JP7116064B2 - FERRITIC STAINLESS STEEL EXCELLENT IN RIDGING PROPERTIES AND SURFACE QUALITY AND METHOD FOR MANUFACTURING SAME - Google Patents
FERRITIC STAINLESS STEEL EXCELLENT IN RIDGING PROPERTIES AND SURFACE QUALITY AND METHOD FOR MANUFACTURING SAME Download PDFInfo
- Publication number
- JP7116064B2 JP7116064B2 JP2019531659A JP2019531659A JP7116064B2 JP 7116064 B2 JP7116064 B2 JP 7116064B2 JP 2019531659 A JP2019531659 A JP 2019531659A JP 2019531659 A JP2019531659 A JP 2019531659A JP 7116064 B2 JP7116064 B2 JP 7116064B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- less
- hot
- ridged
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 238000000034 method Methods 0.000 title description 5
- 238000005096 rolling process Methods 0.000 claims description 66
- 238000005097 cold rolling Methods 0.000 claims description 49
- 238000000137 annealing Methods 0.000 claims description 39
- 238000005098 hot rolling Methods 0.000 claims description 38
- 239000000463 material Substances 0.000 claims description 22
- 230000009467 reduction Effects 0.000 claims description 15
- 229910052748 manganese Inorganic materials 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 13
- 239000012535 impurity Substances 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 6
- 238000009864 tensile test Methods 0.000 claims description 5
- 229910001566 austenite Inorganic materials 0.000 claims description 4
- 238000003303 reheating Methods 0.000 claims description 4
- 230000003746 surface roughness Effects 0.000 claims description 3
- 238000004439 roughness measurement Methods 0.000 claims 2
- 238000004804 winding Methods 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 description 26
- 229910000831 Steel Inorganic materials 0.000 description 18
- 239000010959 steel Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 14
- 238000001953 recrystallisation Methods 0.000 description 8
- 230000007547 defect Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 6
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0405—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0268—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0473—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0081—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Metal Rolling (AREA)
Description
本発明は、リッジング性および表面品質に優れたフェライト系ステンレス鋼およびその製造方法に関し、より詳細には、熱間圧延後、熱延焼鈍熱処理前に冷間圧延をさらに実施することによって、厚さ中心部の組織を改善して、リッジング性および表面品質を向上させたフェライト系ステンレス鋼およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to a ferritic stainless steel excellent in ridged property and surface quality and a method for producing the same. The present invention relates to a ferritic stainless steel with an improved core structure to improve ridged property and surface quality, and a method for producing the same.
一般的に、ステンレス鋼は、成分系や金属組織によって分類される。金属組織による場合、ステンレス鋼は、オーステナイト系、フェライト系、マルテンサイト系、二相系に分類される。このようなステンレス鋼のうちフェライト系ステンレス鋼は、高価な合金元素が少なく添加されながらも、耐食性に優れていて、各種キッチン用品、自動車排気系部品、建築材料、家電製品などに主に使用されており、外装用に使用される場合、高品質の表面光沢度が要求される鋼種である。 Generally, stainless steels are classified according to their composition system and metallographic structure. Stainless steels are classified into austenitic, ferritic, martensitic, and duplex systems according to metallographic structure. Among these stainless steels, ferritic stainless steels are mainly used for various kitchen appliances, automotive exhaust system parts, building materials, home appliances, etc., because they have excellent corrosion resistance even though they contain few expensive alloying elements. It is a type of steel that requires high-quality surface gloss when used for exterior applications.
しかしながら、フェライト系ステンレス鋼は、ディープドローイング(deep drawing)のような成形加工時に圧延方向に平行なシワ形状の表面欠陥であるリッジング(ridging)欠陥が発生する問題点を有している。リッジング欠陥は、製品の外観を悪化させると共に、リッジングがひどく発生する場合、成形後に研磨工程が追加されて製造時間が増加し、製造コストが上昇する問題が発生する。そのため、フェライト系ステンレス鋼の用途拡大のためには、リッジング特性の改善と共に、優れた表面品質の確保が必要である。 However, ferritic stainless steel has a problem that a ridging defect, which is a wrinkle-shaped surface defect parallel to the rolling direction, occurs during forming such as deep drawing. The ridged defects deteriorate the appearance of the product, and when the ridged ridges are severe, a polishing process is added after molding, which increases the manufacturing time and increases the manufacturing cost. Therefore, in order to expand the use of ferritic stainless steel, it is necessary to improve the ridging property and ensure excellent surface quality.
リッジングの発生原因は、根源的に鋳造組織内の柱状晶の発達に起因する。すなわち、一定の方位を有する柱状晶が、圧延または焼鈍工程で破壊されずに残留する場合、引張加工時に周辺の再結晶組織と異なる幅および厚さ方向の変形挙動によってリッジング欠陥として表出される。このようなリッジング欠陥を解消するために、リッジングを誘発する組織を除去するための多様な試みが行われてきた。主に等軸晶率を向上させて柱状晶の分率を減らすことによって、リッジング性を改善したり、製造工程中に熱間圧延温度、熱間圧延の圧下率、焼鈍温度の制御など工程変数の調節を通じてリッジングを低減した。 The cause of the occurrence of ridges is fundamentally attributed to the development of columnar crystals in the cast structure. That is, when columnar crystals having a certain orientation remain without being destroyed during rolling or annealing, they appear as ridged defects due to deformation behavior in the width and thickness directions that differs from that of the surrounding recrystallized structure during tensile working. In order to eliminate such ridged defects, various attempts have been made to remove ridge-inducing tissue. Mainly by improving the equiaxed grain ratio and reducing the columnar grain fraction, it is possible to improve the ridging property, and to control process variables such as hot rolling temperature, hot rolling reduction ratio, and annealing temperature during the manufacturing process. Rigging was reduced through the adjustment of
しかしながら、熱間圧延後に高温で巻き取った熱延板を熱延焼鈍の前に対称圧延または非対称圧延した後、連続して焼鈍熱処理して集合組織を改善しようとする試みは殆どないのが現状である。 However, at present, there is almost no attempt to improve the texture by subjecting a hot-rolled sheet coiled at a high temperature after hot rolling to symmetrical rolling or asymmetrical rolling before hot rolling annealing, followed by continuous annealing heat treatment. is.
本発明は、フェライト系ステンレス鋼の熱延焼鈍熱処理前に冷間圧延をさらに実施することによって、断面の中心部の微細組織を変化させて、最終製品のリッジング特性および表面品質に優れたフェライト系ステンレス鋼およびその製造方法を提供する。 The present invention provides a ferritic stainless steel with excellent ridged properties and surface quality in the final product by further performing cold rolling before the hot rolling annealing heat treatment of ferritic stainless steel to change the microstructure at the center of the cross section. Kind Code: A1 A stainless steel and method for making the same are provided.
本発明の一実施例によるリッジング性および表面品質に優れたフェライト系ステンレス鋼は、重量%で、C:0.005~0.1%、Si:0.01~2.0%、Mn:0.01~1.5%、P:0.05%以下、S:0.005%以下、Cr:10~30%、N:0.005~0.1%、Al:0.005~0.2%、残りのFeおよびその他不可避な不純物を含み、下記式(1)で表されるγmaxが20%以上50%未満である。 Ferritic stainless steel excellent in ridged property and surface quality according to one embodiment of the present invention has C: 0.005 to 0.1%, Si: 0.01 to 2.0%, Mn: 0% by weight. .01-1.5%, P: 0.05% or less, S: 0.005% or less, Cr: 10-30%, N: 0.005-0.1%, Al: 0.005-0. 2%, the remaining Fe and other unavoidable impurities are included, and the γ max represented by the following formula (1) is 20% or more and less than 50%.
(1)420×C+470×N+10×Mn+180-11.5×Cr-11.5×Si-52.0×Al (1) 420×C+470×N+10×Mn+180-11.5×Cr-11.5×Si-52.0×Al
ここで、C、N、Mn、Cr、Si、Alは、各元素の含量(重量%)を意味する。 Here, C, N, Mn, Cr, Si and Al mean the content (% by weight) of each element.
また、本発明の一実施例によれば、前記ステンレス鋼は、表面の微細溝の面積率が2.0%以下であってもよい。 Further, according to an embodiment of the present invention, the stainless steel may have a surface area ratio of microgrooves of 2.0% or less.
また、本発明の一実施例によれば、前記ステンレス鋼は、リッジング高さが12μm以下であってもよい。 Also, according to an embodiment of the present invention, the stainless steel may have a ridge height of 12 μm or less.
また、本発明の一実施例によれば、前記ステンレス鋼は、r-bar値が1.2以上であってもよい。 Also, according to an embodiment of the present invention, the stainless steel may have an r-bar value of 1.2 or more.
本発明の一実施例によるリッジング性および表面品質に優れたフェライト系ステンレス鋼の製造方法は、重量%で、C:0.005~0.1%、Si:0.01~2.0%、Mn:0.01~1.5%、P:0.05%以下、S:0.005%以下、Cr:10~30%、N:0.005~0.1%、Al:0.005~0.2%、残りのFeおよびその他不可避な不純物を含み、下記式(1)で表されるγmaxが20%以上50%未満を満たすスラブを製造する段階と、前記スラブを再加熱して熱間圧延する段階と、前記熱間圧延された熱延板を巻き取る段階と、前記巻き取られた熱延板を熱延焼鈍熱処理する前に、冷間圧延する段階と、を含む。 A method for producing ferritic stainless steel excellent in ridged property and surface quality according to an embodiment of the present invention comprises, in weight percent, C: 0.005 to 0.1%, Si: 0.01 to 2.0%, Mn: 0.01-1.5%, P: 0.05% or less, S: 0.005% or less, Cr: 10-30%, N: 0.005-0.1%, Al: 0.005 ~0.2%, the remaining Fe and other unavoidable impurities, producing a slab satisfying γ max represented by the following formula (1) of 20% or more and less than 50%, and reheating the slab coiling the hot-rolled hot-rolled sheet; and cold-rolling the coiled hot-rolled sheet before hot-rolling annealing heat treatment.
(1)420×C+470×N+10×Mn+180-11.5×Cr-11.5×Si-52.0×Al (1) 420×C+470×N+10×Mn+180-11.5×Cr-11.5×Si-52.0×Al
ここで、C、N、Mn、Cr、Si、Alは、各元素の含量(重量%)を意味する。 Here, C, N, Mn, Cr, Si and Al mean the content (% by weight) of each element.
また、本発明の一実施例によれば、前記熱延板を巻き取る段階での巻取温度は、750℃以上であってもよい。 Also, according to an embodiment of the present invention, a coiling temperature in the step of coiling the hot-rolled sheet may be 750° C. or higher.
また、本発明の一実施例によれば、前記冷間圧延する段階は、非対称冷間圧延で実施することができる。 Also, according to an embodiment of the present invention, the cold rolling may be performed by asymmetric cold rolling.
また、本発明の一実施例によれば、前記冷間圧延または前記非対称冷間圧延は、30%以上の圧下率で実施することができる。 Also, according to an embodiment of the present invention, the cold rolling or the asymmetric cold rolling may be performed at a rolling reduction of 30% or more.
また、本発明の一実施例によれば、前記非対称冷間圧延は、上下圧延ロールの速度比(Vh/Vl)が1.25以上であり、圧延形状因子(l/d)が1.7以上である圧延条件で実施することができる。 Further, according to an embodiment of the present invention, the asymmetric cold rolling has a speed ratio (V h /V l ) of upper and lower rolling rolls of 1.25 or more and a rolling shape factor (l/d) of 1. .7 or higher.
また、本発明の一実施例によれば、前記非対称冷間圧延後に熱延焼鈍、2次冷間圧延および冷延焼鈍を実施して製造されたステンレス鋼のリッジング高さが10μm以下であってもよい。 Also, according to an embodiment of the present invention, the stainless steel manufactured by performing hot rolling annealing, secondary cold rolling and cold rolling annealing after the asymmetric cold rolling has a ridged height of 10 μm or less. good too.
また、本発明の一実施例によれば、前記冷間圧延する段階後に、熱延焼鈍熱処理する段階;をさらに含むことができる。 Also, according to an embodiment of the present invention, the step of hot rolling annealing heat treatment after the step of cold rolling may be further included.
また、本発明の一実施例によれば、前記熱延焼鈍熱処理は、550~950℃の温度範囲で60分以内で実施することができる。 Also, according to an embodiment of the present invention, the hot rolling annealing heat treatment can be performed within a temperature range of 550 to 950° C. within 60 minutes.
また、本発明の一実施例によれば、前記熱延焼鈍熱処理後に、熱延焼鈍材の断面の厚さ中心部の組織の平均縦横比が4.0以下であってもよい。 Further, according to an embodiment of the present invention, after the hot rolling annealing heat treatment, the average aspect ratio of the structure at the center of the thickness of the cross section of the hot rolling annealed material may be 4.0 or less.
本発明の実施例によるフェライト系ステンレス鋼およびその製造方法は、熱延焼鈍熱処理前に冷間圧延を通じて鋼板断面の厚さ中心部の組織のバンド組織の縦横比を低く制御して、製品表面のリッジング欠陥の発生を抑制することができる。 In the ferritic stainless steel and its manufacturing method according to the embodiment of the present invention, the aspect ratio of the band structure in the thickness center of the cross section of the steel plate is controlled to be low through cold rolling before hot rolling annealing heat treatment, and the product surface is It is possible to suppress the occurrence of ridged defects.
また、本発明の実施例によるフェライト系ステンレス鋼およびその製造方法は、鋼板表面の微細溝の面積率が低いため、優れた表面光沢度を示すことができる。 In addition, the ferritic stainless steel and the method for producing the same according to the embodiments of the present invention have a low area ratio of fine grooves on the surface of the steel sheet, so that they can exhibit excellent surface gloss.
また、本発明の実施例によるフェライト系ステンレス鋼およびその製造方法は、優れたリッジング性と共に、高いr値を有し、成形時にリッジング高さを減少させることができる。 In addition, the ferritic stainless steel and the method for producing the same according to the embodiments of the present invention have excellent ridged property and high r-value, and can reduce the ridged height during molding.
本発明の一実施例によるリッジング性および表面品質に優れたフェライト系ステンレス鋼は、重量%で、C:0.005~0.1%、Si:0.01~2.0%、Mn:0.01~1.5%、P:0.05%以下、S:0.005%以下、Cr:10~30%、N:0.005~0.1%、Al:0.005~0.2%、残りのFeおよびその他不可避な不純物を含み、下記式(1)で表されるγmaxが20%以上50%未満である。 Ferritic stainless steel excellent in ridged property and surface quality according to one embodiment of the present invention has C: 0.005 to 0.1%, Si: 0.01 to 2.0%, Mn: 0% by weight. .01-1.5%, P: 0.05% or less, S: 0.005% or less, Cr: 10-30%, N: 0.005-0.1%, Al: 0.005-0. 2%, the remaining Fe and other unavoidable impurities are included, and the γ max represented by the following formula (1) is 20% or more and less than 50%.
(1)420×C+470×N+10×Mn+180-11.5×Cr-11.5×Si-52.0×Al (1) 420×C+470×N+10×Mn+180-11.5×Cr-11.5×Si-52.0×Al
ここで、C、N、Mn、Cr、Si、Alは、各元素の含量(重量%)を意味する。 Here, C, N, Mn, Cr, Si and Al mean the content (% by weight) of each element.
以下では、本発明の実施例を添付の図面を参照して詳細に説明する。以下の実施例は、本発明の属する技術分野における通常の知識を有する者に本発明の思想を十分に伝達するために提示するものである。本発明は、ここで提示した実施例だけに限定されず、他の形態に具体化されることもできる。図面は、本発明を明確にするために、説明と関係ない部分の図示を省略し、理解を助けるために構成要素のサイズを多少誇張して表現することができる。 Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. The following examples are presented to fully convey the spirit of the invention to those of ordinary skill in the art to which the invention pertains. This invention is not limited to the embodiments presented herein, but may be embodied in other forms. In order to clarify the present invention, the drawings may omit the illustration of parts that are not related to the description, and may exaggerate the sizes of the components to facilitate understanding.
本発明の一実施例によるリッジング性および表面品質に優れたフェライト系ステンレス鋼は、重量%で、C:0.005~0.1%、Si:0.01~2.0%、Mn:0.01~1.5%、P:0.05%以下、S:0.005%以下、Cr:10~30%、N:0.005~0.1%、Al:0.005~0.2%、残りのFeおよびその他不可避な不純物を含み、γmaxが20%以上50%未満を満たす。 Ferritic stainless steel excellent in ridged property and surface quality according to one embodiment of the present invention has C: 0.005 to 0.1%, Si: 0.01 to 2.0%, Mn: 0% by weight. .01-1.5%, P: 0.05% or less, S: 0.005% or less, Cr: 10-30%, N: 0.005-0.1%, Al: 0.005-0. 2%, the remaining Fe and other unavoidable impurities are included, and the γ max satisfies 20% or more and less than 50%.
本発明によるフェライト系ステンレス鋼に含まれる各成分の役割およびその含量について説明すると、次の通りである。下記成分に対する%は、重量%を意味する。 The role and content of each component contained in the ferritic stainless steel according to the present invention are as follows. % for the following components means % by weight.
Cの含量は、0.005%以上0.1%以下である。 The content of C is 0.005% or more and 0.1% or less.
Cは、鋼材の強度に大きく影響を及ぼす元素であって、その含量が多すぎる場合、鋼材の強度が過度に上昇して軟性が低下するところ、0.1%以下に制限する。ただし、その含量が低い場合、鋼材に必要な強度が満たされないところ、0.005%以上添加する。 C is an element that greatly affects the strength of the steel. If the content is too high, the strength of the steel is excessively increased and the softness is lowered. However, when the content is low, it is added in an amount of 0.005% or more when the required strength of the steel material is not satisfied.
Siの含量は、0.01%以上2.0%以下である。 The content of Si is 0.01% or more and 2.0% or less.
Siは、製鋼時に溶鋼の脱酸とフェライト安定化のために添加される元素であって、本発明では、0.01%以上添加する。ただし、その含量が多すぎる場合、材質の硬化を起こして、鋼の軟性が低下するところ、2.0%以下に制限する。 Si is an element added for deoxidizing molten steel and stabilizing ferrite during steelmaking, and is added in an amount of 0.01% or more in the present invention. However, if the content is too high, the material is hardened and the softness of the steel is lowered, so the content is limited to 2.0% or less.
Mnの含量は、0.01%以上1.5%以下である。 The content of Mn is 0.01% or more and 1.5% or less.
Mnは、耐食性の改善に有効な元素であって、本発明では、0.01%以上添加し、より好ましくは0.2%以上添加する。ただし、その含量が多すぎる場合、溶接時にMn系フュームの発生が急増して溶接性が低下し、過度なMnS析出物の形成によって鋼の軟性が低下するところ、1.5%以下に限定し、より好ましくは1.0%以下に限定する。 Mn is an element effective for improving corrosion resistance, and in the present invention, it is added in an amount of 0.01% or more, preferably 0.2% or more. However, if the content is too large, Mn-based fumes are rapidly generated during welding, resulting in poor weldability and excessive formation of MnS precipitates, which reduces the softness of the steel. , more preferably 1.0% or less.
Pの含量は、0以上0.05%以下である。 The content of P is 0 to 0.05%.
Pは、鋼中に不可避に含有される不純物であって、酸洗時に粒界腐食を起こしたり、熱間加工性を阻害する主要原因となる元素であるので、その含量をできるだけ低く制御することが好ましい。本発明では、前記P含量の上限を0.05%に管理する。 P is an unavoidable impurity contained in steel, and is an element that causes intergranular corrosion during pickling and impairs hot workability, so its content should be controlled as low as possible. is preferred. In the present invention, the upper limit of the P content is controlled at 0.05%.
Sの含量は、0以上0.005%以下である。 The content of S is 0 to 0.005%.
Sは、鋼中に不可避に含有される不純物であって、結晶粒界に偏析して熱間加工性を阻害する主要原因となる元素であるので、その含量をできるだけ低く制御することが好ましい。本発明では、前記S含量の上限を0.005%に管理する。 S is an impurity that is unavoidably contained in steel and is an element that segregates at grain boundaries and is the main cause of impairing hot workability. Therefore, it is preferable to control the content of S as low as possible. In the present invention, the upper limit of the S content is controlled at 0.005%.
Crの含量は、10%以上30%以下である。 The Cr content is 10% or more and 30% or less.
Crは、鋼の耐食性の向上に効果的な元素であって、本発明では、10%以上添加する。ただし、その含量が多すぎる場合、製造費用が急増する問題があるところ、30%以下に限定する。 Cr is an element effective in improving the corrosion resistance of steel, and is added in an amount of 10% or more in the present invention. However, if the content is too high, there is a problem that the production cost rises sharply, so it is limited to 30% or less.
Nの含量は、0.005%以上0.03%以下である。 The content of N is 0.005% or more and 0.03% or less.
Nは、窒化物を形成させる元素であって、侵入型として存在するので、過度に含有される場合、衝撃靭性および成形性の低下を招くところ、0.03%以下に限定する。 N is an element that forms nitrides and exists as an interstitial type, so if it is excessively contained, it causes a decrease in impact toughness and formability, so it is limited to 0.03% or less.
Alの含量は、0.005%以上0.2%以下である。 The content of Al is 0.005% or more and 0.2% or less.
Alは、強力な脱酸剤であって、溶鋼中酸素の含量を低減する役割をするので、本発明では、0.005%以上添加する。ただし、その含量が多すぎる場合、非金属介在物の増加によって冷延ストリップのスリーブ欠陥が発生すると同時に、溶接性を劣化させるところ、0.2%以下に限定し、より好ましくは0.15%以下に限定する。 Al is a strong deoxidizing agent and plays a role in reducing the oxygen content in molten steel. However, if the content is too high, the increase in non-metallic inclusions causes sleeve defects in the cold-rolled strip and deteriorates the weldability. Limited to:
γmaxは、高温での最大オーステナイト量に対応するよく知られたオーステナイト安定度の指数である。γmaxは、下記式(1)により計算される。本発明では、γmax値が20%以上50%未満を満たす。 γ max is a well-known austenite stability index corresponding to the maximum amount of austenite at high temperatures. γ max is calculated by the following formula (1). In the present invention, the γ max value satisfies 20% or more and less than 50%.
(1)420×C+470×N+10×Mn+180-11.5×Cr-11.5×Si-52.0×Al (1) 420×C+470×N+10×Mn+180-11.5×Cr-11.5×Si-52.0×Al
γmaxが20%未満であれば、熱間圧延中にオーステナイト相によるフェライト相の十分な変形の蓄積が行われず、フェライトバンドの再結晶が促進されないため、リッジング性の改善が得られない。一方、γmaxを高めるために、C、N、MnおよびNiなどのオーステナイト形成元素の含有量を高く制御することができるが、これらは、鋼材の硬質化や費用の上昇を招くので、γmaxは、50%未満とする必要がある。 If γ max is less than 20%, sufficient deformation of the ferrite phase is not accumulated by the austenite phase during hot rolling, and recrystallization of the ferrite band is not promoted, resulting in no improvement in the ridged property. On the other hand, in order to increase γ max , the content of austenite-forming elements such as C, N, Mn and Ni can be controlled to be high, but these lead to hardening of the steel material and an increase in cost . should be less than 50%.
上記のような成分系およびγmaxの範囲を満たすフェライト系ステンレス鋼の場合、熱延焼鈍熱処理前に再結晶のための変形エネルギー蓄積が十分であるので、リッジング性および成形性に有利な集合組織が形成され得る。 In the case of a ferritic stainless steel satisfying the above compositional system and γ max range, the accumulation of deformation energy for recrystallization is sufficient before the hot rolling annealing heat treatment, so the texture is favorable for ridged property and formability. can be formed.
例えば、本発明の一実施例によるフェライト系ステンレス鋼は、リッジング高さが12μm以下であってもよく、r-bar値が1.2以上であってもよい。 For example, the ferritic stainless steel according to one embodiment of the present invention may have a ridged height of 12 μm or less and an r-bar value of 1.2 or more.
また、本発明の一実施例によるフェライト系ステンレス鋼は、鋼表面の微細溝の面積率が2.0%以下であってもよい。表面の微細溝の面積率は、光沢度と相関性があり、微細溝の面積率が低いほど光沢度が高くなる。本発明によるフェライト系ステンレス鋼は、鋼表面の微細溝の面積率が2.0%以下を満たして、美麗な表面を示すことができる。 In addition, the ferritic stainless steel according to an embodiment of the present invention may have an area ratio of microgrooves on the steel surface of 2.0% or less. The area ratio of the fine grooves on the surface has a correlation with the glossiness, and the lower the area ratio of the fine grooves, the higher the glossiness. The ferritic stainless steel according to the present invention has an area ratio of fine grooves on the surface of the steel of 2.0% or less, and can exhibit a beautiful surface.
次に、リッジング性および表面品質に優れたフェライト系ステンレス鋼の製造方法について説明する。 Next, a method for producing ferritic stainless steel with excellent ridged property and surface quality will be described.
フェライト系ステンレス鋼のリッジング性および表面品質を向上させるためには、成形性に有利な集合組織の形成を促進させ、リッジングを誘発するバンド組織を除去しなければならない。前記集合組織の形成およびバンド組織の除去のためには、熱延板の焼鈍熱処理時に再結晶を促進させることが重要であり、このために、焼鈍熱処理前に変形エネルギーを十分に蓄積させることが必要である。熱延板に変形エネルギーを蓄積させるために、熱間圧延仕上げ温度を低下させる試みが行われてきたが、変形エネルギーの蓄積には不十分であった。これに伴い、本発明では、変形エネルギーの蓄積による再結晶を促進するために熱延焼鈍熱処理前に冷間圧延を実施して、成形性に有利な集合組織を形成した。 In order to improve the ridged property and surface quality of ferritic stainless steel, it is necessary to promote the formation of a texture favorable to formability and remove the band structure that induces ridges. In order to form the texture and remove the band structure, it is important to promote recrystallization during the annealing heat treatment of the hot-rolled sheet. is necessary. Attempts have been made to lower the hot-rolling finish temperature in order to accumulate deformation energy in the hot-rolled sheet, but the accumulation of deformation energy was insufficient. Accordingly, in the present invention, in order to promote recrystallization due to accumulation of deformation energy, cold rolling is performed before hot rolling annealing heat treatment to form a texture advantageous for formability.
一般的に板材の圧延変形時に変形状態は、せん断変形と平面変形の二つの因子で示すことができる。従来の対称圧延では、板材の表面層は、せん断変形が作用し、中央層に行くほど本質的特性である対称性に起因してせん断変形率が減少して、板材の中央層では、せん断変形率が常に0である。すなわち板材の中央層には、常に平面変形が作用する。本発明では、非対称圧延を適用して板材の厚さ中心部にせん断変形を作用させることができる。非対称圧延を適用するとき、多くの圧延変数が存在し、この変数を最適化する場合にのみ、すべての厚さ層で適切なせん断変形率が作用して再結晶を活性化させて微細組織を変化させることによって、最終冷延製品の表面品質に重要なリッジング高さを低減することができる。 In general, the deformation state of a plate during rolling deformation can be represented by two factors: shear deformation and planar deformation. In conventional symmetrical rolling, shear deformation acts on the surface layer of the plate material, and the shear deformation rate decreases toward the central layer due to the symmetry that is an essential characteristic. The rate is always 0. That is, plane deformation always acts on the central layer of the plate material. In the present invention, asymmetric rolling can be applied to apply shear deformation to the thickness center of the plate material. When asymmetric rolling is applied, there are many rolling variables, and only if these variables are optimized will an appropriate shear deformation rate act in all thickness layers to activate recrystallization and improve the microstructure. The variation can reduce the ridge height which is critical to the surface quality of the final cold rolled product.
本発明の一実施例によるフェライト系ステンレス鋼の製造方法は、重量%で、C:0.005~0.1%、Si:0.01~2.0%、Mn:0.01~1.5%、P:0.05%以下、S:0.005%以下、Cr:10~30%、N:0.005~0.1%、Al:0.005~0.2%、残りのFeおよびその他不可避な不純物を含み、γmaxが20%以上50%未満を満たすスラブを製造する段階と、前記スラブを再加熱して熱間圧延する段階と、前記熱間圧延された熱延板を巻き取る段階と、前記巻き取られた熱延板を熱延焼鈍熱処理する前に、冷間圧延する段階と、を含む。 A method for producing ferritic stainless steel according to an embodiment of the present invention comprises, in weight percent, C: 0.005 to 0.1%, Si: 0.01 to 2.0%, Mn: 0.01 to 1.0%. 5%, P: 0.05% or less, S: 0.005% or less, Cr: 10-30%, N: 0.005-0.1%, Al: 0.005-0.2%, the rest producing a slab containing Fe and other inevitable impurities and having a γ max of 20% or more and less than 50%; reheating and hot rolling the slab; and cold-rolling the rolled hot-rolled sheet prior to hot-rolling annealing heat treatment.
熱間圧延された熱延板を熱延焼鈍熱処理する前に、さらに冷間圧延を実施することによって、再結晶促進のための変形エネルギーを蓄積することができる。 By further cold rolling the hot-rolled hot-rolled sheet before the hot-rolling annealing heat treatment, deformation energy for promoting recrystallization can be accumulated.
前記冷間圧延に先立って、製造されたスラブは、再加熱されて熱間圧延される。熱間圧延された熱延板は、巻取器で高温巻取(black coil)されるが、熱間圧延後、巻き取る間にオーステナイト相からフェライト相に相変態させるために、巻取温度は、750℃以上であってもよい。 Prior to said cold rolling, the produced slab is reheated and hot rolled. A hot-rolled hot-rolled sheet is coiled at a high temperature (black coil) by a winder. , 750° C. or higher.
一方、本発明の一実施例によるフェライト系ステンレス鋼の製造方法は、巻き取られた熱延板を熱延焼鈍熱処理する前に冷間圧延する段階において、前記冷間圧延は、非対称冷間圧延で実施することができる。 On the other hand, in the method of manufacturing ferritic stainless steel according to an embodiment of the present invention, in the step of cold-rolling the coiled hot-rolled sheet before the hot-rolling annealing heat treatment, the cold-rolling is performed by asymmetric cold-rolling. can be implemented in
上述したように、本発明では、非対称圧延を適用して板材の厚さ中心部にせん断変形を起こすことができる。厚さ中心部に適切なせん断変形が作用して再結晶を活性化させて微細組織を変化させることによって、最終冷延製品の表面品質に重要なリッジング高さを低減することができる。 As described above, in the present invention, asymmetric rolling can be applied to cause shear deformation at the center of the thickness of the plate material. Appropriate shear deformation at the center of the thickness activates recrystallization to change the microstructure, thereby reducing the ridge height, which is important for the surface quality of the final cold-rolled product.
非対称冷間圧延は、圧下率30%以上、上下圧延ロールの速度比(Vh/Vl)が1.25以上および圧延形状因子(l/d)が1.7以上である圧延条件で実施することができる。 Asymmetric cold rolling is carried out under rolling conditions in which the reduction ratio is 30% or more, the speed ratio ( Vh /Vl) of the upper and lower rolling rolls is 1.25 or more, and the rolling shape factor ( l /d) is 1.7 or more. can do.
非対称冷間圧延で厚さ中心部までせん断変形を起こすためには、上下圧延ロールの速度比(Vh/Vl)が1.25以上でなければならない。1.25未満では、厚さ中心部までせん断変形が付与されないことがある。ここで、Vhは、速いロールの速度を意味し、Vlは、遅いロールの速度を意味する。 In asymmetric cold rolling, the speed ratio (V h /V l ) of the upper and lower rolling rolls must be 1.25 or more in order to cause shear deformation to the thickness center. If it is less than 1.25, shear deformation may not be imparted to the central portion of the thickness. where Vh means the speed of the fast roll and Vl means the speed of the slow roll.
圧延形状因子(l/d)も、厚さ中心部までせん断変形を起こすために、1.7以上が要求される。それ未満では、厚さ中心部までせん断変形が付与されないことがある。圧延ロールのサイズおよび圧下率に関連した圧延形状因子は、圧延時にせん断変形を付加する尺度であって、下記式(2)で定義される。 The rolling shape factor (l/d) is also required to be 1.7 or more in order to cause shear deformation up to the central part of the thickness. If it is less than that, the shear deformation may not be imparted to the central part of the thickness. The rolling shape factor related to the size of the rolling roll and the rolling reduction is a scale for adding shear deformation during rolling, and is defined by the following formula (2).
ここで、lは、圧延ロールバイト内のロールと板材の接触弧を投影した長さ、dは、板材の平均厚さ(d=(h0+h)/2)、rは、圧延ロールの半径、h0は、板材の初期厚さ、hは、板材の最終厚さを意味する。 Here, l is the projected length of the contact arc between the roll and the plate in the roll bight, d is the average thickness of the plate (d = (h 0 + h) / 2), r is the radius of the rolling roll , h 0 means the initial thickness of the plate and h the final thickness of the plate.
本発明は、熱延焼鈍熱処理前に冷間圧延するにあたって、非対称圧延時の圧延変数とリッジング性、成形性および表面品質との相関性を調査した結果であって、上下圧延ロールの速度比、圧下率、そして圧延形状因子(l/d)を調節して、リッジング性および表面品質を改善することにその特徴がある。 The present invention is the result of investigating the correlation between rolling variables during asymmetric rolling and ridged property, formability and surface quality when cold rolling is performed before hot rolling annealing heat treatment. It is characterized by adjusting rolling reduction and rolling shape factor (l/d) to improve ridgeability and surface quality.
前記冷間圧延または非対称冷間圧延を実施した熱延板に、引き続いて熱延焼鈍熱処理を実施することができる。熱延焼鈍熱処理は、550~950℃の温度範囲で60分以内で実施することができる。熱延焼鈍熱処理は、熱間圧延された熱延板の軟性をより向上させるために実施される工程であって、これを通じて炭窒化物の析出と再結晶を誘導することができる。このためには、焼鈍温度550℃以上で実施する必要がある。ただし、焼鈍温度が950℃を超過したり焼鈍時間が60分を超過する場合、結晶粒が粗大化されて、成形性やリッジング特性を低下させるおそれがある。一方、焼鈍時間の下限は、特に定める必要はないが、十分な効果を得るためには、30秒以上実施することが好ましい。 The hot-rolled sheet subjected to the cold rolling or asymmetric cold rolling can be subsequently subjected to hot rolling annealing heat treatment. The hot rolling annealing heat treatment can be performed within 60 minutes at a temperature range of 550 to 950°C. The hot-rolling annealing heat treatment is a process performed to improve the softness of the hot-rolled hot-rolled sheet, and can induce precipitation and recrystallization of carbonitrides through this process. For this purpose, it is necessary to carry out the annealing at a temperature of 550° C. or higher. However, if the annealing temperature exceeds 950° C. or the annealing time exceeds 60 minutes, the crystal grains are coarsened, possibly deteriorating formability and ridging properties. On the other hand, the lower limit of the annealing time does not have to be set in particular, but in order to obtain a sufficient effect, it is preferable to carry out the annealing for 30 seconds or longer.
前記熱処理した熱延焼鈍板は、圧延方向に平行な方向の断面の厚さ中心部の組織の平均縦横比が4.0以下であってもよい。縦横比とは、圧延方向のフェライト粒径と板厚さ方向のフェライト粒径の比(圧延方向の粒径/板厚さ方向の粒径)を言う。平均縦横比が4.0を超過する場合、圧延方向に展伸したフェライト組織により冷間加工性が低下し得る。また、厚さ中心部に圧延方向に長く伸びたバンド組織が熱延焼鈍板に残存すると、冷間圧延時にバンド組織に起因した変形不均一により表面に凹凸が発生して、表面光沢度を低下させるので、平均縦横比を4.0以下に限定する。 The heat-treated hot-rolled and annealed sheet may have an average aspect ratio of 4.0 or less in the structure at the center of the thickness of the cross section in the direction parallel to the rolling direction. The aspect ratio is the ratio of the ferrite grain size in the rolling direction to the ferrite grain size in the plate thickness direction (grain size in the rolling direction/grain size in the plate thickness direction). If the average aspect ratio exceeds 4.0, cold workability may be degraded due to the ferrite structure expanded in the rolling direction. In addition, if a band structure elongated in the rolling direction remains in the hot-rolled annealed sheet at the center of the thickness, uneven deformation due to the band structure during cold rolling will cause unevenness on the surface and reduce the surface glossiness. Therefore, the average aspect ratio is limited to 4.0 or less.
本発明によるリッジング性および表面品質に優れたフェライト系ステンレス鋼の製造方法を上述したように制御した場合以外に特に限定しない条件は、通常のフェライト系ステンレス鋼の製造方法に準じて行うことができる。また、前記熱延焼鈍板を冷間圧延および冷延焼鈍熱処理して冷延鋼鈑に製造することができることはもちろんである。 Except for the case where the method for producing ferritic stainless steel excellent in ridged property and surface quality according to the present invention is controlled as described above, the conditions are not particularly limited, and can be carried out in accordance with the usual method for producing ferritic stainless steel. . Also, the hot-rolled and annealed sheet can be cold-rolled and cold-rolled and annealed to produce a cold-rolled steel sheet.
以下、好ましい実施例を通じて本発明をより詳細に説明することとする。 Hereinafter, the present invention will be described in more detail through preferred embodiments.
実施例
下記表1の組成を有する溶鋼を連続鋳造してスラブを製造し、スラブを再加熱して熱間圧延後に初期厚さ3~7mmの熱延板を熱延焼鈍熱処理前に1次冷間圧延を実施した。
Example A slab was produced by continuously casting molten steel having the composition shown in Table 1 below, and after reheating the slab and hot rolling, a hot-rolled sheet having an initial thickness of 3 to 7 mm was produced before the hot rolling annealing heat treatment. First cold rolling was carried out.
1次冷間圧延は、通常の冷間圧延または非対称冷間圧延で20~50%の圧下率で圧延した。1次冷間圧延された熱延板を熱延焼鈍熱処理および酸洗した後の50~85%の圧下率で2次冷間圧延を実施し、冷延焼鈍熱処理および酸洗を経て試験片を製作した。 The primary cold rolling was normal cold rolling or asymmetric cold rolling at a rolling reduction of 20 to 50%. Secondary cold rolling is performed at a reduction rate of 50 to 85% after subjecting the primary cold-rolled hot-rolled sheet to hot rolling annealing heat treatment and pickling, and a test piece is obtained after cold rolling annealing heat treatment and pickling. made.
前記試験片の圧延方向に対して0°、45°、90°方向の引張試験片を加工して、15%引張試験後にr値(Lankford value)を測定した。方向別に測定されたr値(r0、r45、r90)からr-bar値(r-bar=(r0+r90+2*r45)/4)を計算した。また、リッジング高さは、前記試験片を加工して15%引張試験後に表面粗度を測定した。下記表2に本実施例に使用されたフェライト系ステンレス鋼の圧延条件の変化によるr-barおよびリッジング高さ(Wt)の測定結果を示した。 Tensile test pieces were processed in the directions of 0°, 45°, and 90° with respect to the rolling direction of the test piece, and the r value (Lankford value) was measured after a 15% tensile test. The r-bar value (r-bar=(r 0 +r 90 +2*r 45 )/4) was calculated from the r-values (r 0 , r 45 , r 90 ) measured in each direction. Moreover, the ridged height was measured by processing the test piece and measuring the surface roughness after a 15% tensile test. Table 2 below shows the measurement results of r-bar and ridged height (Wt) depending on the rolling conditions of the ferritic stainless steel used in this example.
通常圧延を実施した比較例3~7は、r-bar値が1以下であり、リッジング高さは、14μm以上と高く現れた。熱間圧延後、熱延焼鈍熱処理に先立って1次冷間圧延を行った比較例1および2の場合には、圧下率が30%未満で行われて、r-bar値が1.2以下と現れて、成形性が不利であることが分かった。参考例1~3のように、熱延焼鈍熱処理前に1次冷間圧延を行い、かつ、圧下率30%以上で行う場合、1.2以上のr-bar値を得ることができ、肉眼で観察が難しいため、加工品の外観特性を低下させない程度である12μm以下のリッジング高さを達成することができた。 Comparative Examples 3 to 7, in which normal rolling was performed, had an r-bar value of 1 or less and a high ridged height of 14 μm or more. In Comparative Examples 1 and 2 in which primary cold rolling was performed prior to hot rolling annealing heat treatment after hot rolling, the reduction rate was less than 30% and the r-bar value was 1.2 or less. It was found that the moldability was disadvantageous. As in Reference Examples 1 to 3, when the primary cold rolling is performed before the hot rolling annealing heat treatment and the reduction rate is 30% or more, an r-bar value of 1.2 or more can be obtained, which is visible to the naked eye. Therefore, it was possible to achieve a ridged height of 12 μm or less, which is a level that does not deteriorate the appearance characteristics of the processed product.
実施例4~6は、参考例1~3で1次冷間圧延を対称圧延でなく、非対称圧延で実施したことを除いては、残りの条件は、同一であり、比較例8および9も、比較例1および2で1次冷間圧延を対称圧延でなく、非対称圧延で実施したことを除いては、残りの条件は、
同一である。
In Examples 4 to 6, the remaining conditions were the same except that the primary cold rolling was performed by asymmetric rolling instead of symmetric rolling in Reference Examples 1 to 3, and Comparative Examples 8 and 9 were also the same. , Except that the primary cold rolling in Comparative Examples 1 and 2 was not symmetrical but asymmetrical, the remaining conditions were
are identical.
対称圧延と比較して非対称圧延で1次冷間圧延を実施した場合、リッジング高さが約20%以上減少することが分かった。特に、実施例4~6は、10μm以下のリッジング高さを達成することができた。これを通じて、対称圧延でなく、非対称圧延時にせん断変形によってバンド組織を十分に微細化することができ、リッジング性が改善されることが分かった。 It has been found that the ridge height is reduced by about 20% or more when primary cold rolling is performed with asymmetric rolling compared to symmetric rolling. In particular, Examples 4 to 6 were able to achieve a ridged height of 10 μm or less. Through this, it was found that the band structure can be sufficiently refined by shear deformation during asymmetric rolling rather than symmetric rolling, and the ridged property is improved.
熱間圧延後、熱延焼鈍熱処理に先立って1次冷間圧延を実施した比較例8および9の場合には、非対称圧延で実施しても、圧下率が30%未満で実施されて、r-bar値が1.2以下と現れて、成形性が不利であることが分かった。 In the case of Comparative Examples 8 and 9 in which primary cold rolling was carried out prior to hot rolling annealing heat treatment after hot rolling, even if carried out by asymmetric rolling, the rolling reduction was carried out at less than 30%, r The -bar value appeared to be 1.2 or less, indicating that moldability was disadvantageous.
すなわち、実施例4~6のように、熱延焼鈍熱処理前に非対称冷間圧延を行い、かつ、総圧下率30%以上で行う場合、1.2以上のr-bar値を得ることができ、肉眼で観察が難しいため、加工品の外観特性を低下させない程度である12μm以下のリッジング高さを達成することができることが分かった。 That is, as in Examples 4 to 6, when asymmetric cold rolling is performed before hot rolling annealing heat treatment and the total rolling reduction is 30% or more, an r-bar value of 1.2 or more can be obtained. , it was found that a ridged height of 12 μm or less, which is a degree that does not deteriorate the appearance characteristics of the processed product because it is difficult to observe with the naked eye, can be achieved.
一方、熱延焼鈍前に冷間圧延を実施しない従来の製造方法で製造した熱延焼鈍材と本発明によって製造した熱延焼鈍材の平均縦横比を下記表3に示した。引き続いて、冷間圧延および冷延焼鈍熱処理を経た冷延焼鈍材の微細溝の面積率も、下記表3に示した。 On the other hand, Table 3 below shows the average aspect ratios of the hot-rolled annealed material manufactured by the conventional manufacturing method in which cold rolling is not performed before hot-rolling annealing and the hot-rolled annealed material manufactured by the present invention. Table 3 below also shows the area ratio of the fine grooves of the cold-rolled and annealed material which has been subsequently cold-rolled and cold-rolled and annealed.
平均縦横比は、圧延方向に平行な熱延焼鈍材の断面微細組織を光学顕微鏡を使用して撮影した後、バンド組織の圧延方向の粒径と板厚さ方向の粒径を測定して、5個の結晶粒の平均縦横比を示した。図1は、比較例3の圧延方向に平行な断面の微細組織写真を示す。図1のように断面の微細組織写真から圧延方向に長く伸びたバンド組織の長さ方向と厚さ方向の長さを測定した後、平均縦横比を計算した。 The average aspect ratio is obtained by photographing the cross-sectional fine structure of the hot-rolled and annealed material parallel to the rolling direction using an optical microscope, and then measuring the grain size in the rolling direction and the plate thickness direction of the band structure. The average aspect ratio of 5 grains is shown. FIG. 1 shows a microstructure photograph of a cross section parallel to the rolling direction of Comparative Example 3. FIG. As shown in FIG. 1, the length and thickness of the band structure elongated in the rolling direction were measured from the microstructure photograph of the cross section, and then the average aspect ratio was calculated.
微細溝の面積率は、冷延焼鈍材の表面を光学顕微鏡を使用して光源を最大とし、露出時間を長くして50倍で撮影した後、Image Analyzerで面積率を測定して評価した。代表的な測定結果を図2および図3に示した。 The area ratio of the fine grooves was evaluated by photographing the surface of the cold-rolled and annealed material with an optical microscope at a maximum light source, increasing the exposure time at a magnification of 50, and then measuring the area ratio with an Image Analyzer. Representative measurement results are shown in FIGS.
図2は、参考例2の表面を、図3は、比較例4の表面を示す。図面において微細溝の面積は、濃厚な色相で表現された部分を示す。図2に示された本発明による参考例2の微細溝の面積率が、図3の比較例4に比べて非常に減少したことが分かった。 2 shows the surface of Reference Example 2, and FIG. 3 shows the surface of Comparative Example 4. FIG. In the drawings, the area of the fine grooves indicates the portion expressed with a deep hue. It was found that the area ratio of the fine grooves of Reference Example 2 according to the present invention shown in FIG. 2 was significantly reduced compared to Comparative Example 4 of FIG.
1次冷間圧延を圧下率30%未満の通常圧延で実施した比較例1は、平均縦横比が6以上と高く、従来の製造方法で製造された比較例3および4は、平均縦横比が1次冷間圧延を実施した前記比較例1に比べて3倍近く上昇した。他方で、熱間圧延後、熱延焼鈍熱処理に先立って1次冷間圧延を圧下率30%以上の通常圧延で実施した参考例2、3と1次冷間圧延を圧下率30%以上の非対称圧延で実施した実施例5、6の場合には、熱延焼鈍材の平均縦横比が3以下と非常に低く現れた。 Comparative Example 1 in which the primary cold rolling was performed by normal rolling with a rolling reduction of less than 30% has a high average aspect ratio of 6 or more, and Comparative Examples 3 and 4 produced by a conventional manufacturing method have an average aspect ratio. Compared to Comparative Example 1 in which the primary cold rolling was performed, the tensile strength increased nearly three times. On the other hand, after hot rolling, prior to the hot rolling annealing heat treatment, the primary cold rolling was performed by normal rolling with a rolling reduction of 30% or more, and the primary cold rolling was performed with a rolling reduction of 30% or more. In Examples 5 and 6, which were asymmetrically rolled, the average aspect ratio of the hot-rolled and annealed material was as low as 3 or less.
また、1次冷間圧延を通常圧延で実施した比較例1、3、4は、冷延焼鈍材の微細溝の面積率が2.2%以上と高いのに対し、熱間圧延後、熱延焼鈍熱処理に先立って1次冷間圧延を行った参考例2、3と1次冷間圧延を非対称圧延で実施した実施例5、6の場合には、微細溝の面積率が1.8%以下と低く現れた。 In addition, in Comparative Examples 1, 3, and 4 in which the primary cold rolling was performed by normal rolling, the area ratio of fine grooves in the cold-rolled annealed material was as high as 2.2% or more. In the case of Reference Examples 2 and 3 in which the primary cold rolling was performed prior to the spread annealing heat treatment and Examples 5 and 6 in which the primary cold rolling was performed by asymmetric rolling, the area ratio of the fine grooves was 1.8. % appeared low.
すなわち参考例2、3、および実施例5、6の結果から明らかなように、熱延焼鈍材の平均縦横比が低いほど冷延焼鈍材の微細溝の面積率が低くなることが分かった。したがって、実施例のように、平均縦横比が4.0以下であり、微細溝の面積率が2.0%以下を満たすことによって、表面品質に優れた冷延鋼鈑が得られた。 That is, as is clear from the results of Reference Examples 2 and 3 and Examples 5 and 6, the lower the average aspect ratio of the hot-rolled and annealed material, the lower the area ratio of the fine grooves of the cold-rolled and annealed material. Therefore, by satisfying the average aspect ratio of 4.0 or less and the area ratio of the fine grooves of 2.0% or less as in Examples, a cold-rolled steel sheet having excellent surface quality was obtained.
上述したように、本発明の例示的な実施例を説明したが、本発明は、これに限定されず、当該技術分野における通常の知識を有する者であれば、下記に記載する特許請求範囲の概念と範囲を外れない範囲内で多様な変更および変形が可能であることを理解することができる。 While illustrative embodiments of the invention have been described above, the invention is not so limited and a person of ordinary skill in the art will appreciate the following claims which follow. It can be understood that various modifications and variations are possible without departing from the concept and scope.
本発明の実施例によるフェライト系ステンレス鋼は、鋼板の表面品質および光沢度に優れているので、各種キッチン用品、自動車排気系部品、建築材料、家電製品などに使用することができる。 Since the ferritic stainless steel according to the embodiment of the present invention is excellent in surface quality and gloss of the steel sheet, it can be used for various kitchen utensils, automobile exhaust system parts, building materials, home electric appliances, and the like.
Claims (3)
下記式(1)により計算される、オーステナイト安定度の指数であるγmaxが20%以上50%未満であり、
冷間圧延後に焼鈍処理した素材の断面の厚さ中心部のバンド組織の平均縦横比が4.0以下であり、
光学顕微鏡で撮影される表面の微細溝の面積率が2.0%以下であり、
15%引張試験後に測定されたr値から計算されるr-bar値が1.2以上であり、
表面粗度測定で把握されるリッジング高さが12μm以下であることを特徴とするリッジング性および表面品質に優れたフェライト系ステンレス鋼板。
式(1) 420×C+470×N+10×Mn+180-11.5×Cr-11.5×Si-52.0×Al
ここで、C、N、Mn、Cr、Si、Alは、各元素の含量(重量%)を意味する。 % by weight, C: 0.005 to 0.1%, Si: 0.01 to 2.0%, Mn: 0.01 to 1.5%, P: 0.05% or less, S: 0.005 % or less, Cr: 10 to 30%, N: 0.005 to 0.1%, Al: 0.005 to 0.2%, the rest consisting of Fe and other inevitable impurities,
γmax, which is an index of austenite stability calculated by the following formula (1), is 20% or more and less than 50%,
The average aspect ratio of the band structure at the center of the thickness of the cross section of the material that has been annealed after cold rolling is 4.0 or less,
The area ratio of fine grooves on the surface photographed with an optical microscope is 2.0% or less,
The r-bar value calculated from the r value measured after the 15% tensile test is 1.2 or more,
A ferritic stainless steel sheet having excellent ridged property and surface quality, characterized by having a ridged height of 12 μm or less as determined by surface roughness measurement.
Formula (1) 420×C+470×N+10×Mn+180−11.5×Cr−11.5×Si−52.0×Al
Here, C, N, Mn, Cr, Si and Al mean the content (% by weight) of each element.
前記スラブを再加熱して熱間圧延する段階と、
前記熱間圧延された熱延板を巻き取る段階と、
前記巻き取られた熱延板を熱延焼鈍処理することなく、30%以上の圧下率で非対称冷間圧延する段階と、
前記冷間圧延された冷延板を焼鈍処理する段階を含み、
前記非対称冷間圧延は、上下圧延ロールの速度比(Vh/Vl)が1.25以上であり、圧延形状因子(l/d)が1.7以上である圧延条件で実施され、
前記冷延板への焼鈍処理は、550~950℃の温度範囲で60分以内で実施され、前記冷延板への焼鈍処理した後に、素材の断面の厚さ中心部のバンド組織の平均縦横比(圧延方向の粒径/板厚さ方向の粒径)が4.0以下であり、
光学顕微鏡で撮影される表面の微細溝の面積率が2.0%以下であり、
15%引張試験後に測定されたr値から計算されるr-bar値が1.2以上であり、
表面粗度測定で把握されるリッジング高さが12μm以下であることを特徴とするリッジング性および表面品質に優れたフェライト系ステンレス鋼板の製造方法。
式(1) 420×C+470×N+10×Mn+180-11.5×Cr-
11.5×Si-52.0×Al
式(1)中、C、N、Mn、Cr、Si、Alは、各元素の含量(重量%)を意味する。
前記上下圧延ロールの速度比(Vh/Vl)でVhは速いロール速度、Vlは遅いロール速度を示す。
前記圧延形状因子(l/d)は、式(2)で求められる値であり、
式(2)中の記号の意味は、下記のとおり。
l:圧延ロールバイト内のロールと板材の接触弧を投影した長さ
d:板材の平均厚さd=(h0+h)/2
r:圧延ロールの半径
h0:板材の初期厚さ
h:板材の最終厚さ % by weight, C: 0.005 to 0.1%, Si: 0.01 to 2.0%, Mn: 0.01 to 1.5%, P: 0.05% or less, S: 0.005 % or less, Cr: 10 to 30%, N: 0.005 to 0.1%, Al: 0.005 to 0.2%, the remaining Fe and other inevitable impurities, represented by the following formula (1) producing a slab satisfying γmax of 20% or more and less than 50%;
reheating and hot rolling the slab;
winding the hot-rolled sheet;
Asymmetric cold rolling at a rolling reduction of 30% or more without subjecting the wound hot-rolled sheet to hot-rolling annealing ;
Annealing the cold rolled sheet ,
The asymmetric cold rolling is performed under rolling conditions in which the speed ratio (Vh/Vl) of the upper and lower rolling rolls is 1.25 or more and the rolling shape factor (l/d) is 1.7 or more,
The cold-rolled sheet is annealed within a temperature range of 550 to 950° C. within 60 minutes. The ratio (grain size in the rolling direction/grain size in the plate thickness direction) is 4.0 or less ,
The area ratio of fine grooves on the surface photographed with an optical microscope is 2.0% or less,
The r-bar value calculated from the r value measured after the 15% tensile test is 1.2 or more,
A method for producing a ferritic stainless steel sheet having excellent ridged property and surface quality, characterized in that the ridged height ascertained by surface roughness measurement is 12 μm or less .
Formula (1) 420×C+470×N+10×Mn+180−11.5×Cr−
11.5×Si-52.0×Al
In formula (1), C, N, Mn, Cr, Si and Al mean the content (% by weight) of each element.
In the speed ratio (Vh/Vl) of the upper and lower rolling rolls, Vh indicates a high roll speed and Vl indicates a low roll speed.
The rolling shape factor (l / d) is a value obtained by formula (2),
The meanings of the symbols in formula (2) are as follows.
l: Projected length of the contact arc between the roll and the plate material in the rolling roll bite d: Average thickness of the plate material d=(h 0 +h)/2
r: radius of rolling roll h0 : initial thickness of plate material h: final thickness of plate material
3. The method for producing a ferritic stainless steel sheet excellent in ridged property and surface quality according to claim 2, wherein the coiling temperature in the step of coiling the hot-rolled sheet is 750[deg.] C. or higher.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160169696A KR101921595B1 (en) | 2016-12-13 | 2016-12-13 | Ferritic stainless steel having excellent ridging property and excellent in surface quality and method of manufacturing the same |
KR10-2016-0169696 | 2016-12-13 | ||
PCT/KR2017/007099 WO2018110785A1 (en) | 2016-12-13 | 2017-07-04 | Ferritic stainless steel with excellent ridging property and surface quality and manufacturing method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020510135A JP2020510135A (en) | 2020-04-02 |
JP7116064B2 true JP7116064B2 (en) | 2022-08-09 |
Family
ID=62558783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019531659A Active JP7116064B2 (en) | 2016-12-13 | 2017-07-04 | FERRITIC STAINLESS STEEL EXCELLENT IN RIDGING PROPERTIES AND SURFACE QUALITY AND METHOD FOR MANUFACTURING SAME |
Country Status (6)
Country | Link |
---|---|
US (1) | US20190316237A1 (en) |
EP (1) | EP3556888A1 (en) |
JP (1) | JP7116064B2 (en) |
KR (1) | KR101921595B1 (en) |
CN (1) | CN110073022B (en) |
WO (1) | WO2018110785A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102326044B1 (en) * | 2019-12-20 | 2021-11-15 | 주식회사 포스코 | Ferritic stainless steel with improved magnetization properties and manufacturing method thereof |
CN115917029B (en) * | 2020-10-23 | 2024-10-29 | 日铁不锈钢株式会社 | Ferritic stainless steel and method for producing ferritic stainless steel |
JP7483049B2 (en) * | 2020-11-30 | 2024-05-14 | 日鉄ステンレス株式会社 | Duplex stainless steel sheet, hot-rolled duplex stainless steel sheet, and method for manufacturing duplex stainless steel sheet |
CN115055918B (en) * | 2022-06-17 | 2023-09-19 | 首钢智新迁安电磁材料有限公司 | Continuous rolling method of non-oriented silicon steel |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006328524A (en) | 2005-01-24 | 2006-12-07 | Nippon Steel & Sumikin Stainless Steel Corp | Ferritic stainless steel thin sheet reduced in plane anisotropy upon forming and excellent in ridging resistance and roughening resistance, and method for producing the same |
JP2006328525A (en) | 2005-01-24 | 2006-12-07 | Nippon Steel & Sumikin Stainless Steel Corp | Low carbon-low nitrogen ferritic stainless steel thin sheet having reduced plane anisotropy upon forming and having excellent ridging resistance and roughening resistance, and method for producing the same |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59576B2 (en) * | 1980-08-09 | 1984-01-07 | 新日本製鐵株式会社 | Manufacturing method of ferritic stainless thin steel sheet with excellent workability |
JPS5770235A (en) * | 1980-10-20 | 1982-04-30 | Nippon Steel Corp | Manufacture of ferritic stainless thin steel plate excellent in working property |
JPH06271943A (en) * | 1993-03-23 | 1994-09-27 | Kawasaki Steel Corp | Production of ferritic stainless steel sheet excellent in formability and ridging resistance and furthermore small in anisotropy |
JP3128487B2 (en) * | 1995-10-04 | 2001-01-29 | 新日本製鐵株式会社 | Method for producing ferritic stainless steel sheet with good ridging characteristics |
JPH09217124A (en) * | 1996-02-15 | 1997-08-19 | Nippon Steel Corp | Method for producing ferritic stainless steel sheet with excellent roping resistance |
JPH1046293A (en) * | 1996-07-26 | 1998-02-17 | Nippon Steel Corp | Ferritic stainless steel sheet with excellent ductility and ridging properties |
US6413332B1 (en) * | 1999-09-09 | 2002-07-02 | Kawasaki Steel Corporation | Method of producing ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties |
JP4744033B2 (en) * | 2001-08-31 | 2011-08-10 | 日新製鋼株式会社 | Manufacturing method of ferritic stainless steel sheet with excellent workability |
KR100771832B1 (en) * | 2001-12-19 | 2007-10-30 | 주식회사 포스코 | Manufacturing method of ferritic stainless steel with improved ridging property |
EP1538230B1 (en) * | 2002-09-03 | 2009-02-18 | JFE Steel Corporation | Cr STEEL FOR STRUCTURAL USE AND METHOD FOR PRODUCING THE SAME |
KR100857681B1 (en) | 2006-12-28 | 2008-09-08 | 주식회사 포스코 | Ferritic stainless steel manufacturing method with improved leasing characteristics |
ES2522582T3 (en) * | 2007-08-31 | 2014-11-17 | Aperam Alloys Imphy | Crystallographically textured metal substrate, crystallographically textured device, cell and photovoltaic module comprising such a device, and thin layer deposition procedure |
CN102796960A (en) * | 2011-05-25 | 2012-11-28 | 宝山钢铁股份有限公司 | Ferrite stainless steel with good plastic property and surface quality and preparation method thereof |
KR101423823B1 (en) * | 2012-06-28 | 2014-07-25 | 주식회사 포스코 | Low chrome ferritic stainless steel with improved corrosion resistance and ridging property |
KR101522077B1 (en) | 2012-12-20 | 2015-05-20 | 주식회사 포스코 | Manufacturing method of ferritic stainless steel sheet with excellent ridging resistance |
CN104911318B (en) * | 2015-04-15 | 2017-12-08 | 北京科技大学 | A kind of milling method for improving ferritic stainless steel surface wrinkling drag |
-
2016
- 2016-12-13 KR KR1020160169696A patent/KR101921595B1/en active IP Right Grant
-
2017
- 2017-07-04 JP JP2019531659A patent/JP7116064B2/en active Active
- 2017-07-04 CN CN201780077285.0A patent/CN110073022B/en active Active
- 2017-07-04 WO PCT/KR2017/007099 patent/WO2018110785A1/en unknown
- 2017-07-04 EP EP17881883.7A patent/EP3556888A1/en active Pending
- 2017-07-04 US US16/468,883 patent/US20190316237A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006328524A (en) | 2005-01-24 | 2006-12-07 | Nippon Steel & Sumikin Stainless Steel Corp | Ferritic stainless steel thin sheet reduced in plane anisotropy upon forming and excellent in ridging resistance and roughening resistance, and method for producing the same |
JP2006328525A (en) | 2005-01-24 | 2006-12-07 | Nippon Steel & Sumikin Stainless Steel Corp | Low carbon-low nitrogen ferritic stainless steel thin sheet having reduced plane anisotropy upon forming and having excellent ridging resistance and roughening resistance, and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
EP3556888A4 (en) | 2019-10-23 |
KR20180068089A (en) | 2018-06-21 |
WO2018110785A1 (en) | 2018-06-21 |
CN110073022A (en) | 2019-07-30 |
KR101921595B1 (en) | 2018-11-26 |
CN110073022B (en) | 2021-06-29 |
JP2020510135A (en) | 2020-04-02 |
EP3556888A1 (en) | 2019-10-23 |
US20190316237A1 (en) | 2019-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6221179B1 (en) | Hot rolled steel plate to be processed having hyper fine particles, method of manufacturing the same, and method of manufacturing cold rolled steel plate | |
JP6236078B2 (en) | Cold rolled steel sheet product and method for producing the same | |
US10550454B2 (en) | Cold-rolled ferritic stainless steel sheet | |
US10633730B2 (en) | Material for cold-rolled stainless steel sheet | |
CN113366127B (en) | hot rolled steel plate | |
JP7116064B2 (en) | FERRITIC STAINLESS STEEL EXCELLENT IN RIDGING PROPERTIES AND SURFACE QUALITY AND METHOD FOR MANUFACTURING SAME | |
JP2007284783A (en) | High-strength cold-rolled steel sheet and manufacturing method thereof | |
JP5817671B2 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
JP7317100B2 (en) | hot rolled steel | |
KR20180027689A (en) | Method of manufacturing ferritic stainless steel having excellent formability and ridging properties | |
JP5462742B2 (en) | Method for producing high-strength steel sheet with excellent mechanical property stability | |
JP3800902B2 (en) | High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same | |
WO2014057519A1 (en) | Cold-rolled steel sheet with superior shape fixability and manufacturing method therefor | |
KR102120697B1 (en) | Manufacturing method of ferritic stainless steel having excellent ridging property and formability | |
JP5860345B2 (en) | High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same | |
JP2001207244A (en) | Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method | |
JPS62199721A (en) | Production of steel sheet or strip of ferritic stainless steel having good workability | |
KR101938588B1 (en) | Manufacturing method of ferritic stainless steel having excellent ridging property | |
JP2001098328A (en) | Method of producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance | |
JP6225733B2 (en) | High strength hot rolled steel sheet and method for producing the same | |
JP3379826B2 (en) | Ferritic stainless steel sheet with small in-plane anisotropy and method for producing the same | |
JPH11302739A (en) | Method for producing ferritic stainless steel with excellent surface properties and low anisotropy | |
JP2001098327A (en) | Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance | |
JP3873581B2 (en) | Manufacturing method of high formability hot-rolled steel sheet | |
JP2013253301A (en) | Method of manufacturing cold-rolled steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200804 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201104 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20201124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210324 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210324 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20210330 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20210406 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20210507 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20210511 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20211102 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20220215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220516 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20220614 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20220712 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20220712 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220728 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7116064 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |