドダイオード332aのアノード電極が接続されている。これによりローサイドスイッチ332にローサイドダイオード332aが逆並列接続されている。
上記したようにハイサイドスイッチ331とローサイドスイッチ332は封止樹脂によって被覆保護されている。この封止樹脂から、ハイサイドスイッチ331のコレクタ電極とゲート電極、ハイサイドスイッチ331とローサイドスイッチ332との間の中点、ローサイドスイッチ332のエミッタ電極とゲート電極それぞれに接続された端子の先端が露出されている。以下においてはこれら端子を、コレクタ端子330a、中点端子330c、エミッタ端子330b、および、ゲート端子330dと示す。
このコレクタ端子330aがPバスバ303に接続される。エミッタ端子330bがNバスバ304に接続される。これによりハイサイドスイッチ331とローサイドスイッチ332とがPバスバ303からNバスバ304へ向かって順に直列接続されている。
また中点端子330cが第1連結バスバ711に接続される。第1連結バスバ711はA相リアクトル313と正極バスバ301を介してバッテリ200の正極と電気的に接続されている。
以上により、A相スイッチモジュール312の備える2つのスイッチの中点には、正極バスバ301、A相リアクトル313、および、第1連結バスバ711を介してバッテリ200の直流電力が供給される。A相スイッチモジュール312のハイサイドスイッチ331のコレクタ電極には、インバータ320によって直流電力に変換されたモータ400の交流電力が供給される。この直流電力に変換されたモータ400の交流電力が、ハイサイドスイッチ331、第1連結バスバ711、A相リアクトル313、および、正極バスバ301を介してバッテリ200に供給される。
このように第1連結バスバ711にはバッテリ200を入出力する直流電力が流れる。流れる物理量を限定して言えば、第1連結バスバ711にはバッテリ200を入出力する直流電流が流れる。
ハイサイドスイッチ331とローサイドスイッチ332それぞれのゲート端子330dは上記のゲートドライバに接続されている。MGECUは制御信号を生成し、それをゲートドライバに出力する。ゲートドライバは制御信号を増幅し、それをゲート端子330dに出力する。これによりハイサイドスイッチ331とローサイドスイッチ332はMGECUによって開閉制御される。この結果、コンバータ310に入力される直流電力の電圧レベルが昇降圧される。
MGECUは制御信号としてパルス信号を生成している。MGECUはこのパルス信号のオンデューティ比と周波数を調整することで直流電力の昇降圧レベルを調整している。この昇降圧レベルはモータ400の目標トルクとバッテリ200のSOCに応じて決定される。
バッテリ200の直流電力を昇圧する場合、MGECUはハイサイドスイッチ331とローサイドスイッチ332それぞれを交互に開閉する。これとは反対にインバータ320から供給された直流電力を降圧する場合、MGECUはローサイドスイッチ332に出力する制御信号をローレベルに固定する。それとともにMGECUはハイサイドスイッチ331に出力する制御信号をハイレベルとローレベルに順次切り換える。
<インバータ>
インバータ320は電気素子として、平滑コンデンサ321、図示しない放電抵抗、および、U相スイッチモジュール322~Z相スイッチモジュール327を有する。
平滑コンデンサ321の有する2つの電極のうちの一方がPバスバ303に接続されている。平滑コンデンサ321の有する2つの電極のうちの他方がNバスバ304に接続されている。放電抵抗もPバスバ303とNバスバ304に接続されている。U相スイッチモジュール322~Z相スイッチモジュール327もPバスバ303とNバスバ304に接続されている。平滑コンデンサ321、放電抵抗、および、U相スイッチモジュール322~Z相スイッチモジュール327それぞれはPバスバ303とNバスバ304との間で並列接続されている。
U相スイッチモジュール322~Z相スイッチモジュール327それぞれは、A相スイッチモジュール312と同等の構成要素を有する。すなわちU相スイッチモジュール322~Z相スイッチモジュール327それぞれは、ハイサイドスイッチ331、ローサイドスイッチ332、ハイサイドダイオード331a、ローサイドダイオード332a、および、封止樹脂を有する。またこれら6相のスイッチモジュールそれぞれはコレクタ端子330a、エミッタ端子330b、中点端子330c、および、ゲート端子330dを有する。
これら6相のスイッチモジュールそれぞれのコレクタ端子330aはPバスバ303に接続されている。エミッタ端子330bはNバスバ304に接続されている。
そしてU相スイッチモジュール322の中点端子330cが第2連結バスバ712を介して第1MG401のU相ステータコイルに接続されている。V相スイッチモジュール323の中点端子330cが第3連結バスバ713を介して第1MG401のV相ステータコイルに接続されている。W相スイッチモジュール324の中点端子330cが第4連結バスバ714を介して第1MG401のW相ステータコイルに接続されている。
同様にして、X相スイッチモジュール325の中点端子330cが第5連結バスバ715を介して第2MG402のX相ステータコイルに接続されている。Y相スイッチモジュール326の中点端子330cが第6連結バスバ716を介して第2MG402のY相ステータコイルに接続されている。Z相スイッチモジュール327の中点端子330cが第7連結バスバ717を介して第2MG402のZ相ステータコイルに接続されている。
これら6相のスイッチモジュールそれぞれのゲート端子330dは上記のゲートドライバに接続されている。第1MG401と第2MG402それぞれを力行する場合、MGECUからの制御信号の出力によって6相のスイッチモジュールの備えるハイサイドスイッチ331とローサイドスイッチ332それぞれがPWM制御される。これによりインバータ320で3相交流が生成される。第1MG401と第2MG402それぞれが発電(回生)する場合、MGECUは例えば制御信号の出力を停止する。これにより発電によって生成された交流電力が6相のスイッチモジュールの備えるダイオードを通る。この結果、交流電力が直流電力に変換される。
以上に示した第1MG401および第2MG402それぞれに入出力する交流電力が、第1MG401および第2MG402それぞれとインバータ320とを接続する第2連結バスバ712~第7連結バスバ717を流れる。流れる物理量を限定して言えば、第1MG401および第2MG402それぞれを入出力する交流電力が、第2連結バスバ712~第7連結バスバ717を流れる。
なお、A相スイッチモジュール312、U相スイッチモジュール322~Z相スイッチモジュール327それぞれの備えるスイッチ素子の種類としては特に限定されず、例えばMOSFETを採用することもできる。そしてこれらスイッチモジュールに含まれるスイッチやダイオードなどの半導体素子は、Siなどの半導体、および、SiCなどのワイドギャップ半導体によって製造することができる。半導体素子の構成材料としては特に限定されない。
<電力変換装置の機械的構成>
次に、電力変換装置300の機械的構成を説明する。それに当たって、以下においては互いに直交の関係にある3方向をx方向、y方向、および、z方向とする。x方向が所定方向に相当する。
電力変換装置300はこれまでに説明した電力変換回路の構成要素の他に、図2に示すコンデンサケース350、リアクトルケース360、冷却器370、センサユニット700、インバータハウジング380、および、入出力コネクタ390を有する。
なお図2では正極バスバ301と負極バスバ302とをまとめて電極バスバ305として示している。これら2つのバスバの端部が入出力コネクタ390に設けられている。この入出力コネクタ390にワイヤハーネスの端子が接続される。これによりバッテリ200と電力変換装置300とがワイヤハーネスを介して電気的に接続される。
また図2ではPバスバ303とNバスバ304とをまとめてPNバスバ306として図示している。これら2つのバスバは絶縁シートを介してz方向で積層配置されている。
コンデンサケース350とリアクトルケース360それぞれは絶縁性の樹脂材料から成る。コンデンサケース350にフィルタコンデンサ311と平滑コンデンサ321が収納されている。リアクトルケース360にA相リアクトル313が収納されている。
冷却器370にはコンバータ310とインバータ320に含まれるスイッチモジュールが収納されている。冷却器370はこれら複数のスイッチモジュールを冷却する機能を果たしている。冷却器370に複数のスイッチモジュールが収納されることで、パワーモジュールが構成されている。
センサユニット700は絶縁性の樹脂材料からなる端子台720を有する。この端子台720に上記した第1連結バスバ711~第7連結バスバ717の一部がインサート成形されている。そして端子台720にはこれら複数の連結バスバに流れる電流を検出する電流センサ730が設けられている。センサユニット700については後で詳説する。
インバータハウジング380はコンデンサケース350、リアクトルケース360、冷却器370、センサユニット700、および、入出力コネクタ390それぞれを収納している。またインバータハウジング380は電極バスバ305とPNバスバ306も収納している。
図示しないが、インバータハウジング380は第1MG401と第2MG402それぞれを収納するモータハウジングに連結されている。電力変換装置300とモータ400とが連結されることで、いわゆる機電一体型の電力変換ユニットが構成されている。
図示しないが、インバータハウジング380とモータハウジングはz方向に並ぶ態様で連結されている。PNバスバ306の一部は複数のスイッチモジュールの収納された冷却器370とz方向で対向する態様で並んでいる。
上記したように冷却器370にはコンバータ310とインバータ320に含まれる計7個のスイッチモジュールが収納されている。これらスイッチモジュールは封止樹脂を有し、この封止樹脂からコレクタ端子330a、エミッタ端子330b、中点端子330c、および、ゲート端子330dそれぞれの先端が露出されている。これら4つの端子のうち、コレクタ端子330a、エミッタ端子330b、および、中点端子330cそれぞれがPNバスバ306に向かってz方向に延びている。ゲート端子330dはこれら3つの端子とは逆向きにz方向に延びている。
コレクタ端子330aはPバスバ303と溶接されている。エミッタ端子330bはNバスバ304と溶接されている。中点端子330cはセンサユニット700に含まれる連結バスバに溶接されている。
また、図示しないが、インバータハウジング380には上記のゲートドライバを備えるドライバ基板、および、MGECUの搭載された制御回路基板それぞれが収納されている。これらドライバ基板と制御回路基板それぞれは冷却器370を介してPNバスバ306とz方向で並んでいる。このドライバ基板にゲート端子330dがはんだ付けされている。制御回路基板に後述の出力ピン723aがはんだ付けされている。
<センサユニット>
次にセンサユニット700を図2~図6に基づいて詳説する。センサユニット700はこれまでに説明した第1連結バスバ711~第7連結バスバ717、端子台720、および、電流センサ730を有する。またセンサユニット700は図5に示す遮蔽シールド740、樹脂カバー750、および、対向シールド760を有する。
上記した7つの連結バスバに対応して、電流センサ730は磁気平衡方式の第1磁電変換部731~第7磁電変換部737と、これら7つの磁電変換部の搭載されるセンサ基板738と、を有する。遮蔽シールド740は端子台720よりも透磁率の高い金属材料から成る第1遮蔽シールド741~第7遮蔽シールド747を有する。対向シールド760は樹脂カバー750よりも透磁率の高い金属材料から成る第1対向シールド761~第7対向シールド767を有する。
第1連結バスバ711~第7連結バスバ717それぞれは端子台720にインサート成形されている。第1磁電変換部731~第7磁電変換部737はこれら7つの連結バスバにおける端子台720にインサート成形された部位とz方向で対向する態様で端子台720に設けられている。
端子台720に第1遮蔽シールド741~第7遮蔽シールド747がインサート成形されている。樹脂カバー750に第1対向シールド761~第7対向シールド767がインサート成形されている。樹脂カバー750はこれら7つの遮蔽シールドと7つの対向シールドとがz方向で離間して並ぶ態様で端子台720に設けられている。
z方向に並ぶ1つの遮蔽シールドと1つの対向シールドとの間に1つの連結バスバにおける端子台720にインサート成形された部位と1つの磁電変換部とが位置する。これにより磁電変換部への外部ノイズの入力が抑制される。連結バスバにおける端子台720にインサート成形された部位に流れる電流から発せられる磁界(被測定磁界)の分布が規制される。磁電変換部を透過する被測定磁界の方向の変動が抑制されている。以下、センサユニット700の構成要素を個別に説明する。
<連結バスバ>
第1連結バスバ711~第7連結バスバ717は端子台720よりも剛性の高い銅やアルミニウムなどの金属材料から成る。これら7つの連結バスバは平板形状の金属板をプレス加工することで製造される。7つの連結バスバの中央部が端子台720にインサート成形されている。7つの連結バスバの両端が端子台720から露出されている。
端子台720から露出した第1連結バスバ711~第7連結バスバ717の一端710aにスイッチモジュールの中点端子330cが接合される。第1連結バスバ711の他端710bにA相リアクトル313が接合される。第2連結バスバ712~第7連結バスバ717の他端710bにモータ400のステータバスバが接合される。これにより連結バスバを介してスイッチモジュールからステータバスバへと電流が流れる。連結バスバを介してステータバスバからスイッチモジュールへと電流が流れる。
<端子台>
端子台720は、細分化して説明すると、基部721、フランジ部722、および、コネクタ部723を有する。これら基部721、フランジ部722、および、コネクタ部723それぞれは端子台720を構成する樹脂材料によって一体的に連結されている。端子台720が樹脂ケースに相当する。
基部721はx方向を長手方向とする略直方体形状を成している。そのために基部721はx方向に並ぶ左面721aと右面721b、y方向に並ぶ前面721cと後面721d、および、z方向に並ぶ上面721eと下面721fを有する。
図3~図5に示すように基部721の左面721aと右面721bそれぞれにフランジ部722が一体的に連結されている。これら2つのフランジ部722のうちの一方は左面721aから離間する態様でx方向に突起している。2つのフランジ部722のうちの他方は右面721bから離間する態様でx方向に突起している。
これら2つのフランジ部722には金属製のカラー722aがインサート成形されている。カラー722aはz方向に開口する環状を成している。このカラー722aの中空にボルトが通される。このボルトの先端がインバータハウジング380に締結される。これによりセンサユニット700がインバータハウジング380に固定される。
図4および図5に示すように基部721の下面721fにコネクタ部723が一体的に連結されている。コネクタ部723は下面721fから離間する態様でz方向に延びている。
コネクタ部723には複数の出力ピン723aがインサート成形されている。出力ピン723aはz方向に延びている。出力ピン723aの一端はコネクタ部723の先端面723bから露出されている。この出力ピン723aの一端が制御回路基板にはんだ付けされる。出力ピン723aの他端は基部721の上面721eから露出されている。この出力ピン723aの他端がセンサ基板738にはんだ付けされる。
図3~図5に示すように基部721には第1連結バスバ711~第7連結バスバ717の中央部がインサート成形されている。これら7つの連結バスバの一端710aが後面721dから突出している。これら7つの一端710aはx方向で離間して並んでいる。左面721aから右面721bに向かって、第5連結バスバ715、第6連結バスバ716、第7連結バスバ717、第1連結バスバ711、第2連結バスバ712、第3連結バスバ713、および、第4連結バスバ714の順に7つの一端710aが並んでいる。
一端710aはx方向の厚さの薄い扁平形状を成している。この一端710aのx方向に面する連結面と中点端子330cとがx方向で対向する態様で接触配置される。一端710aと中点端子330cとにz方向からレーザが照射される。これにより連結バスバと中点端子330cとが溶接接合されている。
基部721にインサート成形された7つの連結バスバのうちの6つの第2連結バスバ712~第7連結バスバ717それぞれの中央部はy方向に沿って延びている。これら6つの連結バスバの他端710bが前面721cから突出している。これら6つの他端710bはx方向で離間して並んでいる。詳しく言えば、左面721aから右面721bに向かって、第5連結バスバ715、第6連結バスバ716、第7連結バスバ717、第2連結バスバ712、第3連結バスバ713、および、第4連結バスバ714の順に6つの他端710bが並んでいる。
これら6つの連結バスバの他端710bそれぞれは前面721cから離間する態様でy方向に延びた後、屈曲して、z方向において下面721fから上面721eに向かって延びている。これら6つの連結バスバの他端710bにモータ400のステータバスバがボルト止めされる。これにより連結バスバとステータバスバとがボルト接合されている。
基部721にインサート成形された第1連結バスバ711の中央部の一端710a側は第2連結バスバ712~第7連結バスバ717それぞれの中央部と同様にしてy方向に沿って延びている。しかしながら図6に示すように第1連結バスバ711の中央部は後面721dから前面721cに向かってy方向に延びた後、屈曲して、下面721f側に向かってz方向に延びている。第1連結バスバ711の中央部はそこからさらに屈曲して左面721a側に向かってx方向に延びた後、再度屈曲して上面721eに向かってz方向に延びている。なお図6では上記した第1連結バスバ711の中央部の形状を説明するために、本来であれば図4に示すVI-VI線上にはない第1連結バスバ711の延長部位711bなどを図示している。
第1連結バスバ711の他端710bは上面721eから突出している。第1連結バスバ711の他端710bはx方向において第5連結バスバ715の他端710bとx方向で離間している。左面721aから右面721bに向かって、第1連結バスバ711、第5連結バスバ715、第6連結バスバ716、第7連結バスバ717、第2連結バスバ712、第3連結バスバ713、および、第4連結バスバ714の順に7つの他端710bが位置している。ただし第1連結バスバ711の他端710bは、他の6つの連結バスバの他端710bとy方向で離間している。
上記したように第1連結バスバ711の中央部の一部はx方向に延びている。このx方向に延びる延長部位711bは第2MG402と接続される第5連結バスバ715~第7連結バスバ717それぞれの中央部とz方向で対向する態様で離間している。このように第1連結バスバ711におけるx方向に延びる延長部位711bとy方向に延びる第5連結バスバ715~第7連結バスバ717それぞれの中央部とがねじれの位置にある。
以下においては表記を簡明とするために、第1連結バスバ711~第7連結バスバ717における端子台720にインサート成形された部位(中央部)を、必要に応じて第1埋設部位711a~第7埋設部位717aと示す。
図5および図6に示すように基部721にはインターロックピン724がインサート成形されている。このインターロックピン724は図示しない保護カバーがセンサユニット700に取り付けられた否かを判定するためのものである。
インターロックピン724の一端は基部721の後面721dから突出している。この一端に保護カバーの接続ピンが接続される。インターロックピン724の他端は基部721の上面721eから突出している。この他端がセンサ基板738に接続される。インターロックピン724と接続ピンとの接続状態を示す信号が、保護カバーとセンサユニットとの取り付け状態を示す信号として、センサ基板738と出力ピン723aを介して制御回路基板のMGECUに入力される。
図6に示すように基部721の上面721eにはz方向に局所的に凹んだ複数の凹部721gが形成されている。基部721には7個の凹部721gが形成されている。これら7つの凹部721gはx方向に離間して並んでいる。これら7つの凹部721gはz方向で第1埋設部位711a~第7埋設部位717aと対向する態様で並んでいる。
上面721eには電流センサ730が設けられる。上記した7つの凹部721gそれぞれの中空に第1磁電変換部731~第7磁電変換部737が設けられる。センサ基板738における磁電変換部の搭載面738aが上面721eに設けられる。
上面721eにおけるx方向に離間して並ぶ2つの凹部721gの間からはz方向に突起する突起部721hが形成されている。センサ基板738にはこれら突起部721hの通される貫通孔が形成されている。貫通孔に突起部721hが通された後、突起部721hの先端が熱カシメされる。またセンサ基板738は基部721にボルト止めされる。これによりセンサ基板738が基部721に固定されている。7つの磁電変換部それぞれの7つの連結バスバに対する相対位置が決定づけられている。
<電流センサ>
上記したように電流センサ730は第1磁電変換部731~第7磁電変換部737を有する。これら7つの磁電変換部は自身を透過する磁界(透過磁界)に応じて抵抗値が変動する磁気抵抗効果素子を複数有する。この磁気抵抗効果素子は透過磁界における搭載面738aに沿う方向の成分に応じて抵抗値が変化する。すなわち磁気抵抗効果素子は透過磁界のx方向に沿う成分とy方向に沿う成分に応じて抵抗値が変化する。
その反面、磁気抵抗効果素子はz方向に沿う透過磁界によって抵抗値が変化しない。したがってz方向に沿う外部ノイズが磁気抵抗効果素子を透過したとしても、それによって磁気抵抗効果素子の抵抗値は変化しない。
磁気抵抗効果素子は磁化方向の固定されたピン層、磁化方向が透過磁界に応じて変化する自由層、および、両者の間に設けられた非磁性の中間層を有する。中間層が非導電性の場合、磁気抵抗効果素子は巨大磁気抵抗素子である。中間層が導電性の場合、磁気抵抗効果素子はトンネル磁気抵抗素子である。なお、磁気抵抗効果素子は異方性磁気抵抗効果素子(AMR)でもよい。さらに言えば、磁電変換部は磁気抵抗効果素子の代わりにホール素子を有してもよい。
磁気抵抗効果素子はピン層と自由層それぞれの磁化方向の成す角度によって抵抗値が変化する。ピン層の磁化方向はz方向に面する方向である。自由層の磁化方向は透過磁界におけるz方向に面する方向に沿う成分によって定まる。磁気抵抗効果素子の抵抗値は、自由層と固定層それぞれの磁化方向が平行の場合に最も小さくなる。磁気抵抗効果素子の抵抗値は、自由層と固定層それぞれの磁化方向が反平行の場合に最も大きくなる。
7つの磁電変換部それぞれはピン層の磁化方向の反転した第1磁気抵抗効果素子と第2磁気抵抗効果素子を含むブリッジ回路を有する。また7つの磁電変換部およびセンサ基板738のうちのいずれか一方は差動アンプ、フィードバックコイル、および、シャント抵抗を有する。
差動アンプの反転入力端子と非反転入力端子にブリッジ回路が接続されている。差動アンプの出力端子にフィードバックコイルとシャント抵抗とが直列接続されている。差動アンプは図示しない帰還回路によってバーチャルショートしている。
以上に示した接続構成により差動アンプの入力端子には透過磁界に応じた電流が流れる。差動アンプは反転入力端子と非反転入力端子とが同電位となるように動作する。すなわち差動アンプは入力端子に流れる電流と出力端子に流れる電流とがゼロとなるように動作する。したがって差動アンプの出力端子からは、透過磁界に応じた電流(フィードバック電流)が流れる。
このフィードバック電流がフィードバックコイルとシャント抵抗に流れる。このフィードバック電流の流動によって、フィードバックコイルに相殺磁界が発生する。この相殺磁界が磁電変換部を透過する。これによって磁電変換部を透過する被測定磁界が相殺される。以上により磁電変換部は、自身を透過する被測定磁界と相殺磁界とが平衡となるように動作する。
相殺磁界を発生するフィードバック電流の電流量に応じたフィードバック電圧がフィードバックコイルとシャント抵抗との間の中点に生成される。このフィードバック電圧が、被測定電流を検出した電気信号として、出力ピン723aを介して制御回路基板のMGECUに入力される。
上記したように第1磁電変換部731~第7磁電変換部737それぞれはセンサ基板738の搭載面738aに搭載されている。これら7つの磁電変換部はx方向に離間して並んでいる。詳しく言えば、左面721aから右面721bに向かって、第5磁電変換部735、第6磁電変換部736、第7磁電変換部737、第1磁電変換部731、第2磁電変換部732、第3磁電変換部733、および、第4磁電変換部734が順に並んでいる。
第5磁電変換部735~第7磁電変換部737は第5埋設部位715a~第7埋設部位717aとz方向で対向配置されている。したがって第5磁電変換部735~第7磁電変換部737には第2MG402に流れる交流電流から発生する磁界が透過する。第5磁電変換部735~第7磁電変換部737は第2MG402に流れる交流電流を検出する。
第1磁電変換部731は第1埋設部位711aのy方向に延びる部位とz方向で対向配置される。したがって第1磁電変換部731にはコンバータ310に流れる直流電流から発生する磁界が透過する。第1磁電変換部731はコンバータ310に流れる直流電流を検出する。
第2磁電変換部732~第4磁電変換部734は第2埋設部位712a~第4埋設部位714aとz方向で対向配置される。したがって第2磁電変換部732~第4磁電変換部734には第1MG401に流れる交流電流から発生する磁界が透過する。第2磁電変換部732~第4磁電変換部734は第1MG401に流れる交流電流を検出する。
これら7つの磁電変換部で検出された交流電流や直流電流が制御回路基板に入力される。制御回路基板に設けられたMGECUは検出された交流電流や図示しない回転角センサで検出されるモータ400の回転角などに基づいてモータ400をベクトル制御する。またMGECUは検出された直流電流を電池ECUなどの他のECUに出力する。
<遮蔽シールド>
上記したように遮蔽シールド740は第1遮蔽シールド741~第7遮蔽シールド747を有する。これら7つの遮蔽シールドはz方向の厚さの薄い平板形状を成している。7つの遮蔽シールドはx方向に離間して並ぶ態様で基部721にインサート成形されている。7つの遮蔽シールドは7つの埋設部位とz方向で対向する態様で並んでいる。これら複数の遮蔽シールドには、磁界におけるz方向に面する方向の成分が積極的に透過しやすくなっている。
<樹脂カバー>
樹脂カバー750は、細分化して説明すると、閉塞部751と支持部752を有する。これら閉塞部751と支持部752それぞれは樹脂カバー750を構成する樹脂材料によって一体的に連結されている。
閉塞部751はx方向を長手方向とする略直方体形状を成している。閉塞部751はz方向に並ぶ内面751aと外面751bを有する。樹脂カバー750は、内面751aがセンサ基板738とz方向で対向する態様で、基部721の上面721e側に設けられる。樹脂カバー750はボルト753によって基部721に固定される。
図5および図6に示すように外面751bに支持部752が一体的に連結されている。支持部752は外面751bから離間する態様でz方向に延びている。
この支持部752と閉塞部751における支持部752の連結部位それぞれにはz方向に貫通する中空が形成されている。この中空に基部721の前面721cから突起した第1連結バスバ711の他端710bが挿入される。第1連結バスバ711の他端710bは支持部752の端面752aから露出している。
支持部752の端面752aにはz方向に開口するナット752bがインサート成形されている。このナット752bに対してz方向で対向する態様で、第1連結バスバ711の他端710bは屈曲している。A相リアクトル313の他端がこの他端710bに接触する態様で、ナット752bにボルトが締結される。これにより第1連結バスバ711とA相リアクトル313とが電気的に接続されている。
<対向シールド>
上記したように対向シールド760は第1対向シールド761~第7対向シールド767を有する。これら7つの対向シールドはz方向の厚さの薄い平板形状を成している。7つの対向シールドはx方向に離間して並ぶ態様で樹脂カバー750にインサート成形されている。これら複数の対向シールドには、磁界におけるz方向に面する方向の成分が積極的に透過しやすくなっている。
樹脂カバー750が基部721にボルト753によって固定された状態で、7つの対向シールドは7つの遮蔽シールドそれぞれとz方向で並んでいる。7つの対向シールドと7つの遮蔽シールドとの間に7つの埋設部位と7つの磁電変換部が位置している。
詳しく言えば、z方向において、第5遮蔽シールド745と第5対向シールド765との間に第5埋設部位715aと第5磁電変換部735が位置している。第6遮蔽シールド746と第6対向シールド766との間に第6埋設部位716aと第6磁電変換部736が位置している。第7遮蔽シールド747と第7対向シールド767との間に第7埋設部位717aと第7磁電変換部737が位置している。
z方向において、第1遮蔽シールド741と第1対向シールド761との間に第1埋設部位711aにおけるy方向に延びる部位と第1磁電変換部731が位置している。
z方向において、第2遮蔽シールド742と第2対向シールド762との間に第2埋設部位712aと第2磁電変換部732が位置している。第3遮蔽シールド743と第3対向シールド763との間に第3埋設部位713aと第3磁電変換部733が位置している。第4遮蔽シールド744と第4対向シールド764との間に第4埋設部位714aと第4磁電変換部734が位置している。
<作用効果>
上記したように第2連結バスバ712~第7連結バスバ717それぞれの端子台720にインサート成形された部位がy方向に延びている。すなわち第2埋設部位712a~第7埋設部位717aがy方向に延びている。
これに対して第1連結バスバ711における端子台720にインサート成形された部位(第1埋設部位711a)の一部がy方向に延びるとともにx方向に延びている。この第1埋設部位711aにおけるx方向に延びる部位(延長部位711b)が他の埋設部位とねじれの位置にある。
これによれば延長部位711bによって端子台720のx方向の剛性が高まる。これにより端子台720に一体的に連結された複数の連結バスバそれぞれのx方向の位置が振動や熱膨張などによって変位することが抑制される。端子台720に設けられた複数の磁電変換部と複数の連結バスバとの相対的な位置関係に変化が生じることが抑制される。磁電変換部を透過する磁界の変動が抑制される。この結果、電流センサ730の電流検出精度の低下が抑制される。
また、連結バスバとは別体の支持部材によって端子台720の剛性が高められる構成と比べて部品点数の増大が抑制される。
直流電流の流れる第1連結バスバ711の延長部位711bによって端子台720のx方向の剛性が高められている。
これによれば、第1連結バスバ711に交流電流が流れる構成と比べて、延長部位711bから発せられる磁界によって、第2磁電変換部732~第7磁電変換部737の電流検出精度が低下することが抑制される。
上記したように第2MG402は第1MG401よりも定格電流が高くなっている。そのために第5連結バスバ715~第7連結バスバ717それぞれには第2連結バスバ712~第4連結バスバ714それぞれよりも多くの電流が流れやすくなっている。第5連結バスバ715~第7連結バスバ717は熱膨張しやすくなっている。第5連結バスバ715~第7連結バスバ717のx方向の相対的な位置が変化しやすくなっている。
これに対して、本実施形態では延長部位711bが第5埋設部位715a~第7埋設部位717aそれぞれとねじれの位置にある。端子台720における延長部位711bによってx方向の剛性の高められた部位によって第5埋設部位715a~第7埋設部位717aが一体的に連結されている。そのために第5埋設部位715a~第7埋設部位717aが熱膨張しやすくなっているとしても、これらのx方向の相対的な位置が変化することが抑制される。
端子台720に第1遮蔽シールド741~第7遮蔽シールド747がx方向に並ぶ態様でインサート成形されている。
上記したように延長部位711bによって端子台720のx方向の剛性が高められている。そのため、端子台720に一体的に連結された複数の遮蔽シールドそれぞれのx方向の位置が振動や熱膨張などによって変位することが抑制される。端子台720に設けられた複数の磁電変換部と複数の遮蔽シールドとの相対的な位置関係に変化が生じることが抑制される。
第1対向シールド761~第7対向シールド767がx方向に並ぶ態様でインサート成形された樹脂カバー750が端子台720に設けられる。z方向で対向配置される磁電変換部と埋設部位が、1つの遮蔽シールドと1つの対向シールドとの間に位置する。
これによれば磁電変換部への外部ノイズの入力が遮蔽シールドと対向シールドとによって抑制される。それとともに、埋設部位に流れる電流から発せられる磁界の分布を遮蔽シールドと対向シールドとによって規制することができる。
以上、本開示の好ましい実施形態について説明したが、本開示は上記した実施形態になんら制限されることなく、本開示の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
(第1の変形例)
本実施形態では延長部位711bが第5埋設部位715a~第7埋設部位717aそれぞれとねじれの位置にある例を示した。しかしながら例えば図7に示すように延長部位711bが他の全ての第2埋設部位712a~第7埋設部位717aそれぞれとねじれの位置にあってもよい。これによれば全ての埋設部位のx方向の相対的な位置の変化が効果的に抑制される。
(第2の変形例)
本実施形態ではインバータ320がU相スイッチモジュール322~Z相スイッチモジュール327の6つを有する例を示した。しかしながらインバータ320がU相スイッチモジュール322~W相スイッチモジュール324の3つを有する構成を採用することもできる。この場合、図8に示すようにセンサユニット700は4つの連結バスバを有する。
(第3の変形例)
本実施形態では電力変換装置300がコンバータ310とインバータ320を備える例を示した。しかしながら例えば図9に示すように電力変換装置300はインバータ320のみを備えてもよい。この変形例では、例えば図10に示すようにセンサユニット700は3つの連結バスバを有する。
(第4の変形例)
本実施形態では7つの埋設部位のうちの1つの一部がx方向に延びて、他の埋設部位とねじれの位置にある例を示した。しかしながら例えば7つの埋設部位のうちの2つの一部がx方向に延びて、他の埋設部位とねじれの位置にあってもよい。一部がx方向に延びる埋設部位の数としては単数に限定されない。
(第5の変形例)
本実施形態では遮蔽シールド740と対向シールド760それぞれがz方向の厚さの薄い平板形状である例を示した。しかしながらシールドの形状としては特に限定されない。例えば遮蔽シールドと対向シールドそれぞれがz方向の厚さの薄い平板部と、この平板部のx方向の両端からz方向に延びた側板部と、を有する形状を採用することもできる。遮蔽シールドと対向シールドそれぞれの側板部の先端面をz方向で対向する態様とすることで、これら2つのシールドによって磁電変換部と埋設部位とが囲まれる構成を採用することもできる。さらに言えば、センサユニット700が遮蔽シールド740と対向シールド760のうちの一方のみを有する構成も採用することができる。
(その他の変形例)
各実施形態ではセンサユニット700を含む電力変換装置300がハイブリッドシステムを構成する車載システム100に適用される例を示した。しかしながら電力変換装置300の適用としては特に上記例に限定されない。例えば電気自動車の車載システムに電力変換装置300が適用された構成を採用することもできる。