[go: up one dir, main page]

JP7138909B2 - VEGF binding inhibitory peptide - Google Patents

VEGF binding inhibitory peptide Download PDF

Info

Publication number
JP7138909B2
JP7138909B2 JP2018066159A JP2018066159A JP7138909B2 JP 7138909 B2 JP7138909 B2 JP 7138909B2 JP 2018066159 A JP2018066159 A JP 2018066159A JP 2018066159 A JP2018066159 A JP 2018066159A JP 7138909 B2 JP7138909 B2 JP 7138909B2
Authority
JP
Japan
Prior art keywords
amino acid
peptide
terminal
vegf
terminal amino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018066159A
Other languages
Japanese (ja)
Other versions
JP2019172647A (en
Inventor
雅孝 道上
郁雄 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University Public Corporation Osaka
Original Assignee
University Public Corporation Osaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Public Corporation Osaka filed Critical University Public Corporation Osaka
Priority to JP2018066159A priority Critical patent/JP7138909B2/en
Publication of JP2019172647A publication Critical patent/JP2019172647A/en
Application granted granted Critical
Publication of JP7138909B2 publication Critical patent/JP7138909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明はVEGF結合阻害ペプチドに関する。 The present invention relates to VEGF binding inhibitory peptides.

血管内皮増殖因子(VEGF: Vascular Endothelial Growth Factor)は、血管新生を調節するタンパク質である。血管新生は、脊椎動物の胎生期における循環器系の形成や多くの組織の構築に重要な役割を果たすとともに、成熟個体においても性周期における黄体形成、子宮内膜の一過性の増殖、胎盤形成などに関与する。また、がんの増殖転移、慢性関節リューマチの病態形成や促進、糖尿病性網膜症などにも関与し、血管新生はこれら生理的条件、病理的条件において重要視されている。VEGFがVEGF受容体の細胞外ドメインと結合すると、受容体が2量体化し、細胞内ドメインのチロシンキナーゼが活性化されシグナルが下流に伝達される。 Vascular Endothelial Growth Factor (VEGF) is a protein that regulates angiogenesis. Angiogenesis plays an important role in the formation of the circulatory system and the construction of many tissues during the embryonic period of vertebrates. Participate in formation, etc. It is also involved in cancer proliferation and metastasis, pathogenesis and promotion of rheumatoid arthritis, diabetic retinopathy, and the like, and angiogenesis is regarded as important in these physiological and pathological conditions. When VEGF binds to the extracellular domain of the VEGF receptor, the receptor dimerizes, tyrosine kinases in the intracellular domain are activated, and signals are transmitted downstream.

VEGFファミリーの一つであるVEGF-Aは最も強力に血管新生を亢進し、それが膜貫通型チロシンキナーゼ受容体VEGFR(VEGFR-1,VEGFR-2)と結合ないし相互作用することで、その生物学的作用を発揮する。従って、VEGFとVEGFRとの結合ないし相互作用を阻害することで血管新生が抑制され、がんの増殖や転移抑制、慢性関節リューマチや糖尿病性網膜症、加齢黄斑変性の病態促進の抑止等に繋がることが期待される。 VEGF-A, one of the VEGF family members, is the most potent angiogenesis promoter, and it binds or interacts with the transmembrane tyrosine kinase receptor VEGFR (VEGFR-1, VEGFR-2) to exert a scientific effect. Therefore, by inhibiting the binding or interaction between VEGF and VEGFR, angiogenesis is suppressed, and cancer growth and metastasis are suppressed, rheumatoid arthritis, diabetic retinopathy, age-related macular degeneration, etc. expected to connect.

ところで、生体内で安定化された抗体様のペプチドとして、ヘリックス-ループ-ヘリックス構造(Helix-Loop-Helix(HLH)構造)を有するペプチド(HLHペプチド)が特許文献1などに開示されている。ヘリックス-ループ-ヘリックス構造を有するペプチドは、N末側のアミノ酸配列(N末端側ヘリックス:Aブロック)と、C末側のアミノ酸配列(C末端側ヘリックス:Cブロック)と、AブロックとCブロックを結合するリンカー(ループ:Bブロック)を有する。AブロックとCブロックは、ループの存在によりそれぞれα-ヘリカルコイルドコイル構造を形成する。このペプチドは低分子構造でありながら溶液中で安定した二次構造を取り、分子中の溶媒側に露出する部分に化学的に異なる性質の官能基を導入しやすい。 By the way, as an antibody-like peptide stabilized in vivo, a peptide having a helix-loop-helix (HLH) structure (HLH peptide) is disclosed in Patent Document 1 and the like. A peptide having a helix-loop-helix structure has an N-terminal amino acid sequence (N-terminal helix: A block), a C-terminal amino acid sequence (C-terminal helix: C block), A block and C block. has a linker (loop: B block) that connects The A block and C block each form an α-helical coiled-coil structure due to the presence of loops. Although this peptide has a low-molecular-weight structure, it has a stable secondary structure in solution, and it is easy to introduce functional groups with different chemical properties into the portion of the molecule exposed to the solvent side.

HLHペプチドを利用した血管内皮増殖因子(VEGF)と膜貫通型チロシン キナーゼ受容体(VEFGR)との結合ないし相互作用を阻害するVEGF結合阻害剤が特許文献2に開示されている。この阻害剤は、HLH構造のペプチドのN末端にチオレドキシンが結合された融合ペプチドであって、優れたVEGF結合阻害能を示す。 Patent document 2 discloses a VEGF binding inhibitor that inhibits binding or interaction between vascular endothelial growth factor (VEGF) and transmembrane tyrosine kinase receptor (VEFGR) using HLH peptide. This inhibitor is a fusion peptide in which thioredoxin is bound to the N-terminus of a peptide of HLH structure, and exhibits excellent ability to inhibit VEGF binding.

しかしながら、この融合ペプチドはチオレドキシンが融合されているために分子量が大きくなり、体内への吸収性が悪いことが予想される。さらに、発明者らによるその後の研究によって、この融合ペプチドはVEGFのVEGFRと結合する部位に結合するのではなく、この融合ペプチドによるVEGFとVEGFRとの結合ないし相互作用の阻害はチオレドキシン部分の立体障害によるものと推測された。また、製造上においても低分子のものに比べて製造コストが高くなるなどの問題もあり、VEGFのVEGFRと結合する部位に結合して安定かつ低分子のペプチド性VEGF結合阻害剤が求められていた。 However, since this fusion peptide is fused with thioredoxin, it is expected to have a large molecular weight and poor absorbability into the body. Furthermore, according to subsequent research by the inventors, this fusion peptide does not bind to the VEGFR-binding site of VEGF, but the inhibition of the binding or interaction between VEGF and VEGFR by this fusion peptide is due to the steric hindrance of the thioredoxin moiety. presumed to be due to In addition, there are also problems such as higher production costs compared to low-molecular-weight products in terms of production, and stable and low-molecular peptidic VEGF-binding inhibitors that bind to the VEGFR-binding site of VEGF are desired. rice field.

特開平10-245397号公報JP-A-10-245397 特開2014-047156号公報JP 2014-047156 A

本願発明が解決しようとする課題は、VEGFに対する強い結合性を示し、VEGFのVEGFRと結合する部位に結合するペプチドを得るとともに、低分子構造であるペプチド性のVEGF結合阻害剤を提供することにある。 The problem to be solved by the present invention is to obtain a peptide that exhibits strong binding to VEGF and binds to the site of VEGF that binds to VEGFR, and to provide a peptidic VEGF binding inhibitor that has a low-molecular-weight structure. be.

本願発明に係るペプチドは配列番号1で示されるペプチドである。 The peptide according to the present invention is the peptide represented by SEQ ID NO:1.

本願発明のペプチドは、VEGFとVEGFR の結合に関わるVEGF側の部位に結合することによって、VEGFとVEGFRとの結合ないし相互作用を阻害し、安定性の高いペプチド性のVEGF結合阻害剤が提供される。 The peptide of the present invention inhibits the binding or interaction between VEGF and VEGFR by binding to the VEGF-side site involved in the binding of VEGF and VEGFR, thereby providing a highly stable peptidic VEGF binding inhibitor. be.

図1は2次スクリーニングで得られたHLHペプチドにおいて、ランダム化された部位に高頻度で出現したアミノ酸を示す図である。FIG. 1 is a diagram showing amino acids frequently appearing at randomized sites in HLH peptides obtained by secondary screening. 図2はペプチドVS42,VS42-1のCDスペクトルである。FIG. 2 shows CD spectra of peptides VS42 and VS42-1. 図3はペプチドVS42-1のVEGFに対する解離度を示す図である。FIG. 3 shows the degree of dissociation of peptide VS42-1 to VEGF. 図4はペプチドVS42,VS42-1のVEGFに対する結合阻害を示す図である。FIG. 4 shows inhibition of binding of peptides VS42 and VS42-1 to VEGF. 図5はペプチドVS42-1の細胞増殖阻害作用を示す図である。FIG. 5 shows the cell growth inhibitory action of peptide VS42-1.

本発明に係るペプチドは、論理的にはN末端側及びC末端側のそれぞれ14アミノ酸残基からなる2本のα-ヘリックスが6つ又は7つのグリシン残基からなるペプチドを介して結合したヘリックス-ループ-ヘリックス構造(HLH構造)を有する。このHLH構造を有するペプチドでは、2本のα-ヘリックスは、内側に存在するロイシン側鎖の疎水相互作用等により安定なHLH構造を形成し、さらに、N末端およびC末端にシステインを導入して分子内ジスルフィド架橋することでさらに立体構造の安定性が向上する(Suzuki, N., Fujii, I., Optimization of the loop length for folding of a helix-loop-helix peptide, Tetrahedron Lett. 40, 6013(1999)、Fujii I, Takaoka Y., Suzuki K., Tanaka, T., A Conformationally Purified α-Helical Peptide Library, Tetrahedron Lett. 42, 3323(2001))。本発明においては、このようなHLH構造を有するペプチドが好ましいが、必ずしもこのようなHLH構造を有するペプチドでなくとも差し支えない。 Logically, the peptide according to the present invention is a helix in which two α-helices each consisting of 14 amino acid residues on the N-terminal side and the C-terminal side are linked via a peptide consisting of 6 or 7 glycine residues. - have a loop-helix structure (HLH structure); In the peptide having this HLH structure, the two α-helices form a stable HLH structure due to the hydrophobic interaction of the leucine side chains existing inside, and furthermore, cysteines are introduced at the N-terminus and C-terminus. Intramolecular disulfide bridges further improve the stability of the conformation (Suzuki, N., Fujii, I., Optimization of the loop length for folding of a helix-loop-helix peptide, Tetrahedron Lett. 40, 6013 ( 1999), Fujii I, Takaoka Y., Suzuki K., Tanaka, T., A Conformationally Purified α-Helical Peptide Library, Tetrahedron Lett. 42, 3323 (2001)). In the present invention, a peptide having such an HLH structure is preferred, but the peptide does not necessarily have to have such an HLH structure.

本発明に係るペプチドは、配列番号5に示すアミノ酸配列を有する。このアミノ酸配列中のXはそれぞれ、X18(N末端のアミノ酸から18残基目のアミノ酸)が塩基性アミノ酸であり、X19(N末端のアミノ酸から19残基目のアミノ酸)が疎水性アミノ酸であり、N末端のアミノ酸から20残基目のアミノ酸(X20)、N末端のアミノ酸から21残基目のアミノ酸(X21)、N末端のアミノ酸から23残基目のアミノ酸(X23)はそれぞれ酸性アミノ酸である。ここで塩基性アミノ酸とは、側鎖に正電荷を持つアミノ酸であり、H、R又はKであるのが好ましい。疎水性アミノ酸とは非電荷の側鎖を持つアミノ酸であり、これらの中でもV、L又はIであるのが好ましい。酸性アミノ酸は側鎖に負電荷を持つアミノ酸であり、E又はDであるのが好ましい。 A peptide according to the present invention has the amino acid sequence shown in SEQ ID NO:5. X in this amino acid sequence, X18 (amino acid at the 18th residue from the N-terminal amino acid) is a basic amino acid, and X19 (amino acid at the 19th residue from the N-terminal amino acid) is a hydrophobic amino acid. , the 20th amino acid from the N-terminal amino acid (X20), the 21st amino acid from the N-terminal amino acid (X21), and the 23rd amino acid from the N-terminal amino acid (X23) are acidic amino acids. be. Here, the basic amino acid is an amino acid having a positively charged side chain, and is preferably H, R or K. A hydrophobic amino acid is an amino acid with an uncharged side chain, preferably V, L or I among these. An acidic amino acid is an amino acid with a negative charge on its side chain, preferably E or D.

また、本発明に係るペプチドは、配列番号5に示すアミノ酸配列を有するペプチドであって、X18は塩基性アミノ酸以外にもFやQでもあり、X20は酸性アミノ酸であるE以外にもGやLでもあり、X21は酸性アミノ酸であるEやD以外にもSでもあり、X23は酸性アミノ酸であるDやEの他にもNやH、S、Wでもあり得る。また、これらのペプチドの中でも、X18はH又はRであり、X19はV又はLであり、X20はE又はLであり、X21はE又はDであり、X23はD、S又はEであり、さらには、X18はHであり、X19はV又はLであり、X20はE又はLであり、X21、X23はそれぞれE又はDであるのが好ましい。これらに示すアミノ酸は2次スクリーニングで得られたペプチド(表2参照)に出現するアミノ酸の中でも、高頻度で出現するアミノ酸である。そして、より具体的にはペプチドは配列番号6~20に示すペプチドが好ましく、特に好ましいペプチドは配列番号6(VS42-1:CAAELAALEAELAALEGHVEEADFPWGKLNNLIEKLWQLKQAC)のアミノ酸配列を有する。 Further, the peptide according to the present invention is a peptide having the amino acid sequence shown in SEQ ID NO: 5, in which X18 is F or Q in addition to a basic amino acid, and X20 is an acidic amino acid other than E, G or L , X21 can be S in addition to the acidic amino acids E and D, and X23 can be N, H, S, W as well as the acidic amino acids D and E. Also in these peptides, X18 is H or R, X19 is V or L, X20 is E or L, X21 is E or D, X23 is D, S or E, Further preferably, X18 is H, X19 is V or L, X20 is E or L, and X21 and X23 are E or D, respectively. Among the amino acids appearing in the peptides obtained in the secondary screening (see Table 2), the amino acids shown in these are the amino acids appearing with high frequency. More specifically, the peptides shown in SEQ ID NOS: 6 to 20 are preferred, and a particularly preferred peptide has the amino acid sequence of SEQ ID NO: 6 (VS42-1: CAAELAALEAELAALEGHVEEADFPWGKLNNLIEKLWQLKQAC).

本発明において、上記ペプチドを構成するアミノ酸は、天然アミノ酸であっても、天然アミノ酸の誘導体や非天然のアミノ酸であってもよい。好ましくは、上記ペプチドを構成するアミノ酸は天然アミノ酸である。天然アミノ酸の誘導体としては、例えば、ヒドロキシル基が導入されたアミノ酸であるヒドロキシプロリン、ヒドロキシリジン等、アミノ基が導入されたアミノ酸であるジアミノプロピオン酸等が挙げられるがこれらに限定されない。非天然アミノ酸の例としては、主鎖の構造が天然型と異なる、α,α-二置換アミノ酸(α-メチルアラニンなど)、N-アルキル-α-アミノ酸、D-アミノ酸、β-アミノ酸、α-ヒドロキシ酸など;側鎖の構造が天然型と異なるアミノ酸(ノルロイシン、ホモヒスチジンなど)、側鎖に余分のメチレンを有するホモアミノ酸(ホモフェニルアラニン、ホモヒスチジンなど)及び側鎖中のカルボン酸官能基アミノ酸がスルホン酸基で置換されるアミノ酸(システイン酸など)などが挙げられるがこれらに限定されない。 In the present invention, the amino acids that constitute the peptide may be natural amino acids, derivatives of natural amino acids, or non-natural amino acids. Preferably, the amino acids that make up the peptide are natural amino acids. Derivatives of natural amino acids include, but are not limited to, for example, hydroxyl group-introduced amino acids such as hydroxyproline and hydroxylysine, and amino group-introduced amino acids such as diaminopropionic acid. Examples of non-natural amino acids include α,α-disubstituted amino acids (α-methylalanine, etc.), N-alkyl-α-amino acids, D-amino acids, β-amino acids, α -Hydroxy acids, etc.; amino acids whose side chains differ from natural types (norleucine, homohistidine, etc.), homoamino acids with extra methylenes in side chains (homophenylalanine, homohistidine, etc.) and carboxylic acid functional groups in side chains Examples include, but are not limited to, amino acids substituted with sulfonic acid groups (cysteic acid, etc.).

また、本発明に係るペプチドは、各配列番号に示すアミノ酸配列のN末端のシステインとC末端のシステインCがジスルフィド結合して環状化したものが好ましい。環化することでペプチドの立体構造がより安定化する。 In addition, the peptide according to the present invention is preferably a cyclic peptide formed by disulfide bonding of the N-terminal cysteine and the C-terminal cysteine C of the amino acid sequences shown in the respective SEQ ID NOs. Cyclization stabilizes the three-dimensional structure of the peptide.

上記ペプチドのうち非環状のペプチドは、種々の公知であるペプチド合成方法に従って合成することが出来る。例えばFmoc固相合成法、フラグメント縮合法等の液相合成法が挙げられる。操作が簡便である点から、固相合成法が好ましく用いられる。また、環状のペプチドは、非環状のペプチドを得た後これを環化して得ることができる。例えば、アミノ酸配列中の2つのシステイン間に、公知の手法によってジスルフィド結合を形成することにより環化できる。また、公知の手法によって、分子内でチオエステルやチオエーテル結合を形成することによっても環化できる。さらに、例えば高度希釈法など公知の手法により分子内でカルボキシ基とアミノ基を縮合させることで環化してもよい。 Acyclic peptides among the above peptides can be synthesized according to various known peptide synthesis methods. Examples thereof include liquid phase synthesis methods such as Fmoc solid phase synthesis method and fragment condensation method. A solid-phase synthesis method is preferably used because the operation is simple. A cyclic peptide can also be obtained by obtaining a non-cyclic peptide and then cyclizing it. For example, it can be cyclized by forming a disulfide bond between two cysteines in the amino acid sequence by a known technique. It can also be cyclized by forming a thioester or thioether bond in the molecule by a known technique. Further, cyclization may be performed by intramolecular condensation of a carboxy group and an amino group by a known technique such as a high-dilution method.

非環状ペプチドは、上述の固相合成法及び液相合成法等の化学合成法によらず、遺伝子工学的手法を用いることでも製造できる。例えば、前記アミノ酸配列をコードする塩基配列を有する核酸を適切な発現ベクターに組み込み、得られた発現ベクターによって適切な宿主細胞(例えば哺乳動物細胞、昆虫細胞、大腸菌)を形質転換する。そして、上記宿主細胞をペプチドの発現に適する条件下で培養した後、培養物からペプチドを分離すればよい。 Acyclic peptides can be produced not only by chemical synthesis methods such as the above-mentioned solid-phase synthesis method and liquid-phase synthesis method, but also by using genetic engineering techniques. For example, a nucleic acid having a nucleotide sequence encoding the amino acid sequence is incorporated into an appropriate expression vector, and the resulting expression vector is used to transform an appropriate host cell (eg, mammalian cell, insect cell, E. coli). Then, after culturing the host cell under conditions suitable for expression of the peptide, the peptide may be isolated from the culture.

VEGF-VEGFRに対する結合ないし相互作用を阻害するペプチドは、ほ乳類を含む動物、特にヒトの静脈内皮細胞の増殖阻害作用を示す。従って、本発明に係るペプチドは血管新生抑制剤として働き、抗がん剤や慢性関節リューマチや糖尿病性網膜症、加齢黄斑変性の病態促進の抑止など、VEGFによる異常な血管形成が関与する各種疾病のための治療薬としての利用が期待される。特に、VEGFに対する解離定数(KD)が、プラズモン共鳴法により測定した場合、350nM以下、好ましくは100nM以下、さらに好ましくは50nM以下であるペプチドがこれらの治療薬として用いられる。 Peptides that inhibit the binding or interaction with VEGF-VEGFR show an inhibitory effect on the growth of vein endothelial cells in animals including mammals, particularly in humans. Therefore, the peptide according to the present invention acts as an angiogenesis inhibitor, and various anticancer agents, chronic rheumatoid arthritis, diabetic retinopathy, age-related macular degeneration, etc. It is expected to be used as a therapeutic drug for diseases. In particular, peptides having a dissociation constant (K D ) for VEGF of 350 nM or less, preferably 100 nM or less, more preferably 50 nM or less, as measured by the plasmon resonance method, are used as these therapeutic agents.

本発明に係る医薬組成物は上記ペプチドを有効成分とする。本発明の医薬組成物は、有効量のペプチドの他に薬理学的に許容し得る製剤用の助剤を含み得る。助剤は、例えば、賦形剤、結合剤、崩壊剤、潤沢剤、被覆剤、矯味剤、可溶化剤であり得る。当該組成物はヒトを含む動物に経口又は非経口で適用し得る形態(剤型)として提供される。当該剤型は、例えば、錠剤であり、顆粒剤であり、散剤であり、液剤であり、注射剤であり、座剤であり得る。 The pharmaceutical composition according to the present invention contains the above peptide as an active ingredient. The pharmaceutical composition of the present invention may contain, in addition to an effective amount of the peptide, a pharmacologically acceptable formulation aid. Auxiliaries can be, for example, excipients, binders, disintegrants, lubricants, coating agents, flavoring agents, solubilizers. The composition is provided in a form (dosage form) that can be applied orally or parenterally to animals including humans. The dosage form may be, for example, tablets, granules, powders, liquids, injections, and suppositories.

本発明に係るペプチドの投与量は、性別や体重、年齢、人種、症状等に応じて当業者により適宜決定される。その投与量の下限は、例えば、0.001μg/kg体重であり、0.01μg/kg体重であり、0.1μg/kg体重であり、0.001mg/kg体重であり、0.01mg/kg体重であり、0.05mg/kg体重であり、0.1mg/kg体重であり得る。また、その上限は、例えば、1000mg/kg体重であり、100mg/kg体重であり、10mg/kg体重であり、5mg/kg体重であり、1mg/kg体重であり得る。 The dosage of the peptide according to the present invention is appropriately determined by those skilled in the art according to sex, body weight, age, race, symptoms, and the like. The lower limit of the dosage is, for example, 0.001 μg/kg body weight, 0.01 μg/kg body weight, 0.1 μg/kg body weight, 0.001 mg/kg body weight, 0.01 mg/kg body weight, 0.05 mg/kg body weight, and may be 0.1 mg/kg body weight. Also, the upper limit may be, for example, 1000 mg/kg body weight, 100 mg/kg body weight, 10 mg/kg body weight, 5 mg/kg body weight, or 1 mg/kg body weight.

以下、下記の実施例に基づき本願発明についてさらに詳細に説明するが、本発明はこれらに限定されないのは言うまでもない。 Hereinafter, the present invention will be described in more detail based on the following examples, but it goes without saying that the present invention is not limited to these.

〔1次スクリーニング〕
配列番号1に示すアミノ酸配列又は配列番号2に示すアミノ酸配列を有するペプチドから構成される2つの1次ライブラリーL1及びL2を、ファージ表層提示法により作製した。ファージ表層提示法は公知の方法(特開2014-245397号公報)であり、ここではM13ファージのマイナーコートタンパク質にペプチドを提示させる方法を用いた。1次ライブラリーL1は、C末端側ヘリックス構造における立体構造の形成に関与しない6個のアミノ酸残基とループ部分の9個のアミノ酸残基がランダム化されている。ランダム化において、ループ部分にはY,W、F、Lの疎水性アミノ酸と、ループを形成しやすくするためにP、Gが選択されるように、BNSコドンが用いられた。また、ヘリックス構造には、ヘリックス構造を不安定化するプロリンが選択されないようにNDKコドンが用いられた。また、1次ライブラリーL2は、ループ部分の9つのアミノ酸残基がランダム化されたものであり、ヘリックス部分は1次ライブラリーL1でランダム化されたアミノ酸残基がすべてアラニンに固定されたものである。
[Primary screening]
Two primary libraries L1 and L2 composed of peptides having the amino acid sequence shown in SEQ ID NO: 1 or the amino acid sequence shown in SEQ ID NO: 2 were generated by phage surface display. The phage surface display method is a known method (Japanese Patent Application Laid-Open No. 2014-245397), and here, a method of displaying peptides on the minor coat protein of M13 phage was used. In the primary library L1, 6 amino acid residues that are not involved in the formation of the three-dimensional structure in the C-terminal side helix structure and 9 amino acid residues in the loop portion are randomized. In the randomization, BNS codons were used so that hydrophobic amino acids Y, W, F, and L were selected in the loop portion, and P and G were selected to facilitate loop formation. Also, the NDK codon was used in the helix structure so that proline, which destabilizes the helix structure, is not selected. In the primary library L2, nine amino acid residues in the loop portion are randomized, and in the helix portion, all the amino acid residues randomized in the primary library L1 are fixed to alanine. is.

得られた2つの1次ライブラリーから1次スクリーニングを行った。スクリーニングには、VEGF-Aの4つのアイソフォーム(VEGF121、VEGF165、VEGF189、VEGF206)のうち、VEGF165を用いた。スクリーニングは(1)VEGFとの接触、(2)VEGFと結合しなかったファージの除去、(3)VEGFR2によってVEGFから離脱したファージ回収、(4)大腸菌への感染による増幅、(5)VEGFとの接触という一連の操作を1ラウンドとして、VEGFに対する結合性が高いペプチドを提示したファージを濃縮した(バイオパンニング)。この結果、4ラウンドの操作を行うことで、表1に示すように、1次ライブラリーL1からはヘリックス以外のループ部分にそれと類似したアミノ酸配列を有する配列番号3に示すアミノ酸配列を有するペプチド(ペプチドVS41)が、1次ライブラリーL2からは配列番号4に示すアミノ酸配列を有するペプチド(ペプチドVS42)が高い出現頻度で得られた。また、これらのペプチドは、VEGFR2との競合によりVEGFから離脱したペプチドであるので、VEGF-VEGFR2相互作用を阻害しているといえる。 Primary screening was performed from the two resulting primary libraries. VEGF165 was used for the screening among four isoforms ( VEGF121 , VEGF165, VEGF189 , VEGF206 ) of VEGF-A. Screening is (1) contact with VEGF, (2) removal of phages that did not bind to VEGF, (3) collection of phages detached from VEGF by VEGFR2, (4) amplification by infection with E. coli, (5) VEGF and A series of operations of contacting was used as one round, and phages displaying peptides with high binding properties to VEGF were concentrated (biopanning). As a result, by performing four rounds of manipulation, as shown in Table 1, a peptide ( Peptide VS41) was obtained from the primary library L2, and a peptide (peptide VS42) having the amino acid sequence shown in SEQ ID NO: 4 was obtained at a high frequency. In addition, since these peptides are peptides released from VEGF due to competition with VEGFR2, it can be said that they inhibit the VEGF-VEGFR2 interaction.

より高い頻度で出現したペプチドVS42について、Fmoc固相合成法により合成し、VEGFに対する解離定数(K)を測定したところ、解離定数Kは350nMであった。このことから、ペプチドVS42はVEGFのVEGFRと相互作用する部位に結合することでVEGF-VEGFR2相互作用が阻害されるものと結論付けられる。 Peptide VS42, which appeared at a higher frequency, was synthesized by the Fmoc solid-phase synthesis method, and the dissociation constant (K D ) for VEGF was measured, and the dissociation constant K D was 350 nM. From this, it is concluded that the peptide VS42 inhibits the VEGF-VEGFR2 interaction by binding to the VEGFR-interacting site of VEGF.

Figure 0007138909000001
Figure 0007138909000001

〔2次スクリーニング〕
1次スクリーニングから得られた結果では、ペプチドVS42とペプチドVS41とでループ部分に共通したアミノ酸配列(FPWG)が見られたので、さらにこの部分を保持しながらループ部分の他の部分についてランダム化を試みた。ペプチドVS42のアミノ酸配列を元にして、配列番号5に示すアミノ酸配列を有するペプチドから構成される2次ライブラリーを、酵母表層提示法を用いて作製した。酵母表層提示法も公知(Boder, E. T., Wittrup, K. D. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol, 16, 553-557 (1997) )であり、ここでは相同組み替え法により酵母表層提示ライブラリーを得た。
[Secondary screening]
Since the results obtained from the primary screening showed a common amino acid sequence (FPWG) in the loop portion between peptide VS42 and peptide VS41, randomization was performed on the other portions of the loop portion while retaining this portion. Tried. Based on the amino acid sequence of peptide VS42, a secondary library consisting of peptides having the amino acid sequence shown in SEQ ID NO: 5 was constructed using the yeast surface display method. A yeast surface display method is also known (Boder, ET, Wittrup, KD Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol, 16, 553-557 (1997)). Obtained.

得られた2次ライブラリーについて、ビオチンで標識したVEGFと、ビオチンと結合するストレプトアビジン又は抗ビオチン抗体でコートした磁気ビーズを用い、磁気スタンドに固定したカラムにVEGFと結合したペプチド提示酵母を回収することで、1次スクリーニングと同様なバイオパンニングを行った。3ラウンドの操作を行うことで、表2に示すようにVEGFに対して高い結合性を示すペプチドを得た。ここでは、図1に示すように、18残基目(X18)には側鎖に正電荷を持つ塩基性アミノ酸(H,R,K)、19残基目(X19)には非極性の側鎖を持つ疎水性アミノ酸(V,L,I)、20,21,23残基目(X20,X21,X23)には側鎖に負電荷を持つ酸性アミノ酸(E,D)が多く確認できた。1次スクリーニングで得られたペプチドVS42はループ部分には電荷を持つアミノ酸を持たないが、これらのペプチドを前記アミノ酸のように電荷を持つアミノ酸に置換することで、VEGFに対する結合性が高まるものと結論づけられた。 For the resulting secondary library, biotin-labeled VEGF and magnetic beads coated with streptavidin or anti-biotin antibody that binds to biotin are used, and peptide-presenting yeast bound to VEGF is collected on a column fixed to a magnetic stand. By doing so, biopanning similar to the primary screening was performed. By performing three rounds of manipulation, peptides showing high binding to VEGF as shown in Table 2 were obtained. Here, as shown in FIG. 1, the 18th residue (X18) is a basic amino acid (H, R, K) with a positive charge on the side chain, and the 19th residue (X19) is a non-polar side chain. Hydrophobic amino acids with chains (V, L, I), and many acidic amino acids (E, D) with negative charges on the side chains were confirmed at the 20th, 21st, and 23rd residues (X20, X21, X23). . Peptide VS42 obtained in the primary screening does not have charged amino acids in the loop portion, but by replacing these peptides with charged amino acids like the above amino acids, the binding to VEGF is increased. concluded.

Figure 0007138909000002
Figure 0007138909000002

〔機能評価〕
次いで、高い頻度で出現した配列番号6に示すアミノ酸配列を有するペプチド(VS42-1)について、Fmoc固相合成法により合成し、円二色性(CD)スペクトルを測定するとともに、VEGFに対する解離定数(K)を測定した。さらに、VEGF-VEGF受容体(VEGF2)相互作用に対する阻害活性を求めた。なお、比較のために、VEGFに対して結合性を示さない安定したHLH構造を有する配列番号21で示すペプチド(YT1-S)、1次スクリーニングで得られたペプチドVS42についてもCDスペクトル及び解離定数を測定した。
[Function evaluation]
Next, the peptide (VS42-1) having the amino acid sequence shown in SEQ ID NO: 6 that appeared with high frequency was synthesized by the Fmoc solid-phase synthesis method, the circular dichroism (CD) spectrum was measured, and the dissociation constant for VEGF (K D ) was measured. Furthermore, inhibitory activity against VEGF-VEGF receptor (VEGF2) interaction was determined. For comparison, the CD spectra and dissociation constants of the peptide (YT1-S) shown in SEQ ID NO: 21 having a stable HLH structure that does not show binding to VEGF, and the peptide VS42 obtained in the primary screening was measured.

(立体構造の保持)
CDスペクトルは円二色分散系を用いて平均残基楕円率(θ)を算出することで測定した。その結果を図2に示したが、ペプチドVS42-1はややヘリックス構造に歪みを生じた部分があるものの、安定したヘリックス構造を維持していた。
(Maintenance of three-dimensional structure)
CD spectra were measured by calculating the average residue ellipticity (θ) using circular dichroism. The results are shown in FIG. 2. Peptide VS42-1 maintained a stable helical structure although the helical structure was slightly distorted.

(VEGFに対する親和性)
解離定数は、VEGFを固定したセンサーチップを用いた表面プラズモン共鳴(Surface Plasmon Resonance:SPR)法により、ペプチドVS42-1の濃度に対するResonance Unit (RU)の平衡値をプロットしたセンサーグラムから算出した。その結果、図3に示すように解離定数は約26nMとなった。
(Affinity for VEGF)
The dissociation constant was calculated from a sensorgram plotting the equilibrium value of Resonance Unit (RU) against the concentration of peptide VS42-1 by the surface plasmon resonance (SPR) method using a sensor chip on which VEGF was immobilized. As a result, the dissociation constant was approximately 26 nM as shown in FIG.

(VEGF-VEGFR2相互作用に対する阻害活性)
VEGF受容体を固定したセンサーチップを用いたSPR法により各ペプチドの阻害活性IC50を測定した。各ペプチドとVEGFの混合溶液をサンプルとし、サンプルの濃度に対するResonance Unit (RU)の平衡値のプロットから、VEGF-VEGFR2相互作用に対する各ペプチドの阻害活性IC50を求めた。10nMのVEGFに対して800nM~0.78125nMの範囲で各ペプチドを添加して測定を行い、各添加濃度に対するRUの値をプロットしたセンサーグラムから算出した。その結果、図4に示すように、ペプチドVS42のIC50は200nM、ペプチドVS42-1のそれは35nMとなった。
(Inhibitory activity against VEGF-VEGFR2 interaction)
The inhibitory activity IC50 of each peptide was measured by the SPR method using a sensor chip on which VEGF receptors were immobilized. A mixed solution of each peptide and VEGF was used as a sample, and the inhibitory activity IC 50 of each peptide against the VEGF-VEGFR2 interaction was determined from the plot of the equilibrium value of Resonance Unit (RU) against the concentration of the sample. Measurement was performed by adding each peptide in the range of 800 nM to 0.78125 nM to 10 nM VEGF, and the RU value for each added concentration was calculated from a sensorgram plotted. As a result, as shown in FIG. 4, the IC50 of peptide VS42 was 200 nM and that of peptide VS42-1 was 35 nM.

(細胞増殖阻害)
ペプチドVS42-1について、Human Umbilical Vein Endothelial Cells(HUVEC)を用いた細胞増殖阻害試験を行った。HUVECは細胞表面にVEGFR2を発現しており、VEGFと結合することで増殖する。5.0×103 cells/wellで播種したHUVECに、10nMのVEGFと、161.6μM~4.93×10-3μMの範囲で調整したサンプル溶液を添加して、37℃で48時間培養した。培養後、WST-1試薬により発色させて450nmの吸光度を測定した。VEGFだけを加えて培養した場合の吸光度を100%のコントロール、ペプチドもVEGFも加えずに培養した場合の吸光度を0%のコントロールとして、ペプチド濃度に対する吸光度をプロットしたグラフに対してカーブフィッティングを行うことで阻害活性IC50を求めた。その結果、図5に示すようにペプチドVS42-1の阻害活性IC50は181nMであった。また、ペプチドVS42の阻害活性IC50は1200nMであった。
(cell growth inhibition)
Peptide VS42-1 was subjected to a cell proliferation inhibition test using Human Umbilical Vein Endothelial Cells (HUVEC). HUVEC expresses VEGFR2 on the cell surface and proliferates by binding with VEGF. HUVEC seeded at 5.0×10 3 cells/well was added with 10 nM VEGF and a sample solution adjusted to a range of 161.6 μM to 4.93×10 −3 μM, and cultured at 37° C. for 48 hours. After culturing, color was developed with a WST-1 reagent, and absorbance at 450 nm was measured. Curve fitting is performed on a graph plotting absorbance against peptide concentration, with the absorbance when cultured with only VEGF as a control of 100% and the absorbance when cultured without adding peptide or VEGF as a control of 0%. The inhibitory activity IC50 was determined by As a result, as shown in FIG. 5, the inhibitory activity IC50 of peptide VS42-1 was 181 nM. In addition, the inhibitory activity IC50 of peptide VS42 was 1200 nM.

これらのことから、ペプチドVS42-1は強くVEGF-VEGFR2相互作用を阻害し、VEGF結合阻害剤として使用し得る。また、2次スクリーニングで得られたペプチドVS42-2からペプチドVS42-15の各ペプチドは、ペプチドVS42-1のアミノ酸配列とは、2つのヘリックス部分とループ部分のC末端側にあるAXFPWの共通したアミノ配列を有しており、VEGF-VEGFR2相互作用を阻害する活性が認められたVS42-1と同様にVEGF-VEGFR2相互作用の阻害活性が認められると言える。また上記のように、ループ部分においてX18には側鎖に正電荷を持つ塩基性アミノ酸(H,R,K)を、X20,X21,X23には側鎖に負電荷を持つアミノ酸(E,D)を配置することでVEGFへの結合性が高まる。従って、ヘリックス部分とループ部分にあるAXFPWが保存されたペプチドSV41等の本願発明に係るペプチドはVEGF結合阻害剤として使用し得る。 From these facts, peptide VS42-1 strongly inhibits VEGF-VEGFR2 interaction and can be used as a VEGF binding inhibitor. In addition, each peptide from peptide VS42-2 to peptide VS42-15 obtained in the secondary screening shared the amino acid sequence of peptide VS42-1 with AXFPW on the C-terminal side of the two helix portions and the loop portion. It can be said that VEGF-VEGFR2 interaction inhibitory activity is observed in the same manner as VS42-1, which has an amino acid sequence and was found to have activity to inhibit VEGF-VEGFR2 interaction. In addition, as described above, in the loop part, X18 has a positively charged basic amino acid (H, R, K) in the side chain, and X20, X21, X23 has a negatively charged amino acid in the side chain (E, D ) increases binding to VEGF. Therefore, peptides according to the present invention, such as peptide SV41, in which AXFPW in the helix and loop portions are conserved, can be used as VEGF binding inhibitors.

本発明によると抗体様の新規VEGF結合阻害剤が提供され、血管新生阻害作用等に基づく抗がん剤などとしての使用が見込まれる。 INDUSTRIAL APPLICABILITY According to the present invention, a novel antibody-like inhibitor of VEGF binding is provided, and is expected to be used as an anticancer agent based on its angiogenesis inhibitory action.

Claims (9)

配列番号5のアミノ酸配列を有するペプチド。
但し、同アミノ酸配列中、
N末端のアミノ酸から18残基目のアミノ酸(X18)が塩基性アミノ酸であり、
N末端のアミノ酸から19残基目のアミノ酸(X19)が疎水性アミノ酸であり、
N末端のアミノ酸から20残基目のアミノ酸(X20)は酸性アミノ酸であり、
N末端のアミノ酸から21残基目のアミノ酸(X21)は酸性アミノ酸であり、
N末端のアミノ酸から23残基目のアミノ酸(X23)は酸性アミノ酸である。
A peptide having the amino acid sequence of SEQ ID NO:5.
However, in the same amino acid sequence,
The 18th amino acid (X18) from the N-terminal amino acid is a basic amino acid,
The 19th amino acid (X19) from the N-terminal amino acid is a hydrophobic amino acid,
The 20th amino acid (X20) from the N-terminal amino acid is an acidic amino acid,
The 21st amino acid (X21) from the N-terminal amino acid is an acidic amino acid,
The 23rd amino acid (X23) from the N-terminal amino acid is an acidic amino acid.
配列番号5のアミノ酸配列中、
N末端のアミノ酸から18残基目のアミノ酸(X18)がH、R又はKであり、
N末端のアミノ酸から19残基目のアミノ酸(X19)がV、L又はIであり、
N末端のアミノ酸から20残基目のアミノ酸(X20)はE又はDであり、
N末端のアミノ酸から21残基目のアミノ酸(X21)はE又はDであり、
N末端のアミノ酸から23残基目のアミノ酸(X23)はE又はD、
である請求項1に記載のペプチド。
In the amino acid sequence of SEQ ID NO: 5,
the 18th amino acid (X18) from the N-terminal amino acid is H, R or K;
The 19th amino acid (X19) from the N-terminal amino acid is V, L or I,
the 20th amino acid (X20) from the N-terminal amino acid is E or D;
the 21st amino acid (X21) from the N-terminal amino acid is E or D;
the 23rd amino acid (X23) from the N-terminal amino acid is E or D;
The peptide of claim 1, which is
配列番号5のアミノ酸配列を有するペプチド。
但し、同アミノ酸配列中、
N末端のアミノ酸から18残基目のアミノ酸(X18)がH、R、F、K又はQであり、
N末端のアミノ酸から19残基目のアミノ酸(X19)がV、L又はIであり、
N末端のアミノ酸から20残基目のアミノ酸(X20)はE、G又はLであり、
N末端のアミノ酸から21残基目のアミノ酸(X21)はE、D又はSであり、
N末端のアミノ酸から23残基目のアミノ酸(X23)はD、N、E、H、S又はWである。
A peptide having the amino acid sequence of SEQ ID NO:5.
However, in the same amino acid sequence,
the 18th amino acid (X18) from the N-terminal amino acid is H, R, F, K or Q;
The 19th amino acid (X19) from the N-terminal amino acid is V, L or I,
the 20th amino acid (X20) from the N-terminal amino acid is E, G or L;
the 21st amino acid (X21) from the N-terminal amino acid is E, D or S;
The 23rd amino acid (X23) from the N-terminal amino acid is D, N, E, H, S or W.
配列番号5のアミノ酸配列中、
N末端のアミノ酸から18残基目のアミノ酸(X18)がH又はRであり、
N末端のアミノ酸から19残基目のアミノ酸(X19)がV又はLであり、
N末端のアミノ酸から20残基目のアミノ酸(X20)はE又はLであり、
N末端のアミノ酸から21残基目のアミノ酸(X21)はE又はDであり、
N末端のアミノ酸から23残基目のアミノ酸(X23)はD、S又はE
である請求項3に記載のペプチド。
In the amino acid sequence of SEQ ID NO: 5,
The 18th amino acid (X18) from the N-terminal amino acid is H or R,
The 19th amino acid (X19) from the N-terminal amino acid is V or L,
the 20th amino acid (X20) from the N-terminal amino acid is E or L;
the 21st amino acid (X21) from the N-terminal amino acid is E or D;
The 23rd amino acid (X23) from the N-terminal amino acid is D, S or E
4. The peptide of claim 3, which is
配列番号5のアミノ酸配列中、
N末端のアミノ酸から18残基目のアミノ酸(X18)がHであり、
N末端のアミノ酸から19残基目のアミノ酸(X19)がV又はLであり、
N末端のアミノ酸から20残基目のアミノ酸(X20)はE又はLであり、
N末端のアミノ酸から21残基目のアミノ酸(X21)はE又はDであり、
N末端のアミノ酸から23残基目のアミノ酸(X23)はE又はD
である請求項3に記載のペプチド。
In the amino acid sequence of SEQ ID NO: 5,
The 18th amino acid (X18) from the N-terminal amino acid is H,
The 19th amino acid (X19) from the N-terminal amino acid is V or L,
the 20th amino acid (X20) from the N-terminal amino acid is E or L;
the 21st amino acid (X21) from the N-terminal amino acid is E or D;
The 23rd amino acid (X23) from the N-terminal amino acid is E or D
4. The peptide of claim 3, which is
配列番号6~20の何れかのアミノ酸配列を有するペプチド。 A peptide having an amino acid sequence of any of SEQ ID NOS:6-20. 前記アミノ酸配列中、N末端のシステインとC末端のシステインがジスルフィド結合した請求項1~6の何れか1項に記載のペプチド。 7. The peptide according to any one of claims 1 to 6, wherein the N-terminal cysteine and the C-terminal cysteine in the amino acid sequence are disulfide bonded. 有効量の請求項1~7の何れか1項に記載のペプチドを含む医薬組成物。 A pharmaceutical composition comprising an effective amount of the peptide of any one of claims 1-7. 抗がん用組成物、抗慢性関節リウマチ用組成物、抗糖尿病性網膜症用組成物、抗加齢黄班変性用組成物の何れかである請求項8に記載の医薬組成物。 9. The pharmaceutical composition according to claim 8, which is an anti-cancer composition, an anti-rheumatoid arthritis composition, an anti-diabetic retinopathy composition, or an anti-age-related macular degeneration composition.
JP2018066159A 2018-03-29 2018-03-29 VEGF binding inhibitory peptide Active JP7138909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018066159A JP7138909B2 (en) 2018-03-29 2018-03-29 VEGF binding inhibitory peptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018066159A JP7138909B2 (en) 2018-03-29 2018-03-29 VEGF binding inhibitory peptide

Publications (2)

Publication Number Publication Date
JP2019172647A JP2019172647A (en) 2019-10-10
JP7138909B2 true JP7138909B2 (en) 2022-09-20

Family

ID=68169261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018066159A Active JP7138909B2 (en) 2018-03-29 2018-03-29 VEGF binding inhibitory peptide

Country Status (1)

Country Link
JP (1) JP7138909B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7540640B2 (en) * 2020-04-13 2024-08-27 株式会社島津製作所 Differentiation-inducing peptides
JP2023156531A (en) * 2020-07-17 2023-10-25 参天製薬株式会社 Vegf-binding peptide
JP2022061613A (en) * 2020-10-07 2022-04-19 公立大学法人大阪 HSA binding protein

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151921A (en) 2003-11-28 2005-06-16 Biomolecular Engineering Research Institute Granulocyte colony-stimulating factor (g-csf) receptor binding peptide
JP2008214254A (en) 2007-03-02 2008-09-18 Osaka Prefecture Univ Human interleukin-5 receptor (hIL-5R) binding peptide
JP2014047156A (en) 2012-08-30 2014-03-17 Osaka Prefecture Univ Vegf-binding fusion peptide
WO2016208761A1 (en) 2015-06-25 2016-12-29 公立大学法人大阪府立大学 Drug complex
JP2017043625A (en) 2016-09-27 2017-03-02 公立大学法人大阪府立大学 VEGF binding peptide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10245397A (en) * 1997-03-03 1998-09-14 Seibutsu Bunshi Kogaku Kenkyusho:Kk Peptide having α-helical coiled coil structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151921A (en) 2003-11-28 2005-06-16 Biomolecular Engineering Research Institute Granulocyte colony-stimulating factor (g-csf) receptor binding peptide
JP2008214254A (en) 2007-03-02 2008-09-18 Osaka Prefecture Univ Human interleukin-5 receptor (hIL-5R) binding peptide
JP2014047156A (en) 2012-08-30 2014-03-17 Osaka Prefecture Univ Vegf-binding fusion peptide
WO2016208761A1 (en) 2015-06-25 2016-12-29 公立大学法人大阪府立大学 Drug complex
JP2017043625A (en) 2016-09-27 2017-03-02 公立大学法人大阪府立大学 VEGF binding peptide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ikuo Fujii, et al.,Isolation of Anti-VEGF Neutralizing Microantibodies from Phage-displayed Peptide Library.,PEPTIDE SCIENCE 2014,2014年,p.315-316
藤井 郁雄,マイクロ抗体:立体構造規制ペプチド・ライブラリーを用いた分子標的化合物の創出,薬学雑誌,2009年,Vol.12, No.11,p.1303-1309

Also Published As

Publication number Publication date
JP2019172647A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
KR20150023957A (en) Designed ankyrin repeat proteins binding to platelet-derived growth factor
JP7138909B2 (en) VEGF binding inhibitory peptide
KR102560072B1 (en) Modified-IGG antibody that binds transforming growth factor-beta1 with high affinity, avidity and specificity
JP6032735B2 (en) VEGF-binding fusion peptide
JP2025078711A (en) IL-1R-I binding polypeptides
US11085038B2 (en) Polypeptide library
JP2017043625A (en) VEGF binding peptide
CN116199744B (en) Polypeptide combined with FGFR2 receptor and application thereof
KR20130103299A (en) Rtk-bpb specifically binding to rtk
PL232192B1 (en) Synthetic library of proteins based on the sequence of the sea lamprey variable lymphocyte receptors and the protein binding the S100A7 neoplastic marker
KR20130103301A (en) Tf-bpb specifically binding to transcription fator
KR20180133388A (en) Human Antibodies and Their Binding fragments to Tenascin
KR20140015036A (en) Methods for improving target affinity of peptides
WO2011132939A2 (en) Rtk-bpb specifically binding to rtk

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220215

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220831

R150 Certificate of patent or registration of utility model

Ref document number: 7138909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350