[go: up one dir, main page]

JP7151665B2 - Water-cooled mold for continuous casting and continuous casting method for steel - Google Patents

Water-cooled mold for continuous casting and continuous casting method for steel Download PDF

Info

Publication number
JP7151665B2
JP7151665B2 JP2019151669A JP2019151669A JP7151665B2 JP 7151665 B2 JP7151665 B2 JP 7151665B2 JP 2019151669 A JP2019151669 A JP 2019151669A JP 2019151669 A JP2019151669 A JP 2019151669A JP 7151665 B2 JP7151665 B2 JP 7151665B2
Authority
JP
Japan
Prior art keywords
mold
continuous casting
water
mold plate
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019151669A
Other languages
Japanese (ja)
Other versions
JP2021030258A (en
Inventor
秀武 石井
陽一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019151669A priority Critical patent/JP7151665B2/en
Publication of JP2021030258A publication Critical patent/JP2021030258A/en
Application granted granted Critical
Publication of JP7151665B2 publication Critical patent/JP7151665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋳片引き抜き速度が2.0m/min以上の高速鋳造時であっても、鋳片の幅方向及び鋳造方向で均一で且つ高い熱流束で鋳片を冷却することを可能とする連続鋳造用水冷鋳型に関し、更に、この連続鋳造用水冷鋳型を用いた鋼の連続鋳造方法に関する。 INDUSTRIAL APPLICABILITY The present invention makes it possible to cool a slab with a uniform and high heat flux in the width direction and the casting direction of the slab even during high-speed casting with a slab withdrawal speed of 2.0 m/min or more. The present invention relates to a water-cooled mold for continuous casting, and further to a continuous casting method for steel using this water-cooled mold for continuous casting.

鋼の連続鋳造では、連続鋳造用水冷鋳型(以下、単に「鋳型」とも記す)の内部空間に溶鋼を注入し、溶鋼が鋳型表面と接触して冷却されて生成した凝固シェル(凝固殻)を外殻とする鋳片を、サポートロールやガイドロールなどの鋳片支持ロールで支持しながら連続的に鋳型下方に引き抜き、鋼鋳片を製造している。使用される鋳型は、一般的に、熱伝導率の高い銅板(銅製または銅合金製の鋳型プレート)を溶鋼側に配し、溶鋼側の反対側には鋼などからなるバックアッププレートを配し、前記銅板には鋳造方向に冷却水の流路となる冷却溝(「冷却スリット」とも呼ばれる)が形成された内部水冷型の構造である。バックアッププレート側には、冷却水の供給路及び排水路が設けられている。 In continuous steel casting, molten steel is injected into the inner space of a water-cooled mold for continuous casting (hereinafter simply referred to as "mold"), and the molten steel is cooled by contact with the mold surface to form a solidified shell (solidified shell). A steel slab is manufactured by continuously drawing out a slab, which is to be the outer shell, from below the mold while being supported by slab support rolls such as support rolls and guide rolls. The mold used generally has a high thermal conductivity copper plate (copper or copper alloy mold plate) on the molten steel side, and a backup plate made of steel or the like on the opposite side of the molten steel side. The copper plate has an internal water-cooling structure in which cooling grooves (also called "cooling slits") are formed in the casting direction to serve as flow paths for cooling water. A supply channel and a drain channel for cooling water are provided on the backup plate side.

近年、生産効率の向上が図られており、鋳片引き抜き速度(「鋳造速度」ともいう)が2.0m/min以上の極めて高い速度での操業が一般的に実施されている。鋳片引き抜き速度の上昇に伴い、凝固シェルは、鋳型出側でより一層厚みが薄く、より一層不均一成長が発生しやすくなる。その結果、鋳片表面に縦割れが発生したり、凝固シェルが破断して溶鋼が鋳型下端以降で漏れ出すブレークアウトと呼ばれる操業上の大問題が発生したりする。 In recent years, efforts have been made to improve production efficiency, and operations are generally carried out at an extremely high speed of 2.0 m/min or more for the cast strip withdrawal speed (also referred to as “casting speed”). As the strip withdrawal speed increases, the thickness of the solidified shell becomes thinner on the exit side of the mold, and non-uniform growth is more likely to occur. As a result, longitudinal cracks occur on the surface of the cast slab, and a major operational problem called breakout occurs, in which the solidified shell breaks and molten steel leaks from the lower end of the mold.

前述した縦割れが鋳片表面に生じた場合は、熱間圧延前の製鋼過程で表面疵をスカーファーやグラインダーなどによる手入れ処理で除去することが必要であり、経済性のメリットの大きい鋳片の直送加熱や直送圧延などが実施できなくなり、生産性向上の阻害要因となる。 If the above-mentioned vertical cracks occur on the surface of the slab, it is necessary to remove the surface flaws in the steelmaking process prior to hot rolling by using a scarfer or grinder, etc. Direct heating, direct rolling, etc. cannot be performed, which is a hindrance to productivity improvement.

このような連続鋳造鋳片における縦割れやブレークアウトの発生を防止するためには、凝固の初期段階で凝固シェル厚みを迅速且つ均一に成長させ、鋳型出側に至るまでに十分な厚みにできるような鋳型内での鋳片冷却技術を実現することが要求される。 In order to prevent the occurrence of longitudinal cracks and breakouts in such continuously cast slabs, the thickness of the solidified shell can be made to grow rapidly and uniformly in the initial stage of solidification, and the thickness can be made sufficient until reaching the exit side of the mold. It is required to realize a slab cooling technology in such a mold.

そこで、鋳型内での不均一冷却に起因する縦割れやブレークアウトを回避するために多数の手段が提案されている。 Numerous measures have been proposed to avoid longitudinal cracks and breakouts due to non-uniform cooling in the mold.

例えば、特許文献1には、鋳片引き抜き速度が1.3m/min以上の高速鋳造用の水冷式連続鋳造用鋳型であって、溶鋼と接する鋳型表面の少なくとも上半分に、(1)水平方向の凹部の幅または直径:3mm超、80mm以下、(2)凹部の深さ:100~1000μm、(3)凹部面積率:50~95%、を満足する凹凸を有する連続鋳造用水冷鋳型が提案されている。特許文献1は、メニスカス(「鋳型内溶鋼湯面」ともいう)付近の熱流束を弱めてメニスカス付近の抜熱量を均一化させ、鋳片の縦割れを防止するという技術である。 For example, Patent Document 1 discloses a water-cooled continuous casting mold for high-speed casting with a cast strip withdrawal speed of 1.3 m / min or more, in which at least the upper half of the mold surface in contact with molten steel has (1) a horizontal direction The width or diameter of the concave portion: more than 3 mm and 80 mm or less, (2) the depth of the concave portion: 100 to 1000 μm, (3) the area ratio of the concave portion: 50 to 95%. It is Patent Document 1 is a technique of weakening the heat flux near the meniscus (also referred to as the "molten steel surface in the mold") to equalize the amount of heat removal near the meniscus, thereby preventing longitudinal cracks in the cast slab.

特許文献2には、鋳型銅板の熱伝導率に対する比率が所定の範囲である熱伝導率を有する金属または非金属が、溶鋼と接する鋳型表面に設けた凹部に充填された異種物質充填部を、メニスカスを含む領域に複数個有し、且つ、前記異種物質充填部の設置位置における鋳型銅板表面と鋳型銅板の溝形水路(冷却スリット)との間の熱抵抗が所定の値である連続鋳造用鋳型が提案されている。特許文献2は、凝固初期での凝固シェルから連続鋳造用鋳型への熱流束を周期的に増減させ、この熱流束の増減により、凝固シェルに作用する鋼の変態による応力や熱応力を低減し、凝固シェル表面における割れの発生を抑制するという技術である。 In Patent Document 2, a metal or non-metal having thermal conductivity with a ratio to the thermal conductivity of the copper plate of the mold is in a predetermined range. For continuous casting, having a plurality of them in a region including a meniscus, and having a predetermined value of thermal resistance between the mold copper plate surface and the groove-shaped water channel (cooling slit) of the mold copper plate at the position where the dissimilar material filling part is installed. A template has been proposed. Patent document 2 periodically increases or decreases the heat flux from the solidified shell to the continuous casting mold at the initial stage of solidification, and by increasing or decreasing the heat flux, the stress and thermal stress due to steel transformation acting on the solidified shell are reduced. , to suppress the occurrence of cracks on the surface of the solidified shell.

特許文献3には、鋳型の溝形水路(冷却スリット)を下部と上部とに分割し、鋳型下部の冷却水の流速を鋳型上部の冷却水の流速よりも速くして、鋳型の下部と上部との抜熱量の比(下部の抜熱量/上部の抜熱量)を1.47以上として連続鋳造する連続鋳造方法が提案されている。特許文献3は、鋳型の上部は緩冷却化し、鋳型の下部は強冷却化し、これによって、中炭素鋼の縦割れ防止及び凝固シェル厚みの増大を図るという技術である。 In Patent Document 3, the grooved water channel (cooling slit) of the mold is divided into a lower part and an upper part, and the flow velocity of the cooling water in the lower part of the mold is made faster than the flow velocity of the cooling water in the upper part of the mold. A continuous casting method has been proposed in which the heat removal amount ratio (lower heat removal amount/upper heat removal amount) is set to 1.47 or more. Patent document 3 is a technique of slow cooling the upper part of the mold and intensive cooling the lower part of the mold, thereby preventing longitudinal cracks in medium carbon steel and increasing the thickness of the solidified shell.

特許文献4には、連続鋳造用水冷鋳型の溝形水路(冷却スリット)の冷却水の流速を5m/s以下に低下させることで、溝形水路(冷却スリット)の銅板側の温度を冷却水の飽和温度を超える状態にさせて、伝熱形態を核沸騰熱伝達域とし、熱流束を向上させる手段が提案されている。特許文献4は、連続鋳造用水冷鋳型の通常の伝熱形態は強制対流熱伝達域であるが、核沸騰熱伝達域に移行させて熱流束を増大させるという技術である。 In Patent Document 4, by reducing the flow velocity of cooling water in a grooved water channel (cooling slit) of a water-cooled mold for continuous casting to 5 m / s or less, the temperature on the copper plate side of the grooved water channel (cooling slit) is reduced to It has been proposed to increase the heat flux by bringing the heat transfer regime above the saturation temperature of the nucleate boiling heat transfer regime. Patent Document 4 discloses a technique of increasing the heat flux by shifting the normal heat transfer mode of a water-cooled mold for continuous casting from the forced convection heat transfer zone to the nucleate boiling heat transfer zone.

特開平9-94634号公報JP-A-9-94634 特開2017-39165号公報JP 2017-39165 A 特開平10-58093号公報JP-A-10-58093 特開平3-81049号公報JP-A-3-81049

しかしながら、上記従来技術には以下の問題がある。 However, the above prior art has the following problems.

特許文献1は、溶鋼と接する側の銅板表面に溝加工を施しており、溝加工を施した銅板表面は、凝固シェルとの摩擦により摩耗する。したがって、鋳型使用回数の増加に伴って溝深さが減少し、溝加工の効果が得られなくなる。また、溝加工の効果を充分に享受しようとすると、鋳型の使用回数を制限する必要があり、鋼鋳片の製造コストが増大する。加えて、鋳型表面に設けた凹凸による空気層などを鋳型銅板と凝固シェルと間に存在させることは冷却を弱めることになるので、高速鋳造を志向するには限界がある。 In Patent Document 1, grooves are formed on the surface of the copper plate that contacts the molten steel, and the grooved surface of the copper plate wears due to friction with the solidified shell. Therefore, as the number of times the mold is used increases, the depth of the groove decreases, and the effect of grooving cannot be obtained. Moreover, in order to fully enjoy the effect of grooving, it is necessary to limit the number of times the mold is used, which increases the production cost of the steel slab. In addition, the existence of an air layer or the like between the mold copper plate and the solidified shell due to the unevenness provided on the mold surface weakens the cooling, so there is a limit to high-speed casting.

特許文献2は、鋳型銅板表面の凹部に所定の熱伝導率を有する金属または非金属を充填するので、上記の特許文献1における問題点は軽減されるが、鋳片引き抜き速度を2.0m/min以上とするには、鋳型の冷却が不足し、鋳型下端で充分な凝固シェル厚が確保できないという問題がある。 In Patent Document 2, since the depressions on the mold copper plate surface are filled with a metal or non-metal having a predetermined thermal conductivity, the problem in Patent Document 1 is alleviated, but the strip drawing speed is reduced to 2.0 m/m. In order to increase the thickness to min or more, there is a problem that the cooling of the mold is insufficient and a sufficient solidified shell thickness cannot be secured at the lower end of the mold.

特許文献3は、鋳造方向に沿って延びる縦長形状の溝形水路(冷却スリット)が鋳型幅方向に複数個並んで設置されており、冷却スリットが形成されている位置の鋳型表面と形成されていない位置の鋳型表面とで、抜熱量が相違するという問題がある。また、高速鋳造に対応するために、冷却水の流速を高めて抜熱量を増加させようとするほど、鋳型幅方向における抜熱量の相違が大きくなり、鋳片の幅方向及び鋳造方向での均一な冷却は難しくなる。ましてや、鋳片引き抜き速度が2.0m/min以上となる高速鋳造時には、均一な冷却は困難である。また、鋳型の上部と下部との境界には冷却水路が形成されておらず、鋳造方向に均一な冷却を阻害している。 In Patent Document 3, a plurality of longitudinal groove-shaped water channels (cooling slits) extending along the casting direction are arranged side by side in the width direction of the mold, and are formed on the mold surface at the position where the cooling slits are formed. There is a problem that the amount of heat removal is different on the mold surface at the position where it is not. In addition, in order to cope with high-speed casting, the more heat is removed by increasing the flow rate of the cooling water, the greater the difference in heat removal in the width direction of the mold, and the more uniform the width and casting direction of the slab. cooling becomes difficult. Furthermore, uniform cooling is difficult during high-speed casting where the cast strip drawing speed is 2.0 m/min or more. In addition, no cooling channel is formed at the boundary between the upper and lower parts of the mold, which prevents uniform cooling in the casting direction.

特許文献4の方法について、本発明者らが、実機にて、鋳型銅板に埋設された熱電対の温度測定値に基づき確認した結果、特許文献4は、冷却水路が溝形水路(冷却スリット)であることから、鋳型幅方向及び鋳造方向における抜熱量の相違が起こりやすく、特に鋳片引き抜き速度が変化する場合に顕著となることがわかった。 As a result of confirming the method of Patent Document 4 based on the temperature measurement value of the thermocouple embedded in the mold copper plate in the actual machine, the method of Patent Document 4 is that the cooling water channel is a grooved water channel (cooling slit). Therefore, it was found that the difference in the amount of heat removal in the width direction of the mold and in the casting direction is likely to occur, and that it becomes remarkable especially when the slab withdrawal speed changes.

具体的には、鋳片引き抜き速度が低下して鋳型への伝熱量が減少すると、核沸騰の起点となる気泡の発生のしやすさが場所によって著しく異なるようになり、気泡が発生しにくい位置では、伝熱形態が核沸騰熱伝達域から強制対流熱伝達域へと変化する。伝熱形態が強制対流熱伝達域へと変化すると、鋳型による鋳片の抜熱量が低下するので、特に、浸漬ノズルからの吐出流が直接衝突する鋳片短辺などの凝固シェルの成長が不足し、鋳片短辺の凝固シェルが鋳型直下で膨らんでしまうバルジング現象やブレークアウトの発生を完全には抑えることができないことが確認できた。 Specifically, when the slab withdrawal speed decreases and the amount of heat transferred to the mold decreases, the susceptibility to the generation of bubbles, which is the starting point of nucleate boiling, varies significantly depending on the location. , the heat transfer regime changes from the nucleate boiling heat transfer regime to the forced convection heat transfer regime. When the heat transfer mode changes to the forced convection heat transfer region, the amount of heat removed from the slab by the mold decreases, so the growth of the solidified shell, especially on the short sides of the slab where the discharge flow from the submerged nozzle directly collides, is insufficient. However, it was confirmed that the occurrence of bulging and breakout, in which the solidified shell on the short side of the slab expands directly below the mold, cannot be completely suppressed.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、鋳片引き抜き速度が2.0m/min以上の高速鋳造時であっても、鋳片の幅方向及び鋳造方向で均一で且つ高い熱流束で鋳片を冷却することを可能とする連続鋳造用水冷鋳型を提供することであり、また、この連続鋳造用水冷鋳型を用いて、安定した高速鋳造と鋳片縦割れ抑制の両立を達成する連続鋳造方法を提供することである。 The present invention has been made in view of the above circumstances, and its object is to achieve uniformity in the width direction and casting direction of the slab even during high-speed casting where the slab withdrawal speed is 2.0 m/min or more. It is to provide a water-cooled mold for continuous casting that is capable of cooling a slab with a high heat flux and is capable of stable high-speed casting and suppression of vertical cracks in the slab using this water-cooled mold for continuous casting. It is to provide a continuous casting method that achieves both.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]冷却水路が形成されている銅合金製の鋳型プレートと、
前記冷却水路を覆うように前記鋳型プレートに取り付けられているバックアッププレートと、を有する連続鋳造用水冷鋳型であって、
前記鋳型プレートの下部での冷却水路は、鋳型幅方向に配列された複数の溝形水路(冷却スリット)で構成され、該複数の溝形水路の各々は、鋳造方向に延びた縦長形状であり、
前記鋳型プレートの上部での冷却水路は、鋳造方向に延び且つ鋳型幅方向に広がった箱形水路で構成され、該箱形水路は、前記鋳型プレートの下部の複数の冷却水路に連通し、
前記鋳型プレートの上部の箱形水路を構成する鋳型プレートの内壁面に、複数の凹部が設けられていることを特徴とする連続鋳造用水冷鋳型。
[2]前記凹部は、一定間隔で周期的に設けられていることを特徴とする、上記[1]に記載の連続鋳造用水冷鋳型。
[3]前記凹部は、半球状、円錐状、円錐台状、円筒状、尖塔状、角錐状のなかから選ばれる1種類の同一形状であることを特徴とする、上記[1]または上記[2]に記載の連続鋳造用水冷鋳型。
[4]前記凹部は、千鳥状に設けられていることを特徴とする、上記[1]から上記[3]のいずれかに記載の連続鋳造用水冷鋳型。
[5]前記凹部の深さは、0.1~2.0mmであることを特徴とする、上記[1]から上記[4]のいずれかに記載の連続鋳造用水冷鋳型。
[6]前記複数の凹部の一部は、前記鋳型プレートの熱伝導率とは異なる熱伝導率を有する材料で埋め込まれていることを特徴とする、上記[1]から上記[5]のいずれかに記載の連続鋳造用水冷鋳型。
[7]鋳型プレートの熱伝導率とは異なる熱伝導率を有する材料で埋め込まれている前記凹部は、周囲に対して平滑面とされていることを特徴とする、上記[6]に記載の連続鋳造用水冷鋳型。
[8]前記材料の熱伝導率は、前記鋳型プレートの熱伝導率よりも低いことを特徴とする、上記[6]または上記[7]に記載の連続鋳造用水冷鋳型。
[9]前記材料が埋め込まれていない凹部が鋳型幅方向に一列に設置され、前記材料が埋め込まれた凹部が鋳型幅方向に一列に設置され、且つ、前記材料が埋め込まれていない凹部が鋳型幅方向に一列に設置された群と、前記材料が埋め込まれた凹部が鋳型幅方向に一列に設置された群とが、鋳造方向に交互に設置されていることを特徴とする、上記[6]から上記[8]のいずれかに記載の連続鋳造用水冷鋳型。
[10]前記鋳型プレートの下部の冷却水路と前記鋳型プレートの上部の冷却水路との接続位置が、鋳型上端から150~500mmの範囲内であることを特徴とする、上記[1]から上記[9]のいずれかに記載の連続鋳造用水冷鋳型。
[11]前記鋳型プレートの下部での冷却水路における冷却水の流速は7.0~13.0m/sの範囲内であることを特徴とする、上記[1]から上記[10]のいずれかに記載の連続鋳造用水冷鋳型。
[12]上記[1]から上記[11]のいずれかに記載の連続鋳造用水冷鋳型を用いて溶鋼を連続鋳造する鋼の連続鋳造方法であって、鋳造開始から鋳造終了までの少なくとも一部の期間で、鋳片引き抜き速度を2.0m/min以上として連続鋳造することを特徴とする、鋼の連続鋳造方法。
The gist of the present invention for solving the above problems is as follows.
[1] A mold plate made of a copper alloy in which a cooling channel is formed;
A water-cooled mold for continuous casting, comprising a backup plate attached to the mold plate so as to cover the cooling water channel,
The cooling water channel in the lower part of the mold plate is composed of a plurality of groove-shaped water channels (cooling slits) arranged in the width direction of the mold, and each of the plurality of groove-shaped water channels has a vertically long shape extending in the casting direction. ,
The cooling water channel in the upper part of the mold plate is composed of a box-shaped water channel extending in the casting direction and widening in the width direction of the mold, and the box-shaped water channel communicates with a plurality of cooling water channels in the lower part of the mold plate,
A water-cooled mold for continuous casting, characterized in that a plurality of recesses are provided on an inner wall surface of a mold plate forming a box-shaped channel in the upper part of the mold plate.
[2] The water-cooled mold for continuous casting according to [1], wherein the recesses are provided periodically at regular intervals.
[3] The recesses have the same shape selected from a hemispherical shape, a conical shape, a truncated cone shape, a cylindrical shape, a spire shape, and a pyramid shape, in the above [1] or the above [ 2], the water-cooled mold for continuous casting.
[4] The water-cooled mold for continuous casting according to any one of [1] to [3], wherein the recesses are provided in a zigzag pattern.
[5] The water-cooled mold for continuous casting according to any one of [1] to [4], wherein the recess has a depth of 0.1 to 2.0 mm.
[6] Any one of [1] to [5] above, wherein a part of the plurality of recesses is embedded with a material having a thermal conductivity different from that of the mold plate. A water-cooled mold for continuous casting according to claim 1.
[7] The above-mentioned [6], characterized in that the recess embedded with a material having a thermal conductivity different from that of the mold plate has a smooth surface with respect to the surroundings. Water-cooled mold for continuous casting.
[8] The water-cooled mold for continuous casting according to [6] or [7] above, wherein the thermal conductivity of the material is lower than the thermal conductivity of the mold plate.
[9] The recesses in which the material is not embedded are arranged in a row in the width direction of the mold, the recesses in which the material is embedded are arranged in a row in the width direction of the mold, and the recesses in which the material is not embedded are arranged in the mold. A group in which the recesses embedded with the material are arranged in a row in the width direction and a group in which the recesses in which the material is embedded are arranged in a row in the width direction of the mold are alternately arranged in the casting direction [6] ] to the water-cooled mold for continuous casting according to any one of the above [8].
[10] From [1] to [ 9] The water-cooled mold for continuous casting according to any one of the above.
[11] Any one of [1] to [10] above, wherein the flow velocity of the cooling water in the cooling water passage under the mold plate is in the range of 7.0 to 13.0 m/s. A water-cooled mold for continuous casting according to .
[12] A steel continuous casting method for continuously casting molten steel using the water-cooled mold for continuous casting according to any one of [1] to [11], wherein at least part of the casting from the start of casting to the end of casting A continuous casting method for steel, characterized in that continuous casting is performed in a period of with a cast strip drawing speed of 2.0 m / min or more.

本発明によれば、連続鋳造用水冷鋳型の鋳型プレートの上部における冷却水路を、鋳造方向に延び且つ鋳型幅方向に広がった箱形水路で形成し、この箱形水路を構成する鋳型プレートの内壁面に、複数の凹部を設けるので、特に高速鋳造条件下や鋳片引き抜き速度の変化が起こる場合でも、連続鋳造用水冷鋳型の上部における均一強冷却を実現でき、凝固初期に形成される凝固シェルを早期に均一且つ十分な厚みに成長させることができる。その結果、鋳片の縦割れやブレークアウトの発生を防止できるようになる。 According to the present invention, the cooling water channel in the upper part of the mold plate of the water-cooled mold for continuous casting is formed by a box-shaped water channel extending in the casting direction and widening in the width direction of the mold. Since multiple recesses are provided on the wall surface, uniform strong cooling can be achieved in the upper part of the water-cooled mold for continuous casting even under high-speed casting conditions or when the slab withdrawal speed changes. can be grown to a uniform and sufficient thickness at an early stage. As a result, it becomes possible to prevent the occurrence of longitudinal cracks and breakouts in the cast slab.

連続鋳造用水冷鋳型の斜視図である。1 is a perspective view of a water-cooled mold for continuous casting; FIG. 大気圧下の水に対し、被冷却体の伝熱面の過熱度と熱流束との関係を示す図である。FIG. 4 is a diagram showing the relationship between the degree of superheat of the heat transfer surface of the object to be cooled and the heat flux with respect to water under atmospheric pressure. 本発明に係る連続鋳造用水冷鋳型の実施形態の一例を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows an example of embodiment of the water-cooling mold for continuous casting which concerns on this invention. 本発明に係る連続鋳造用水冷鋳型の実施形態の一例を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows an example of embodiment of the water-cooling mold for continuous casting which concerns on this invention. 本発明に係る連続鋳造用水冷鋳型の実施形態の他の一例を示す概略図である。FIG. 4 is a schematic diagram showing another example of an embodiment of the water-cooled mold for continuous casting according to the present invention; 鋳型抜熱量指数の比較を示す図である。It is a figure which shows the comparison of the mold heat removal index. 鋳片表面における縦割れ発生指数の比較を示す図である。FIG. 4 is a diagram showing a comparison of longitudinal crack occurrence indices on the surface of a cast slab.

以下、添付図面を参照して本発明を具体的に説明する。 The present invention will be specifically described below with reference to the accompanying drawings.

本発明を説明する前に、鋼の連続鋳造方法を簡単に説明する。連続鋳造用水冷鋳型の斜視図を図1に示す。スラブ鋳片を連続鋳造するための連続鋳造用水冷鋳型1(以下、単に「鋳型1」とも記す)は、相対する一対の鋳型長辺2と、この鋳型長辺2に挟持された一対の鋳型短辺3とを有する。鋳型1の上方には、溶鋼5を収容するタンディッシュ(図示せず)が配置されており、タンディッシュの底部には浸漬ノズル4が設置されている。一対の鋳型長辺2と一対の鋳型短辺3とで、鋳型1には矩形の内部空間が形成されており、この内部空間に浸漬ノズル4が挿入されている。後述するように、鋳型長辺2及び鋳型短辺3の溶鋼5と接触する側は、銅合金製の鋳型プレートで構成され、この鋳型プレートの背面にはバックアッププレートが配置されている。 Before describing the present invention, a brief description of the continuous casting method for steel will be provided. A perspective view of a water-cooled mold for continuous casting is shown in FIG. A continuous casting water-cooled mold 1 (hereinafter also simply referred to as "mold 1") for continuously casting slab slabs includes a pair of mold long sides 2 facing each other and a pair of molds sandwiched between the mold long sides 2. short sides 3; A tundish (not shown) for containing molten steel 5 is arranged above the mold 1, and an immersion nozzle 4 is installed at the bottom of the tundish. A pair of mold long sides 2 and a pair of mold short sides 3 form a rectangular internal space in the mold 1, and an immersion nozzle 4 is inserted into the internal space. As will be described later, the sides of the mold long side 2 and the mold short side 3 that come into contact with the molten steel 5 are made of a copper alloy mold plate, and a backup plate is arranged on the back side of this mold plate.

鋳型長辺2及び鋳型短辺3を構成する銅合金製の鋳型プレートには、溶鋼5と接する面の裏側の面に冷却水路が形成されており、この冷却水路に水を通過させて鋳型1を冷却している。鋳型1の内部空間に浸漬ノズル4を介して溶鋼5を注入し、溶鋼5を鋳型1によって冷却して凝固させ、鋳型1との接触面に凝固シェルを形成させる。この凝固シェルを外殻とし、内部を未凝固の溶鋼5とする鋳片を、鋳型1の下方に連続的に引き抜き、鋼のスラブ鋳片を製造する。鋳型1においては、溶鋼5及び高温の鋳片と接触することで、鋳型プレートの表面温度(溶鋼と接触する側の温度)は上昇し、鋳型内のメニスカス(鋳型内溶鋼湯面)の位置近傍で最高値を示す。鋳型プレートとしては、熱応力に対する変形抵抗が高く、且つ、冷却水による冷却効果を高めることのできる熱伝導率の高い銅合金が使用される。 A copper alloy mold plate forming the mold long side 2 and the mold short side 3 has a cooling water channel formed on the back side of the surface in contact with the molten steel 5. is cooling. Molten steel 5 is injected into the interior space of the mold 1 through a submerged nozzle 4 , and the molten steel 5 is cooled and solidified by the mold 1 to form a solidified shell on the contact surface with the mold 1 . A cast slab having the solidified shell as the outer shell and the unsolidified molten steel 5 as the inner part is continuously drawn downward from the mold 1 to produce a steel slab cast slab. In the mold 1, by contacting the molten steel 5 and the high-temperature slab, the surface temperature of the mold plate (temperature on the side in contact with the molten steel) rises, and the vicinity of the meniscus in the mold (surface of the molten steel in the mold) indicates the highest value. As the mold plate, a copper alloy with high deformation resistance to thermal stress and high thermal conductivity that can enhance the cooling effect of cooling water is used.

連続鋳造用水冷鋳型1に設置される鋳型プレートなどの被冷却体の表面を冷却水で冷却するときの伝熱形態について説明する。図2に、大気圧下の水に対し、被冷却体の伝熱面の過熱度と熱流束との関係を示す。ここで、被冷却体の伝熱面の過熱度とは、被冷却体の伝熱面が水の飽和温度に対してどの程度過熱されているかを示す値であり、伝熱面温度と水の飽和温度との差で表される。尚、水の飽和温度とは、或る圧力下で水が沸騰する温度であり、また、図2は、刊行物1に記載された図面である(刊行物1;内田秀雄編、大学演習伝熱工学、P.231、昭和54年2月1日発行、裳華房)。 A heat transfer mode when the surface of an object to be cooled such as a mold plate installed in the water-cooled mold 1 for continuous casting is cooled with cooling water will be described. FIG. 2 shows the relationship between the degree of superheat of the heat transfer surface of the object to be cooled and the heat flux with respect to water under atmospheric pressure. Here, the degree of superheat of the heat transfer surface of the object to be cooled is a value indicating how much the heat transfer surface of the object to be cooled is superheated with respect to the saturation temperature of water. Expressed as the difference from the saturation temperature. Incidentally, the saturation temperature of water is the temperature at which water boils under a certain pressure. Thermal Engineering, P. 231, February 1, 1979, Shokabo).

図2に示すように、一般的に、冷却水による冷却(水冷)における伝熱形態としては、強制対流熱伝達域、核沸騰熱伝達域、遷移沸騰熱伝達域、膜沸騰熱伝達域の4つに分類される。強制対流熱伝達域は、伝熱面の過熱度が或る値以下(例えば4℃以下)のときの伝熱形態であり、水の沸騰は起こらず、水の顕熱による伝熱である。図2では伝熱面の過熱度が1℃未満の範囲を記載していないが、この範囲も強制対流熱伝達域である。 As shown in FIG. 2, in general, there are four heat transfer modes in cooling with cooling water (water cooling): forced convection heat transfer, nucleate boiling heat transfer, transition boiling heat transfer, and film boiling heat transfer. classified into one. The forced convection heat transfer region is a heat transfer mode when the degree of superheat of the heat transfer surface is below a certain value (for example, 4° C. or below), and the heat transfer is due to the sensible heat of water without boiling of water. Although FIG. 2 does not show the range where the superheat of the heat transfer surface is less than 1° C., this range is also a forced convection heat transfer region.

伝熱面の過熱度が或る値(例えば4℃)を超えて水の沸騰(「核沸騰」という)が始まると、核沸騰熱伝達域に移行する。核沸騰熱伝達域は、伝熱面上にランダムに分布した発泡点から気泡が発生する形態であり、水が液相から気相に変化する時の潜熱を利用した伝熱になるため、熱流束が強制対流熱伝達域に比較して10~100倍大きくなり、伝熱効率が非常に高い領域である。伝熱面の過熱度が更に大きくなると、気泡が合体するようになり、合体した気泡が伝熱を阻害するようになる。この核沸騰の上限の熱流束を限界熱流束点という。 When the superheat of the heat transfer surface exceeds a certain value (for example, 4° C.) and boiling of water (referred to as “nucleate boiling”) begins, the nucleate boiling heat transfer region is entered. The nucleate boiling heat transfer region is a form in which bubbles are generated from foaming points randomly distributed on the heat transfer surface. The flux is 10 to 100 times larger than the forced convection heat transfer region, and the heat transfer efficiency is very high. If the degree of superheating of the heat transfer surface is further increased, the bubbles will coalesce, and the coalesced bubbles will hinder heat transfer. The heat flux at the upper limit of this nucleate boiling is called the critical heat flux point.

伝熱面過熱度が限界熱流束点となる過熱度を超えると、遷移沸騰熱伝達域になり、熱流束は伝熱面過熱度の上昇に伴って減少する。伝熱面過熱度が更に上昇すると、膜沸騰熱伝達域に移行し、熱流束は伝熱面過熱度の上昇に伴って増加する。膜沸騰熱伝達域は、発生した気泡が成長して、伝熱面に空気膜を形成し、水に比べて熱伝達率が低い空気層が伝熱面にできることで核沸騰熱伝達域に比較して伝熱効率は低下する。遷移沸騰熱伝達域は、膜沸騰と核沸騰とが、空間的、時間的に共存していると考えられている。 When the heat transfer surface superheat exceeds the critical heat flux point, the transition boiling heat transfer region is entered, and the heat flux decreases as the heat transfer surface superheat increases. When the heat transfer surface superheat is further increased, the film boiling heat transfer region is entered, and the heat flux increases with the increase in the heat transfer surface superheat. In the film boiling heat transfer region, the generated bubbles grow to form an air film on the heat transfer surface, and an air layer with a lower heat transfer coefficient than water is formed on the heat transfer surface. As a result, the heat transfer efficiency decreases. In the transition boiling heat transfer region, film boiling and nucleate boiling are considered to coexist spatially and temporally.

本発明は、鋳型プレートの上部は冷却水の流速を遅くして核沸騰熱伝達域とし、鋳型プレートの下部は、従来と同様に強制対流熱伝達域とすることを図った技術である。 The present invention aims to make the upper portion of the mold plate a nucleate boiling heat transfer area by slowing down the flow rate of the cooling water, and the lower portion of the mold plate a forced convection heat transfer area as in the prior art.

次に、本発明に係る連続鋳造用水冷鋳型の実施形態の一例を説明する。 Next, an embodiment of the water-cooled mold for continuous casting according to the present invention will be described.

図3及び図4は、本発明に係る連続鋳造用水冷鋳型の実施形態の一例を示す概略図であり、図3は、鋳型プレート及びバックアッププレートで構成される鋳型長辺の概略断面図、図4は、鋳型長辺を構成する鋳型プレートの背面(冷却水路が設置された側の面)の概略図である。尚、図4は、鋳型プレートの鋳型幅方向の一部分を示している。 3 and 4 are schematic diagrams showing an example of an embodiment of a water-cooled mold for continuous casting according to the present invention, and FIG. 4 is a schematic view of the back surface of the mold plate that constitutes the long side of the mold (the surface on which the cooling water channel is installed). In addition, FIG. 4 shows a part of the mold plate in the width direction of the mold.

図3に示すように、鋳型長辺2は、鋳型プレート6とバックアッププレート7とを有しており、バックアッププレート7は、鋳型プレート6に設けられた冷却水路を覆うように、スタッドボルト(図示せず)などで鋳型プレート6に取り付けられている。バックアッププレート7には、その下部に冷却水供給路13が設けられ、その上部に冷却水排水路15が設けられている。冷却水供給路13の鋳型プレート6の側には、鋳型幅方向に広がった給水口14が形成され、同様に、冷却水排水路15の鋳型プレート6の側には、鋳型幅方向に広がった排水口16が形成されている。バックアッププレート7の背面(鋳型プレート6と接する面の裏側の面)には、給水側及び排水側の上下2段の水箱(図示せず)が設置されており、冷却水供給路13及び冷却水排水路15はそれぞれの水箱に連通している。 As shown in FIG. 3 , the mold long side 2 has a mold plate 6 and a backup plate 7 , and the backup plate 7 is provided with stud bolts (see FIG. not shown) or the like. The backup plate 7 is provided with a cooling water supply path 13 in its lower portion and a cooling water drainage path 15 in its upper portion. A water supply port 14 is formed on the mold plate 6 side of the cooling water supply channel 13 and spreads in the mold width direction. A drain port 16 is formed. On the back surface of the backup plate 7 (the surface on the back side of the surface in contact with the mold plate 6), two-stage water boxes (not shown) on the water supply side and the water discharge side are installed. A drainage channel 15 communicates with each water box.

図3及び図4に示すように、鋳型プレート6の冷却水路は鋳造方向上下で異なっており、鋳型プレート6の鋳造方向下部での冷却水路は、鋳型幅方向に配列された複数の溝形水路8(冷却スリット)で構成されており、この複数の溝形水路8の各々は、鋳造方向に延びた縦長形状である。これに対して、鋳型プレート6の鋳造方向上部での冷却水路は、鋳造方向に延び且つ鋳型幅方向に広がった箱形水路9で構成されている。この箱形水路9は、鋳型プレート6の下部の複数の溝形水路8と接続位置10で連通している。鋳型プレート6の背面側には、このような構成の溝形水路8及び箱形水路9が、鋳型幅方向に設置されている。尚、図4では、7個の溝形水路8が1つの箱形水路9と連通しているが、1つの箱形水路9が連通する溝形水路8は、7個に限ることはなく、複数個であれば幾つでもよい。 As shown in FIGS. 3 and 4, the cooling water channels of the mold plate 6 are different on the top and bottom in the casting direction, and the cooling water channels on the bottom of the mold plate 6 in the casting direction are a plurality of groove-shaped water channels arranged in the width direction of the mold. 8 (cooling slits), and each of the plurality of groove-shaped channels 8 has a vertically long shape extending in the casting direction. On the other hand, the cooling water channel in the upper portion of the mold plate 6 in the casting direction is composed of a box-shaped water channel 9 extending in the casting direction and widening in the width direction of the mold. This box-shaped channel 9 communicates with a plurality of channel-shaped channels 8 in the lower part of the mold plate 6 at connection points 10 . On the back side of the mold plate 6, the groove-shaped channel 8 and the box-shaped channel 9 having such a configuration are installed in the width direction of the mold. In FIG. 4, seven groove-shaped waterways 8 communicate with one box-shaped waterway 9, but the number of groove-shaped waterways 8 to which one box-shaped waterway 9 communicates is not limited to seven. Any number may be used as long as it is plural.

バックアッププレート7を鋳型プレート6に取り付けることで、バックアッププレート7に形成された給水口14及び排水口16が、鋳型プレート6に形成された溝形水路8及び箱形水路9に連通し、バックアッププレート7から鋳型プレート6への冷却水路及び鋳型プレート6からバックアッププレート7への冷却水路が形成される。冷却水は、冷却水供給路13から鋳型プレート6の下部の溝形水路8へと供給され、溝形水路8の内部を上昇し、鋳型プレート6の上部の箱形水路9を通って冷却水排水路15から排出される。 By attaching the backup plate 7 to the mold plate 6, the water supply port 14 and the water discharge port 16 formed in the backup plate 7 communicate with the groove-shaped water channel 8 and the box-shaped water channel 9 formed in the mold plate 6, and the backup plate A cooling channel from 7 to the mold plate 6 and a cooling channel from the mold plate 6 to the backup plate 7 are formed. Cooling water is supplied from the cooling water supply channel 13 to the groove-shaped water channel 8 below the mold plate 6, rises inside the groove-shaped water channel 8, passes through the box-shaped water channel 9 above the mold plate 6, and enters the cooling water. It is discharged from the drainage channel 15 .

連続鋳造用水冷鋳型1の上部については、注入された高温の溶鋼5が接する部分であるので、特にメニスカスを含む鋳型上端から250mmの範囲は、高速鋳造を志向するにあたり、高い冷却能を有することが望まれる。そこで本発明では、鋳型プレート6の上部は核沸騰熱伝達を利用し、抜熱の強化を指向する。 Since the upper part of the water-cooled mold 1 for continuous casting is the part in contact with the injected high-temperature molten steel 5, the range of 250 mm from the upper end of the mold including the meniscus in particular should have a high cooling capacity for high-speed casting. is desired. Therefore, in the present invention, the upper part of the mold plate 6 utilizes nucleate boiling heat transfer to enhance heat removal.

核沸騰熱伝達を生じさせるためには、冷却水の流速を低い値とすることが必要であり、冷却水の流速を概ね5.0m/s以下にすると、強制対流熱伝達から核沸騰熱伝達へと伝熱モードが変化するといわれている。そのため、本発明では、鋳型プレート6の上部、つまり、鋳型1の上部の冷却水路を、鋳造方向に延び且つ鋳型幅方向に広がった箱形水路9として、冷却水の流速を意図的に低下させている。 In order to generate nucleate boiling heat transfer, it is necessary to set the flow velocity of the cooling water to a low value. It is said that the heat transfer mode changes to Therefore, in the present invention, the cooling water passage in the upper part of the mold plate 6, that is, the upper part of the mold 1 is formed as a box-shaped water passage 9 extending in the casting direction and widening in the width direction of the mold to intentionally reduce the flow velocity of the cooling water. ing.

核沸騰は、鋳型プレート6の冷却水路の内壁面で生成する気泡を起点として生じるが、気泡生成頻度は冷却水路の内壁面の粗度や形状に依存する。特に、気泡は冷却面に凹部が在るとその箇所を優先的な生成サイトとして生じることが知られている。 Nucleate boiling occurs starting from bubbles generated on the inner wall surface of the cooling channel of the mold plate 6, but the frequency of bubble generation depends on the roughness and shape of the inner wall surface of the cooling channel. In particular, it is known that bubbles are preferentially generated at the recesses on the cooling surface.

したがって、本発明では、鋳型プレート上部の箱形水路9を構成する鋳型プレート6の内壁面(以下、「箱形水路の内壁面」とも記す)に複数の凹部11を設け、気泡の生成を促進させる。凹部11を設けることにより、気泡の生成頻度が高まり、鋳片引き抜き速度が低下して鋳型1への伝熱量が減少しても、しばらくの期間は核沸騰状態が維持される。これにより、鋳型1による抜熱は急激に低下せず、鋳片のバルジング現象やブレークアウトの発生が抑制できる。 Therefore, in the present invention, a plurality of recesses 11 are provided on the inner wall surface of the mold plate 6 that constitutes the box-shaped channel 9 on the upper part of the mold plate (hereinafter also referred to as "the inner wall surface of the box-shaped channel") to promote the generation of bubbles. Let By providing the concave portion 11, the nucleate boiling state is maintained for a while even if the generation frequency of bubbles increases and the cast strip withdrawal speed decreases and the amount of heat transferred to the mold 1 decreases. As a result, the heat removal by the mold 1 does not decrease rapidly, and the bulging phenomenon and breakout of the slab can be suppressed.

また、箱形水路9の内壁面に凹部11を一定間隔で周期的に設ければ、設置した凹部11の位置に対応して気泡が生成するので、その結果、核沸騰熱伝達による強冷却効果を箱形水路9の内壁面で均一に享受できる。したがって、凹部11を一定間隔で周期的に設けることが好ましい。 Also, if the recesses 11 are periodically provided on the inner wall surface of the box-shaped water channel 9 at regular intervals, bubbles are generated corresponding to the positions of the recesses 11 that are provided, resulting in a strong cooling effect due to nucleate boiling heat transfer. can be enjoyed uniformly on the inner wall surface of the box-shaped waterway 9. Therefore, it is preferable to provide the concave portions 11 periodically at regular intervals.

ここで、凹部11の形状は、同一の形状とすることが好ましい。同一の形状とすることで、箱形水路9の内壁面に凹部11を、バラツキを抑制して容易に形成することができる。 Here, it is preferable that the recesses 11 have the same shape. By using the same shape, the recess 11 can be easily formed on the inner wall surface of the box-shaped channel 9 while suppressing variations.

上述したように、気泡は冷却面の凹部11が優先的な生成サイトとなって生じるが、気泡の生成のしやすさは凹部11の形状に依存する。本発明では、鋳型冷却面内で均一に気泡を発生させ、鋳片の均一強冷却を志向するので、特定の箇所に集中して気泡が発生する状態は望ましくない。そのため、どの凹部11にも同じ気泡発生能を有するように、形状を揃えることが好ましい。即ち、凹部11の形状は、半球状、円錐状、円錐台状、円筒状、尖塔状、角錐状のなかから選ばれる1種類の同一形状とすることが好ましい。 As described above, bubbles are generated preferentially at the recesses 11 of the cooling surface, and the ease with which bubbles are generated depends on the shape of the recesses 11 . In the present invention, since bubbles are generated uniformly within the cooling surface of the mold to achieve uniform and strong cooling of the slab, a state in which bubbles are generated in a concentrated manner at a specific location is not desirable. Therefore, it is preferable to arrange the shapes so that all the concave portions 11 have the same bubble generating ability. That is, the shape of the concave portion 11 is preferably one and the same shape selected from a hemispherical shape, a conical shape, a truncated cone shape, a cylindrical shape, a spire shape, and a pyramid shape.

箱形水路9の内壁面に形成する凹部11は、鋳型上端からの鋳造方向距離を揃えて鋳型幅方向に並べて一列に設置し(幅方向列)、この幅方向列を鋳型上端からの鋳造方向距離を変えて複数段設けて凹部11の集団を構成する。ここで、幅方向列を構成する凹部11の群は、鋳造方向に隣り合う幅方向列を構成する凹部11の群に対して千鳥配置となるように配置することが好ましい。即ち、或る段の幅方向列の凹部11の群は、その上段及び/または下段の幅方向列の凹部11の群の幅方向ピッチの半分の位置に形成される。 The recesses 11 formed on the inner wall surface of the box-shaped waterway 9 are arranged in a row in the width direction of the mold with the same casting direction distance from the upper end of the mold (width direction row), and this width direction row is set in the casting direction from the upper end of the mold. A group of concave portions 11 is formed by providing a plurality of steps with different distances. Here, the groups of recesses 11 forming widthwise rows are preferably arranged in a staggered arrangement with respect to groups of recesses 11 forming widthwise rows adjacent to each other in the casting direction. That is, the group of recesses 11 in the width direction row of a certain stage is formed at half the width direction pitch of the group of recesses 11 in the width direction row of the upper and/or lower stage.

このように凹部11の群を千鳥状に配置することで、箱形水路9の内壁面において、特に、鋳型幅方向の内壁面において、差の少ない抜熱が可能になる。尚、鋳型幅方向で隣り合う凹部11の中心間の鋳型幅方向の間隔、及び、幅方向列の凹部11の群の中心間の鋳造方向の間隔は、ともに凹部11の直径の0.5~4.0倍の範囲内であることが好ましい。 By arranging the groups of recesses 11 in a staggered manner in this way, heat can be removed with little difference on the inner wall surface of the box-shaped water channel 9, particularly on the inner wall surface in the width direction of the mold. In addition, the spacing in the mold width direction between the centers of recesses 11 adjacent in the mold width direction and the spacing in the casting direction between the centers of groups of recesses 11 in rows in the width direction are both 0.5 to 0.5 times the diameter of the recesses 11. It is preferably within the range of 4.0 times.

本発明者らは、冷却面形状と気泡の生成しやすさとの関係について実験室試験を通じて検討を行ない、その結果、深さ0.1~2.0mmの凹部を加工した場合に、安定した微細気泡が生成することを知見した。したがって、箱形水路9の内壁面に形成する半球状、円錐状、円錐台状、円筒状、尖塔状、または角錐状の凹部11の深さは、0.1~2.0mmとすることが好ましい。凹部11の深さが0.1mmよりも浅い場合には、気泡の生成起点となりにくく、一方、凹部11の深さが2.0mmを超えると、生成した気泡が凹部の内部に捕捉されたりして、鋳型プレート6の内壁面の伝熱挙動に影響を及ぼすからである。ここで、凹部11の直径は2~20mmであることが好ましい。 The present inventors conducted laboratory tests to examine the relationship between the shape of the cooling surface and the ease with which bubbles are generated. It was found that air bubbles were generated. Therefore, the depth of the hemispherical, conical, truncated conical, cylindrical, spire-shaped, or pyramid-shaped recess 11 formed on the inner wall surface of the box-shaped waterway 9 can be 0.1 to 2.0 mm. preferable. When the depth of the concave portion 11 is less than 0.1 mm, it is difficult to generate air bubbles. This is because the heat transfer behavior of the inner wall surface of the mold plate 6 is affected. Here, it is preferable that the diameter of the concave portion 11 is 2 to 20 mm.

前述したように、鋳型プレート6の下部、つまり鋳型1の下部については、従来から行われてきた方式、つまり、鋳造方向を長手方向とした溝形水路8による冷却方式とする。鋳型下部は、メニスカスから離れた位置となるので、溶鋼5には直接接触せず、且つ、凝固シェルの温度はメニスカス付近よりも低くなる。また、熱流束もメニスカス付近の半分以下と低位になり、鋳型幅方向に熱流束のばらつきがあっても、鋳片の冷却に及ぼす影響は小さくなる。このため、鋳型プレート6の下部は、従来どおりの形状、即ち、冷却水路をスリット状にした溝形水路8で冷却すればよい。 As described above, the lower part of the mold plate 6, that is, the lower part of the mold 1, is cooled by the conventional system, that is, by the grooved water channels 8 whose longitudinal direction is the casting direction. Since the mold lower part is located away from the meniscus, it does not come into direct contact with the molten steel 5, and the temperature of the solidified shell is lower than near the meniscus. In addition, the heat flux is also low, less than half near the meniscus, and even if there is variation in the heat flux in the width direction of the mold, the effect on the cooling of the slab is small. For this reason, the lower part of the mold plate 6 can be cooled by the conventional shape, that is, the groove-shaped water channel 8 in which the cooling water channel is formed into a slit.

鋳型プレート6の下部の溝形水路8を流れる冷却水の流速は、7.0~13.0m/sの範囲内であることが好ましい。冷却水の流速を7.0m/s以上と速くすることで、冷却水による強制対流による熱伝達が促進され、抜熱効果を高めることができる。更に望ましくは、10m/s以上の流速を確保すると、高速鋳造時でも鋳型下端で変形破断の生じない凝固シェルを、より安定的に形成することができる。 The flow velocity of the cooling water flowing through the channel 8 below the mold plate 6 is preferably within the range of 7.0 to 13.0 m/s. By increasing the flow velocity of the cooling water to 7.0 m/s or more, the heat transfer due to the forced convection of the cooling water is promoted, and the heat removal effect can be enhanced. More desirably, when a flow velocity of 10 m/s or more is ensured, a solidified shell that does not cause deformation fracture at the lower end of the mold can be formed more stably even during high-speed casting.

一方、流速をより速めるためには、溝形水路8の幅を狭くして冷却水路の断面積を小さくする必要があるが、冷却水の水質が悪化した際に冷却水路が閉塞する危険性が高くなる、或いは、鋳型プレート6に狭い幅のスリットを加工することが困難になる、などの問題が生じる。また、高流量の冷却水を高圧で供給することによっても、流速を速めることができるが、その場合は冷却水の流量や供給圧力の増加などを可能にする設備投資が必要となる。これらのことから、溝形水路8を流れる冷却水の流速は13.0m/s以下とすることが好ましい。 On the other hand, in order to increase the flow velocity, it is necessary to reduce the cross-sectional area of the cooling water channel by narrowing the width of the grooved water channel 8. Problems such as an increase in height or difficulty in machining narrow width slits in the mold plate 6 arise. The flow velocity can also be increased by supplying a high flow rate of cooling water at high pressure, but in that case, equipment investment is required to enable an increase in the flow rate and supply pressure of the cooling water. For these reasons, the flow velocity of the cooling water flowing through the channel 8 is preferably 13.0 m/s or less.

鋳型1の上部の箱形水路9と鋳型1の下部の溝形水路8との接続位置10は、鋳型上端から150~500mmの範囲内とすることが好ましい。スラブ鋳片の連続鋳造に用いられる鋳型1の全長は800~1000mmが一般的であり、メニスカス位置は鋳型上端から50~200mm下方としている。鋳型1における鋳造方向の熱流束分布を見ると、熱流束は、メニスカス位置から100mm程度(鋳型上端から150mm~300mm程度)鋳造方向下方の位置で大きく低下し、その後は鋳型下端に向かって徐々に低下している。また、メニスカスから300mm程度より下方(鋳型上端から350~500mm程度)では、熱流束がメニスカス付近の熱流束の半分程度まで低下する。これらから、本発明では、接続位置10の好ましい位置として、鋳型上端から150~500mmの範囲とした。尚、更に望ましくは鋳型上端から200~350mmの位置である。 A connection position 10 between the box-shaped channel 9 in the upper part of the mold 1 and the channel-shaped channel 8 in the lower part of the mold 1 is preferably within a range of 150 to 500 mm from the upper end of the mold. The full length of the mold 1 used for continuous casting of slab slabs is generally 800 to 1000 mm, and the meniscus position is 50 to 200 mm below the upper end of the mold. Looking at the heat flux distribution in the casting direction in the mold 1, the heat flux drops significantly at a position about 100 mm below the meniscus position (about 150 mm to 300 mm from the upper end of the mold) in the casting direction, and then gradually toward the lower end of the mold. declining. Further, below about 300 mm from the meniscus (about 350 to 500 mm from the upper end of the mold), the heat flux drops to about half of the heat flux near the meniscus. From these, in the present invention, the preferred position of the connection position 10 is set to be in the range of 150 to 500 mm from the upper end of the mold. More desirably, the position is 200 to 350 mm from the upper end of the mold.

本発明者らは、更なる均一強冷却を図るために研究を重ね、より好適な連続鋳造用水冷鋳型1を想到するに至った。即ち、鋳型1の上部の箱形水路9の内壁面に設けた凹部11の一部に、鋳型プレート6の熱伝導率とは異なる熱伝導率を有する材料を埋め込むことにより、高速鋳造下でも均一冷却を達成し、鋳片の表面割れやブレークアウトの発生を極めて少なくすることが可能になることを知見した。 The inventors of the present invention conducted extensive research to achieve more uniform and strong cooling, and came up with a more suitable water-cooled mold 1 for continuous casting. That is, by embedding a material having a thermal conductivity different from that of the mold plate 6 in a part of the recess 11 provided on the inner wall surface of the box-shaped water channel 9 in the upper part of the mold 1, even under high-speed casting It has been found that it is possible to achieve cooling and extremely reduce the occurrence of surface cracks and breakouts in the cast slab.

凹部11に、銅合金製の鋳型プレート6よりも熱伝導率の低い材料が埋め込まれた部位は、熱抵抗が相対的に高くなる。したがって、鋳型プレート6よりも熱伝導率の低い材料が充填された部位を周期的に設けると、箱形水路9の内壁面の熱抵抗も周期的に増減する分布を呈する。これにより、凝固シェルから鋳型プレート6への熱流束が周期的に増減する熱流束の分布が形成される。 A portion in which the concave portion 11 is filled with a material having a lower thermal conductivity than the mold plate 6 made of a copper alloy has a relatively high thermal resistance. Therefore, if a portion filled with a material having a lower thermal conductivity than the mold plate 6 is provided periodically, the thermal resistance of the inner wall surface of the box-shaped waterway 9 also exhibits a distribution that periodically increases and decreases. This creates a heat flux distribution in which the heat flux from the solidified shell to the mold plate 6 periodically increases and decreases.

一方、凹部11に、銅合金製の鋳型プレート6よりも熱伝導率の高い材料が埋め込まれた部位は、熱抵抗が相対的に低くなるが、凝固シェルから鋳型プレート6への熱流束が周期的に増減する熱流束の分布が形成される点は、鋳型プレート6よりも熱伝導率の低い材料を埋め込んだ場合と同様である。つまり、鋳型プレート6よりも熱伝導率の高い材料が充填された部位を周期的に設けると、箱形水路9の内壁面の熱抵抗も周期的に増減する分布を呈する。 On the other hand, the portion where the concave portion 11 is filled with a material having a higher thermal conductivity than the copper alloy mold plate 6 has a relatively low thermal resistance, but the heat flux from the solidified shell to the mold plate 6 is periodic. A heat flux distribution that increases and decreases dynamically is formed in the same way as when a material having a lower thermal conductivity than the mold plate 6 is embedded. That is, if a portion filled with a material having a higher thermal conductivity than the mold plate 6 is provided periodically, the thermal resistance of the inner wall surface of the box-shaped waterway 9 also exhibits a distribution that periodically increases and decreases.

このように、鋳型1の上部の熱流束を周期的に増減させることより、凝固に伴う変態や熱収縮による応力を、低熱流束の領域に分散させることで、凝固シェル表面における表面割れの発生が抑制される。 In this way, by periodically increasing and decreasing the heat flux in the upper part of the mold 1, the stress due to the transformation and heat shrinkage associated with solidification is dispersed in the region of low heat flux, so that surface cracks occur on the surface of the solidified shell. is suppressed.

したがって、本発明では、箱形水路9の内壁面に設けた凹部11の一部に、鋳型プレート6の熱伝導率とは異なる熱伝導率を有する材料を埋め込むことが好ましい。更には、箱形水路9の内壁面に設けた凹部11の一部に、鋳型プレート6の熱伝導率とは異なる熱伝導率を有する材料を埋め込んだ後、研削または研磨して周囲に対して平滑面とすることがより好ましい。前記したとおり、気泡生成頻度は冷却水路の内壁面の粗度や形状に依存する。この観点から、鋳型プレート6の熱伝導率とは異なる熱伝導率を有する材料を埋め込んだ後、研削または研磨して周囲に対して平滑面とすれば、箱形水路9の内壁面を、位置によるバラツキのない一定の性状に容易に形成できる。 Therefore, in the present invention, it is preferable to embed a material having thermal conductivity different from that of the mold plate 6 in part of the recess 11 provided in the inner wall surface of the box-shaped waterway 9 . Furthermore, after embedding a material having a thermal conductivity different from that of the mold plate 6 in a part of the recess 11 provided on the inner wall surface of the box-shaped waterway 9, it is ground or polished to the surroundings. A smooth surface is more preferable. As described above, the frequency of bubble generation depends on the roughness and shape of the inner wall surface of the cooling channel. From this point of view, if a material having a thermal conductivity different from that of the mold plate 6 is embedded and then ground or polished to make a smooth surface with respect to the surroundings, the inner wall surface of the box-shaped waterway 9 can be positioned It can be easily formed into a constant property without variation due to

図5に、本発明に係る連続鋳造用水冷鋳型の実施形態の他の一例の概略図を示す。図5は、凹部11の一部に、鋳型プレート6の熱伝導率とは異なる熱伝導率を有する材料を埋め込み、その後、研削または研磨して周囲に対して平滑面とした部位(以下「異種材料充填部12」と記す)が形成された鋳型プレート6の背面(冷却水路が設置された側の面)の概略図である。 FIG. 5 shows a schematic diagram of another example of the embodiment of the water-cooled mold for continuous casting according to the present invention. FIG. 5 shows that a portion of the recess 11 is filled with a material having a thermal conductivity different from that of the mold plate 6, and then ground or polished to form a smooth surface with respect to the surroundings (hereinafter referred to as “heterogeneous material”). It is a schematic view of the back surface of the mold plate 6 (the surface on which the cooling water channel is installed) in which a material filling portion 12'' is formed.

特に、銅合金製の鋳型プレート6の熱伝導率よりも熱伝導率の低い材料を規則的に埋め込んだ場合は、異種材料充填部12の方が銅合金製の鋳型プレート6よりも冷却水側の表面温度が高くなり、核沸騰の起源となる気泡の生成位置となりやすい。 In particular, when a material having a lower thermal conductivity than the copper alloy mold plate 6 is regularly embedded, the dissimilar material filling portion 12 is closer to the cooling water than the copper alloy mold plate 6. The surface temperature of the surface becomes high, and it is likely to become the generation position of bubbles that are the origin of nucleate boiling.

したがって、鋳型プレート上部の箱形水路9の内壁面に設けた凹部11の一部に、鋳型プレート6の熱伝導率よりも低い熱伝導率の材料を埋め込んだ場合、核沸騰の起源となる気泡は、前記材料が埋設されていない凹部11と、鋳型プレート6の熱伝導率よりも低い熱伝導率の材料が埋め込まれた異種材料充填部12との双方から発生する。即ち、箱形水路9における気泡生成位置の数は、熱伝導率の低い材料の埋め込みの有無でさほど変化せず、核沸騰による高い冷却能力はそのまま維持される。 Therefore, when a material having a thermal conductivity lower than that of the mold plate 6 is embedded in a part of the recess 11 provided on the inner wall surface of the box-shaped channel 9 on the upper part of the mold plate, bubbles that cause nucleate boiling is generated from both the concave portion 11 in which the material is not embedded and the dissimilar material-filled portion 12 in which a material having a thermal conductivity lower than that of the mold plate 6 is embedded. In other words, the number of bubble generating positions in the box-shaped water channel 9 does not change so much depending on whether or not the material with low thermal conductivity is embedded, and the high cooling capacity due to nucleate boiling is maintained as it is.

本発明の好適な一形態として、鋳型プレート6の熱伝導率とは異なる熱伝導率の材料が埋め込まれていない凹部11からなる幅方向列の群と、鋳型プレート6の熱伝導率よりも低い熱伝導率の材料が埋め込まれた異種材料充填部12からなる幅方向列の群とを、鋳造方向に交互に配列した形態が挙げられる。 As a preferred embodiment of the present invention, a group of widthwise rows of recesses 11 not embedded with a material having a thermal conductivity different from that of the mold plate 6 and A group of rows in the width direction of the dissimilar material filled portions 12 in which a material having thermal conductivity is embedded may be alternately arranged in the casting direction.

このように配列することで、鋳型プレート6の熱伝導率とは異なる熱伝導率の材料が埋め込まれていない凹部11からなる幅方向列の群で生じた凝固シェルの応力が、鋳造方向直下に設けられた、鋳型プレート6の熱伝導率よりも低い熱伝導率の材料が埋め込まれた異種材料充填部12からなる幅方向列の群で分散され、凝固シェルの応力を緩和することができる。これを繰り返しながら凝固シェルを鋳型1から引き抜くことで、高速鋳造下であっても均一冷却を達成し、鋳片の表面割れやブレークアウトの発生を極めて少なくすることが可能になる。 By arranging in this way, the stress of the solidified shell generated in the group of widthwise rows of recesses 11 not filled with a material having a thermal conductivity different from that of the mold plate 6 is directly under the casting direction. Distributed in groups of widthwise rows of dissimilar material-filled portions 12 embedded with a material having a thermal conductivity lower than that of the mold plate 6 provided, the stress in the solidified shell can be relieved. By repeatedly withdrawing the solidified shell from the mold 1, uniform cooling can be achieved even under high-speed casting, and the occurrence of surface cracks and breakouts in the slab can be greatly reduced.

尚、本発明の実施においては、鋳型プレート6の温度を高温に保持し、核沸騰熱伝達を起こすことが必要となるため、冷却水としてはスケールの生成しにくい純水の利用が望ましいが、水質管理を確実に行うことができれば工業用水を利用しても構わない。 In the practice of the present invention, it is necessary to maintain the temperature of the mold plate 6 at a high temperature and cause nucleate boiling heat transfer. Industrial water may be used as long as the water quality can be reliably controlled.

上記構成の本発明に係る連続鋳造用水冷鋳型1を用いて溶鋼5を連続鋳造する際には、鋳造開始から鋳造終了までの少なくとも一部の期間で、鋳片引き抜き速度を2.0m/min以上として連続鋳造する。 When continuously casting the molten steel 5 using the water-cooled mold 1 for continuous casting according to the present invention having the above configuration, the cast strip withdrawal speed is set to 2.0 m / min for at least a part of the period from the start of casting to the end of casting. Continuous casting is performed as described above.

以上説明したように、本発明によれば、連続鋳造用水冷鋳型の鋳型プレートの上部における冷却水路を、鋳造方向に延び且つ鋳型幅方向に広がった箱形水路で形成し、この箱形水路の内壁面に、複数の凹部を設けるので、特に高速鋳造条件下や鋳片引き抜き速度の変化が起こる場合でも、連続鋳造用水冷鋳型の上部における均一強冷却を実現でき、凝固初期に形成される凝固シェルを早期に均一且つ十分な厚みに成長させることができる。 As described above, according to the present invention, the cooling water channel in the upper part of the mold plate of the water-cooled mold for continuous casting is formed by a box-shaped water channel extending in the casting direction and widening in the width direction of the mold. Since a plurality of recesses are provided on the inner wall surface, even under high-speed casting conditions or when the slab withdrawal speed changes, it is possible to achieve uniform and strong cooling in the upper part of the water-cooled mold for continuous casting. The shell can be grown uniformly and to a sufficient thickness at an early stage.

上記説明は、スラブ鋳片を連続鋳造する際に使用する連続鋳造用水冷鋳型について行ったが、本発明の適用は、スラブ鋳片を連続鋳造する際に使用する連続鋳造用水冷鋳型に限るわけではなく、銅合金製の鋳型プレートと、鋳型プレートに形成された冷却水路を覆うように鋳型プレートに取り付けられているバックアッププレートと、を有する連続鋳造用水冷鋳型である限り、本発明の適用が可能である。 Although the above description has been made with respect to the continuous casting water-cooled mold used in continuously casting the slab slab, the application of the present invention is limited to the continuous casting water-cooled mold used in the continuous casting of the slab slab. Instead, as long as it is a water-cooled mold for continuous casting having a copper alloy mold plate and a backup plate attached to the mold plate so as to cover the cooling water channel formed in the mold plate, the application of the present invention is It is possible.

鋳型上端から鋳造方向下流側に250mmまでの範囲が、図3及び図4に示すような箱形水路であり、250mmより下部の冷却水路は複数の溝形水路(冷却スリット)で構成され連続鋳造用水冷鋳型を用いて、溶鋼の連続鋳造を行い、スラブ鋳片を製造した。これを本発明例1とする。一方、鋳型上端から下端まで複数の溝形水路(冷却スリット)で構成される連続鋳造用水冷鋳型を用いて、溶鋼の連続鋳造を行い、スラブ鋳片を製造する場合を従来例とする。 The range from the upper end of the mold to 250 mm downstream in the casting direction is a box-shaped water channel as shown in FIGS. Molten steel was continuously cast using a water-cooled mold to produce slab slabs. This is referred to as Inventive Example 1. On the other hand, a conventional example is a case in which molten steel is continuously cast using a water-cooled continuous casting mold composed of a plurality of grooved channels (cooling slits) from the upper end to the lower end of the mold to produce a slab.

本発明例1及び従来例においては下記の条件とした。本発明例1では、箱形水路の内壁面に、直径2.0mm、深さ2.0mmの半球状の凹部を、鋳型幅方向に隣り合う凹部の中心間距離を4.0mmとし、幅方向列の鋳造方向距離を2.0mmとして、千鳥状に配置した。また、冷却水路における冷却水の流速は、鋳型上部の箱形水路の範囲は5.0m/sに制御し、鋳型下部の溝形水路の範囲は、10.0m/sに制御した。従来例では、鋳型の上端から下端の全ての範囲で冷却水路における冷却水の流速を10.0m/sに制御した。 In the present invention example 1 and the conventional example, the following conditions were used. In Example 1 of the present invention, a hemispherical recess having a diameter of 2.0 mm and a depth of 2.0 mm was formed on the inner wall surface of the box-shaped water channel, and the distance between the centers of the recesses adjacent to each other in the width direction of the mold was 4.0 mm. The rows were arranged in a zigzag pattern with a casting direction distance of 2.0 mm. The flow velocity of the cooling water in the cooling channels was controlled to 5.0 m/s in the range of the box-shaped channels above the mold and 10.0 m/s in the range of the groove-shaped channels below the mold. In the conventional example, the flow velocity of the cooling water in the cooling water passage was controlled to 10.0 m/s over the entire range from the upper end to the lower end of the mold.

また、図5に示すように、箱形水路の内壁面に、鋳型プレートの熱伝導率とは異なる熱伝導率を有する材料が埋め込まれていない凹部の幅方向列の群と、鋳型プレートの熱伝導率よりも低い熱伝導率の材料として金属ニッケル(20℃における熱伝導率;90W/(m×K))が埋め込まれた異種材料充填部からなる幅方向列の群とを、鋳造方向に交互に設置した場合を本発明例2とする。本発明例2における凹部及び異種材料充填部の設置間隔、並びに、冷却水路における冷却水の流速は、本発明例1と同一である。金属ニッケルの凹部への埋め込みは、鍍金処理によって行った。鋳型プレートは、本発明例1、本発明例2及び従来例のいずれも、20℃における熱伝導率が360W/(m×K)の銅合金製である。 Further, as shown in FIG. 5, a group of rows of recesses in the width direction in which a material having a thermal conductivity different from that of the mold plate is not embedded in the inner wall surface of the box-shaped water channel, and a thermal conductivity of the mold plate. A group of widthwise rows of dissimilar material filled parts embedded with metal nickel (thermal conductivity at 20 ° C.; 90 W / (m × K)) as a material with a thermal conductivity lower than the conductivity, in the casting direction Example 2 of the present invention is a case in which they are alternately installed. The installation intervals of the concave portion and the dissimilar material filled portion and the flow velocity of the cooling water in the cooling water passage in Example 2 of the present invention are the same as those of Example 1 of the present invention. The metal nickel was embedded in the recesses by plating. The mold plate is made of a copper alloy having a thermal conductivity of 360 W/(m×K) at 20° C. in each of the present invention example 1, the present invention example 2, and the conventional example.

上記の3種類の連続鋳造用水冷鋳型を用いて、鋳片幅が1000~1600mm、鋳片厚みが260mmの、炭素含有量が0.10質量%の炭素鋼のスラブ鋳片を2.0m/minの鋳片引き抜き速度で連続鋳造した。尚、使用した連続鋳造機は2ストランドのスラブ連続鋳造機であり、比較のために、2ストランドの片方のストランドに本発明に係る連続鋳造用水冷鋳型を設置し、他方のストランドに従来の連続鋳造用水冷鋳型を設置し、鋳片幅、鋳片引き抜き速度及び使用するモールドパウダーの種類など、鋳造条件が同等の条件で、本発明例1及び本発明例2と従来例とを比較した。 Using the above three types of water-cooled molds for continuous casting, a slab slab of carbon steel with a slab width of 1000 to 1600 mm and a slab thickness of 260 mm and a carbon content of 0.10% by mass is produced at 2.0 m / Continuous casting was performed at a billet withdrawal speed of min. The continuous casting machine used was a two-strand slab continuous casting machine. A water-cooled mold for casting was installed, and under the same casting conditions such as slab width, slab withdrawal speed and type of mold powder used, Inventive Example 1 and Inventive Example 2 were compared with the conventional example.

図6に、鋳片引き抜き速度が2.0m/minの鋳造条件での鋳型抜熱量指数の比較を示す。鋳型抜熱量は、連続鋳造時における鋳型冷却水の入側水温(供給側水箱での温度)と出側水温(排水側水箱での温度)の温度差と冷却水量とを用いて算出された値であり、従来例の値を基準(1.0)として、従来例の値との比率を鋳型抜熱量の指数として示した。図6に示すように、本発明例1及び本発明例2では、冷却水量は従来例と同量のままで抜熱量指数を15~25%向上できることが確認できた。 FIG. 6 shows a comparison of the mold heat removal index under the casting conditions of a cast strip withdrawal speed of 2.0 m/min. The amount of heat extracted from the mold is a value calculated using the temperature difference between the inlet side water temperature (temperature in the supply side water box) and the outlet side water temperature (temperature in the drain side water box) of the mold cooling water during continuous casting and the amount of cooling water. With the value of the conventional example as the standard (1.0), the ratio with the value of the conventional example was shown as an index of the heat removal amount from the mold. As shown in FIG. 6, it was confirmed that, in Inventive Example 1 and Inventive Example 2, the heat extraction index could be improved by 15 to 25% while the amount of cooling water remained the same as in the conventional example.

また、図7に、鋳片表面における縦割れ発生指数の比較を示す。鋼種としては縦割れ発生率の高い炭素含有量が0.10質量%の中炭素鋼を対象としている。縦割れは鋳造後の表面手入れ処理工程で確認した値であり、従来例の縦割れ発生率を基準(1.0)として従来例の値との比率を縦割れ発生指数として示した。 In addition, FIG. 7 shows a comparison of longitudinal crack occurrence indices on the slab surface. The target steel type is medium carbon steel with a carbon content of 0.10% by mass, which has a high incidence of longitudinal cracks. The vertical crack generation rate is the value confirmed in the surface treatment process after casting, and the ratio of the vertical crack generation rate of the conventional example to the value of the conventional example is shown as the vertical crack generation index, with the vertical crack generation rate of the conventional example as the standard (1.0).

図7に示すように、本発明例1では縦割れ発生指数が0.2以下に低減されており、更に本発明例2においてはほぼ縦割れ発生がゼロに抑制できていることが確認できた。鋳片表面を無手入れで、鋳片の直送加熱や直送圧延を実施するには、熱間圧延工程での手入れ制約との関係から本指標で0.3以下にすることが必要であり、本発明を実施することにより、製鋼段階で無手入れのまま、次工程にスラブ鋳片の搬送が可能となることが確認できた。 As shown in FIG. 7, it was confirmed that the longitudinal crack occurrence index was reduced to 0.2 or less in Inventive Example 1, and that the occurrence of longitudinal cracks could be suppressed to almost zero in Inventive Example 2. . In order to carry out direct heating and direct rolling of the cast slab surface without maintenance, it is necessary to keep this index at 0.3 or less due to the relationship with maintenance restrictions in the hot rolling process. It was confirmed that by carrying out the invention, the slab cast piece can be transported to the next process without maintenance in the steelmaking stage.

また、上記の本発明に係る連続鋳造用水冷鋳型を用いて、約180日間の連続鋳造操業を様々な鋼種、鋳造条件で実施した。本発明に係る連続鋳造用水冷鋳型を用いた場合も、ブレークアウト及び操業上の問題なく使用可能であることが確認された。また、鋳型寿命についても従来の連続鋳造用水冷鋳型と変わらない性能が確認できた。 In addition, using the water-cooled mold for continuous casting according to the present invention, a continuous casting operation was performed for about 180 days under various steel grades and casting conditions. It was confirmed that even when the water-cooled mold for continuous casting according to the present invention is used, it can be used without breakout and operational problems. In addition, it was confirmed that the life of the mold was the same as that of the conventional water-cooled mold for continuous casting.

1 連続鋳造用水冷鋳型
2 鋳型長辺
3 鋳型短辺
4 浸漬ノズル
5 溶鋼
6 鋳型プレート
7 バックアッププレート
8 溝形水路
9 箱形水路
10 接続位置
11 凹部
12 異種材料充填部
13 冷却水供給路
14 給水口
15 冷却水排水路
16 排水口
1 Water-cooled mold for continuous casting 2 Long side of mold 3 Short side of mold 4 Immersion nozzle 5 Molten steel 6 Mold plate 7 Backup plate 8 Grooved channel 9 Box shaped channel 10 Connection position 11 Recess 12 Different material filling part 13 Cooling water supply channel 14 Water supply Port 15 Cooling water drain 16 Drain

Claims (13)

冷却水路が形成されている銅合金製の鋳型プレートと、
前記冷却水路を覆うように前記鋳型プレートに取り付けられているバックアッププレートと、を有する連続鋳造用水冷鋳型であって、
前記鋳型プレートの下部での冷却水路は、鋳型幅方向に配列された複数の溝形水路(冷却スリット)で構成され、該複数の溝形水路の各々は、鋳造方向に延びた縦長形状であり、
前記鋳型プレートの上部での冷却水路は、鋳造方向に延び且つ鋳型幅方向に広がった箱形水路で構成され、該箱形水路は、前記鋳型プレートの下部の複数の冷却水路に連通し、
前記鋳型プレートの上部の箱形水路を構成する鋳型プレートの内壁面に、複数の凹部が設けられており、
前記凹部の深さは、0.1~2.0mmであることを特徴とする、連続鋳造用水冷鋳型。
A mold plate made of a copper alloy in which a cooling channel is formed;
A water-cooled mold for continuous casting, comprising a backup plate attached to the mold plate so as to cover the cooling water channel,
The cooling water channel in the lower part of the mold plate is composed of a plurality of groove-shaped water channels (cooling slits) arranged in the width direction of the mold, and each of the plurality of groove-shaped water channels has a vertically long shape extending in the casting direction. ,
The cooling water channel in the upper part of the mold plate is composed of a box-shaped water channel extending in the casting direction and widening in the width direction of the mold, and the box-shaped water channel communicates with a plurality of cooling water channels in the lower part of the mold plate,
A plurality of recesses are provided on the inner wall surface of the mold plate that constitutes the box-shaped waterway in the upper part of the mold plate,
A water-cooled mold for continuous casting, wherein the recess has a depth of 0.1 to 2.0 mm.
冷却水路が形成されている銅合金製の鋳型プレートと、
前記冷却水路を覆うように前記鋳型プレートに取り付けられているバックアッププレートと、を有する連続鋳造用水冷鋳型であって、
前記鋳型プレートの下部での冷却水路は、鋳型幅方向に配列された複数の溝形水路(冷却スリット)で構成され、該複数の溝形水路の各々は、鋳造方向に延びた縦長形状であり、
前記鋳型プレートの上部での冷却水路は、鋳造方向に延び且つ鋳型幅方向に広がった箱形水路で構成され、該箱形水路は、前記鋳型プレートの下部の複数の冷却水路に連通し、
前記鋳型プレートの上部の箱形水路を構成する鋳型プレートの内壁面に、複数の凹部が設けられており、
前記複数の凹部の各々は、前記鋳型プレートの熱伝導率とは異なる熱伝導率を有する材料で埋め込まれていないことを特徴とする、連続鋳造用水冷鋳型。
A mold plate made of a copper alloy in which a cooling channel is formed;
A water-cooled mold for continuous casting, comprising a backup plate attached to the mold plate so as to cover the cooling water channel,
The cooling water channel in the lower part of the mold plate is composed of a plurality of groove-shaped water channels (cooling slits) arranged in the width direction of the mold, and each of the plurality of groove-shaped water channels has a vertically long shape extending in the casting direction. ,
The cooling water channel in the upper part of the mold plate is composed of a box-shaped water channel extending in the casting direction and widening in the width direction of the mold, and the box-shaped water channel communicates with a plurality of cooling water channels in the lower part of the mold plate,
A plurality of recesses are provided on the inner wall surface of the mold plate that constitutes the box-shaped waterway in the upper part of the mold plate,
A water-cooled mold for continuous casting, wherein each of the plurality of recesses is not filled with a material having thermal conductivity different from that of the mold plate.
冷却水路が形成されている銅合金製の鋳型プレートと、
前記冷却水路を覆うように前記鋳型プレートに取り付けられているバックアッププレートと、を有する連続鋳造用水冷鋳型であって、
前記鋳型プレートの下部での冷却水路は、鋳型幅方向に配列された複数の溝形水路(冷却スリット)で構成され、該複数の溝形水路の各々は、鋳造方向に延びた縦長形状であり、
前記鋳型プレートの上部での冷却水路は、鋳造方向に延び且つ鋳型幅方向に広がった箱形水路で構成され、該箱形水路は、前記鋳型プレートの下部の複数の冷却水路に連通し、
前記鋳型プレートの上部の箱形水路を構成する鋳型プレートの内壁面に、複数の凹部が設けられており、
前記複数の凹部の一部は、前記鋳型プレートの熱伝導率とは異なる熱伝導率を有する材料で埋め込まれ、
前記材料が埋め込まれていない凹部が鋳型幅方向に一列に設置され、前記材料が埋め込まれた凹部が鋳型幅方向に一列に設置され、且つ、前記材料が埋め込まれていない凹部が鋳型幅方向に一列に設置された群と、前記材料が埋め込まれた凹部が鋳型幅方向に一列に設置された群とが、鋳造方向に交互に設置されていることを特徴とする、連続鋳造用水冷鋳型。
A mold plate made of a copper alloy in which a cooling channel is formed;
A water-cooled mold for continuous casting, comprising a backup plate attached to the mold plate so as to cover the cooling water channel,
The cooling water channel in the lower part of the mold plate is composed of a plurality of groove-shaped water channels (cooling slits) arranged in the width direction of the mold, and each of the plurality of groove-shaped water channels has a vertically long shape extending in the casting direction. ,
The cooling water channel in the upper part of the mold plate is composed of a box-shaped water channel extending in the casting direction and widening in the width direction of the mold, and the box-shaped water channel communicates with a plurality of cooling water channels in the lower part of the mold plate,
A plurality of recesses are provided on the inner wall surface of the mold plate that constitutes the box-shaped waterway in the upper part of the mold plate,
Some of the plurality of recesses are filled with a material having thermal conductivity different from that of the mold plate,
The recesses in which the material is not embedded are arranged in a row in the width direction of the mold, the recesses in which the material is embedded are arranged in a row in the width direction of the mold, and the recesses in which the material is not embedded are arranged in the width direction of the mold. A water-cooled mold for continuous casting, characterized in that a group arranged in a row and a group in which the recesses in which the material is embedded are arranged in a row in the width direction of the mold are alternately arranged in the casting direction.
鋳型プレートの熱伝導率とは異なる熱伝導率を有する材料で埋め込まれている前記凹部は、周囲に対して平滑面とされていることを特徴とする、請求項3に記載の連続鋳造用水冷鋳型。 4. The water cooling for continuous casting according to claim 3, characterized in that said recesses filled with a material having a thermal conductivity different from that of the mold plate have a smooth surface with respect to the surroundings. template. 前記材料の熱伝導率は、前記鋳型プレートの熱伝導率よりも低いことを特徴とする、請求項3または請求項4に記載の連続鋳造用水冷鋳型。 The water-cooled mold for continuous casting according to claim 3 or 4, characterized in that the thermal conductivity of said material is lower than that of said mold plate. 前記凹部の深さは、0.1~2.0mmであることを特徴とする、請求項2から請求項5のいずれかに1項に記載の連続鋳造用水冷鋳型。 The water-cooled mold for continuous casting according to any one of claims 2 to 5, wherein the depth of the recess is 0.1 to 2.0 mm. 前記凹部は、一定間隔で周期的に設けられていることを特徴とする、請求項1から請求項6のいずれか1項に記載の連続鋳造用水冷鋳型。 The water-cooled mold for continuous casting according to any one of claims 1 to 6, wherein the recesses are provided periodically at regular intervals. 前記凹部は、半球状、円錐状、円錐台状、円筒状、尖塔状、角錐状のなかから選ばれる1種類の同一形状であることを特徴とする、請求項1から請求項7のいずれか1項に記載の連続鋳造用水冷鋳型。 8. The recess according to any one of claims 1 to 7, wherein the recess has one and the same shape selected from a hemispherical shape, a conical shape, a truncated cone shape, a cylindrical shape, a spire shape, and a pyramid shape. A water-cooled mold for continuous casting according to item 1. 前記凹部は、千鳥状に設けられていることを特徴とする、請求項1から請求項8のいずれか1項に記載の連続鋳造用水冷鋳型。 The water-cooled mold for continuous casting according to any one of claims 1 to 8, characterized in that the concave portions are provided in a zigzag pattern. 前記鋳型プレートの下部の冷却水路と前記鋳型プレートの上部の冷却水路との接続位置が、鋳型上端から150~500mmの範囲内であることを特徴とする、請求項1から請求項9のいずれか1項に記載の連続鋳造用水冷鋳型。 Any one of claims 1 to 9, wherein the connecting position of the cooling water channel in the lower part of the mold plate and the cooling water channel in the upper part of the mold plate is within a range of 150 to 500 mm from the upper end of the mold. A water-cooled mold for continuous casting according to item 1. 請求項1から請求項10のいずれか1項に記載の連続鋳造用水冷鋳型を用いて溶鋼を連続鋳造する鋼の連続鋳造方法であって、前記鋳型プレートの下部での冷却水路における冷却水の流速7.0~13.0m/sの範囲内として連続鋳造することを特徴とする、鋼の連続鋳造方法 A steel continuous casting method for continuously casting molten steel using the water-cooled mold for continuous casting according to any one of claims 1 to 10, wherein the cooling water in the cooling water passage under the mold plate A continuous casting method for steel, characterized in that the continuous casting is performed at a flow rate within a range of 7.0 to 13.0 m/s. 請求項1から請求項10のいずれか1項に記載の連続鋳造用水冷鋳型を用いて溶鋼を連続鋳造する鋼の連続鋳造方法であって、鋳造開始から鋳造終了までの少なくとも一部の期間で、鋳片引き抜き抜き速度を2.0m/min以上として連続鋳造することを特徴とする、鋼の連続鋳造方法。 A steel continuous casting method for continuously casting molten steel using the water-cooled mold for continuous casting according to any one of claims 1 to 10 , wherein at least a part of the period from the start of casting to the end of casting A continuous casting method for steel, characterized in that continuous casting is performed at a cast strip drawing speed of 2.0 m/min or more. 鋳造開始から鋳造終了までの少なくとも一部の期間で、鋳片引き抜き抜き速度を2.0m/min以上として連続鋳造することを特徴とする、請求項11に記載の鋼の連続鋳造方法。12. The continuous casting method of steel according to claim 11, characterized in that continuous casting is performed at a cast strip withdrawal speed of 2.0 m/min or more during at least a part of the period from the start of casting to the end of casting.
JP2019151669A 2019-08-22 2019-08-22 Water-cooled mold for continuous casting and continuous casting method for steel Active JP7151665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019151669A JP7151665B2 (en) 2019-08-22 2019-08-22 Water-cooled mold for continuous casting and continuous casting method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019151669A JP7151665B2 (en) 2019-08-22 2019-08-22 Water-cooled mold for continuous casting and continuous casting method for steel

Publications (2)

Publication Number Publication Date
JP2021030258A JP2021030258A (en) 2021-03-01
JP7151665B2 true JP7151665B2 (en) 2022-10-12

Family

ID=74674659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019151669A Active JP7151665B2 (en) 2019-08-22 2019-08-22 Water-cooled mold for continuous casting and continuous casting method for steel

Country Status (1)

Country Link
JP (1) JP7151665B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020121329A (en) 2019-01-31 2020-08-13 Jfeスチール株式会社 Mold and method for steel continuous casting

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381049A (en) * 1989-08-23 1991-04-05 Kawasaki Steel Corp Method for mater-cooling continuous casting mold
JPH1058093A (en) * 1996-08-23 1998-03-03 Sumitomo Metal Ind Ltd Steel continuous casting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020121329A (en) 2019-01-31 2020-08-13 Jfeスチール株式会社 Mold and method for steel continuous casting
JP6947192B2 (en) 2019-01-31 2021-10-13 Jfeスチール株式会社 Mold for continuous casting of steel and continuous casting method of steel

Also Published As

Publication number Publication date
JP2021030258A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
JP5168591B2 (en) Water-cooled mold for continuous casting and ingot manufacturing method
CN105728673A (en) Continuous casting mold and method for continuous casting of steel
KR101984634B1 (en) Process engineering measures in a strand casting machine at the beginning of casting, at the end of casting, and during the manufacturing of a transition piece
CN108472718A (en) The secondary cooling method and secondary cooling apparatus of continuously casting strand
RU2240892C2 (en) Liquid-cooled mold
RU2310543C2 (en) Method for correlating heat transfer of molds, namely in zone of metal heel
EP1140392B1 (en) High speed continuous casting device and relative method
JP7151665B2 (en) Water-cooled mold for continuous casting and continuous casting method for steel
JP5962733B2 (en) Steel continuous casting method
JP6747142B2 (en) Secondary cooling method and secondary cooling device for continuous casting
EP2054178B1 (en) Crystalliser
US6374903B1 (en) System and process for optimizing cooling in continuous casting mold
JP6947192B2 (en) Mold for continuous casting of steel and continuous casting method of steel
JPH09276994A (en) Continuous casting mold
US20100243195A1 (en) Side dam blocks for continuous strip casters
JP2003311377A (en) Tube-type mold for continuous casting
RU2602215C2 (en) Crystallizer for continuous casting
JP6740924B2 (en) Continuous casting mold and steel continuous casting method
JP4453562B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
JPS609553A (en) Stopping down type continuous casting machine
CN114364471B (en) Crystallizer for continuous casting of metal products and corresponding casting method
JP4760303B2 (en) Secondary cooling method for continuous cast slabs
JP3470537B2 (en) Inclusion removal method in tundish for continuous casting
JP2006061939A (en) Mold for continuous casting
JP6146346B2 (en) Mold for continuous casting of steel and continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7151665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150