JP7130062B2 - 経路決定方法 - Google Patents
経路決定方法 Download PDFInfo
- Publication number
- JP7130062B2 JP7130062B2 JP2020562335A JP2020562335A JP7130062B2 JP 7130062 B2 JP7130062 B2 JP 7130062B2 JP 2020562335 A JP2020562335 A JP 2020562335A JP 2020562335 A JP2020562335 A JP 2020562335A JP 7130062 B2 JP7130062 B2 JP 7130062B2
- Authority
- JP
- Japan
- Prior art keywords
- robot
- image
- pedestrian
- walking
- route
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0214—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0223—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/60—Intended control result
- G05D1/617—Safety or protection, e.g. defining protection zones around obstacles or avoiding hazards
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Theoretical Computer Science (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Electromagnetism (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Manipulator (AREA)
Description
G(v)= α・cnn(v)+ β・dist(v) ……(1)
2 ロボット
32 歩行経路取得部
33 学習用データ取得部
34 CNN学習部
Pobj 目的地
M1 第1歩行者
Po 目的地点
M2 第2歩行者
Rw 第1歩行者の歩行経路
v 移動速度指令(ロボットの経路)
Claims (4)
- 自律移動型のロボットが目的地まで移動するときの経路を、歩行者を含む交通参加者が当該目的地までの交通環境に存在する条件下で決定する経路決定方法であって、
第1歩行者が目的地に向かって当該第1歩行者以外の複数の第2歩行者との干渉を回避しながら歩行する場合において、当該複数の第2歩行者の歩行パターンを複数種の互いに異なる歩行パターンに設定したときの前記第1歩行者の複数の歩行経路を取得し、
前記ロボットが前記複数の歩行経路に沿ってそれぞれ移動したときの、当該ロボットの前方の視覚的環境を表す環境画像を含む画像データと、当該ロボットの行動を表す行動パラメータとの関係を紐付けした複数のデータベースを作成し、
前記画像データを入力とし前記行動パラメータを出力とする行動モデルのモデルパラメータを、前記複数のデータベースを用いて所定の学習方法で学習することにより、学習済みの当該行動モデルである学習済みモデルを作成し、
当該学習済みモデルを用いて、前記ロボットの前記経路を決定することを特徴とする経路決定方法。 - 請求項1に記載の経路決定方法において、
前記画像データは、前記環境画像に加えて、速度度合画像及び位置画像をさらに含んでおり、
前記速度度合画像は、前記ロボットの速度を最大移動速度と最小移動速度との間の範囲内の位置関係で表した画像であり、
前記位置画像は、前記ロボットの現時点の位置を0゜として、前記目的地の位置を-90deg~90degの範囲内の位置関係で表した画像であることを特徴とする経路決定方法。 - 請求項1に記載の経路決定方法において、
前記複数のデータベースは、仮想空間において仮想の前記ロボットが前記複数の歩行経路に沿ってそれぞれ移動したときの前記画像データと前記行動パラメータとの関係を紐付けしたものであることを特徴とする経路決定方法。 - 請求項2に記載の経路決定方法において、
前記複数のデータベースは、仮想空間において仮想の前記ロボットが前記複数の歩行経路に沿ってそれぞれ移動したときの前記画像データと前記行動パラメータとの関係を紐付けしたものであることを特徴とする経路決定方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018245255 | 2018-12-27 | ||
JP2018245255 | 2018-12-27 | ||
PCT/JP2019/031198 WO2020136978A1 (ja) | 2018-12-27 | 2019-08-07 | 経路決定方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020136978A1 JPWO2020136978A1 (ja) | 2021-09-27 |
JP7130062B2 true JP7130062B2 (ja) | 2022-09-02 |
Family
ID=71125779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020562335A Active JP7130062B2 (ja) | 2018-12-27 | 2019-08-07 | 経路決定方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US12093051B2 (ja) |
JP (1) | JP7130062B2 (ja) |
CN (1) | CN113242998B (ja) |
DE (1) | DE112019006409T5 (ja) |
WO (1) | WO2020136978A1 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7221839B2 (ja) * | 2019-10-08 | 2023-02-14 | 国立大学法人静岡大学 | 自律移動ロボットおよび自律移動ロボットの制御プログラム |
US12208508B2 (en) * | 2019-12-27 | 2025-01-28 | Sony Group Corporation | Information processing device and information processing method |
EP3955082B1 (en) * | 2020-08-12 | 2024-07-17 | Robert Bosch GmbH | Computer-implemented method and device for controlling a mobile robot based on semantic environment maps |
JP2022044383A (ja) | 2020-09-07 | 2022-03-17 | 本田技研工業株式会社 | モデルパラメータ学習方法及び移動態様パラメータ決定方法 |
JP2022044980A (ja) | 2020-09-08 | 2022-03-18 | 本田技研工業株式会社 | モデルパラメータ学習方法及び移動態様決定方法 |
KR102537381B1 (ko) * | 2021-04-01 | 2023-05-30 | 광주과학기술원 | 보행경로예측장치 |
KR20240131806A (ko) * | 2023-02-24 | 2024-09-02 | 서울대학교산학협력단 | 사회 친화적 내비게이션 알고리즘을 이용하는 로봇 |
CN116000895B (zh) * | 2023-03-28 | 2023-06-23 | 浙江大学 | 一种基于深度学习的中药制药过程质量检测机器人及方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004145660A (ja) | 2002-10-24 | 2004-05-20 | Fuji Heavy Ind Ltd | 障害物検出装置 |
JP2013196601A (ja) | 2012-03-22 | 2013-09-30 | Denso Corp | 予測システム |
JP6393433B1 (ja) | 2018-02-09 | 2018-09-19 | 株式会社ビコー | 情報処理装置、情報処理方法およびプログラム |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2501845Y2 (ja) | 1986-12-09 | 1996-06-19 | 三菱自動車工業株式会社 | デイ−ゼルエンジンの始動誤操作防止装置 |
US7188056B2 (en) * | 2002-09-09 | 2007-03-06 | Maia Institute | Method and apparatus of simulating movement of an autonomous entity through an environment |
JP4576445B2 (ja) | 2007-04-12 | 2010-11-10 | パナソニック株式会社 | 自律移動型装置および自律移動型装置用プログラム |
JP5402057B2 (ja) | 2009-02-16 | 2014-01-29 | トヨタ自動車株式会社 | 移動ロボット制御システム、経路探索方法、経路探索プログラム |
US9776323B2 (en) * | 2016-01-06 | 2017-10-03 | Disney Enterprises, Inc. | Trained human-intention classifier for safe and efficient robot navigation |
US10386839B2 (en) * | 2016-05-26 | 2019-08-20 | Boston Incubator Center, LLC | Mobile robot that emulates pedestrian walking behavior |
US10884417B2 (en) * | 2016-11-07 | 2021-01-05 | Boston Incubator Center, LLC | Navigation of mobile robots based on passenger following |
US10268200B2 (en) | 2016-12-21 | 2019-04-23 | Baidu Usa Llc | Method and system to predict one or more trajectories of a vehicle based on context surrounding the vehicle |
US10688662B2 (en) * | 2017-12-13 | 2020-06-23 | Disney Enterprises, Inc. | Robot navigation in context of obstacle traffic including movement of groups |
-
2019
- 2019-08-07 DE DE112019006409.6T patent/DE112019006409T5/de active Pending
- 2019-08-07 WO PCT/JP2019/031198 patent/WO2020136978A1/ja active Application Filing
- 2019-08-07 US US17/417,583 patent/US12093051B2/en active Active
- 2019-08-07 JP JP2020562335A patent/JP7130062B2/ja active Active
- 2019-08-07 CN CN201980081935.8A patent/CN113242998B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004145660A (ja) | 2002-10-24 | 2004-05-20 | Fuji Heavy Ind Ltd | 障害物検出装置 |
JP2013196601A (ja) | 2012-03-22 | 2013-09-30 | Denso Corp | 予測システム |
JP6393433B1 (ja) | 2018-02-09 | 2018-09-19 | 株式会社ビコー | 情報処理装置、情報処理方法およびプログラム |
Also Published As
Publication number | Publication date |
---|---|
DE112019006409T5 (de) | 2021-09-16 |
CN113242998A (zh) | 2021-08-10 |
JPWO2020136978A1 (ja) | 2021-09-27 |
CN113242998B (zh) | 2024-04-02 |
WO2020136978A1 (ja) | 2020-07-02 |
US12093051B2 (en) | 2024-09-17 |
US20220057804A1 (en) | 2022-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7130062B2 (ja) | 経路決定方法 | |
JP7469850B2 (ja) | 経路決定装置、ロボット及び経路決定方法 | |
KR102303432B1 (ko) | 장애물의 특성을 고려한 dqn 및 slam 기반의 맵리스 내비게이션 시스템 및 그 처리 방법 | |
JP7258046B2 (ja) | 経路決定装置、ロボット及び経路決定方法 | |
JP7250571B2 (ja) | 倒立振子型ロボット | |
Afonso et al. | Autonomous navigation of wheelchairs in indoor environments using deep reinforcement learning and computer vision | |
CA3212795A1 (en) | Motion forecasting for autonomous systems | |
JP7250573B2 (ja) | 倒立振子型ロボット | |
JP7250572B2 (ja) | 倒立振子型ロボット | |
US20230294279A1 (en) | Model parameter learning method | |
Tao et al. | Fast and robust training and deployment of deep reinforcement learning based navigation policy | |
US12020509B2 (en) | Model parameter learning method and movement mode parameter determination method | |
Vaidya | Deep Reinforcement Learning for Autonomous Navigation of Mobile Robots in Indoor Environments | |
Seppänen | Aiding mobile robot teleoperator with short-term autonomous control system based on robot vision |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220329 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220525 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220613 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220823 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7130062 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |