JP7153193B2 - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP7153193B2 JP7153193B2 JP2018232035A JP2018232035A JP7153193B2 JP 7153193 B2 JP7153193 B2 JP 7153193B2 JP 2018232035 A JP2018232035 A JP 2018232035A JP 2018232035 A JP2018232035 A JP 2018232035A JP 7153193 B2 JP7153193 B2 JP 7153193B2
- Authority
- JP
- Japan
- Prior art keywords
- active material
- electrode active
- positive electrode
- aqueous electrolyte
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Cell Separators (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、リチウムイオン二次電池等の非水電解液二次電池に関する。詳しくは、非水電解液二次電池の捲回電極体の構造に関する。 The present invention relates to nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries. Specifically, it relates to the structure of a wound electrode assembly for a non-aqueous electrolyte secondary battery.
パソコンや携帯端末等のいわゆるポータブル電源あるいは車両駆動用電源として、非水電解液二次電池の需要が近年ますます高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車、ハイブリッド自動車等の車両の駆動用高出力電源として好ましく用いられている。 In recent years, the demand for non-aqueous electrolyte secondary batteries has been increasing more and more as a so-called portable power source for personal computers, mobile terminals, etc. or as a power source for driving vehicles. In particular, lithium-ion secondary batteries, which are lightweight and provide high energy density, are preferably used as high-output power sources for driving vehicles such as electric vehicles and hybrid vehicles.
この種の二次電池の一つの典型的な例として、扁平形状の捲回電極体を備えた例が挙げられる。一般的には、該捲回電極体の捲回軸と直交する横断面において、その長手方向の両端部には、外表面が曲面である2つのR部と、両R部に挟まれている長手方向の中央部分であって、2つの表面を有するF部とが存在する。該捲回電極体は、典型的には、正極および負極(以下、正負について特に区別しないときは「電極」という。)が、セパレータを介して捲回された構成をしている。かかる非水電解液二次電池では、負極に形成された負極活物質層および正極に形成された正極活物質層(以下、正負について特に区別しないときは「活物質層」という。)がセパレータを挟んで対向するように配置されている。
この種の非水電解液二次電池は、一般的に、上記捲回電極体の内部に非水電解液が保持されており、該非水電解液に含まれる電荷担体(例えばリチウムイオン)が、正極活物質を含む正極活物質層と負極活物質を含む負極活物質層との間を行き来することによって、充電および放電が行われる。負極活物質層に着目すると、充電時には負極活物質層中に電荷担体が吸蔵され、放電時には充電時に吸蔵された電荷担体が負極活物質層中から非水電解液中に放出される。
A typical example of this type of secondary battery includes a flat wound electrode assembly. In general, in a cross section orthogonal to the winding axis of the wound electrode body, two R portions having curved outer surfaces are sandwiched between both R portions at both ends in the longitudinal direction. There is a central longitudinal section, section F, which has two surfaces. The wound electrode body typically has a configuration in which a positive electrode and a negative electrode (hereinafter referred to as "electrodes" when not particularly distinguished between positive and negative) are wound with a separator interposed therebetween. In such a non-aqueous electrolyte secondary battery, a negative electrode active material layer formed on the negative electrode and a positive electrode active material layer formed on the positive electrode (hereinafter referred to as “active material layer” when the positive and negative are not particularly distinguished) form a separator. They are arranged so as to face each other on both sides.
In this type of non-aqueous electrolyte secondary battery, a non-aqueous electrolyte is generally held inside the wound electrode body, and the charge carriers (for example, lithium ions) contained in the non-aqueous electrolyte are Charging and discharging are performed by going back and forth between the positive electrode active material layer containing the positive electrode active material and the negative electrode active material layer containing the negative electrode active material. Focusing on the negative electrode active material layer, charge carriers are occluded in the negative electrode active material layer during charging, and the charge carriers occluded during charging are released from the negative electrode active material layer into the non-aqueous electrolyte during discharging.
ところで、上述したような構成の捲回電極体を備える非水電解液二次電池の課題の一つとして、充放電を行った際の活物質層の膨張収縮が挙げられる。
活物質の膨張収縮に伴って、捲回電極体の内部にあった非水電解液が該捲回電極体の外部に押し出される場合がある。また、扁平形状の捲回電極体の場合、上記R部に膨張収縮の応力が集中しやすい。本発明者らは、とりわけ当該部位から非水電解液が排出されやすく、また、ここに非水電解液が保持されにくい場合があることを突き止めた。
扁平形状の捲回電極体の外部に排出された非水電解液は、例えば該捲回電極体の構成部材等から、再び該捲回電極体の内部に含浸(浸透)しなければ該捲回電極体内部の電池反応に電荷担体を供給できず、これに起因して電池容量が低下するおそれがある。これは電池抵抗を上昇させ、電池性能を低下させる原因になり得るため、好ましくない。
By the way, one of the problems of the non-aqueous electrolyte secondary battery including the wound electrode assembly having the above-described structure is the expansion and contraction of the active material layer during charging and discharging.
As the active material expands and contracts, the non-aqueous electrolyte inside the wound electrode body may be pushed out of the wound electrode body. Further, in the case of a flat-shaped wound electrode body, stress due to expansion and contraction tends to concentrate on the R portion. The present inventors have found that the non-aqueous electrolytic solution is particularly likely to be discharged from this portion and that the non-aqueous electrolytic solution may be difficult to be retained there.
The non-aqueous electrolyte discharged to the outside of the flat-shaped wound electrode body, for example, is impregnated (penetrated) into the wound electrode body again from the constituent members of the wound electrode body. The battery reaction inside the electrode assembly cannot be supplied with charge carriers, which may lead to a decrease in battery capacity. This is not preferable because it increases the battery resistance and may cause deterioration of the battery performance.
かかる充放電時における、捲回電極体の内部に非水電解液を保持させる手段として、捲回電極体を収容する箱型筐体(即ち、電池ケース)の形態および捲回電極体の寸法を調整することにより非水電解液が排出されにくい構造の捲回電極体を作製することが挙げられる(特許文献1)。しかしながら、本発明者らの検討によると、特許文献1に記載の技術には、非水電解液の排出防止構造はあるものの、当該捲回電極体への非水電解液の含浸(浸透)のしやすさについては、改善の余地があることが確認された。
そこで、本発明は、上述した扁平形状の捲回電極体を備えた非水電解液二次電池に関する課題を解決するべく創出されたものであり、ハイレートで充放電を繰り返した場合であっても扁平形状の捲回電極体からの非水電解液の排出を抑制し、かつ該捲回電極体に非水電解液の浸透性を付与し、非水電解液の排出にともなう電池性能の劣化を防止し得る非水電解液二次電池の提供を目的とする。
As a means for retaining the non-aqueous electrolyte inside the wound electrode assembly during charging and discharging, the shape of the box-shaped housing (i.e., battery case) containing the wound electrode assembly and the dimensions of the wound electrode assembly are adjusted. For example, preparation of a wound electrode body having a structure in which the non-aqueous electrolyte is less likely to be discharged by adjustment (Patent Document 1). However, according to the studies of the present inventors, although the technique described in Patent Document 1 has a structure for preventing discharge of the non-aqueous electrolyte, impregnation (permeation) of the non-aqueous electrolyte into the wound electrode body is difficult. Regarding ease of use, it was confirmed that there is room for improvement.
Therefore, the present invention was created to solve the problems related to the above-described non-aqueous electrolyte secondary battery equipped with a flat wound electrode body, and even when charging and discharging are repeated at a high rate, Discharge of the non-aqueous electrolyte from the flat wound electrode body is suppressed, and the wound electrode body is provided with permeability of the non-aqueous electrolyte to prevent deterioration of battery performance due to discharge of the non-aqueous electrolyte. It is an object of the present invention to provide a non-aqueous electrolyte secondary battery that can prevent
上記目的を実現すべく、本発明により、正極活物質を含む正極活物質層を有する長尺なシート状の正極と、負極活物質を含む負極活物質層を有する長尺なシート状の負極が、長尺なシート状のセパレータを介在させつつ重ね合わされ捲回軸の周りに捲回された捲回電極体と、非水電解液とを備える非水電解液二次電池が提供される。
ここに開示される非水電解液二次電池では、上記捲回電極体は扁平形状であり、上記捲回軸と直交する横断面において、長手方向の両端部であって、外表面が曲面からなる2つのR部と、両R部に挟まれている長手方向の中央部分であって2つの表面を有するF部と、を有する。
そして、上記捲回電極体の上記横断面において、中心から最も離れた上記2つのR部それぞれの外表面上にある外側湾曲頂点P,P’を結ぶ直線P-P’を扁平中央線Lと規定したとき、上記捲回電極体の上記横断面において、上記扁平中央線Lに沿って、上記2つのR部において最も内側となる正極または負極の内側頂点V,V’を結ぶ直線V-V’の長さをF部長辺長さAとし、一方の上記内側頂点Vと、該頂点Vに近い方の上記外側湾曲頂点Pまでの厚みV-PをR部中心厚みDとすると、A/(A+D)が、0.64以上0.92以下である。
また、上記正極活物質層の多孔度が10vol%以上50vol%以下である。
In order to achieve the above object, according to the present invention, a long sheet-like positive electrode having a positive electrode active material layer containing a positive electrode active material and a long sheet-like negative electrode having a negative electrode active material layer containing a negative electrode active material are provided. Provided is a non-aqueous electrolyte secondary battery comprising a wound electrode assembly that is superimposed and wound around a winding shaft with a long sheet-like separator interposed therebetween, and a non-aqueous electrolyte.
In the non-aqueous electrolyte secondary battery disclosed herein, the wound electrode body has a flat shape, and in a cross section orthogonal to the winding axis, both ends in the longitudinal direction, and the outer surface is curved. and an F portion, which is a central portion in the longitudinal direction sandwiched between the R portions and has two surfaces.
In the cross section of the wound electrode body, a flat center line L is defined as a straight line PP' connecting the outer curved apexes P and P' on the outer surfaces of the two R portions farthest from the center. When defined, in the cross section of the wound electrode body, along the flat center line L, a straight line VV connecting the inner vertices V and V' of the innermost positive electrode or negative electrode in the two R portions ' is the length of the F long side length A, and the thickness VP between the inner vertex V and the outer curved vertex P closer to the vertex V is the central thickness D of the R portion, A/ (A+D) is 0.64 or more and 0.92 or less.
Moreover, the porosity of the positive electrode active material layer is 10 vol % or more and 50 vol % or less.
かかる構成の非水電解液二次電池では、上記扁平形状の捲回電極体の積層面の形状および上記正極活物質層の多孔度によって、該捲回電極体の上記R部へ集中しやすい膨張収縮の応力を緩和できる。これによって、当該膨張収縮によっても電解液が上記捲回電極体から排出されにくくなり、かつ非電解液が上記捲回電極体の内部に効率的に浸透できるようになる。この結果、上記捲回電極体の内部には非水電解液が保持されやすくなるため、膨張収縮を繰り返しても電池容量は小さくならず、電池抵抗の上昇を抑制できる。これにより、当該非水電解液二次電池の電池性能の低下を防止することができる。 In the non-aqueous electrolyte secondary battery having such a configuration, expansion tends to concentrate on the R portion of the wound electrode body due to the shape of the laminated surface of the flat wound electrode body and the porosity of the positive electrode active material layer. Contraction stress can be relaxed. As a result, the electrolytic solution is less likely to be discharged from the wound electrode assembly due to the expansion and contraction, and the non-electrolyte solution can efficiently permeate into the wound electrode assembly. As a result, the non-aqueous electrolyte is easily retained inside the wound electrode body, so that even if the expansion and contraction are repeated, the battery capacity does not decrease, and an increase in battery resistance can be suppressed. As a result, deterioration of battery performance of the non-aqueous electrolyte secondary battery can be prevented.
以下、図面を適宜参照しながら、ここで開示される二次電池の好適な実施形態について説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、各図面においては、同じ作用を奏する部材・部位には同じ符号を付している。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。 Preferred embodiments of the secondary battery disclosed herein will be described below with appropriate reference to the drawings. Matters other than those specifically mentioned in this specification, which are necessary for carrying out the present invention, can be grasped as design matters by those skilled in the art based on the prior art in the field. The present invention can be implemented based on the contents disclosed in this specification and common general technical knowledge in the field. Further, in each drawing, the same reference numerals are given to the members and parts having the same action. Also, the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relationships.
本明細書において「非水電解液二次電池」とは、電解液を構成する溶媒が非水系溶媒(即ち有機溶媒)を主として構成された二次電池をいう。ここで「二次電池」は、充放電可能で所定の電気エネルギーを繰り返し取り出し得る蓄電装置をいう。例えば、非水電解液中のアルカリ金属イオンが電荷の移動を担うリチウムイオン二次電池、ナトリウムイオン二次電池等は、ここでいう非水電解液二次電池に包含される典型例である。
「電極体」とは、正極、負極、および正負極間にセパレータとして機能し得る多孔質絶縁層を含む電池の主体を成す構造体をいう。「正極活物質」または「負極活物質」は、電荷担体となる化学種(例えば、リチウムイオン二次電池においてはリチウムイオン、ナトリウムイオン二次電池においてはナトリウムイオン)を可逆的に吸蔵および放出可能な化合物(正極活物質または負極活物質)をいう。
As used herein, the term "non-aqueous electrolyte secondary battery" refers to a secondary battery in which the solvent constituting the electrolyte is mainly composed of a non-aqueous solvent (that is, an organic solvent). Here, the term "secondary battery" refers to a chargeable and dischargeable power storage device from which predetermined electrical energy can be taken out repeatedly. For example, lithium-ion secondary batteries, sodium-ion secondary batteries, etc., in which alkali metal ions in a non-aqueous electrolyte carry charge transfer, are typical examples included in the non-aqueous electrolyte secondary batteries referred to herein.
"Electrode body" refers to a structure that constitutes the main body of a battery, including a positive electrode, a negative electrode, and a porous insulating layer that can function as a separator between the positive and negative electrodes. A “positive electrode active material” or “negative electrode active material” can reversibly absorb and release chemical species that act as charge carriers (for example, lithium ions in lithium ion secondary batteries and sodium ions in sodium ion secondary batteries). compound (positive electrode active material or negative electrode active material).
以下、非水電解液二次電池の典型例として、捲回電極体および非水電解液を電池ケースに収容した構成のリチウムイオン二次電池に対して本発明を適用する場合を主として本発明の実施形態を具体的に説明する。なお、以下で説明する実施形態は、本発明をかかる実施形態に記載されたものに限定することを意図したものではない。 In the following, as a typical example of a non-aqueous electrolyte secondary battery, the case of applying the present invention to a lithium ion secondary battery having a configuration in which a wound electrode body and a non-aqueous electrolyte are accommodated in a battery case will be mainly described. Embodiments will be specifically described. It should be noted that the embodiments described below are not intended to limit the present invention to those described in such embodiments.
図1に示すように、本実施形態に係るリチウムイオン二次電池100は、扁平形状の捲回電極体が、非水電解液とともに扁平な角型(箱形)形状の電池ケース30に収容された構成を有する。
電池ケース30は、上端が開放された扁平な直方体形状の電池ケース本体32と、その開口部を塞ぐ蓋体34とを備える。電池ケース30の上面(すなわち蓋体34)には、捲回電極体の正極と電気的に接続する外部接続用の正極端子42、および捲回電極体の負極と電気的に接続する負極端子44が設けられている。蓋体34にはまた、従来のリチウムイオン二次電池の電池ケースと同様に、電池ケース30の内部で発生したガスを電池ケース30の外部に排出するための安全弁36が備えられている。
電池ケース30の材質としては、アルミニウム等の金属材料、ポリイミド樹脂等の樹脂材料が挙げられる。ケースの形状(容器の外形)は、例えば円形(円筒形、コイン形、ボタン形)、六面体形(直方体形、立方体形)、袋体形、およびそれらを加工し変形させた形状等であってもよい。
As shown in FIG. 1, in a lithium ion
The
Examples of materials for the
図2に示すように、捲回電極体20は、長尺なシート状のアルミニウム等の金属製の正極集電体52の片面または両面(ここでは両面)に長手方向に沿って正極活物質層54が形成された正極50と、長尺状の銅等の金属製の負極集電体62の片面または両面(ここでは両面)に長手方向に沿って負極活物質層64が形成された負極60とを、長尺なシート状のセパレータ70を介して重ね合わせて長尺方向に捲回し扁平形状に成形されている。
捲回電極体20の捲回軸方向における中央部分には、捲回コア部分(すなわち、正極50の正極活物質層54と、負極60の負極活物質層64と、セパレータ70とが密に積層された部分)が形成されている。また、捲回電極体20の捲回軸方向の両端部では、正極50における正極活物質層非形成部52aおよび負極60における負極活物質層非形成部62aが、それぞれ捲回コア部分から外方にはみ出ている。かかる正極活物質層非形成部52aおよび負極活物質層非形成部62aには、正極集電板および負極集電板がそれぞれ付設され、正極端子42(図1参照)および負極端子44(図1参照)とそれぞれ電気的に接続される。
As shown in FIG. 2, the
In the central portion of the
捲回軸方向に直交する横断面を示した図3から明らかなように、本実施形態に係る捲回電極体20は、その横断面の長手方向の両端部であって外表面が湾曲面からなる2つのR部22a,22bと、両R部22a,22bに挟まれている長手方向の中央部分であって2つの表面を有するF部24とを有する、扁平形状の捲回電極体である。
As is clear from FIG. 3 showing a cross section perpendicular to the winding axial direction, the
捲回電極体20の横断面において、該横断面の中心から最も離れた2つのR部22a,22bそれぞれの外表面上にある外側湾曲頂点P,P’を結ぶ直線P-P’を扁平中央線Lと規定する。
また、上記横断面において、扁平中央線Lに沿って、2つのR部22a,22bにおいて最も内側となる正極または負極の内側頂点V,V’を結ぶ直線V-V’の長さをF部の長辺長さAとする。さらに、一方の内側頂点Vと、該頂点Vに近い方の外側湾曲頂点Pまでの厚みV-P(内側頂点V’と、該頂点V’に近い方の外側湾曲頂点P’までの厚みV’-P’でもよい)をR部中心厚みDとする。このとき、好ましくは、(A+D)に対するAの比(割合)、即ちA/(A+D)が、0.64以上0.92以下(例えば0.88以上0.92以下)となるように設定する。
In the cross section of the
In the cross section, along the flat center line L, the length of a straight line VV' that connects the innermost inner vertexes V and V' of the positive electrode or the negative electrode in the two
捲回電極体20の正極50、負極60、セパレータ70を構成する材料、部材は従来の一般的な非水電解液二次電池と同様のものを使用可能である。
正極活物質層54に含まれる正極活物質としては、好適例として、層状系のリチウム含有遷移金属酸化物が挙げられる。例えば、構成元素として少なくともLi,Ni,CoおよびMnを含む層状構造(典型的には、六方晶系に属する層状岩塩型構造)のリチウムニッケルコバルトマンガン複合酸化物(例えば、LiNi0.38Co0.32Mn0.3O2)が好ましい。
Materials and members constituting the
Preferred examples of the positive electrode active material contained in the positive electrode
正極活物質層54全体に占める正極活物質の割合は、おおよそ60質量%以上(典型的には60質量%以上、70質量%以上)とすることが適当であり、通常はおおよそ82質量%~99質量%であることが好ましい。
正極活物質層54の多孔度(多孔率、空孔率)は、例えば10~50vol%(例えば20~40vol%)であることが好ましい。正極活物質層54がこのような性状を満たすことにより、正極活物質層54内に適度な空隙を保つことができ、非水電解液を十分に浸透させることができる。なお、本明細書において「多孔度」とは、水銀ポロシメータの測定によって得られた全細孔容積(cm3)を活物質層の見かけの体積(cm3)で除して100を掛けた値をいう。
The proportion of the positive electrode active material in the entire positive electrode
The porosity (porosity, porosity) of the positive electrode
正極活物質層54には、必要に応じて導電助剤、結合剤(バインダ)などを含有してもよい。
導電助剤としては、例えば、アセチレンブラック(AB)、気相成長炭素、ケッチェンブラックなどが挙げられる。正極活物質層54全体に占める導電助剤の割合は、おおよそ0.5質量%以上(典型的には、1質量%以上)とすることが適当であり、通常はおおよそ20質量%以下(典型的には、18質量%以下)であることが好ましい。
また、バインダとしては、例えば、スチレンブタジエンゴム(SBR)、ポリフッ化ビニリデン(PVdF)、ブチルゴム(BR)、アクリロニトリルブタジエンゴム(ABR)等が挙げられる。正極活物質層54全体に占めるバインダの割合は、おおよそ0.1質量%以上(典型的には、0.5質量%以上)とすることが適当であり、通常はおおよそ5.0質量%以下(典型的には、3.0質量%以下)であることが好ましい。
The positive electrode
Examples of conductive aids include acetylene black (AB), vapor-grown carbon, and ketjen black. The proportion of the conductive aid in the entire positive electrode
Examples of binders include styrene-butadiene rubber (SBR), polyvinylidene fluoride (PVdF), butyl rubber (BR), and acrylonitrile-butadiene rubber (ABR). The proportion of the binder in the entire positive electrode
負極活物質層64に含まれる負極活物質としては、例えば、天然黒鉛(石墨)や人工黒鉛などの黒鉛系材料、グラファイト、メソカーボンマイクロビーズ、カーボンブラックの様な炭素系負極活物質、シリコーンおよびスズならびにこれらの化合物が挙げられる。
Examples of the negative electrode active material contained in the negative electrode
負極活物質層64には、必要に応じて上述する導電助剤、結合剤(バインダ)などを含有してもよい。なお、その他、増粘剤等の添加剤を適宜使用することもでき、例えば増粘剤としてはカルボキシメチルセルロース(CMC)やメチルセルロース(MC)が挙げられる。
The negative electrode
セパレータシート70としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔性シート(フィルム)が挙げられる。該多孔性シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。
Examples of the
非水電解液としては、典型的には、非水溶媒(有機溶媒)中に支持塩(即ち、電解質)を含有する非水電解液を用いることができる。
非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、およびエチルメチルカーボネート(EMC)等のうちの1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。
支持塩としては、例えばLiPF6、LiBF4、LiClO4等のリチウム化合物(リチウム塩)の1種または2種以上を用いることができる。特に好ましくは、LiPF6を用いる。
As the non-aqueous electrolytic solution, typically, a non-aqueous electrolytic solution containing a supporting salt (that is, an electrolyte) in a non-aqueous solvent (organic solvent) can be used.
As the non-aqueous solvent, for example, one of ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) is used alone, or Two or more kinds can be used in appropriate combination.
As the supporting electrolyte, one or more of lithium compounds (lithium salts) such as LiPF 6 , LiBF 4 and LiClO 4 can be used. LiPF 6 is particularly preferably used.
上述した各種の材料、部材を用いてリチウムイオン二次電池100を製造する。リチウムイオン二次電池100は、上述した扁平形状の捲回電極体の横断面の形状および正極活物質層54の構成によって、捲回電極体20の充放電時においてもR部22aおよび22bに集中しやすい膨張収縮の応力を緩和することができる。このことによって、当該膨張収縮による非水電解液の排出が抑制され、かつ非電解液の捲回電極体20への浸透性が改善される。この結果、捲回電極体20の内部に非水電解液が保持されやすくなり、捲回電極体20がハイレート充放電によって膨張収縮を繰り返しても、リチウムイオン二次電池100の電池容量は小さくならず、電池抵抗の上昇を防止できる。したがって、本発明によって当該電池の良好な電池性能を維持することができる。
The lithium ion
また、捲回電極体の外部に排出された非水電解液によって、使用状態によっては、負極活物質層64上に電荷担体に由来する物質(例えば金属リチウム)が析出する場合がある。本実施形態に係るリチウムイオン二次電池100では、捲回電極体20からの非水電解液の排出が抑制されているため、負極活物質層64上における金属リチウム等の析出を防止することができる。
In addition, depending on the state of use, the non-aqueous electrolyte discharged to the outside of the wound electrode body may deposit a substance derived from the charge carrier (for example, metallic lithium) on the negative electrode
以下、本発明に関するいくつかの試験例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。
<試験例1:リチウムイオン二次電池の構築>
正極活物質粉末として、LiNi0.38Co0.32Mn0.30O2(LNCM)を用意した。かかるLNCMと、導電材としてABと、バインダとしてPVdFとを、LNCM:AB:PVdF=90.4:8.1:1.5の重量比となるように混練機に投入し、N-メチルピロリドン(NMP)中で混練して、正極活物質層形成用スラリーを調製した。このスラリーを、アルミニウム箔(正極集電体)の両面に塗布し、乾燥後にプレスすることによって、正極を作製した。なお、水銀ポロシメータで測定した本実施例のサンプル1~14に係る正極活物質層の多孔度(vol%)は、表1に示されている。
負極活物質粉末として天然黒鉛を用意した。かかる天然黒鉛と、バインダとしてSBRと、増粘剤としてCMCとを、天然黒鉛:SBR:CMC=98:1:1の重量比となるように混練機に投入し、イオン交換水中で混練して、負極活物質層形成用スラリーを調製した。このスラリーを、銅箔(負極集電体)の両面に塗布し、乾燥後にプレスすることによって、負極を作製した。
Several test examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in such specific examples.
<Test Example 1: Construction of Lithium Ion Secondary Battery>
LiNi 0.38 Co 0.32 Mn 0.30 O 2 (LNCM) was prepared as a positive electrode active material powder. This LNCM, AB as a conductive material, and PVdF as a binder are put into a kneader so that the weight ratio of LNCM: AB: PVdF = 90.4: 8.1: 1.5, and N-methylpyrrolidone (NMP) to prepare a slurry for forming a positive electrode active material layer. This slurry was applied to both sides of an aluminum foil (positive electrode current collector), dried and then pressed to produce a positive electrode. Table 1 shows the porosities (vol %) of the positive electrode active material layers according to Samples 1 to 14 of this example measured by a mercury porosimeter.
Natural graphite was prepared as a negative electrode active material powder. The natural graphite, SBR as a binder, and CMC as a thickener are put into a kneader so that the weight ratio of natural graphite: SBR: CMC = 98: 1: 1, and kneaded in ion-exchanged water. , a slurry for forming a negative electrode active material layer was prepared. This slurry was applied to both sides of a copper foil (negative electrode current collector), dried and then pressed to produce a negative electrode.
上記で作製した正極と負極とを、PEおよびPPからなる3層構造(PP/PE/PP)で厚み20μmのセパレータシート2枚を介して長尺方向に重ね合わせ、成形後の各々のサンプルに係るA/(A+D)が表1に示す値になるように、市販の捲回機によって捲回張力を適宜調整しつつ長尺方向に捲回し、扁平形状に成形して捲回電極体を作製した。
次に、得られた捲回電極体を電池ケースの内部に収容し、電池ケースの開口部から非水電解液を注入した。非水電解液としては、ECとDMCとEMCとLiPF6とを、EC:DMC:EMC:LiPF6=30:28:28:14の重量比で含む混合液を用いた。そして、該開口部を封止し、評価試験用リチウムイオン二次電池(即ち、サンプル1~14)を得た。
The positive electrode and the negative electrode prepared above are stacked in the longitudinal direction with a three-layer structure (PP/PE/PP) made of PE and PP with two separator sheets having a thickness of 20 μm interposed therebetween. The resulting A/(A+D) is wound in the longitudinal direction with a commercially available winding machine while adjusting the winding tension as appropriate, and formed into a flat shape to produce a wound electrode assembly. did.
Next, the obtained wound electrode body was housed inside a battery case, and a non-aqueous electrolyte was injected from the opening of the battery case. As the non-aqueous electrolyte, a mixed solution containing EC, DMC, EMC and LiPF 6 in a weight ratio of EC:DMC:EMC:LiPF 6 =30:28:28:14 was used. Then, the opening was sealed to obtain lithium ion secondary batteries for evaluation test (ie, samples 1 to 14).
<ハイレート充放電サイクル試験:IV抵抗の測定>
例1~例14に係るリチウムイオン二次電池について、コンディショニング処理後、25℃の環境下、各評価試験用電池のSOC(state of charge)を80%に調整し、200Aで10秒間充電した後で放電する、ハイレートでの矩形波充放電を500サイクル実施した。そして、かかる充放電サイクル試験前におけるIV抵抗(電池の初期抵抗)と充放電サイクル試験後におけるIV抵抗から抵抗上昇率を算出した。ここで、抵抗上昇率は、「充放電サイクル試験後のIV抵抗/充放電サイクル試験前のIV抵抗」により求めた。
当該試験結果を、表1および図4に示す。ここで、図4中、各評価試験用電池の抵抗上昇率は括弧内に示されており、この数値が1であるものは、抵抗の上昇がなかったことを表している。
<High rate charge/discharge cycle test: measurement of IV resistance>
For the lithium ion secondary batteries according to Examples 1 to 14, after conditioning treatment, the SOC (state of charge) of each evaluation test battery was adjusted to 80% in an environment of 25 ° C., and charged at 200 A for 10 seconds. 500 cycles of high rate rectangular wave charging and discharging were performed. Then, the resistance increase rate was calculated from the IV resistance (initial resistance of the battery) before the charge-discharge cycle test and the IV resistance after the charge-discharge cycle test. Here, the rate of increase in resistance was determined by "IV resistance after charge/discharge cycle test/IV resistance before charge/discharge cycle test".
The test results are shown in Table 1 and FIG. Here, in FIG. 4, the resistance increase rate of each battery for evaluation test is shown in parentheses, and when this numerical value is 1, it means that the resistance did not increase.
表1および図4に示す結果から明らかなように、正極活物質層の多孔度を10vol%以上50vol%以下に調整し、かつ、A/(A+D)を0.64以上0.92以下に調整したサンプル1~6に係るリチウムイオン電池においては、正極活物質層の多孔度およびA/(A+D)をかかる範囲内に設定していないサンプル7~14のリチウムイオン電池と比較して、電池抵抗の上昇を抑制することができた。
以上の結果から、本実施形態に係るリチウムイオン二次電池は、ハイレートサイクル特性(即ち、良好な電池性能の維持)に優れた特徴を有する。
As is clear from the results shown in Table 1 and FIG. 4, the porosity of the positive electrode active material layer was adjusted to 10 vol% or more and 50 vol% or less, and A/(A+D) was adjusted to 0.64 or more and 0.92 or less. In the lithium ion batteries according to samples 1 to 6, the battery resistance is lower than that of the lithium ion batteries of samples 7 to 14, in which the porosity and A/(A+D) of the positive electrode active material layer are not set within such ranges. was able to suppress the increase in
From the above results, the lithium ion secondary battery according to the present embodiment has excellent high-rate cycle characteristics (that is, maintenance of good battery performance).
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。その場合においても、以上に例示した効果と同様の効果が発揮され得る。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. Even in that case, the same effect as the effect illustrated above can be exhibited.
20 捲回電極体
22a(b) R部
24 F部
30 電池ケース
32 電池ケース本体
34 蓋体
36 安全弁
42 正極端子
44 負極端子
50 正極(正極シート)
52 正極集電体
52a 正極活物質層非形成部
54 正極活物質層
60 負極(負極シート)
62 負極集電体
62a 負極活物質層非形成部
64 負極活物質層
70 セパレータ
100 リチウムイオン二次電池
P,P’ 外側湾曲頂点
V,V’ 内側頂点
L 扁平中央線
A F部の長辺長さ
D R部中心厚み
20
52 positive electrode
62 Negative electrode
Claims (1)
非水電解液と
を備える非水電解液二次電池であって、
前記正極活物質は、リチウムニッケルコバルトマンガン複合酸化物で構成されており、
前記負極活物質は、黒鉛系材料で構成されており、かつ、リチウムチタン複合酸化物を含まず、
前記捲回電極体は扁平形状であり、前記捲回軸と直交する横断面において、
長手方向の両端部であって、外表面が曲面からなる2つのR部と、
両R部に挟まれている長手方向の中央部分であって2つの表面を有するF部と、
を有するものであり、
前記捲回電極体の前記横断面において、中心から最も離れた前記2つのR部それぞれの外表面上にある外側湾曲頂点P,P’を結ぶ直線P-P’を扁平中央線Lと規定したとき、
前記捲回電極体の前記横断面において、前記扁平中央線Lに沿って、前記2つのR部において最も内側となる正極または負極の内側頂点V,V’を結ぶ直線V-V’の長さをF部長辺長さAとし、一方の前記内側頂点Vと、該頂点Vに近い方の前記外側湾曲頂点Pまでの厚みV-PをR部中心厚みDとしたとき、
A/(A+D)が、0.64以上0.92以下であり、
ここで、前記正極活物質層の多孔度が10vol%以上20vol%以下である、非水電解液二次電池。 A long sheet-shaped positive electrode having a positive electrode active material layer containing a positive electrode active material and a long sheet-shaped negative electrode having a negative electrode active material layer containing a negative electrode active material are interposed with a long sheet-shaped separator. a wound electrode body that is overlapped and wound around a winding axis;
Non-aqueous electrolyte and
A non-aqueous electrolyte secondary battery comprising
The positive electrode active material is composed of a lithium-nickel-cobalt-manganese composite oxide,
The negative electrode active material is composed of a graphite-based material and does not contain a lithium-titanium composite oxide,
The wound electrode body has a flat shape, and in a cross section orthogonal to the winding axis,
Two R portions having curved outer surfaces at both ends in the longitudinal direction,
an F section having two surfaces, which is a central portion in the longitudinal direction sandwiched between both R sections;
and
In the transverse section of the wound electrode body, a flat center line L is defined as a straight line PP' connecting the outer curved apexes P and P' on the outer surfaces of the two R portions farthest from the center. when
In the cross section of the wound electrode body, along the flat center line L, the length of a straight line VV' that connects the inner vertexes V and V' of the positive electrode or the negative electrode that are innermost in the two R portions is the F long side length A, and the thickness VP between one of the inner vertices V and the outer curved apex P closer to the vertex V is the R part center thickness D,
A / (A + D) is 0.64 or more and 0.92 or less,
Here, the porosity of the positive electrode active material layer is 10 vol% or more20A non-aqueous electrolyte secondary battery that is vol % or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018232035A JP7153193B2 (en) | 2018-12-11 | 2018-12-11 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018232035A JP7153193B2 (en) | 2018-12-11 | 2018-12-11 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020095835A JP2020095835A (en) | 2020-06-18 |
JP7153193B2 true JP7153193B2 (en) | 2022-10-14 |
Family
ID=71085615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018232035A Active JP7153193B2 (en) | 2018-12-11 | 2018-12-11 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7153193B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116802864A (en) * | 2022-08-30 | 2023-09-22 | 宁德新能源科技有限公司 | Electrochemical devices and electrical equipment |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005347125A (en) | 2004-06-03 | 2005-12-15 | Toshiba Corp | Non-aqueous electrolyte secondary battery |
JP2007157560A (en) | 2005-12-07 | 2007-06-21 | Gs Yuasa Corporation:Kk | Nonaqueous electrolyte secondary battery |
JP2007184261A (en) | 2005-12-06 | 2007-07-19 | Matsushita Battery Industrial Co Ltd | Lithium-ion secondary battery |
JP2009048876A (en) | 2007-08-21 | 2009-03-05 | Hitachi Maxell Ltd | Nonaqueous secondary battery |
JP2017010878A (en) | 2015-06-25 | 2017-01-12 | トヨタ自動車株式会社 | Non-aqueous electrolyte secondary battery |
JP2018032575A (en) | 2016-08-26 | 2018-03-01 | トヨタ自動車株式会社 | Lithium ion secondary battery and battery pack |
JP2018085180A (en) | 2016-11-21 | 2018-05-31 | トヨタ自動車株式会社 | Lithium ion secondary battery |
WO2020059131A1 (en) | 2018-09-21 | 2020-03-26 | 株式会社 東芝 | Battery and battery pack |
-
2018
- 2018-12-11 JP JP2018232035A patent/JP7153193B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005347125A (en) | 2004-06-03 | 2005-12-15 | Toshiba Corp | Non-aqueous electrolyte secondary battery |
JP2007184261A (en) | 2005-12-06 | 2007-07-19 | Matsushita Battery Industrial Co Ltd | Lithium-ion secondary battery |
JP2007157560A (en) | 2005-12-07 | 2007-06-21 | Gs Yuasa Corporation:Kk | Nonaqueous electrolyte secondary battery |
JP2009048876A (en) | 2007-08-21 | 2009-03-05 | Hitachi Maxell Ltd | Nonaqueous secondary battery |
JP2017010878A (en) | 2015-06-25 | 2017-01-12 | トヨタ自動車株式会社 | Non-aqueous electrolyte secondary battery |
JP2018032575A (en) | 2016-08-26 | 2018-03-01 | トヨタ自動車株式会社 | Lithium ion secondary battery and battery pack |
JP2018085180A (en) | 2016-11-21 | 2018-05-31 | トヨタ自動車株式会社 | Lithium ion secondary battery |
WO2020059131A1 (en) | 2018-09-21 | 2020-03-26 | 株式会社 東芝 | Battery and battery pack |
Also Published As
Publication number | Publication date |
---|---|
JP2020095835A (en) | 2020-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107785620B (en) | Lithium-ion secondary cells and battery packs | |
JP6208708B2 (en) | Lithium ion secondary battery and system using the same | |
JP5828346B2 (en) | Lithium secondary battery | |
JP5999442B2 (en) | Nonaqueous electrolyte secondary battery | |
KR102155150B1 (en) | Energy storage device, energy storage system, and method | |
JP6024990B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
JP2009211956A (en) | Lithium-ion battery | |
JP6354991B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2016039114A (en) | Nonaqueous electrolyte secondary battery | |
KR101707335B1 (en) | Nonaqueous electrolyte secondary battery | |
JP2016024987A (en) | Nonaqueous secondary battery | |
JP6894201B2 (en) | Non-aqueous electrolyte secondary battery | |
JP7153193B2 (en) | Non-aqueous electrolyte secondary battery | |
CN102282715A (en) | Lithium ion secondary battery | |
JP2012043658A (en) | Lithium ion secondary battery and manufacturing method thereof | |
JP6778396B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2016134277A (en) | Non-aqueous electrolyte secondary battery | |
JP6900928B2 (en) | Lithium ion secondary battery | |
JP2018125216A (en) | Lithium ion secondary battery | |
JP6731155B2 (en) | Non-aqueous electrolyte secondary battery | |
JP6663570B2 (en) | Manufacturing method of non-aqueous electrolyte secondary battery | |
JP2020080221A (en) | Positive electrode of lithium-ion secondary battery | |
JP2018097980A (en) | Lithium ion secondary battery | |
JP2017103106A (en) | Lithium ion secondary battery | |
JP2016091898A (en) | Lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220303 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220414 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220901 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220914 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7153193 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |