[go: up one dir, main page]

JP7159292B2 - 複合粒子および複合粒子の製造方法 - Google Patents

複合粒子および複合粒子の製造方法 Download PDF

Info

Publication number
JP7159292B2
JP7159292B2 JP2020508220A JP2020508220A JP7159292B2 JP 7159292 B2 JP7159292 B2 JP 7159292B2 JP 2020508220 A JP2020508220 A JP 2020508220A JP 2020508220 A JP2020508220 A JP 2020508220A JP 7159292 B2 JP7159292 B2 JP 7159292B2
Authority
JP
Japan
Prior art keywords
composite particles
mass
gas
content
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020508220A
Other languages
English (en)
Other versions
JPWO2019181600A1 (ja
Inventor
圭太郎 中村
大助 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Engineering Co Ltd
Original Assignee
Nisshin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Engineering Co Ltd filed Critical Nisshin Engineering Co Ltd
Publication of JPWO2019181600A1 publication Critical patent/JPWO2019181600A1/ja
Application granted granted Critical
Publication of JP7159292B2 publication Critical patent/JP7159292B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0602Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with two or more other elements chosen from metals, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/002Compounds containing titanium, with or without oxygen or hydrogen, and containing two or more other elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing niobium, with or without oxygen or hydrogen, and containing two or more other elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/006Compounds containing chromium, with or without oxygen or hydrogen, and containing two or more other elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Glanulating (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、窒化チタンの複合粒子および複合粒子の製造方法に関し、特に、耐酸化性に優れる複合粒子および複合粒子の製造方法に関する。
現在、各種の微粒子が種々の用途に用いられている。例えば、金属微粒子、酸化物微粒子、窒化物微粒子、炭化物微粒子等の微粒子は、各種電気絶縁部品等の電気絶縁材料、切削工具、機械工作材料、センサ等の機能性材料、焼結材料、燃料電池の電極材料、および触媒に用いられている。
特許文献1には、カラーフィルターのブラックマトリックス等の黒色成分として好適な、高い遮光性を有する黒色複合微粒子が記載されている。黒色複合微粒子は、チタン窒化物粒子と金属微粒子からなる黒色複合微粒子であり、組成式:TiNxOy・zXで表される。なお、組成式中、Tiはチタン原子、Nは窒素原子、Oは酸素原子、Xは金属原子を表す。xは、0より大きく2未満の数、yは0以上2未満の数、zは0より大きく10未満の数を表す。
特開2015-227282号公報
従来から、上述の特許文献1のように、チタン窒化物粒子と金属微粒子からなる黒色複合微粒子が提案されている。しかしながら、更なる用途の拡大、および他の機能の付加等が現状では要求されており、例えば、耐酸化性等が要求されている。
本発明の目的は、耐酸化性に優れる複合粒子および複合粒子の製造方法を提供することにある。
上述の目的を達成するために、本発明は、TiNと、Al、CrおよびNbのうち、少なくとも1つとが複合化されたことを特徴とする複合粒子を提供するものである。
TiNと、Alとが複合化された場合、Alの含有量は、0.1~20質量%であることが好ましい。
TiNと、Crとが複合化された場合、Crの含有量は、0.1~20質量%であることが好ましい。
TiNと、Nbとが複合化された場合、Nbの含有量は、0.1~20質量%であることが好ましい。
本発明は、TiNと、Al、CrおよびNbのうち、少なくとも1つとが複合化された複合粒子の製造方法であって、チタンの粉末と、Al、CrおよびNbのうち、少なくとも1つの粉末とを原料粉末として、気相法を用いて複合粒子を製造することを特徴とする複合粒子の製造方法を提供するものである。
気相法は、熱プラズマ法、火炎法、アークプラズマ法、マイクロ波加熱法またはパルスワイヤ法であることが好ましい。
熱プラズマ法は、原料粉末が分散されたキャリアガスを熱プラズマ炎中に供給する工程と、熱プラズマ炎の終端部に、冷却ガスを供給して、複合粒子を生成する工程とを有することが好ましい。
熱プラズマ炎は、アルゴンガスおよび窒素ガスのうち、少なくとも1つのガスに由来するものであることが好ましい。
本発明によれば、耐酸化性に優れた複合粒子が得られる。
本発明の実施形態に係る複合粒子の製造方法に用いられる微粒子製造装置の一例を示す模式図である。 (a)は窒化チタンのX線回折法による結晶構造の解析結果を示すグラフであり、(b)は窒化チタンとアルミニウムとの複合粒子のX線回折法による結晶構造の解析結果を示すグラフである。 複合粒子、および窒化チタン粒子の吸光度を示すグラフである。
以下に、添付の図面に示す好適実施形態に基づいて、本発明の複合粒子および複合粒子の製造方法を詳細に説明する。
図1は本発明の実施形態に係る複合粒子の製造方法に用いられる微粒子製造装置の一例を示す模式図である。
図1に示す微粒子製造装置10(以下、単に製造装置10という)は、複合粒子の製造に用いられるものである。
複合粒子は、TiNと、Al、CrおよびNbのうち少なくとも1つとが複合化された粒子のことである。
複合化された粒子とは、TiN、AlN、CrN、NbNのようにそれぞれの単独粒子の窒化物の粒子が混合して存在するのではなく、TiNと、Al、CrおよびNbのうち少なくとも1つとが単一粒子内に含まれる窒化物粒子のことである。複合粒子におけるAl、CrおよびNbの形態は、特に限定されるものではなく、金属単体のみならず、窒化物、酸化物、酸窒化物、不定比酸化物および不定比窒化物等の化合物の形態であってもよい。
また、複合粒子は、ナノ粒子と呼ばれるものであり、粒子径が1~100nmとすることもできる。粒子径はBET法を用いて測定された平均粒径である。また、複合粒子は、例えば、後述の製造方法で製造され、溶媒内等に分散されている状態ではなく、粒子状態で得られる。
製造装置10は、熱プラズマを発生させるプラズマトーチ12と、複合粒子の原料粉末をプラズマトーチ12内へ供給する材料供給装置14と、複合粒子の1次微粒子15を生成させるための冷却槽としての機能を有するチャンバ16と、複合粒子の1次微粒子15から任意に規定された粒径以上の粒径を有する粗大粒子を除去するサイクロン19と、サイクロン19により分級された所望の粒径を有する複合粒子の2次微粒子18を回収する回収部20とを有する。
材料供給装置14、チャンバ16、サイクロン19、および回収部20については、例えば、特開2007-138287号公報の各種装置を用いることができる。なお、複合粒子の1次微粒子15のことを単に1次微粒子15ともいう。
本実施形態において、複合粒子の製造には、例えば、チタン粉末と、Al、CrおよびNbのうち、少なくとも1つの粉末とを原料粉末として用いる。
原料粉末は、熱プラズマ炎中で容易に蒸発するように、その平均粒径が適宜設定されるが、平均粒径は、例えば、100μm以下であり、好ましくは10μm以下、さらに好ましくは5μm以下である。
プラズマトーチ12は、石英管12aと、その外側を取り巻く高周波発振用コイル12bとで構成されている。プラズマトーチ12の上部には複合粒子の原料粉末をプラズマトーチ12内に供給するための後述する供給管14aがその中央部に設けられている。プラズマガス供給口12cが、供給管14aの周辺部(同一円周上)に形成されており、プラズマガス供給口12cはリング状である。
プラズマガス供給源22は、プラズマガスをプラズマトーチ12内に供給するものであり、例えば、気体供給部22aを有する。気体供給部22aは配管22cを介してプラズマガス供給口12cに接続されている。気体供給部22aには、図示はしないが供給量を調整するためのバルブ等の供給量調整部が設けられている。プラズマガスは、プラズマガス供給源22からリング状のプラズマガス供給口12cを経て、矢印Pで示す方向と矢印Sで示す方向からプラズマトーチ12内に供給される。
プラズマガスには、例えば、アルゴンガスと窒素ガスの混合ガスが用いられる。熱プラズマ炎は、アルゴンガスおよび窒素ガスのうち、少なくとも1つのガスに由来するものである。
気体供給部22aにアルゴンガスおよび窒素ガスのうち、少なくとも一方のガスが貯蔵される。プラズマガス供給源22の気体供給部22aからアルゴンガスおよび窒素ガスのうち、少なくとも一方のガスが配管22cを介してプラズマガス供給口12cを経て、矢印Pで示す方向と矢印Sで示す方向からプラズマトーチ12内に供給される。なお、矢印Pで示す方向にはアルゴンガスおよび窒素ガスのうち、少なくとも一方のガスだけを供給してもよい。
高周波発振用コイル12bに高周波電圧が印加されると、プラズマトーチ12内で熱プラズマ炎24が発生する。
熱プラズマ炎24の温度は、原料粉末の沸点よりも高い必要がある。一方、熱プラズマ炎24の温度が高いほど、容易に原料粉末が気相状態となるので好ましいが、特に温度は限定されるものではない。例えば、熱プラズマ炎24の温度を6000℃とすることもできるし、理論上は10000℃程度に達するものと考えられる。
また、プラズマトーチ12内における圧力雰囲気は、大気圧以下であることが好ましい。ここで、大気圧以下の雰囲気については、特に限定されないが、例えば、0.5~100kPaである。
また、プラズマガスには、例えば、アルゴンガスおよび窒素ガスのうち、少なくとも一方のガスを用いたが、これに限定されるものではなく、アルゴンガスおよび窒素ガスのうち、少なくとも一方のガスとヘリウムガスとの組合せ、アルゴンガスおよび窒素ガスのうち、少なくとも一方のガスと水素ガスとの組合せでもよい。
なお、石英管12aの外側は、同心円状に形成された管(図示されていない)で囲まれており、この管と石英管12aとの間に冷却水を循環させて石英管12aを水冷し、プラズマトーチ12内で発生した熱プラズマ炎24により石英管12aが高温になりすぎるのを防止している。
材料供給装置14は、供給管14aを介してプラズマトーチ12の上部に接続されている。材料供給装置14は、例えば、粉末の形態で原料粉末をプラズマトーチ12内の熱プラズマ炎24中に供給するものである。
原料粉末の形態で供給する材料供給装置14としては、例えば、特開2007-138287号公報に開示されているものを用いることができる。この場合、材料供給装置14は、例えば、原料粉末を貯蔵する貯蔵槽(図示せず)と、原料粉末を定量搬送するスクリューフィーダ(図示せず)と、スクリューフィーダで搬送された原料粉末が最終的に散布される前に、これを一次粒子の状態に分散させる分散部(図示せず)と、キャリアガス供給源(図示せず)とを有する。
キャリアガス供給源から押出し圧力がかけられたキャリアガスとともに原料粉末は供給管14aを介してプラズマトーチ12内の熱プラズマ炎24中へ供給される。
材料供給装置14は、原料粉末の凝集を防止し、分散状態を維持したまま、原料粉末をプラズマトーチ12内に散布することができるものであれば、その構成は特に限定されるものではない。キャリアガスには、例えば、アルゴンガス等の不活性ガスが用いられる。キャリアガス流量は、例えば、フロート式流量計等の流量計を用いて制御することができる。また、キャリアガスの流量値とは、流量計の目盛り値のことである。
チャンバ16は、プラズマトーチ12の下方に連続して設けられており、気体供給装置28が接続されている。チャンバ16内で複合粒子の1次微粒子15が生成される。また、チャンバ16は冷却槽として機能するものである。
気体供給装置28は、チャンバ16内に冷却ガスを供給するものである。気体供給装置28は、気体供給源28aと配管28bとを有し、さらに、チャンバ16内に供給する冷却ガスに押出し圧力をかけるコンプレッサ、ブロア等の圧力付与手段(図示せず)を有する。また、気体供給源28aからのガス供給量を制御する圧力制御弁28cが設けられている。例えば、気体供給源28aにアルゴンガスおよび窒素ガスのうち、少なくとも一方のガスが貯蔵されている。冷却ガスはアルゴンガスおよび窒素ガスのうち、少なくとも一方のガスである。
また、上述のようにプラズマガスには、アルゴンガスおよび窒素ガスのうち、少なくとも一方のガスが用いられる。
なお、プラズマガスおよび冷却ガスのうち、いずれか一方に窒素ガスが含まれていることが必要であり、プラズマガスに窒素ガスが含まれていることがより好ましい。
気体供給装置28は、熱プラズマ炎24の尾部、すなわち、プラズマガス供給口12cと反対側の熱プラズマ炎24の端、すなわち、熱プラズマ炎24の終端部に向かって、例えば、45°の角度で、矢印Qの方向に、冷却ガスとしてアルゴンガスおよび窒素ガスのうち、少なくとも一方のガスを供給し、かつチャンバ16の内側壁16aに沿って上方から下方に向かって、すなわち、図1に示す矢印Rの方向に上述の冷却ガスを供給する。
気体供給装置28からチャンバ16内に供給される冷却ガスにより、熱プラズマ炎24で気相状態にされた原料粉末が急冷されて、複合粒子の1次微粒子15が得られる。これ以外にも上述の冷却ガスはサイクロン19における1次微粒子15の分級に寄与する等の付加的作用を有する。
複合粒子の1次微粒子15の生成直後の微粒子同士が衝突し、凝集体を形成することで粒径の不均一が生じると、品質低下の要因となる。しかしながら、熱プラズマ炎の尾部(終端部)に向かって矢印Qの方向に供給される冷却ガスが1次微粒子15を希釈することで、微粒子同士が衝突して凝集することが防止される。
また、矢印R方向に冷却ガスにより、1次微粒子15の回収の過程において、1次微粒子15のチャンバ16の内側壁16aへの付着が防止され、生成した1次微粒子15の収率が向上する。
図1に示すように、チャンバ16には、複合粒子の1次微粒子15を所望の粒径で分級するためのサイクロン19が設けられている。このサイクロン19は、チャンバ16から1次微粒子15を供給する入口管19aと、この入口管19aと接続され、サイクロン19の上部に位置する円筒形状の外筒19bと、この外筒19b下部から下側に向かって連続し、かつ、径が漸減する円錐台部19cと、この円錐台部19c下側に接続され、上述の所望の粒径以上の粒径を有する粗大粒子を回収する粗大粒子回収チャンバ19dと、後に詳述する回収部20に接続され、外筒19bに突設される内管19eとを備えている。
サイクロン19の入口管19aから、1次微粒子15を含んだ気流が、外筒19b内周壁に沿って吹き込まれ、これにより、この気流が図1中に矢印Tで示すように外筒19bの内周壁から円錐台部19c方向に向かって流れることで下降する旋回流が形成される。
そして、上述の下降する旋回流が反転し、上昇流になったとき、遠心力と抗力のバランスにより、粗大粒子は、上昇流にのることができず、円錐台部19c側面に沿って下降し、粗大粒子回収チャンバ19dで回収される。また、遠心力よりも抗力の影響をより受けた微粒子は、円錐台部19c内壁での上昇流とともに内管19eから系外に排出される。
また、内管19eを通して、後に詳述する回収部20から負圧(吸引力)が生じるようになっている。そして、この負圧(吸引力)によって、上述の旋回する気流から分離した複合粒子が、符号Uで示すように吸引され、内管19eを通して回収部20に送られるようになっている。
サイクロン19内の気流の出口である内管19eの延長上には、所望のナノメートルオーダの粒径を有する2次微粒子(複合粒子)18を回収する回収部20が設けられている。回収部20は、回収室20aと、回収室20a内に設けられたフィルター20bと、回収室20a内下方に設けられた管を介して接続された真空ポンプ30とを備える。サイクロン19から送られた微粒子は、真空ポンプ30で吸引されることにより、回収室20a内に引き込まれ、フィルター20bの表面で留まった状態にされて回収される。
なお、上述の製造装置10において、使用するサイクロンの個数は、1つに限定されず、2つ以上でもよい。
次に、上述の製造装置10を用いた複合粒子の製造方法の一例について説明する。
まず、複合粒子の原料粉末として、チタンの粉末と、Alの粉末、Crの粉末およびNbの粉末のうち、少なくとも1つとを用いる。原料粉末に用いる各種の粉末は、例えば、平均粒径が5μm以下のものを用いる。原料粉末を材料供給装置14に投入する。
原料粉末にチタンの粉末とAlの粉末とを用いると、窒化チタンとアルミニウムの複合粒子が得られる。
原料粉末にチタンの粉末とCrの粉末とを用いると、窒化チタンとクロムの複合粒子が得られる。
原料粉末にチタンの粉末とNbの粉末とを用いると、窒化チタンとニオブの複合粒子が得られる。
プラズマガスに、例えば、アルゴンガスおよび窒素ガスのうち、少なくとも一方のガスを用いて、高周波発振用コイル12bに高周波電圧を印加し、プラズマトーチ12内に熱プラズマ炎24を発生させる。
また、気体供給装置28から熱プラズマ炎24の尾部、すなわち、熱プラズマ炎24の終端部に、矢印Qの方向に、冷却ガスとして、例えば、アルゴンガスおよび窒素ガスのうち、少なくとも一方のガスを供給する。このとき、矢印Rの方向にも、冷却ガスとして、アルゴンガスおよび窒素ガスのうち、少なくとも一方のガスを供給する。
次に、キャリアガスとして、例えば、アルゴンガスを用いて原料粉末を気体搬送し、供給管14aを介してプラズマトーチ12内の熱プラズマ炎24中に供給する。供給された原料粉末は、熱プラズマ炎24中で蒸発して気相状態となり、窒素と反応して窒化され、かつ冷却ガスにより急冷されることにより、窒化チタンの複合粒子の1次微粒子15が得られる。
そして、チャンバ16内で得られた複合粒子の1次微粒子15は、サイクロン19の入口管19aから、気流とともに外筒19bの内周壁に沿って吹き込まれ、これにより、この気流が図1の矢印Tに示すように外筒19bの内周壁に沿って流れることにより、旋回流を形成して下降する。そして、上述の下降する旋回流が反転し、上昇流になったとき、遠心力と抗力のバランスにより、粗大粒子は、上昇流にのることができず、円錐台部19c側面に沿って下降し、粗大粒子回収チャンバ19dで回収される。また、遠心力よりも抗力の影響をより受けた微粒子は、円錐台部19c内壁での上昇流とともに内壁から系外に排出される。
排出された2次微粒子(複合粒子)18は、真空ポンプ30による回収部20からの負圧(吸引力)によって、図1中、符号Uに示す方向に吸引され、内管19eを通して回収部20に送られ、回収部20のフィルター20bで回収される。このときのサイクロン19内の内圧は、大気圧以下であることが好ましい。また、2次微粒子(複合粒子)18の粒径は、目的に応じて、ナノメートルオーダの任意の粒径が規定される。
このように、複合粒子を、チタンの粉末と、Alの粉末、Crの粉末およびNbの粉末のうち、少なくとも1つとを用いた原料粉末をプラズマ処理するだけで容易かつ確実に得ることができる。
しかも、本実施形態の複合粒子の製造方法により製造される複合粒子は、その粒度分布幅が狭い、すなわち、均一な粒径を有し、1μm以上の粗大粒子の混入が殆どない。
なお、熱プラズマ炎を用いて複合粒子の1次微粒子を形成しているが、気相法を用いて複合粒子の1次微粒子を形成することができる。このため、気相法であれば、熱プラズマ炎を用いた熱プラズマ法に限定されるものではなく、火炎法、アークプラズマ法、マイクロ波加熱法またはパルスワイヤ法により、複合粒子の1次微粒子を形成する製造方法でもよい。
ここで、火炎法とは、火炎を熱源として用い,気相または液相の原料粉末を火炎に通すことにより複合粒子を合成する方法である。火炎法では、原料粉末を気相または液相の状態で、火炎に供給し、そして、冷却ガスを火炎に供給し、火炎の温度を低下させて複合粒子の1次微粒子15を得る。
気相の状態の原料粉末とは、例えば、上述のキャリアガスに原料粉末が分散した状態のことをいう。液相の状態の原料粉末とは、原料粉末が溶媒に分散した状態のことをいう。
なお、冷却ガスは、上述の熱プラズマ法と同じものを用いることができる。
次に、複合粒子について説明する。
上述のように、本発明の複合粒子は、粒子径が1~100nmであるナノ粒子と呼ばれるものである。粒子径はBET法を用いて測定された平均粒径である。
また、本発明の複合粒子は、上述のように、溶媒内等に分散されている状態ではなく、複合粒子単独で存在する。このため、溶媒との組合せ等も特に限定されるものではなく、溶媒の選択の自由度は高い。
また、上述のように、複合粒子は、TiNと、Al、CrおよびNbのうち、少なくとも1つとが複合化された粒子のことである。TiNと、Alとが複合化された場合、Alの含有量は、0.1~20質量%であることが好ましい。Alの含有量が上述の範囲であれば耐酸化性に優れる。
また、TiNと、Crとが複合化された場合、Crの含有量は、0.1~20質量%であることが好ましい。Crが上述の範囲であれば、耐酸化性に優れる。
TiNと、Nbとが複合化された場合、Nbの含有量は、0.1~20質量%であることが好ましい。Nbが上述の範囲であれば、耐酸化性に優れる。
なお、上述の各元素の含有量(質量%)は、XRF(蛍光X線分析)で測定して求めることができるが、各元素の含有量(質量%)は、不純物を省いて得られたものである。
具体的には、Alの含有量の場合、XRF(蛍光X線分析)で測定して求めた各元素の含有量(質量%)からTiとAl以外の元素の含有量(質量%)を省いてTiとAlの合計質量%が100となるようにした際の質量%のことである。
図2(a)は窒化チタンのX線回折法による結晶構造の解析結果を示すグラフであり、(b)は窒化チタンとアルミニウムとの複合粒子のX線回折法による結晶構造の解析結果を示すグラフである。図2(a)および(b)は、いずれも大気中で温度400℃にて10分焼成した後における結晶構造の解析結果を示している。また、図2(a)における矢印はチタンの酸化物の回折ピークを示す。
図2(a)と図2(b)とを比較すると、チタンの酸化物の回折ピーク(図2(a)の矢印で示す。)を除くと、TiNと、窒化チタンとアルミニウムとの複合物とは回折パターンが同じであり、強度のみが異なる。
窒化チタンとアルミニウムとの複合物は、TiNに比して、大気中で温度400℃にて10分焼成した後におけるチタンの酸化物の回折ピークの強度がほとんどなく、耐酸化性に優れている。
色味についても、大気中にて温度400℃にて10分焼成した後のTiNではチタンの酸化物の生成に伴い粉全体が白く変化したが、窒化チタンとアルミニウムとの複合物では変化しなかった。このことからも、TiNより窒化チタンとアルミニウムとの複合物の方が、酸化開始温度を高くでき、耐酸化性に関し有効である。
さらには、窒化チタンの複合粒子の吸光度を測定した。図3は複合粒子および窒化チタン粒子の吸光度を示すグラフである。
図3に示すように、窒化チタンの複合粒子は、測定した波長域において、TiNと同程度の吸光度を有する。
このように、窒化チタンの複合粒子は、耐酸化性に優れ、かつ色調の変化が小さい。しかも、TiNと同程度の吸光度を有する。
吸光度は、窒化チタンの複合粒子を水に超音波で分散させて、紫外可視分光光度計で測定された透過率から求めた値である。
なお、図3において、TiNの「standard」は、標準的な条件で作製したものであり、TiNの化学量論的組成を有する。「LowO2」は、より還元雰囲気で作製したものであり、酸素が殆ど含まれていない。なお、色としては青味が強い。「HighO2」は、若干酸化雰囲気で作製したものであり、酸素を若干含む。なお、色としては赤味が強い。
複合粒子は、例えば、液晶表示装置、有機EL表示装置等のブラックマトリックスに利用することができる。複合粒子は、遮光材として利用することができる。この場合、カラーフィルターの遮光材、およびTFTの外光側の遮光材として利用することができる。
印刷インク、インクジェットインク、フォトマスク作製材料、印刷用プルーフ作製用材料、エッチングレジスト、ソルダーレジストにも利用することができる。
上述の以外に、複合粒子は、例えば、触媒担体に利用することができ、この場合、粒径を小さくすることができるため、触媒の性能を高めることができる。
また、光電変換素子、および光熱変換素子にも利用することができる。
また、金属、酸化物、プラスチック等と混合し、色調を調整する顔料などにも利用することができる。
その他、半導体基板、プリント基板、各種電気絶縁部品等の電気絶縁材料、切削工具、ダイス、軸受等の高硬度高精度の機械工作材料、粒界コンデンサ、湿度センサ等の機能性材料、精密焼結成形材料等の焼結体の製造、エンジンバルブ等の高温耐摩耗性が要求される材料等の溶射部品製造、さらには燃料電池の電極、電解質材料および各種触媒等に用いることができる。
本実施形態においては、窒化物微粒子の粒径をナノサイズにできるため、例えば、焼結体に利用する場合、焼結性を高めることができ、高い強度の焼結体を得ることができる。これより、例えば、切削性が良好な工具を得ることができる。
本発明は、基本的に以上のように構成されるものである。以上、本発明の複合粒子および複合粒子の製造方法について詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。
10 微粒子製造装置
12 プラズマトーチ
14 材料供給装置
15 1次微粒子
16 チャンバ
18 微粒子(2次微粒子)
19 サイクロン
20 回収部
22 プラズマガス供給源
24 熱プラズマ炎
28 気体供給装置
30 真空ポンプ

Claims (4)

  1. TiNと、Al単一粒子内で複合化され、粒子径が1~100nmであり、
    前記Alの含有量は、0.1~20質量%であり、
    前記Alの含有量は、蛍光X線分析で測定して求めた各元素の含有量(質量%)からTiとAl以外の元素の含有量(質量%)を省いてTiとAlの合計質量%が100となるようにした際の質量%であることを特徴とする複合粒子。
  2. TiNと、Cr単一粒子内で複合化され、粒子径が1~100nmであり、
    前記Crの含有量は、0.1~20質量%であり、
    前記Crの含有量は、蛍光X線分析で測定して求めた各元素の含有量(質量%)からTiとCr以外の元素の含有量(質量%)を省いてTiとCrの合計質量%が100となるようにした際の質量%であることを特徴とする複合粒子。
  3. TiNと、Nb単一粒子内で複合化され、粒子径が1~100nmであり、
    前記Nbの含有量は、0.1~20質量%であり、
    前記Nbの含有量は、蛍光X線分析で測定して求めた各元素の含有量(質量%)からTiとNb以外の元素の含有量(質量%)を省いてTiとNbの合計質量%が100となるようにした際の質量%である複合粒子。
  4. TiNと、Al、CrおよびNbのうち、少なくとも1つとが単一粒子内で複合化された複合粒子の製造方法であって、
    チタンの粉末と、Al、CrおよびNbのうち、少なくとも1つの粉末とを原料粉末として、熱プラズマ法を用いて複合粒子を製造することを特徴とするものであり、
    前記熱プラズマ法は、前記原料粉末が分散されたキャリアガスを熱プラズマ炎中に供給する工程と、前記熱プラズマ炎の終端部に、冷却ガスを供給して、複合粒子を生成する工程とを有し、
    前記熱プラズマ炎のプラズマガス、および前記熱プラズマ炎の終端部に供給する前記冷却ガスのうち、いずれか一方に窒素ガスが含まれている、複合粒子の製造方法。
JP2020508220A 2018-03-23 2019-03-11 複合粒子および複合粒子の製造方法 Active JP7159292B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018056031 2018-03-23
JP2018056031 2018-03-23
PCT/JP2019/009642 WO2019181600A1 (ja) 2018-03-23 2019-03-11 複合粒子および複合粒子の製造方法

Publications (2)

Publication Number Publication Date
JPWO2019181600A1 JPWO2019181600A1 (ja) 2021-04-22
JP7159292B2 true JP7159292B2 (ja) 2022-10-24

Family

ID=67987130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020508220A Active JP7159292B2 (ja) 2018-03-23 2019-03-11 複合粒子および複合粒子の製造方法

Country Status (5)

Country Link
US (1) US11479674B2 (ja)
JP (1) JP7159292B2 (ja)
KR (1) KR102639978B1 (ja)
CN (1) CN111867972A (ja)
WO (1) WO2019181600A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101265109A (zh) 2008-04-25 2008-09-17 北京交通大学 一种h相氮化铝钛陶瓷粉体的常压合成方法
CN101289222A (zh) 2008-06-06 2008-10-22 清华大学 一种高纯超细钛铝氮粉料的制备方法
US20140302323A1 (en) 2011-10-24 2014-10-09 Cornell University Mesoporous metal nitride materials and methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3322515A (en) * 1965-03-25 1967-05-30 Metco Inc Flame spraying exothermically reacting intermetallic compound forming composites
JP2539712B2 (ja) 1991-09-19 1996-10-02 喜清 荻野 窒化物粉体
US7211323B2 (en) * 2003-01-06 2007-05-01 U Chicago Argonne Llc Hard and low friction nitride coatings and methods for forming the same
CN1321939C (zh) * 2004-07-15 2007-06-20 中国科学院金属研究所 一种用三氧化二铝弥散强化钛二铝氮陶瓷复合材料及其制备方法
TWI402117B (zh) * 2005-10-17 2013-07-21 Nisshin Seifun Group Inc 超微粒子的製造方法
US20100102417A1 (en) * 2008-10-27 2010-04-29 Applied Materials, Inc. Vapor deposition method for ternary compounds
TWI483999B (zh) 2009-06-15 2015-05-11 Toray Industries 黑色複合微粒子、黑色樹脂組成物、彩色濾光片基板及液晶顯示裝置
JP6061929B2 (ja) * 2012-06-28 2017-01-18 日清エンジニアリング株式会社 炭化チタン微粒子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101265109A (zh) 2008-04-25 2008-09-17 北京交通大学 一种h相氮化铝钛陶瓷粉体的常压合成方法
CN101289222A (zh) 2008-06-06 2008-10-22 清华大学 一种高纯超细钛铝氮粉料的制备方法
US20140302323A1 (en) 2011-10-24 2014-10-09 Cornell University Mesoporous metal nitride materials and methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIN, Xihai et al.,Preparation of nanostructured Cr1-xTixN ceramics by spark plasma sintering and their properties,Acta Meterialia,2006年,54,pp. 4035-4041
OGINO, Y. et al.,SYNTHESIS OF TiN AND (Ti, Al)N POWDERS BY MECHANICAL ALLOYING IN NITROGEN GAS,Scripta METALLURGICA et MATERIALIA,1993年,Vol. 28, No. 8,pp. 967-971

Also Published As

Publication number Publication date
TW201945276A (zh) 2019-12-01
KR20200135322A (ko) 2020-12-02
JPWO2019181600A1 (ja) 2021-04-22
KR102639978B1 (ko) 2024-02-22
WO2019181600A1 (ja) 2019-09-26
CN111867972A (zh) 2020-10-30
US20210017391A1 (en) 2021-01-21
US11479674B2 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
JP7367085B2 (ja) 複合粒子および複合粒子の製造方法
JP7282691B2 (ja) 微粒子の製造方法
JP2007131943A (ja) 複合構造物
TWI683789B (zh) 銀微粒子
KR20160021775A (ko) 아산화구리 미립자의 제조방법 및 아산화구리 미립자 및 도체막의 제조방법
KR102514945B1 (ko) 구리 미립자
JP7159293B2 (ja) 複合粒子および複合粒子の製造方法
JP7159292B2 (ja) 複合粒子および複合粒子の製造方法
TWI875693B (zh) 複合粒子及複合粒子之製造方法
JP7566606B2 (ja) 複合粒子
JP7488832B2 (ja) 微粒子および微粒子の製造方法
WO2015186415A1 (ja) 金属複合酸化物微粒子およびその製造方法
WO2024204241A1 (ja) 銅微粒子及び銅微粒子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221012

R150 Certificate of patent or registration of utility model

Ref document number: 7159292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150