JP7161365B2 - Power failure detection device and half-wave detection circuit - Google Patents
Power failure detection device and half-wave detection circuit Download PDFInfo
- Publication number
- JP7161365B2 JP7161365B2 JP2018191271A JP2018191271A JP7161365B2 JP 7161365 B2 JP7161365 B2 JP 7161365B2 JP 2018191271 A JP2018191271 A JP 2018191271A JP 2018191271 A JP2018191271 A JP 2018191271A JP 7161365 B2 JP7161365 B2 JP 7161365B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- logic
- alternating current
- detection signal
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims description 160
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 21
- 230000001934 delay Effects 0.000 claims description 6
- 239000003990 capacitor Substances 0.000 description 21
- 230000007704 transition Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 230000015654 memory Effects 0.000 description 5
- HEZMWWAKWCSUCB-PHDIDXHHSA-N (3R,4R)-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1O HEZMWWAKWCSUCB-PHDIDXHHSA-N 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Images
Landscapes
- Measurement Of Current Or Voltage (AREA)
Description
本発明は停電検知装置および半波検知回路に関する。 The present invention relates to a power failure detection device and a half wave detection circuit.
一般に、画像形成装置等の電子機器はメモリやハードディスクなどの記憶装置を備えている。商用交流電源に停電が発生すると、記憶装置に記憶されていたデータが失われてしまうことがある。よって、電子機器は停電を検知してデータを退避することが必要となる。特許文献1によれば、半波検知回路を使用して商用交流電源の停電を検知することが提案されている。
2. Description of the Related Art In general, electronic devices such as image forming apparatuses are equipped with storage devices such as memories and hard disks. When a commercial AC power failure occurs, the data stored in the storage device may be lost. Therefore, it is necessary for the electronic device to detect the power failure and save the data. According to
特許文献1による半波検知回路では発光ダイオードに電流が流れていない期間に発生した停電を即座に検知することができない。より具体的には、特許文献1の半波検知回路は、交流の半周期よりも短い時間で停電の発生を検知することができない。そこで、本発明は、より短時間で停電の発生を検知可能な停電検知装置を提供することを目的とする。
The half-wave detection circuit according to
本発明は、たとえば、
交流電源から供給される交流の極性が第一極性である期間において第一論理の検知信号を出力し、前記交流電源から供給される交流の極性が前記第一極性とは反対の第二極性である期間において第二論理の検知信号を出力する検知手段と、
前記検知信号の論理が前記第一論理から前記第二論理に切り替わるタイミングと、前記検知信号の論理が前記第二論理から前記第一論理に切り替わるタイミングとの間の時間を計時する計時手段と、
前記計時手段により計時された時間が前記交流の半周期よりも短くなると、前記交流電源に停電が発生したと判定する判定手段と、を有し
前記検知手段は、
前記第二論理の検知信号が出力されているときに前記交流電源からの交流の供給が遮断されると、前記第一論理の検知信号を出力し、
前記第一論理の検知信号が出力されているときに前記交流電源からの交流の供給が遮断されると、一時的に前記第二論理の検知信号を出力し、次に前記第一論理の検知信号の出力を再開するように構成されていることを特徴とする停電検知装置。
The present invention, for example,
A first logic detection signal is output during a period in which the polarity of the alternating current supplied from the alternating current power supply is the first polarity, and the polarity of the alternating current supplied from the alternating current power supply is the second polarity opposite to the first polarity. detection means for outputting a detection signal of the second logic in a certain period;
timer means for measuring the time between the timing at which the logic of the detection signal switches from the first logic to the second logic and the timing at which the logic of the detection signal switches from the second logic to the first logic;
determining means for determining that a power failure has occurred in the AC power supply when the time measured by the time measuring means becomes shorter than the half cycle of the AC power supply;
When the supply of alternating current from the AC power supply is interrupted while the detection signal of the second logic is being output, outputting the detection signal of the first logic,
When the supply of alternating current from the AC power supply is interrupted while the detection signal of the first logic is being output, the detection signal of the second logic is temporarily output, and then the detection of the first logic is performed. A power failure detection device, characterized in that it is configured to restart signal output.
本発明によれば、より短時間で停電の発生を検知可能な停電検知装置が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the power failure detection apparatus which can detect generation|occurrence|production of a power failure in a short time is provided.
<実施例1>
●電子機器(停電検知装置)
図1は電子機器10を示している。交流電源1は交流を供給する商用交流電源などである。整流平滑回路2は、交流を整流し、かつ、平滑し、直流電圧を生成する。第一コンバータ3は、整流平滑回路2が出力する第一レベルの直流電圧を第二レベルの直流電圧Voに変換するDCDCコンバータである。第二コンバータ4は、第一コンバータ3が出力する第二レベルの直流電圧Voを第三レベルの直流電圧Vccに変換するDCDCコンバータである。制御回路5は直流電圧Vccを供給されて動作する回路である。半波検知回路6は、交流電源1から供給される交流に基づきパルス状の検知信号を生成する回路である。なお、図1において制御回路5と半波検知回路6とが破線で囲まれているが、これらは停電検知装置として機能する。
<Example 1>
●Electronic equipment (blackout detector)
FIG. 1 shows an
●制御回路
図2は制御回路5を示している。CPU11はHDD13またはメモリ12のROM領域に記憶されている制御プログラムを実行することで様々な機能を実現する中央演算処理装置である。メモリ12はさらにRAM領域を有している。HDD13はハードディスクドライブである。タイマー14は、半波検知回路6が出力する検知信号に基づき計時を実行するタイマーである。停電判定部15は、タイマー14により計時された時間が交流の半周期よりも短くなると、交流電源1に停電が発生したと判定する。退避処理部16は、停電判定部15により停電が検知されると、退避処理を実行する。退避処理は、電子機器10のシャットダウン処理や、メモリ12のRAM領域に記憶されているデータをROM領域(例:フラッシュメモリ)に退避したり、HDD13へ退避したりする処理である。
●Control Circuit FIG. 2 shows the
●半波検知回路
図3(A)は半波検知回路6の回路図である。フォトカプラ7は発光ダイオードD1とフォトトランジスタPtとを有している。フォトトランジスタPtのコレクタは検知信号の出力部として機能し、抵抗R1によりプルアップされている。フォトトランジスタPtのエミッタは接地されている。したがって、発光ダイオードD1に電流が流れると、フォトトランジスタPtにも電流が流れ、検知信号のレベルがロー(Lレベル)となる。発光ダイオードD1に電流が流れなければ、フォトトランジスタPtにも電流が流れず、検知信号のレベルがハイ(Hレベル)となる。
● Half-wave detection circuit FIG. 3A is a circuit diagram of the half-
発光ダイオードD1のアノードは抵抗R2を介して交流電源1に接続されている。発光ダイオードD1のカソードは抵抗R4を介して交流電源1に接続されている。PNPタイプのトランジスタTr1のベースは時定数回路8を介して発光ダイオードD1のカソードと抵抗R4の一端に接続されている。トランジスタTr1のコレクタは、抵抗R3を介して抵抗R2の一端と発光ダイオードD1のアノードとに接続されている。トランジスタTr1のエミッタはコンデンサC2の一端と、ダイオードD2のカソードと、時定数回路8とに接続されている。コンデンサC2の他端は交流電源1と抵抗R4の他端に接続されている。時定数回路8の抵抗R5はトランジスタTr1のベース、コンデンサC1、発光ダイオードD1のカソード、ダイオードD2のアノードおよび抵抗R4に接続されている。ダイオードD3は、交流電源1の極性が負極性になると抵抗R4を介して電流が流れる。
The anode of the light emitting diode D1 is connected to the
●発光ダイオードD1に電流が流れている期間
交流電源1から供給される交流の極性が正極性の場合、発光ダイオードD1に電流が流れる。発光ダイオードD1からの光がフォトトランジスタPtに入射し、フォトトランジスタPtに電流が流れる。これにより、検知信号の論理がLレベルになる。抵抗R4には発光ダイオードD1に流れる電流に比例した電圧が発生する。コンデンサC2には、発光ダイオードD1およびダイオードD2を介して電流が流れ込み、充電される。コンデンサC2の両端電圧(充電電圧)は抵抗R4に生じる電圧に等しい。トランジスタTr1のエミッタ-ベース間には逆方向(エミッタの電位がベースの電位に対して低い)の電圧Vebが印加されているため、トランジスタTr1はオフ状態となる。
● Period during which current flows through the light emitting diode D1 When the polarity of the alternating current supplied from the alternating
●発光ダイオードD1に電流が流れていない期間
交流電源1から供給される交流の極性が負極性の場合、発光ダイオードD1には電流が流れなくなる。この場合、発光ダイオードD1からの光がフォトトランジスタPtに入射しなくなり、フォトトランジスタPtには電流が流れなくなる。これにより、検知信号の論理がHレベルになる。
●Period in which no current flows through the light emitting diode D1 When the polarity of the alternating current supplied from the alternating
交流電源1の交流電圧が負極性になると、抵抗R4、ダイオードD3および抵抗R2を介して電流が流れる。よって、抵抗R4には発光ダイオードD1に電流が流れている期間とは逆方向の電圧が発生する。コンデンサC2には発光ダイオードD1に電流が流れている期間に充電された電荷が残っている。そのため、トランジスタTr1のエミッタ-ベース間には順方向(エミッタの電位がベースの電位に対して高い)の電圧Vebが印加され、トランジスタTr1はオン状態となる。トランジスタTr1がオン状態であるため、コンデンサC2に充電されている電荷はトランジスタTr1、抵抗R3、および抵抗R2を介する経路で緩やかに放電される。
When the AC voltage of
●停電の検知
図4(A)は発光ダイオードD1に電流が流れていない期間に停電が発生した際の交流電源1の電圧、検知信号、コレクタ電流Icおよび電圧Veb形を示す。時刻t7に交流電源1に停電が発生すると、交流電源1の両端電圧が0Vとなる。その結果、トランジスタTr1を介してコンデンサC2から放電されている電荷は、トランジスタTr1、抵抗R3、発光ダイオードD1、抵抗R4を介した経路にも流れるようになる。発光ダイオードD1に電流が流れることにより、検知信号はHレベルからLレベルに遷移する。タイマー14は、HレベルからLレベルに遷移したタイミング(遷移エッジ)と、LレベルからHレベルに遷移したタイミングとの間の時間Taを計時している。通常、時間Taは、交流の半周期Tpに等しい。時刻t7でタイマー14は遷移エッジを検知して計時を停止する。図4(A)が示すように、時間Taは交流の半周期Tpよりも短いため、停電判定部15は停電が発生したと判定する。
●Detection of Power Failure FIG. 4A shows the voltage of the
図4(B)は特許文献1に記載された発明の検知電圧のレベルなどを示している。特許文献1に記載された発明では、時刻t7以降に検知信号はHレベルのままとなるため、時間Taは半周期Tpよりも長くなってしまう。よって、特許文献1に記載された発明では半周期Tpよりも短い時間で停電を検知することができなかった。一方、実施例1では、発光ダイオードD1に電流が流れていない期間に停電が発生すると、コンデンサC2の放電より発光ダイオードD1に電流が流れるようになるため、検知信号のレベルがLレベルになる。よって、タイマー14は、半周期Tpよりも短い時間Taを計測可能となる。
FIG. 4B shows the detection voltage levels and the like of the invention described in
図5は発光ダイオードD1に電流が流れている期間に停電が発生した際の交流電源1の電圧、検知信号、コレクタ電流Icおよび電圧Vebを示す。時刻t8で交流電源1に停電が発生すると、発光ダイオードD1への電流供給源が無くなる。そのため、発光ダイオードD1に電流が流れなくなり、検知信号の論理はLレベルからHレベルへ遷移する。発光ダイオードD1に電流が流れなくなると、抵抗R4の両端電圧が0Vとなる。そのため、トランジスタTr1のエミッタ-ベース間の電圧Vebは逆方向から順方向へと変化し、トランジスタTr1はオフ状態からオン状態へ遷移する。しかし、トランジスタTr1がオフ状態からオン状態に遷移するには、抵抗R5とコンデンサC1の時定数に起因する時間(t8からt9までの時間)を要する。そのため、停電発生時に検知信号は一定期間だけHレベルとなる。その次に検知信号はLレベルになる。よって、タイマー14は、半周期Tpよりも短い時間Taを計測可能となる。
FIG. 5 shows the voltage of the
<実施例2>
図3(B)に実施例2の半波検知回路6を示している。発光ダイオードD1にはスイッチ素子であるFET(電界効果トランジスタ)が直列に接続されている。したがって、FETがオフ状態になると、発光ダイオードD1に電流が流れなくなる。つまり、停電が発生したときにFETがオフ状態になることで、検知信号のレベルを強制的にHレベルに変更することが可能となる。
<Example 2>
FIG. 3B shows the half-
発光ダイオードD1のアノードは、抵抗R16、ダイオードD17、および抵抗R18を介して交流電源1に接続されている。抵抗R16の一端は交流電源1に接続されており、抵抗R16の他端はダイオードD17のアノードに接続されている。ダイオードD17のカソードは抵抗R18の一端に接続されている。抵抗R18の他端は発光ダイオードD1のアノードに接続されている。FETのドレインは発光ダイオードD1のカソードに接続されている。FETのゲートは抵抗R26を介して交流電源1の一端に接続されている。FETのソースは交流電源1の他端に接続されている。FETのゲート-ソース間には抵抗R25が接続されている。NPNタイプのトランジスタTr2のベースには時定数回路8が接続されている。トランジスタTr2のコレクタはダイオードD17のカソードと、抵抗R18の一端に接続されている。トランジスタTr2のエミッタはFETのゲート、抵抗R25の一端、および抵抗R26の一端に接続されている。コンデンサC20の一端はダイオードD17のカソード、トランジスタTr2のコレクタ、および抵抗R18の一端に接続されている。コンデンサC20の他端は交流電源1の他端、FETのソースおよび抵抗R25の他端に接続されている。ダイオードD19のアノードは交流電源1の他端に接続されている。ダイオードD19のカソードはダイオードD17のアノードに接続されている。
The anode of light emitting diode D1 is connected to
交流電源1の電圧が上昇すると、抵抗R25に電流が流れてFETのゲート-ソース間の電圧が上昇する。FETのゲート-ソース間の電圧がオン閾値を超えると、FETがオンする。これにより、発光ダイオードD1に電流が流れ、検知信号がLレベルとなる。一方、交流電源1の電圧が下降してFETのゲート-ソース間の電圧がオン閾値を下回ると、FETがオフする。その結果、発光ダイオードD1に電流が流れなくなり、検知信号がHレベルとなる。
When the voltage of the
●実施例1と実施例2との違い
実施例1では検知信号の論理が反転するタイミングが、発光ダイオードD1の順方向電圧とフォトカプラ7のCTR(変換効率)の影響を受ける。CTRとは発光ダイオードD1に流れる電流とフォトトランジスタPtに流れる電流の比である。CTRは100%~400%程度の誤差範囲を持つこともある。つまり、CTRのバラツキは大きい。一方、実施例2では、タイミングの誤差を招くパラメータとしてFETのゲート閾値電圧が支配的となるような回路構成が採用されている。よって、実施例2は、実施例1と比較して、交流電源1の電圧が0Vになるタイミングを精度よく検知できる。
●Difference between Example 1 and Example 2 In Example 1, the timing at which the logic of the detection signal is inverted is affected by the forward voltage of the light emitting diode D1 and the CTR (conversion efficiency) of the
●FETがオンしている期間の回路動作
FETがオンしている期間では、検知信号のレベルがLレベルになる。コンデンサC20には抵抗R16およびダイオードD17を介して電荷が充電される。トランジスタTr2のベース-エミッタ間には逆方向(ベースの電位がエミッタに対して低い)電圧が印加されているため、トランジスタTr2はオフ状態となっている。
●Circuit operation during the period when the FET is ON During the period when the FET is ON, the level of the detection signal becomes L level. Capacitor C20 is charged through resistor R16 and diode D17. Since a reverse voltage (base potential is lower than emitter potential) is applied between the base and emitter of the transistor Tr2, the transistor Tr2 is in an off state.
●FETがオフしている期間の回路動作
一方、FETがオフしている期間は、検知信号電圧にはHレベルが出力されている。トランジスタTr2のベース-エミッタ間には順方向(ベースの電位がエミッタの電位に対して高い)の電圧が印加される。そのため、トランジスタTr2はオン状態となる。トランジスタTr2がオン状態であるため、コンデンサC20に充電されている電荷はトランジスタTr2および抵抗R26を介して緩やかに放電される。
●Circuit operation during the period when the FET is off On the other hand, during the period when the FET is off, the H level is output as the detection signal voltage. A forward voltage (the potential of the base is higher than the potential of the emitter) is applied across the base and emitter of the transistor Tr2. Therefore, the transistor Tr2 is turned on. Since the transistor Tr2 is on, the electric charge stored in the capacitor C20 is slowly discharged via the transistor Tr2 and the resistor R26.
●停電の検知
図6(A)はFETがオフしている期間に停電が発生した際の交流電源1の電圧、検知信号、コレクタ電流Icおよび電圧Vebを示す。時刻t10で停電が発生すると、交流電源1の両端電圧が0Vとなる。そのため、コンデンサC20から放電される電荷が、トランジスタTr2および抵抗R25を介した経路にも流れるようになる。抵抗R25に電流が流れることにより、FETのゲート-ソース電圧がオン閾値電圧を超える。そのため、FETはオン状態に遷移し、発光ダイオードD1に電流が流れ、検知信号はLレベルに遷移する。なお、発光ダイオードD1には抵抗R18を介してコンデンサC20から電荷が供給される。タイマー14は、検知信号のレベルがHレベルからLレベルに遷移したことに応答して計時を停止する。これにより、タイマー14は、交流の半周期Tpよりも短い時間Taを検知できる。また、停電判定部15は交流の半周期Tpよりも時間Taが短いため、停電が発生したと判定する。
●Detection of Power Failure FIG. 6A shows the voltage of the
図6(B)はFETがオンしている期間に停電が発生した際の交流電源1の電圧、検知信号、コレクタ電流Icおよび電圧Vebを示す。時刻t11で停電が発生すると、交流電源1の電圧が0Vになる。これにより、FETのゲート-ソース電圧がオン閾値電圧を下回る。その結果、FETはオフし、発光ダイオードD1に電流が流れなくなる。検知信号のレベルはLレベルからHレベルへ遷移する。FETがオフすると、発光ダイオードD1のカソード電圧が上昇するため、トランジスタTr2のベース-エミッタ間の電圧は逆方向から順方向へと変化する。その結果、トランジスタTr2はオフ状態からオン状態へ遷移する。しかし、トランジスタTr2がオフ状態からオン状態に遷移するには、抵抗R5とコンデンサC1の時定数に起因する時間(時刻t11から時刻t12までの時間)が必要となる。そのため、図6(B)が示すように、検知信号は停電発生時に一定期間にわたりHレベルとなり、次にLレベルに遷移する。
FIG. 6B shows the voltage of the
タイマー14は、検知信号のレベルがLレベルからHレベルに遷移したことに応答して計時を停止する。これにより、タイマー14は、交流の半周期Tpよりも短い時間Taを検知できる。また、停電判定部15は交流の半周期Tpよりも時間Taが短いため、停電が発生したと判定する。
The
<まとめ>
半波検知回路6は交流電源1から供給される交流の極性が第一極性(例:正)である期間において第一論理の検知信号(例:L)を出力する検知手段の一例である。半波検知回路6は交流電源1から供給される交流の極性が第一極性とは反対の第二極性(例:負)である期間において第二論理の検知信号(例:H)を出力する検知手段の一例である。タイマー14は検知信号の論理が第一論理から第二論理に切り替わるタイミングと、検知信号の論理が第二論理から第一論理に切り替わるタイミングとの間の時間を計時する計時手段の一例である。停電判定部15は計時手段により計時された時間Taが交流の半周期Tpよりも短くなると、交流電源1に停電が発生したと判定する判定手段の一例である。
<Summary>
The half-
図4(A)や図6(A)が示すように、半波検知回路6は、第二論理の検知信号が出力されているときに交流電源1からの交流の供給が遮断されると、第一論理の検知信号を出力する。図5や図6(B)が示すように、半波検知回路6は、第一論理の検知信号が出力されているときに交流電源1からの交流の供給が遮断されると、一時的に第二論理の検知信号を出力し、次に第一論理の検知信号の出力を再開するように構成されている。これにより、より短時間で停電の発生を検知可能となる。
As shown in FIGS. 4(A) and 6(A), the half-
フォトカプラ7は交流を半波整流することで検知信号を出力する信号生成回路の一例である。半波検知回路6のうちフォトカプラ7や抵抗R1を除いた部分は信号生成回路を制御する制御回路として機能する。信号生成回路が第二論理の検知信号を出力しているときに交流電源1からの交流の供給が遮断される場合がある。この場合に、制御回路は、信号生成回路に第一論理の検知信号を出力させてもよい。信号生成回路が第一論理の検知信号を出力しているときに交流電源1からの交流の供給が遮断される場合がある。この場合に、制御回路は、信号生成回路に一時的に第二論理の検知信号を出力させ、次に第一論理の検知信号の出力を再開させてもよい。
The
図3(A)が示すように、発光ダイオードD1は、第一極性の電圧が印加されると電流を流し、第二極性の電流が印加されると電流を流さない整流素子の一例である。フォトトランジスタPtと抵抗R1は、整流素子に電流が流れる期間において第一論理の検知信号を出力し、整流素子に電流が流れない期間において第二論理の検知信号を出力する出力回路を形成している。トランジスタTr1は、電流流出端子と、制御端子と、整流素子の出力側に接続された電流流入端子とを有している。トランジスタTr1は、第一極性の交流が交流電源1から供給されている期間においてオンとなり、第二極性の交流が交流電源1から供給されている期間においてオフとなる電流制御素子として機能する。抵抗R3は、整流素子の入力側と電流制御素子の電流流出端子との間に接続され、電流制御素子に流れる電流を制限する制限抵抗として機能する。コンデンサC2は電流制御素子の電流流入端子に接続され、整流素子に電流が流れる期間において充電され、整流素子に電流が流れていない期間において放電する蓄電回路の一例である。時定数回路8は電流制御素子の制御端子に接続された時定数回路の一例である。第二極性の交流が交流電源1から供給されている期間において交流電源1からの交流の供給が遮断されると、蓄電回路の放電による電流が電流制御素子および制限抵抗を介して整流素子に流れる。これにより、出力回路は検知信号の論理を第二論理から第一論理に変更する。第一極性の交流が交流電源1から供給されている期間において交流電源1からの交流の供給が遮断されると、整流素子に電流が流れなくなる。これにより、出力回路は検知信号の論理を第一論理から第二論理に変更する。時定数回路8が、制御端子に印加される電圧の上昇を遅延させることで、交流電源1からの交流の供給が遮断されたタイミングから遅れて電流制御素子がオンになる。これにより、蓄電回路の放電による電流が電流制御素子および制限抵抗を介して整流素子に流れ、出力回路は検知信号の論理を第二論理から第一論理に変更する。
As shown in FIG. 3A, the light-emitting diode D1 is an example of a rectifying element that allows a current to flow when a voltage of a first polarity is applied and does not flow when a current of a second polarity is applied. The phototransistor Pt and the resistor R1 form an output circuit that outputs a detection signal of the first logic while current flows through the rectifying element and outputs a detection signal of the second logic while current does not flow through the rectifying element. there is The transistor Tr1 has a current outflow terminal, a control terminal, and a current inflow terminal connected to the output side of the rectifier. The transistor Tr<b>1 functions as a current control element that is turned on during a period when the alternating current of the first polarity is supplied from the alternating
なお、フォトトランジスタPtは発光ダイオードが点灯すると電流を流し、発光ダイオードが消灯すると電流を流さない受光素子の一例である。抵抗R1は受光素子の出力側に接続されたプルアップ抵抗の一例である。 The phototransistor Pt is an example of a light-receiving element that allows current to flow when the light-emitting diode is lit and does not flow when the light-emitting diode is extinguished. A resistor R1 is an example of a pull-up resistor connected to the output side of the light receiving element.
図3(B)が示すように、信号生成回路は、発光ダイオードD1、フォトトランジスタPtおよび抵抗R1により構成されてもよい。発光ダイオードD1は第一整流素子の一例である。制御回路は次のような回路素子により構成されうる。FETは、交流電源1から第一極性の交流が供給されるとオンとなり、第一極性の交流が供給されなくなるとオフとなるように配置されたスイッチ素子の一例である。コンデンサC20は第一整流素子に電流が流れる期間において充電され、第一整流素子に電流が流れていない期間において放電する蓄電回路の一例である。NPNタイプのトランジスタTr2と抵抗R25はスイッチ素子に印加される制御電圧を制御する抵抗および電流制御素子の一例である。時定数回路8は電流制御素子の制御端子に接続された時定数回路の一例である。第一極性の交流が交流電源から供給されている期間において交流電源からの交流の供給が遮断される場合がある。この場合、第一整流素子に電流が流れなくなることで、出力回路は検知信号の論理を第一論理から第二論理に変更する。時定数回路8が、制御端子に印加される電圧の上昇を遅延させることで、交流電源1からの交流の供給が遮断されたタイミングから遅れて電流制御素子がオンになる。蓄電回路の放電による電流が電流制御素子を介して抵抗R25に流れることでスイッチ素子がオンとなる。これにより、蓄電回路の放電による電流を第一整流素子に流すことが可能となり、出力回路が検知信号の論理を第二論理から第一論理に変更する。また、第二極性の交流が交流電源1から供給されている期間において交流電源1からの交流の供給が遮断される場合もある。この場合、蓄電回路の放電による電流が電流制御素子を介して抵抗R25に流れることでスイッチ素子がオンとなる。その結果、蓄電回路の放電による電流が第一整流素子に流れ、出力回路は検知信号の論理を第二論理から第一論理に変更する。
As shown in FIG. 3B, the signal generation circuit may be composed of a light emitting diode D1, a phototransistor Pt and a resistor R1. Light emitting diode D1 is an example of a first rectifying element. The control circuit can be composed of the following circuit elements. The FET is an example of a switch element arranged so as to be turned on when an alternating current of the first polarity is supplied from the alternating
図3(B)が示すように、ダイオードD19は第二極性の交流を整流することで生成した電流をトランジスタTr2のコレクタおよびベースに供給するトランジスタTr2をオンにする第二整流素子の一例である。なお、停電時にはコンデンサC20から電流が供給されてトランジスタTr2がオンになる。抵抗R25の一端は、電流制御素子の電流流出端子とスイッチ素子の制御端子とに接続されている。電流制御素子がオンとなることで電流制御素子の電流流出端子から抵抗R25の一端に電流が流れる。これにより、スイッチ素子の制御端子に印加される制御電圧が閾値電圧を超え、スイッチ素子がオンとなる。 As shown in FIG. 3B, the diode D19 is an example of a second rectifying element that turns on the transistor Tr2 that supplies the current generated by rectifying the alternating current of the second polarity to the collector and base of the transistor Tr2. . In the event of a power failure, current is supplied from the capacitor C20 to turn on the transistor Tr2. One end of the resistor R25 is connected to the current outflow terminal of the current control element and the control terminal of the switch element. When the current control element is turned on, a current flows from the current outflow terminal of the current control element to one end of the resistor R25. As a result, the control voltage applied to the control terminal of the switch element exceeds the threshold voltage, turning on the switch element.
このように、本発明によれば、電子機器10に搭載可能な半波検知回路6や停電検知装置が提供される。停電検知装置は制御回路5と半波検知回路6により構成される。また、比較的に安価な回路素子により半波検知回路6を形成できることも利点であろう。以上の実施例では交流電圧が正極性であるときにLowレベルの検知信号が出力され、交流電圧が負極性であるときにHighレベルの検知信号が出力されている。しかし、交流電圧の極性と検知信号との論理との関係は反対でもよい。
Thus, according to the present invention, the half-
1…交流電源、5…制御回路、6…半波検知回路、10…電子機器、7…フォトカプラ
DESCRIPTION OF
Claims (12)
前記検知信号の論理が前記第一論理から前記第二論理に切り替わるタイミングと、前記検知信号の論理が前記第二論理から前記第一論理に切り替わるタイミングとの間の時間を計時する計時手段と、
前記計時手段により計時された時間が前記交流の半周期よりも短くなると、前記交流電源に停電が発生したと判定する判定手段と、を有し
前記検知手段は、
前記第二論理の検知信号が出力されているときに前記交流電源からの交流の供給が遮断されると、前記第一論理の検知信号を出力し、
前記第一論理の検知信号が出力されているときに前記交流電源からの交流の供給が遮断されると、一時的に前記第二論理の検知信号を出力し、次に前記第一論理の検知信号の出力を再開するように構成されていることを特徴とする停電検知装置。 A first logic detection signal is output during a period in which the polarity of the alternating current supplied from the alternating current power supply is the first polarity, and the polarity of the alternating current supplied from the alternating current power supply is the second polarity opposite to the first polarity. detection means for outputting a detection signal of the second logic in a certain period;
timer means for measuring the time between the timing at which the logic of the detection signal switches from the first logic to the second logic and the timing at which the logic of the detection signal switches from the second logic to the first logic;
determining means for determining that a power failure has occurred in the AC power supply when the time measured by the time measuring means becomes shorter than the half cycle of the AC power supply;
When the supply of alternating current from the AC power supply is interrupted while the detection signal of the second logic is being output, outputting the detection signal of the first logic,
When the supply of alternating current from the AC power supply is interrupted while the detection signal of the first logic is being output, the detection signal of the second logic is temporarily output, and then the detection of the first logic is performed. A power failure detection device, characterized in that it is configured to restart signal output.
前記交流を半波整流することで前記検知信号を出力する信号生成回路と、
前記信号生成回路が前記第二論理の検知信号を出力しているときに前記交流電源からの交流の供給が遮断されると、前記信号生成回路に前記第一論理の検知信号を出力させ、前記信号生成回路が前記第一論理の検知信号を出力しているときに前記交流電源からの交流の供給が遮断されると、前記信号生成回路に一時的に前記第二論理の検知信号を出力させ、次に前記第一論理の検知信号の出力を再開させる制御回路と
を有することを特徴とする請求項1に記載の停電検知装置。 The detection means is
a signal generation circuit that outputs the detection signal by half-wave rectifying the alternating current;
When the supply of alternating current from the AC power supply is interrupted while the signal generation circuit is outputting the detection signal of the second logic, causing the signal generation circuit to output the detection signal of the first logic, When the supply of alternating current from the AC power supply is interrupted while the signal generation circuit is outputting the detection signal of the first logic, the signal generation circuit is temporarily caused to output the detection signal of the second logic. 2. A power failure detection device according to claim 1, further comprising a control circuit for restarting output of the detection signal of the first logic.
前記第一極性の電圧が印加されると電流を流し、前記第二極性の電流が印加されると電流を流さない整流素子と、
前記整流素子に電流が流れる期間において前記第一論理の検知信号を出力し、前記整流素子に電流が流れない期間において前記第二論理の検知信号を出力する出力回路と、を有し、
前記制御回路は、
電流流出端子と、制御端子と、前記整流素子の出力側に接続された電流流入端子とを有し、前記第一極性の前記交流が前記交流電源から供給されている期間においてオンとなり、前記第二極性の前記交流が前記交流電源から供給されている期間においてオフとなる電流制御素子と、
前記整流素子の入力側と前記電流制御素子の前記電流流出端子との間に接続され、前記電流制御素子に流れる電流を制限する制限抵抗と、
前記電流制御素子の前記電流流入端子に接続され、前記整流素子に電流が流れる期間において充電され、前記整流素子に電流が流れていない期間において放電する蓄電回路と、
前記電流制御素子の前記制御端子に接続された時定数回路と、を有し、
前記第二極性の前記交流が前記交流電源から供給されている期間において前記交流電源からの交流の供給が遮断されると、前記蓄電回路の放電による電流が前記電流制御素子および前記制限抵抗を介して前記整流素子に流れることで、前記出力回路は前記検知信号の論理を前記第二論理から前記第一論理に変更し、
前記第一極性の前記交流が前記交流電源から供給されている期間において前記交流電源からの交流の供給が遮断されると、前記整流素子に電流が流れなくなることで、前記出力回路は前記検知信号の論理を前記第一論理から前記第二論理に変更し、前記時定数回路が、前記制御端子に印加される電圧の上昇を遅延させることで、前記交流電源からの交流の供給が遮断されたタイミングから遅れて前記電流制御素子がオンになり、前記蓄電回路の放電による電流が前記電流制御素子および前記制限抵抗を介して前記整流素子に流れることで、前記出力回路は前記検知信号の論理を前記第二論理から前記第一論理に変更することを特徴とする請求項2に記載の停電検知装置。 The signal generation circuit is
a rectifying element that causes a current to flow when the voltage of the first polarity is applied and does not flow a current when the current of the second polarity is applied;
an output circuit that outputs the detection signal of the first logic during a period in which a current flows through the rectifying element and outputs the detection signal of the second logic during a period in which the current does not flow through the rectifying element;
The control circuit is
It has a current outflow terminal, a control terminal, and a current inflow terminal connected to the output side of the rectifying element, and is turned on during a period in which the alternating current of the first polarity is supplied from the alternating current power supply. a current control element that is turned off during a period in which the bipolar alternating current is supplied from the alternating current power supply;
a limiting resistor connected between the input side of the rectifying element and the current outflow terminal of the current control element for limiting the current flowing through the current control element;
a storage circuit connected to the current input terminal of the current control element, charged during a period in which current flows through the rectifying element, and discharged during a period in which current does not flow through the rectifying element;
a time constant circuit connected to the control terminal of the current control element;
When the supply of alternating current from the alternating current power supply is cut off during the period in which the alternating current of the second polarity is supplied from the alternating current power supply, the current due to the discharge of the storage circuit flows through the current control element and the limiting resistor. by flowing into the rectifying element, the output circuit changes the logic of the detection signal from the second logic to the first logic,
When the supply of alternating current from the alternating current power supply is cut off during the period in which the alternating current of the first polarity is supplied from the alternating current power supply, current stops flowing through the rectifying element, and the output circuit outputs the detection signal is changed from the first logic to the second logic, and the time constant circuit delays the rise of the voltage applied to the control terminal, thereby interrupting the supply of alternating current from the alternating current power supply. The current control element is turned on with a delay from the timing, and the current due to the discharge of the storage circuit flows through the rectifying element via the current control element and the limiting resistor, so that the output circuit changes the logic of the detection signal. 3. A power failure detecting device according to claim 2, wherein said second logic is changed to said first logic.
前記出力回路は、
前記発光ダイオードが点灯すると電流を流し、前記発光ダイオードが消灯すると電流を流さない受光素子と、
前記受光素子の出力側に接続されたプルアップ抵抗と
を有することを特徴とする請求項3に記載の停電検知装置。 The rectifying element is a light emitting diode,
The output circuit is
a light-receiving element that conducts current when the light-emitting diode is lit and does not pass current when the light-emitting diode is extinguished;
4. A power failure detecting device according to claim 3, further comprising a pull-up resistor connected to the output side of said light receiving element.
前記第一極性の電圧が印加されると電流を流し、前記第二極性の電圧が印加されると電流を流さない第一整流素子と、
前記第一整流素子に電流が流れる期間において前記第一論理の検知信号を出力し、前記第一整流素子に電流が流れない期間において前記第二論理の検知信号を出力する出力回路と、を有し、
前記制御回路は、
前記交流電源から前記第一極性の前記交流が供給されるとオンとなり、前記第一極性の前記交流が供給されなくなるとオフとなるように配置されたスイッチ素子と、
前記第一整流素子に電流が流れる期間において充電され、前記第一整流素子に電流が流れていない期間において放電する蓄電回路と、
前記スイッチ素子に印加される制御電圧を制御する抵抗および電流制御素子と、
前記電流制御素子の制御端子に接続された時定数回路と、を有し、
前記第一極性の前記交流が前記交流電源から供給されている期間において前記交流電源からの交流の供給が遮断されると、前記第一整流素子に電流が流れなくなることで、前記出力回路は前記検知信号の論理を前記第一論理から前記第二論理に変更し、前記時定数回路が、前記制御端子に印加される電圧の上昇を遅延させることで、前記交流電源からの交流の供給が遮断されたタイミングから遅れて前記電流制御素子がオンになり、前記蓄電回路の放電による電流が前記電流制御素子を介して前記抵抗に流れることで前記スイッチ素子がオンとなり、前記蓄電回路の放電による電流を前記第一整流素子に流すことで、前記出力回路は前記検知信号の論理を前記第二論理から前記第一論理に変更し、
前記第二極性の前記交流が前記交流電源から供給されている期間において前記交流電源からの交流の供給が遮断されると、前記蓄電回路の放電による電流が前記電流制御素子を介して前記抵抗に流れることで前記スイッチ素子がオンとなり、前記蓄電回路の放電による電流を前記第一整流素子に流すことで、前記出力回路は前記検知信号の論理を前記第二論理から前記第一論理に変更することを特徴とする請求項2に記載の停電検知装置。 The signal generation circuit is
a first rectifying element that causes a current to flow when the voltage of the first polarity is applied and does not flow a current when the voltage of the second polarity is applied;
an output circuit that outputs the detection signal of the first logic during a period in which a current flows through the first rectifying element and outputs the detection signal of the second logic during a period in which the current does not flow through the first rectifying element. death,
The control circuit is
a switch element arranged to be turned on when the alternating current of the first polarity is supplied from the alternating current power supply and turned off when the alternating current of the first polarity is no longer supplied;
a power storage circuit that is charged during a period in which current flows through the first rectifying element and is discharged during a period in which current does not flow through the first rectifying element;
a resistor and a current control element for controlling the control voltage applied to the switch element;
a time constant circuit connected to a control terminal of the current control element;
When the supply of alternating current from the alternating current power supply is cut off during the period in which the alternating current of the first polarity is supplied from the alternating current power supply, the current stops flowing through the first rectifying element, and the output circuit The logic of the detection signal is changed from the first logic to the second logic, and the time constant circuit delays the rise of the voltage applied to the control terminal, thereby cutting off the supply of alternating current from the alternating current power supply. The current control element is turned on with a delay from the timing at which the storage circuit is discharged, and the current due to the discharge of the storage circuit flows through the resistor through the current control element, thereby turning on the switch element and causing the current due to the discharge of the storage circuit. By passing through the first rectifying element, the output circuit changes the logic of the detection signal from the second logic to the first logic,
When the supply of alternating current from the alternating current power supply is interrupted during the period in which the alternating current of the second polarity is supplied from the alternating current power supply, the current due to the discharge of the storage circuit flows into the resistor via the current control element. The switch element is turned on by the flow, and the current generated by the discharge of the storage circuit flows through the first rectifying element, so that the output circuit changes the logic of the detection signal from the second logic to the first logic. The power failure detection device according to claim 2, characterized in that:
前記電流制御素子がオンとなることで前記電流制御素子の前記電流流出端子から前記抵抗の一端に電流が流れることで、前記スイッチ素子の前記制御端子に印加される制御電圧が閾値電圧を超え、前記スイッチ素子がオンとなることを特徴とする請求項6または7に記載の停電検知装置。 one end of the resistor is connected to a current outflow terminal of the current control element and a control terminal of the switch element;
When the current control element is turned on, a current flows from the current outflow terminal of the current control element to one end of the resistor, so that the control voltage applied to the control terminal of the switch element exceeds a threshold voltage, 8. A power failure detection device according to claim 6, wherein said switch element is turned on.
前記第二論理の検知信号が出力されているときに前記交流電源からの交流の供給が遮断されると、前記第一論理の検知信号を出力し、
前記第一論理の検知信号が出力されているときに前記交流電源からの交流の供給が遮断されると、一時的に前記第二論理の検知信号を出力し、次に前記第一論理の検知信号の出力を再開することを特徴とする半波検知回路。 A first logic detection signal is output during a period in which the polarity of the alternating current supplied from the alternating current power supply is the first polarity, and the polarity of the alternating current supplied from the alternating current power supply is the second polarity opposite to the first polarity. A half-wave detection circuit that outputs a detection signal of the second logic in a certain period,
When the supply of alternating current from the AC power supply is interrupted while the detection signal of the second logic is being output, outputting the detection signal of the first logic,
When the supply of alternating current from the AC power supply is interrupted while the detection signal of the first logic is being output, the detection signal of the second logic is temporarily output, and then the detection of the first logic is performed. A half-wave detection circuit characterized by resuming signal output.
前記信号生成回路が前記第二論理の検知信号を出力しているときに前記交流電源からの交流の供給が遮断されると、前記信号生成回路に前記第一論理の検知信号を出力させ、前記信号生成回路が前記第一論理の検知信号を出力しているときに前記交流電源からの交流の供給が遮断されると、前記信号生成回路に一時的に前記第二論理の検知信号を出力させ、次に前記第一論理の検知信号の出力を再開させる制御回路と
を有することを特徴とする請求項9に記載の半波検知回路。 a signal generation circuit that outputs the detection signal by half-wave rectifying the alternating current;
When the supply of alternating current from the AC power supply is interrupted while the signal generation circuit is outputting the detection signal of the second logic, causing the signal generation circuit to output the detection signal of the first logic, When the supply of alternating current from the AC power supply is interrupted while the signal generation circuit is outputting the detection signal of the first logic, the signal generation circuit is temporarily caused to output the detection signal of the second logic. 10. A half-wave detection circuit according to claim 9, further comprising a control circuit for restarting the output of said first logic detection signal.
前記第一極性の電圧が印加されると電流を流し、前記第二極性の電流が印加されると電流を流さない整流素子と、
前記整流素子に電流が流れる期間において前記第一論理の検知信号を出力し、前記整流素子に電流が流れない期間において前記第二論理の検知信号を出力する出力回路と、を有し、
前記制御回路は、
電流流出端子と、制御端子と、前記整流素子の出力側に接続された電流流入端子とを有し、前記第一極性の前記交流が前記交流電源から供給されている期間においてオンとなり、前記第二極性の前記交流が前記交流電源から供給されている期間においてオフとなる電流制御素子と、
前記整流素子の入力側と前記電流制御素子の前記電流流出端子との間に接続され、前記電流制御素子に流れる電流を制限する制限抵抗と、
前記電流制御素子の前記電流流入端子に接続され、前記整流素子に電流が流れる期間において充電され、前記整流素子に電流が流れていない期間において放電する蓄電回路と、
前記電流制御素子の前記制御端子に接続された時定数回路と、を有し、
前記第二極性の前記交流が前記交流電源から供給されている期間において前記交流電源からの交流の供給が遮断されると、前記蓄電回路の放電による電流が前記電流制御素子および前記制限抵抗を介して前記整流素子に流れることで、前記出力回路は前記検知信号の論理を前記第二論理から前記第一論理に変更し、
前記第一極性の前記交流が前記交流電源から供給されている期間において前記交流電源からの交流の供給が遮断されると、前記整流素子に電流が流れなくなることで、前記出力回路は前記検知信号の論理を前記第一論理から前記第二論理に変更し、前記時定数回路が、前記制御端子に印加される電圧の上昇を遅延させることで、前記交流電源からの交流の供給が遮断されたタイミングから遅れて前記電流制御素子がオンになり、前記蓄電回路の放電による電流が前記電流制御素子および前記制限抵抗を介して前記整流素子に流れることで、前記出力回路は前記検知信号の論理を前記第二論理から前記第一論理に変更することを特徴とする請求項10に記載の半波検知回路。 The signal generation circuit is
a rectifying element that causes a current to flow when the voltage of the first polarity is applied and does not flow a current when the current of the second polarity is applied;
an output circuit that outputs the detection signal of the first logic during a period in which a current flows through the rectifying element and outputs the detection signal of the second logic during a period in which the current does not flow through the rectifying element;
The control circuit is
It has a current outflow terminal, a control terminal, and a current inflow terminal connected to the output side of the rectifying element, and is turned on during a period in which the alternating current of the first polarity is supplied from the alternating current power supply. a current control element that is turned off during a period in which the bipolar alternating current is supplied from the alternating current power supply;
a limiting resistor connected between the input side of the rectifying element and the current outflow terminal of the current control element for limiting the current flowing through the current control element;
a storage circuit connected to the current input terminal of the current control element, charged during a period in which current flows through the rectifying element, and discharged during a period in which current does not flow through the rectifying element;
a time constant circuit connected to the control terminal of the current control element;
When the supply of alternating current from the alternating current power supply is cut off during the period in which the alternating current of the second polarity is supplied from the alternating current power supply, the current due to the discharge of the storage circuit flows through the current control element and the limiting resistor. by flowing into the rectifying element, the output circuit changes the logic of the detection signal from the second logic to the first logic,
When the supply of alternating current from the alternating current power supply is cut off during the period in which the alternating current of the first polarity is supplied from the alternating current power supply, current stops flowing through the rectifying element, and the output circuit outputs the detection signal is changed from the first logic to the second logic, and the time constant circuit delays the rise of the voltage applied to the control terminal, thereby interrupting the supply of alternating current from the alternating current power supply. The current control element is turned on with a delay from the timing, and the current due to the discharge of the storage circuit flows through the rectifying element via the current control element and the limiting resistor, so that the output circuit changes the logic of the detection signal. 11. The half-wave detector circuit of claim 10, wherein said second logic changes to said first logic.
前記第一極性の電圧が印加されると電流を流し、前記第二極性の電圧が印加されると電流を流さない第一整流素子と、
前記第一整流素子に電流が流れる期間において前記第一論理の検知信号を出力し、前記第一整流素子に電流が流れない期間において前記第二論理の検知信号を出力する出力回路と、を有し、
前記制御回路は、
前記交流電源から前記第一極性の前記交流が供給されるとオンとなり、前記第一極性の前記交流が供給されなくなるとオフとなるように配置されたスイッチ素子と、
前記第一整流素子に電流が流れる期間において充電され、前記第一整流素子に電流が流れていない期間において放電する蓄電回路と、
前記スイッチ素子に印加される制御電圧を制御する抵抗および電流制御素子と、
前記電流制御素子の制御端子に接続された時定数回路と、を有し、
前記第一極性の前記交流が前記交流電源から供給されている期間において前記交流電源からの交流の供給が遮断されると、前記第一整流素子に電流が流れなくなることで、前記出力回路は前記検知信号の論理を前記第一論理から前記第二論理に変更し、前記時定数回路が、前記制御端子に印加される電圧の上昇を遅延させることで、前記交流電源からの交流の供給が遮断されたタイミングから遅れて前記電流制御素子がオンになり、前記蓄電回路の放電による電流が前記電流制御素子を介して前記抵抗に流れることで前記スイッチ素子がオンとなり、前記第二極性の交流に基づく電流を前記第一整流素子に流すことで、前記出力回路は前記検知信号の論理を前記第二論理から前記第一論理に変更することを特徴とする請求項10に記載の半波検知回路。 The signal generation circuit is
a first rectifying element that causes a current to flow when the voltage of the first polarity is applied and does not flow a current when the voltage of the second polarity is applied;
an output circuit that outputs the detection signal of the first logic during a period in which a current flows through the first rectifying element and outputs the detection signal of the second logic during a period in which the current does not flow through the first rectifying element. death,
The control circuit is
a switch element arranged to be turned on when the alternating current of the first polarity is supplied from the alternating current power supply and turned off when the alternating current of the first polarity is no longer supplied;
a power storage circuit that is charged during a period in which current flows through the first rectifying element and is discharged during a period in which current does not flow through the first rectifying element;
a resistor and a current control element for controlling the control voltage applied to the switch element;
a time constant circuit connected to a control terminal of the current control element;
When the supply of alternating current from the alternating current power supply is cut off during the period in which the alternating current of the first polarity is supplied from the alternating current power supply, the current stops flowing through the first rectifying element, and the output circuit The logic of the detection signal is changed from the first logic to the second logic, and the time constant circuit delays the rise of the voltage applied to the control terminal, thereby cutting off the supply of alternating current from the alternating current power supply. The current control element is turned on with a delay from the timing, and the current due to the discharge of the storage circuit flows through the resistor through the current control element, so that the switch element is turned on and the alternating current of the second polarity is generated. 11. The half-wave detection circuit according to claim 10, wherein the output circuit changes the logic of the detection signal from the second logic to the first logic by causing the current based on the current to flow through the first rectifying element. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018191271A JP7161365B2 (en) | 2018-10-09 | 2018-10-09 | Power failure detection device and half-wave detection circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018191271A JP7161365B2 (en) | 2018-10-09 | 2018-10-09 | Power failure detection device and half-wave detection circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020060428A JP2020060428A (en) | 2020-04-16 |
JP7161365B2 true JP7161365B2 (en) | 2022-10-26 |
Family
ID=70219586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018191271A Active JP7161365B2 (en) | 2018-10-09 | 2018-10-09 | Power failure detection device and half-wave detection circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7161365B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6067864A (en) * | 1983-09-22 | 1985-04-18 | Toshiba Corp | Ac voltage detecting circuit |
JPS6473259A (en) * | 1987-09-14 | 1989-03-17 | Nec Corp | Instantaneous interruption detection for ac power supply |
JPH02146923A (en) * | 1988-11-24 | 1990-06-06 | Nec Corp | Instantaneous interruption detecting circuit for ac power source |
JPH07229930A (en) * | 1994-02-15 | 1995-08-29 | Fujitsu General Ltd | Method and apparatus for judging alternating current voltage |
-
2018
- 2018-10-09 JP JP2018191271A patent/JP7161365B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020060428A (en) | 2020-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN204835963U (en) | Synchronous rectifier controller | |
TWI403061B (en) | Apparatus and method for protection of current sense resistor short circuit in isolated type power supply | |
WO2016136546A1 (en) | Semiconductor device for controlling power source | |
US9287796B2 (en) | Isolated power converter circuit and control method thereof | |
KR102049357B1 (en) | Short sensing circuit, short sensing method and power supply device comprising the short sensing circuit | |
CN112130050B (en) | IGBT desaturation fault detection device | |
CN109991535A (en) | A flash switch control system and its input flash detection circuit | |
JP2008104285A (en) | Switching power supply method | |
JP5988566B2 (en) | Power supply and image forming apparatus | |
CN101494412A (en) | Error detection device and method for power converter | |
TW201813264A (en) | Method and apparatus for synchronous rectifier | |
JP2017099178A (en) | Electric device | |
JP5163211B2 (en) | Semiconductor integrated circuit for reset circuit and power supply control | |
JP7161365B2 (en) | Power failure detection device and half-wave detection circuit | |
TWI722595B (en) | Secondary controller applied to a secondary side of a power converter and operation method thereof | |
US10983149B2 (en) | Inrush current test device | |
CN101399008A (en) | Converter circuit with restart function and related display device | |
JP5503520B2 (en) | Control circuit | |
US20140043868A1 (en) | Switching power supply system and control circuit of the switching power supply system | |
CN110139443B (en) | Net clearing device of electrical equipment, lamp equipment and net clearing control method | |
TWI681615B (en) | Secondary controller applied to a secondary side of a power converter and operation method thereof | |
JP2018160384A (en) | Led lighting device and led illuminating device | |
WO2020211114A1 (en) | Flash switch control system and input flash detection circuit thereof | |
KR20150112838A (en) | Power supply device comprising the same | |
JP2014054027A (en) | Switching power supply device and image forming apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20210103 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210113 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220902 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220916 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221014 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7161365 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |