[go: up one dir, main page]

JP7102868B2 - Artificial graphite-based negative electrode material, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries - Google Patents

Artificial graphite-based negative electrode material, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries Download PDF

Info

Publication number
JP7102868B2
JP7102868B2 JP2018068830A JP2018068830A JP7102868B2 JP 7102868 B2 JP7102868 B2 JP 7102868B2 JP 2018068830 A JP2018068830 A JP 2018068830A JP 2018068830 A JP2018068830 A JP 2018068830A JP 7102868 B2 JP7102868 B2 JP 7102868B2
Authority
JP
Japan
Prior art keywords
negative electrode
electrode material
artificial graphite
aqueous secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018068830A
Other languages
Japanese (ja)
Other versions
JP2019179687A (en
Inventor
聡 平原
敬一 関
隆 原田
紘章 吉田
寿子 近藤
宏允 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2018068830A priority Critical patent/JP7102868B2/en
Publication of JP2019179687A publication Critical patent/JP2019179687A/en
Application granted granted Critical
Publication of JP7102868B2 publication Critical patent/JP7102868B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、放電容量及びクーロン効率が高く、容量維持率及び急速充電特性に優れる人造黒鉛系負極材に関する。また、本発明は、この人造黒鉛系負極材を含む非水系二次電池用負極及び非水系二次電池に関する。 The present invention relates to an artificial graphite-based negative electrode material having high discharge capacity and Coulomb efficiency, and excellent capacity retention rate and quick charge characteristics. The present invention also relates to a negative electrode for a non-aqueous secondary battery and a non-aqueous secondary battery containing the artificial graphite-based negative electrode material.

近年、電子機器の小型化に伴い、高容量の二次電池に対する需要が高まってきている。特に、ニッケル・カドミウム電池や、ニッケル・水素電池に比べ、よりエネルギー密度が高く、急速充放電特性に優れた非水系二次電池、とりわけリチウムイオン二次電池が注目されている。特に、リチウムイオンを吸蔵・放出できる正極及び負極、並びにLiPFやLiBF等のリチウム塩を溶解させた非水電解液からなる非水系リチウム二次電池が開発され、実用化されている。 In recent years, with the miniaturization of electronic devices, the demand for high-capacity secondary batteries has been increasing. In particular, non-aqueous secondary batteries having a higher energy density and excellent rapid charge / discharge characteristics than nickel-cadmium batteries and nickel-hydrogen batteries, particularly lithium-ion secondary batteries, are attracting attention. In particular, a non-aqueous lithium secondary battery consisting of a positive electrode and a negative electrode capable of storing and releasing lithium ions and a non-aqueous electrolytic solution in which lithium salts such as LiPF 6 and LiBF 4 are dissolved has been developed and put into practical use.

この非水系リチウム二次電池の負極材としては種々のものが提案されているが、高容量であること、放電電位の平坦性に優れていること等の理由から、天然黒鉛やコークス等の黒鉛化で得られる人造黒鉛、黒鉛化メソフェーズピッチ、黒鉛化炭素繊維等の黒鉛質の炭素材が用いられている。また、一部の電解液に対して比較的安定しているなどの理由で非晶質の炭素材も用いられている。更には、黒鉛粒子の表面に非晶質炭素を被覆あるいは付着させ、黒鉛による高容量かつ不可逆容量が小さいという特性と、非晶質炭素による電解液との安定性に優れるという特性との2つの特性を併せ持った炭素材も用いられている。 Various negative electrode materials have been proposed for this non-aqueous lithium secondary battery, but graphite such as natural graphite or coke is used because of its high capacity and excellent flatness of discharge potential. Graphite carbon materials such as artificial graphite, graphitized mesophase pitch, and graphitized carbon fiber obtained by chemical conversion are used. In addition, an amorphous carbon material is also used because it is relatively stable with respect to some electrolytic solutions. Furthermore, the surface of the graphite particles is coated or adhered with amorphous carbon, and the graphite has a high capacity and a small irreversible capacity, and the amorphous carbon has excellent stability with an electrolytic solution. Carbon materials that also have characteristics are also used.

これらの中でも人造黒鉛は電池寿命に優れるという特長がある。人造黒鉛は結晶構造の違いから等方性組織を有する人造黒鉛と異方性組織を有する人造黒鉛に大別される。また、これらのそれぞれについて、単一粒子からなる人造黒鉛と単一粒子を造粒して得られる人造黒鉛がある。 Among these, artificial graphite has the advantage of excellent battery life. Artificial graphite is roughly classified into artificial graphite having an isotropic structure and artificial graphite having an anisotropic structure according to the difference in crystal structure. Further, for each of these, there are artificial graphite composed of a single particle and artificial graphite obtained by granulating a single particle.

等方性組織を有する人造黒鉛は異方性組織を有するものと比べて電池容量が劣る。また、造粒粒子からなる人造黒鉛は急速充電特性が優れるという特長はあるが、繰り返し使用することにより造粒粒子の崩壊が起こることがあるため電池の寿命の観点で単一粒子の方が有利である。 Artificial graphite having an isotropic structure is inferior in battery capacity to that having an anisotropic structure. In addition, although artificial graphite composed of granulated particles has an advantage of excellent quick charging characteristics, single particles are more advantageous from the viewpoint of battery life because the granulated particles may collapse due to repeated use. Is.

即ち、単一粒子からなる異方性組織の人造黒鉛粒子は電池容量が大きくかつ電池の寿命の点では良好である。単一粒子からなる異方性組織由来の人造黒鉛粒子の例として、特許文献1及び2に開示されている負極材が挙げられる。 That is, the artificial graphite particles having an anisotropic structure composed of a single particle have a large battery capacity and are good in terms of battery life. Examples of artificial graphite particles derived from an anisotropic structure composed of a single particle include negative electrode materials disclosed in Patent Documents 1 and 2.

特許第5461746号公報Japanese Patent No. 5461746 特開2014-167905号公報Japanese Unexamined Patent Publication No. 2014-167905

本発明者等の検討によれば、特許文献1、2では、異方性組織を有するコールタールピッチ又は等方性組織を有するコールタールピッチとニードルコークス粉に混合した後、黒鉛化処理を行なっているため、黒鉛粒子表面の被覆物は黒鉛化されているため急速充電特性の点で不十分である。 According to the studies by the present inventors, in Patent Documents 1 and 2, after mixing coal tar pitch having an anisotropic structure or coal tar pitch having an isotropic structure with needle coke powder, graphitization treatment is performed. Therefore, the coating on the surface of the graphite particles is graphitized, which is insufficient in terms of quick charging characteristics.

本発明の課題は、放電容量及びクーロン効率が高く、容量維持率及び急速充電特性に優れる人造黒鉛系負極材を提供することにある。また、本発明の課題は、この人造黒鉛系負極材を用いて得られる非水系二次電池用負極及び非水系二次電池を提供することにある。 An object of the present invention is to provide an artificial graphite-based negative electrode material having high discharge capacity and Coulomb efficiency, and excellent capacity retention rate and quick charge characteristics. Another object of the present invention is to provide a negative electrode for a non-aqueous secondary battery and a non-aqueous secondary battery obtained by using this artificial graphite-based negative electrode material.

本発明者等が上記課題に対して検討した結果、単一黒鉛粒子からなり、かつニードルコークス由来の人造黒鉛系負極材であり、非晶質炭素により少なくとも一部が被覆されたものであって、更に特定の粒度分布を有する負極材により上記課題が解決され得ることを見出した。即ち、本発明の要旨は以下の通りである。 As a result of studies by the present inventors on the above problems, it is an artificial graphite-based negative electrode material composed of single graphite particles and derived from needle coke, which is at least partially coated with amorphous carbon. Furthermore, it has been found that the above-mentioned problems can be solved by a negative electrode material having a specific particle size distribution. That is, the gist of the present invention is as follows.

[1] 単一粒子からなる人造黒鉛系負極材であって、下記条件(1)~(3)を満たす人造黒鉛系負極材。
条件(1):少なくとも一部が非晶質炭素で被覆されている。
条件(2):X線回折法(XRD)により測定した002面の面間隔(d002)が0.338nm以下である。
条件(3):体積基準粒子径において、メジアン径(d50)が9.0~25.0μmであり、小粒子側から10%積算部の粒子径(d10)が0.5~5.4μmである。
[1] An artificial graphite-based negative electrode material composed of a single particle, which satisfies the following conditions (1) to (3).
Condition (1): At least a part is coated with amorphous carbon.
Condition (2): The surface spacing (d002) of the 002 planes measured by the X-ray diffraction method (XRD) is 0.338 nm or less.
Condition (3): In the volume reference particle diameter, the median diameter (d50) is 9.0 to 25.0 μm, and the particle diameter (d10) of the 10% integrating portion from the small particle side is 0.5 to 5.4 μm. be.

[2] 下記式1で表されるO/Cが0.1~1.5mol%以下である[1]に記載の人造黒鉛系負極材。
式1:O/C(mol%)=〔[X線光電子分光法分析におけるO1sのスペクトルのピーク面積に基づいて求めたO原子濃度]/[X線光電子分光法分析におけるC1sのスペクトルのピーク面積に基づいて求めたC原子濃度]〕×100
[2] The artificial graphite-based negative electrode material according to [1], wherein the O / C represented by the following formula 1 is 0.1 to 1.5 mol% or less.
Equation 1: O / C (mol%) = [[O-atomic concentration obtained based on the peak area of the spectrum of O1s in the X-ray photoelectron spectroscopy analysis] / [Peak area of the spectrum of C1s in the X-ray photoelectron spectroscopy analysis] C atom concentration obtained based on]] × 100

[3] 下記式2で表されるラマンR値が0.05以上0.8以下である[1]又は[2]に記載の人造黒鉛系負極材。
式2:[ラマンR値]=[ラマンスペクトル分析における1360cm-1付近のピークPの強度I]/[ラマンスペクトル分析における1580cm-1付近のピークPAの強度I
[3] The artificial graphite-based negative electrode material according to [1] or [2], wherein the Raman R value represented by the following formula 2 is 0.05 or more and 0.8 or less.
Equation 2: [Raman R value] = [Intensity IB of peak P B near 1360 cm -1 in Raman spectrum analysis] / [Intensity IA of peak PA near 1580 cm -1 in Raman spectrum analysis]

[4] 集電体と、該集電体上に形成された活物質層とを備え、該活物質層が[1]乃至[3]のいずれか1つに記載の負極材を含有する、非水系二次電池用負極。 [4] A current collector and an active material layer formed on the current collector are provided, and the active material layer contains the negative electrode material according to any one of [1] to [3]. Negative electrode for non-aqueous secondary batteries.

[5] 正極及び負極、並びに電解質を備える非水系二次電池であって、該負極が[4]に記載の非水系二次電池用負極である、非水系二次電池。 [5] A non-aqueous secondary battery including a positive electrode, a negative electrode, and an electrolyte, wherein the negative electrode is a negative electrode for a non-aqueous secondary battery according to [4].

本発明によれば、放電容量及びクーロン効率が高く、容量維持率及び急速充電特性に優れる人造黒鉛系負極材、並びにこれを含む非水系二次電池用負極及び非水系二次電池が提供される。 According to the present invention, an artificial graphite-based negative electrode material having high discharge capacity and coulombic efficiency, excellent capacity retention rate and quick charge characteristics, and a negative electrode for a non-aqueous secondary battery and a non-aqueous secondary battery containing the same are provided. ..

以下、本発明を詳細に説明するが、本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。なお、本発明において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following description, and can be arbitrarily modified and carried out without departing from the gist of the present invention. In addition, in this invention, when a numerical value or a physical property value is put before and after using "-", it is used as including the value before and after that.

〔人造黒鉛系負極材〕
本発明の人造黒鉛系負極材は、単一粒子からなる人造黒鉛系負極材であって、下記条件(1)~(3)を満たすものである。以下において、本発明の人造黒鉛系負極材について、単に「本発明の負極材」と称することがある。
条件(1):少なくとも一部が非晶質炭素で被覆されている。
条件(2):X線回折法(XRD)により測定した002面の面間隔(d002)が0.338nm以下である。
条件(3):体積基準粒子径において、メジアン径(d50)が9.0~25.0μmであり、小粒子側から10%積算部の粒子径(d10)が0.5~5.4μmである。
[Artificial graphite-based negative electrode material]
The artificial graphite-based negative electrode material of the present invention is an artificial graphite-based negative electrode material composed of a single particle, and satisfies the following conditions (1) to (3). Hereinafter, the artificial graphite-based negative electrode material of the present invention may be simply referred to as “the negative electrode material of the present invention”.
Condition (1): At least a part is coated with amorphous carbon.
Condition (2): The surface spacing (d002) of the 002 planes measured by the X-ray diffraction method (XRD) is 0.338 nm or less.
Condition (3): In the volume reference particle diameter, the median diameter (d50) is 9.0 to 25.0 μm, and the particle diameter (d10) of the 10% integrating portion from the small particle side is 0.5 to 5.4 μm. be.

[非晶質炭素による被覆]
本発明の負極材は、前記条件(1)の通り、少なくとも一部が非晶質炭素で被覆されたものである。これにより本発明の負極材は、放電容量及び初回クーロン効率が良好となる。
[Coating with amorphous carbon]
As described in the above condition (1), the negative electrode material of the present invention is at least partially coated with amorphous carbon. As a result, the negative electrode material of the present invention has good discharge capacity and initial Coulomb efficiency.

[002面の面間隔(d002)]
本発明の負極材は、前記条件(2)の通り、X線回折法(XRD)により測定した002面の面間隔(d002)が0.338nm以下であり、また、好ましくは0.337nm以下であり、更に好ましくは0.336nm以下である。d002は、負極材のバルクの結晶性を示す値であり、d002の値が小さいほど、結晶性が高い炭素材であることを示し、黒鉛層間に入るリチウムの量が理論値に近づくので容量が増加する。結晶性が低過ぎると高結晶性黒鉛を電極に用いた場合の、高容量で、かつ不可逆容量が低いという優れた電池特性が発現しにくくなる傾向にある。また、本発明の負極材は異方性組織を有する炭素質由来の人造黒鉛であることによりd002が上記範囲となる。一方で等方性組織を有する人造黒鉛の場合、d002は0.338nmより大となり、本発明の負極材とはその結晶構造において明確に区別される。
[Surface spacing of 002 surfaces (d002)]
In the negative electrode material of the present invention, as described in the above condition (2), the surface spacing (d002) of the 002 surfaces measured by the X-ray diffraction method (XRD) is 0.338 nm or less, and preferably 0.337 nm or less. Yes, more preferably 0.336 nm or less. d002 is a value indicating the bulk crystallinity of the negative electrode material. The smaller the value of d002, the higher the crystallinity of the carbon material, and the amount of lithium entering the graphite layers approaches the theoretical value, so that the capacity increases. To increase. If the crystallinity is too low, it tends to be difficult to exhibit the excellent battery characteristics of high capacity and low irreversible capacity when highly crystalline graphite is used for the electrode. Further, since the negative electrode material of the present invention is carbonaceous-derived artificial graphite having an anisotropic structure, d002 is in the above range. On the other hand, in the case of artificial graphite having an isotropic structure, d002 is larger than 0.338 nm, which is clearly distinguished from the negative electrode material of the present invention in its crystal structure.

X線回折は次の手法により測定する。まず、炭素粉末に総量の約15重量%のX線標準高純度シリコン粉末を加えて混合したものを材料とし、グラファイトモノクロメーターで単色化したCuKα線を線源とし、反射式ディフラクトメーター法で広角X線回折曲線を測定する。その後、学振法を用いて面間隔(d002)及び結晶子の大きさ(Lc)を求める。 X-ray diffraction is measured by the following method. First, about 15% by weight of the total amount of X-ray standard high-purity silicon powder is added to carbon powder and mixed, and CuKα ray monochromated with a graphite monochromator is used as the radiation source, and the reflection diffraction method is used. The wide-angle X-ray diffraction curve is measured. Then, the interplanar spacing (d002) and the crystallite size (Lc) are determined using the Gakushin method.

[粒度分布(d50、d10及びd90)]
本発明の負極材は、前記条件(3)の通り、体積基準粒子径において、メジアン径(d50)が9.0~25.0μmであり、小粒子側から10%積算部の粒子径(d10)が0.5~5.4μmである。
[Particle size distribution (d50, d10 and d90)]
As described in the above condition (3), the negative electrode material of the present invention has a median diameter (d50) of 9.0 to 25.0 μm in a volume reference particle diameter, and a particle diameter (d10) of a 10% integrating portion from the small particle side. ) Is 0.5 to 5.4 μm.

d50が条件(3)の範囲であることにより、電池容量が良好となる。また、これらをより良好とする観点から、d50は、好ましくは10.0μm以上であり、より好ましくは11.0μm以上であり、一方、好ましくは20.0μm以下であり、より好ましくは18.0μm以下である。 When d50 is within the range of the condition (3), the battery capacity becomes good. Further, from the viewpoint of making these better, d50 is preferably 10.0 μm or more, more preferably 11.0 μm or more, while preferably 20.0 μm or less, more preferably 18.0 μm. It is as follows.

d10が条件(3)の範囲であることにより、急速充電特性が良好となる。また、これらをより良好とする観点から、d10は、好ましくは1.0μm以上であり、より好ましくは2.0μm以上であり、一方、好ましくは5.3μm以下である。 When d10 is in the range of the condition (3), the quick charge characteristic becomes good. Further, from the viewpoint of making these better, d10 is preferably 1.0 μm or more, more preferably 2.0 μm or more, and on the other hand, preferably 5.3 μm or less.

また、本発明の負極材は小粒子側から90%積算部の粒子径(d90)が、急速充電性の観点から、好ましくは20.0μm以上であり、より好ましくは22.0μm以上である。また、本発明の負極材のd90は、急速充電特性の観点から、好ましくは30.0μm以下であり、より好ましくは29.0μm以下である。 Further, in the negative electrode material of the present invention, the particle diameter (d90) of the 90% integrating portion from the small particle side is preferably 20.0 μm or more, more preferably 22.0 μm or more, from the viewpoint of quick chargeability. Further, the d90 of the negative electrode material of the present invention is preferably 30.0 μm or less, more preferably 29.0 μm or less, from the viewpoint of quick charging characteristics.

界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレート(ツィーン20(登録商標))の0.1体積%水溶液約150mLに、負極材0.01gを懸濁させたものを、レーザー回折式粒度分布計(堀場製作所製 LA-920)を用いて体積基準粒度分布を測定することにより、メジアン径(d50)、小粒子側から10%積算部のd10粒径、90%積算部のd90粒径を求めることができる。測定条件は超音波分散1分間、超音波強度4、循環速度2、相対屈折率1.50である。 A laser diffraction method in which 0.01 g of a negative electrode material is suspended in approximately 150 mL of a 0.1% by volume aqueous solution of polyoxyethylene (20) sorbitan monolaurate (Zeen 20 (registered trademark)), which is a surfactant. By measuring the volume-based particle size distribution using a particle size distribution meter (LA-920 manufactured by Horiba Seisakusho), the median diameter (d50), the d10 particle size of the 10% integration part from the small particle side, and the d90 grain of the 90% integration part. The diameter can be calculated. The measurement conditions are ultrasonic dispersion for 1 minute, ultrasonic intensity 4, circulation speed 2, and relative refractive index 1.50.

[表面官能基量O/C値(mol%)]
XPSより求められ、下記式1で表されるO/C値は、好ましくは0.1mol%以上、より好ましくは0.2mol%以上、更に好ましくは0.3mol%以上であり、一方、好ましくは1.5mol%以下、より好ましくは1.3mol%以下、更に好ましくは1.1mol%以下である。この表面官能基量O/C値が上記範囲内であれば、負極表面におけるLiイオンと電解液溶媒の脱溶媒和反応性が促進され急速充放電特性が良好となり、電解液との副反応が抑制され充放電効率が良好となる傾向がある。
式1:O/C(mol%)=〔[X線光電子分光法分析におけるO1sのスペクトルのピーク面積に基づいて求めたO原子濃度]/[X線光電子分光法分析におけるC1sのスペクトルのピーク面積に基づいて求めたC原子濃度]〕×100
[Surface functional group amount O / C value (mol%)]
The O / C value obtained from XPS and represented by the following formula 1 is preferably 0.1 mol% or more, more preferably 0.2 mol% or more, still more preferably 0.3 mol% or more, while preferably. It is 1.5 mol% or less, more preferably 1.3 mol% or less, still more preferably 1.1 mol% or less. When the surface functional group amount O / C value is within the above range, the desolvation reactivity of Li ions and the electrolytic solution solvent on the negative electrode surface is promoted, the rapid charge / discharge characteristics are improved, and the side reaction with the electrolytic solution occurs. It tends to be suppressed and the charge / discharge efficiency becomes good.
Equation 1: O / C (mol%) = [[O-atomic concentration obtained based on the peak area of the spectrum of O1s in the X-ray photoelectron spectroscopy analysis] / [Peak area of the spectrum of C1s in the X-ray photoelectron spectroscopy analysis] C atom concentration obtained based on]] × 100

表面官能基量O/C値の算出にあたっては、X線光電子分光法測定としてX線光電子分光器を用い、測定対象を表面が平坦になるように試料台に載せ、アルミニウムのKα線をX線源とし、C1s(280~298eV)とO1s(526~542eV)のスペクトルを測定する。得られたC1sのピークトップを284.6eVとして帯電補正し、C1sとO1sのスペクトルのピーク面積を求め、更に装置感度係数を掛けて、CとOの表面原子濃度をそれぞれ算出する。得られたそのOとCの原子濃度比O/C(O原子濃度/C原子濃度)を炭素材の表面官能基量O/C値と定義する。 In calculating the surface functional group amount O / C value, an X-ray photoelectron spectrometer was used as an X-ray photoelectron spectroscopy measurement, the measurement target was placed on a sample table so that the surface was flat, and X-rays of aluminum Kα rays were emitted. As a source, the spectra of C1s (280 to 298 eV) and O1s (526 to 542 eV) are measured. The peak top of the obtained C1s is charge-corrected as 284.6 eV, the peak areas of the spectra of C1s and O1s are obtained, and further multiplied by the device sensitivity coefficient to calculate the surface atomic concentrations of C and O, respectively. The obtained atomic concentration ratio O / C (O atomic concentration / C atomic concentration) of O and C is defined as the surface functional group amount O / C value of the carbon material.

[ラマンR値]
本発明の負極材は、下記式1で表されるラマンR値が、好ましくは0.05以上、より好ましくは0.1以上、更に好ましくは0.15以上である。また、好ましくは0.8以下、より好ましくは0.6以下、更に好ましくは0.4以下である。このラマンR値が小さすぎることは負極材表面の結晶性が高すぎることを示しており、Liイオンが挿入・脱離しにくくなることにより低温入出力特性が低下する場合がある。一方、ラマンR値が大き過ぎると非晶質炭素の持つ不可逆容量の影響の増大、電解液との副反応の増大により、リチウムイオン二次電池の初期充放電効率の低下やガス発生量の増大を招き、電池容量が低下する傾向がある。
式2:[ラマンR値]=[ラマンスペクトル分析における1360cm-1付近のピークPの強度I]/[ラマンスペクトル分析における1580cm-1付近のピークPAの強度I
[Raman R value]
The negative electrode material of the present invention has a Raman R value represented by the following formula 1 of preferably 0.05 or more, more preferably 0.1 or more, still more preferably 0.15 or more. Further, it is preferably 0.8 or less, more preferably 0.6 or less, still more preferably 0.4 or less. If the Raman R value is too small, it indicates that the crystallinity of the surface of the negative electrode material is too high, and the low temperature input / output characteristics may be deteriorated due to the difficulty of inserting and removing Li ions. On the other hand, if the Raman R value is too large, the influence of the irreversible capacity of amorphous carbon increases and the side reaction with the electrolytic solution increases, resulting in a decrease in the initial charge / discharge efficiency of the lithium ion secondary battery and an increase in the amount of gas generated. The battery capacity tends to decrease.
Equation 2: [Raman R value] = [Intensity IB of peak P B near 1360 cm -1 in Raman spectrum analysis] / [Intensity IA of peak PA near 1580 cm -1 in Raman spectrum analysis]

本発明において、ラマンR値は本発明の負極材についてラマン分光法により得られるラマンスペクトルにおける1580cm-1付近のピークPの強度Iと、1360cm-1付近のピークPの強度Iとを測定したときの強度比(I/I)として定義する。なお、「1580cm-1付近」とは1580~1620cm-1の範囲を、「1360cm-1付近」とは1350~1370cm-1の範囲を指す。 In the present invention, the Raman R value is the intensity IA of the peak PA near 1580 cm -1 and the intensity IB of the peak P B near 1360 cm -1 in the Raman spectrum obtained by Raman spectroscopy for the negative electrode material of the present invention. Is defined as the intensity ratio (IB / I A ) when measured. The term "near 1580 cm -1 " refers to the range of 1580 to 1620 cm -1 , and the term "near 1360 cm -1 " refers to the range of 1350 to 1370 cm -1 .

なお、本発明において、ラマンR値は次の方法により求めることができる。サーモフィッシャーサイエンティフィック社製AlmegaXRを用い、波長532nmの半導体レーザー光を用いたラマンスペクトル分析において、1580cm-1の付近のピークPの強度I、1360cm-1の範囲のピークPの強度Iを測定し、その強度の比R=I/Iを求める。試料の調製にあたっては、粉末状態のものを自然落下によりセルに充填し、セル内のサンプル表面にレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させて測定を行われる。
試料上のレーザーパワー :2mW以下
分解能 :約10cm-1
測定範囲 :400cm-1~4000cm-1
ピーク強度測定、ピーク半値幅測定:バックグラウンド処理、複数スペクトルの平均化
In the present invention, the Raman R value can be obtained by the following method. In Raman spectrum analysis using Almega XR manufactured by Thermo Fisher Scientific Co., Ltd. and using a semiconductor laser beam with a wavelength of 532 nm, the intensity of peak PA near 1580 cm -1 and the intensity of peak P B in the range of 1360 cm -1 . IB is measured and the ratio of its intensities R = IB / IA is determined. In the preparation of the sample, the powder is filled in the cell by natural drop, and the cell is rotated in a plane perpendicular to the laser beam while irradiating the sample surface in the cell with the laser beam to perform the measurement.
Laser power on sample: 2 mW or less Resolution: Approximately 10 cm -1
Measurement range: 400 cm -1 to 4000 cm -1
Peak intensity measurement, peak half width measurement: background processing, averaging of multiple spectra

[製造方法]
本発明の負極材は、コールタールピッチを加熱重合して生コークスを製造し、これを粉砕、分級して生コークス粉としてから黒鉛化を行い、更に非晶質炭素前駆体を混合、加熱することによる非晶質炭素の被覆処理を行うことで製造することができる。なお、条件(3)のd10及びd50に制御するためには生コークスを得た後に粉砕、分級を行うこと、及び非晶質炭素の被覆を行った後で篩にかけて粒度調整することが好ましく、特に、予め粒度分布が異なる生コークス粉を準備してそれぞれを用いて非晶質炭素が被覆された人造黒鉛を製造し、これらを適宜混合することで条件(3)を満足するように制御することが粒度分布の制御を行い易いために好ましい。
[Production method]
In the negative electrode material of the present invention, coal tar pitch is heat-polymerized to produce raw coke, which is crushed and classified to form raw coke powder, then graphitized, and further mixed and heated with an amorphous carbon precursor. It can be produced by performing a coating treatment of amorphous carbon. In order to control the conditions (3) to d10 and d50, it is preferable to obtain raw coke and then pulverize and classify it, and to coat it with amorphous carbon and then sieve it to adjust the particle size. In particular, raw coke powder having different particle size distributions is prepared in advance, and each of them is used to produce artificial graphite coated with amorphous carbon, and these are appropriately mixed to control the condition (3) to be satisfied. This is preferable because it is easy to control the particle size distribution.

<コールタールピッチ>
本発明において、「コールタールピッチ」とは、石炭の乾留によって得られるコールタールを蒸留、精製して得られる混合物を意味する。コールタールピッチの成分としては通常、ナフタレン、アセナフテン、フェノキシベンゼン、メチルナフタレン、その他、三環以上の多環芳香族化合物等が含まれる。また、原料として用いるコールタールピッチのキノリン不溶分は通常、5重量%未満であり、好ましくは3重量%以下であり、より好ましくは1重量%以下である。
<Coal tar pitch>
In the present invention, the "coal tar pitch" means a mixture obtained by distilling and refining coal tar obtained by carbonization of coal. The components of coal tar pitch usually include naphthalene, acenaphthene, phenoxybenzene, methylnaphthalene, and other polycyclic aromatic compounds having three or more rings. The quinoline insoluble content of coal tar pitch used as a raw material is usually less than 5% by weight, preferably 3% by weight or less, and more preferably 1% by weight or less.

<加熱重合>
コールタールピッチを400~700℃で加熱重合することにより生コークスを得ることができる。この工程での加熱温度は好ましくは450~600℃である。また、この加熱処理は通常、窒素ガスなどの不活性ガス雰囲気下で行われる。
<Heat polymerization>
Raw coke can be obtained by heating and polymerizing the coal tar pitch at 400 to 700 ° C. The heating temperature in this step is preferably 450 to 600 ° C. Further, this heat treatment is usually performed in an atmosphere of an inert gas such as nitrogen gas.

<粉砕及び分級>
得られた生コークスは粉砕、分級を行い、生コークス粉とすることが好ましい。特に、条件(3)を満足するように、生コークス粉を分級により粒度を調整することが好ましい。
<Crushing and classification>
The obtained raw coke is preferably pulverized and classified into raw coke powder. In particular, it is preferable to adjust the particle size of the raw coke powder by classification so as to satisfy the condition (3).

粉砕処理に使用する粗粉砕機としては、ジョークラッシャー、衝撃式クラッシャー、コ-ンクラッシャー等が挙げられ、中間粉砕機としてはロールクラッシャー、ハンマーミル等が挙げられ、微粉砕機としてはボールミル、振動ミル、ピンミル、攪拌ミル、ジェットミル等が挙げられる。 Examples of the coarse crusher used for the crushing process include a jaw crusher, an impact type crusher, a cone crusher and the like, examples of an intermediate crusher include a roll crusher and a hammer mill, and examples of a fine crusher include a ball mill and vibration. Examples include mills, pin mills, stirring mills, jet mills and the like.

分級処理の条件としては、目開きが、好ましくは75μm以下であるものを用いて実施される。また、後の工程で異なる粒度分布の人造黒鉛を混合する場合には、この段階で目開きの異なるものを用い、予め粒度分布の異なる生コークス粉を準備してもよい。 As the conditions for the classification treatment, those having a mesh opening of preferably 75 μm or less are used. When artificial graphite having a different particle size distribution is mixed in a later step, raw coke powder having a different particle size distribution may be prepared in advance by using one having a different mesh size at this stage.

分級処理に用いる装置としては特に制限はないが、例えば、乾式篩い分けの場合:回転式篩い、動揺式篩い、旋動式篩い、振動式篩い等を用いることができ、乾式気流式分級の場合:重力式分級機、慣性力式分級機、遠心力式分級機(クラシファイア、サイクロン等)等を用いることができ、湿式篩い分けの場合:機械的湿式分級機、水力分級機、沈降分級機、遠心式湿式分級機等を用いることができる。 The apparatus used for the classification process is not particularly limited, but for example, in the case of dry sieving: a rotary sieving, a swaying sieving, a oscillating sieving, a vibrating sieving, etc. can be used, and in the case of a dry air flow sieving. : Gravity type classifier, inertial force type classifier, centrifugal force type classifier (classifier, cyclone, etc.) can be used, and in the case of wet sieving: mechanical wet classifier, hydraulic classifier, sedimentation classifier, A centrifugal wet classifier or the like can be used.

<黒鉛化>
生コークス粉を2800~3300℃に加熱して黒鉛化することにより、人造黒鉛を得ることができる。このとき、加熱条件は、2800℃以上であることが原料由来の不純物を揮発させて結晶性の高い人造黒鉛を得る観点で好ましく、この観点からより好ましくは2900℃以上である。また、3300℃以下であると、黒鉛化の進行が停止した後での余剰なエネルギー消費を防ぐ観点で好ましく、この観点からより好ましくは3200℃以下である。なお、黒鉛化の前に生コークス粉を700℃~1800℃の間でか焼したものを用いてもよい。
<Graphitization>
Artificial graphite can be obtained by heating the raw coke powder to 2800 to 3300 ° C. and graphitizing it. At this time, the heating condition is preferably 2800 ° C. or higher from the viewpoint of volatilizing impurities derived from the raw material to obtain artificial graphite having high crystallinity, and more preferably 2900 ° C. or higher from this viewpoint. Further, the temperature of 3300 ° C. or lower is preferable from the viewpoint of preventing excess energy consumption after the progress of graphitization is stopped, and more preferably 3200 ° C. or lower from this viewpoint. A raw coke powder baked at 700 ° C. to 1800 ° C. before graphitization may be used.

<非晶質炭素の被覆処理>
黒鉛化により得られた人造黒鉛を非晶質炭素前駆体(非晶質炭素の原料)と混合して焼成することにより、条件(1)が満足される。
<Amorphous carbon coating treatment>
Condition (1) is satisfied by mixing the artificial graphite obtained by graphitization with an amorphous carbon precursor (raw material of amorphous carbon) and firing it.

非晶質炭素前駆体としては、特に限定されないが、コールタール、コールタールピッチ、乾留液化油等の石炭系重質油;常圧残油、減圧残油等の直留系重質油;原油、ナフサ等の熱分解時に副生するエチレンタール等の分解系重質油等の石油系重質油;アセナフチレン、デカシクレン、アントラセン等の芳香族炭化水素;フェナジンやアクリジン等の窒素含有環状化合物;チオフェン等の硫黄含有環状化合物;アダマンタン等の脂肪族環状化合物;ビフェニル、テルフェニル等のポリフェニレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリビニルブチラール等のポリビニルエステル類、ポリビニルアルコール等の熱可塑性高分子等の有機物が挙げられる。これらの有機物前駆体は1種のみで用いても2種以上を組み合わせて用いてもよい。 The amorphous carbon precursor is not particularly limited, but is a coal-based heavy oil such as coal tar, coal tar pitch, and dry distillate liquefied oil; a direct-retaining heavy oil such as normal pressure residual oil and reduced pressure residual oil; crude oil. Petroleum-based heavy oils such as decomposition-type heavy oils such as ethylene tar, which are by-produced during thermal decomposition of naphtha, etc .; Sulfur-containing cyclic compounds such as adamantan; aliphatic cyclic compounds such as adamantan; polyphenylene such as biphenyl and terphenyl, polyvinyl esters such as polyvinyl chloride, polyvinyl acetate and polyvinyl butyral, and organic substances such as thermoplastic polymers such as polyvinyl alcohol. Can be mentioned. These organic precursors may be used alone or in combination of two or more.

非晶質炭素の被覆処理を行う際の焼成は通常、窒素、アルゴン等の不活性ガス中で行われる。このときの熱処理温度は、通常800℃以上、好ましくは900℃以上、より好ましくは1000℃以上であり、一方、通常1300℃以下、好ましくは1200℃以下である。また、熱処理時間は、非晶質炭素前駆体が非晶質炭素化するまで行えばよく、通常10分~24時間である。 The firing of the amorphous carbon coating treatment is usually carried out in an inert gas such as nitrogen or argon. The heat treatment temperature at this time is usually 800 ° C. or higher, preferably 900 ° C. or higher, more preferably 1000 ° C. or higher, while it is usually 1300 ° C. or lower, preferably 1200 ° C. or lower. The heat treatment time may be until the amorphous carbon precursor is amorphous carbonized, and is usually 10 minutes to 24 hours.

<粒度分布の調整>
得られた非晶質炭素で少なくとも一部が被覆された人造黒鉛について、篩を用いて粒度を調整することが好ましい。更に、粒度分布を調整するために異なる粒度分布を有するものと混合して粒度を調整することが好ましい。
<Adjustment of particle size distribution>
It is preferable to adjust the particle size of the obtained artificial graphite coated with amorphous carbon by using a sieve. Further, in order to adjust the particle size distribution, it is preferable to adjust the particle size by mixing with those having different particle size distributions.

〔非水系二次電池用負極〕
本発明の非水系二次電池用負極(以下、「本発明の負極」と称する場合がある。)は、集電体と、該集電体上に形成された活物質層とを備え、該活物質層が本発明の負極材を含有するものである。
[Negative electrode for non-aqueous secondary batteries]
The negative electrode for a non-aqueous secondary battery of the present invention (hereinafter, may be referred to as “negative electrode of the present invention”) includes a current collector and an active material layer formed on the current collector. The active material layer contains the negative electrode material of the present invention.

本発明の負極材を用いて負極を作製するには、負極材に結着樹脂を配合したものを水性又は有機系媒体でスラリーとし、必要によりこれに増粘材を加えて集電体に塗布し、乾燥すればよい。 In order to produce a negative electrode using the negative electrode material of the present invention, a slurry in which a binder resin is mixed with the negative electrode material is made into a slurry with an aqueous or organic medium, and if necessary, a thickener is added thereto and applied to a current collector. Then dry it.

結着樹脂としては、非水電解液に対して安定で、かつ非水溶性のものを用いるのが好ましい。例えば、スチレン・ブタジエンゴム、イソプレンゴム及びエチレン・プロピレンゴム等のゴム状高分子;ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリイミド、ポリアクリル酸、及び芳香族ポリアミド等の合成樹脂;スチレン・ブタジエン・スチレンブロック共重合体やその水素添加物、スチレン・エチレン・ブタジエン、スチレン共重合体、スチレン・イソプレン及びスチレンブロック共重合体並びにその水素化物等の熱可塑性エラストマー;シンジオタクチック-1,2-ポリブタジエン、エチレン・酢酸ビニル共重合体、及びエチレンと炭素数3~12のα-オレフィンとの共重合体等の軟質樹脂状高分子;ポリテトラフルオロエチレン・エチレン共重合体、ポリビニデンフルオライド、ポリペンタフルオロプロピレン及びポリヘキサフルオロプロピレン等のフッ素化高分子等を用いることができる。有機系媒体としては、例えば、N-メチルピロリドン及びジメチルホルムアミドを用いることができる。 As the binder resin, it is preferable to use a resin that is stable to a non-aqueous electrolytic solution and is water-insoluble. For example, rubber-like polymers such as styrene / butadiene rubber, isoprene rubber and ethylene / propylene rubber; synthetic resins such as polyethylene, polypropylene, polyethylene terephthalate, polyimide, polyacrylic acid, and aromatic polyamide; both styrene / butadiene / styrene blocks. Polymers and their hydrogenated products, styrene / ethylene / butadiene, styrene copolymers, styrene / isoprene and styrene block copolymers, and thermoplastic elastomers such as hydrides thereof; Soft resinous polymers such as vinyl acetate copolymers and copolymers of ethylene and α-olefins having 3 to 12 carbon atoms; polytetrafluoroethylene / ethylene copolymers, polyvinidene fluoride, polypentafluoro A fluorinated polymer such as propylene and polyhexafluoropropylene can be used. As the organic medium, for example, N-methylpyrrolidone and dimethylformamide can be used.

結着樹脂は、負極材100重量部に対して通常は0.1重量部以上、好ましくは0.2重量部以上用いるのが好ましい。結着樹脂の使用量を負極材100重量部に対して0.1重量部以上とすることで、負極材料相互間や負極材料と集電体との結着力が十分となり、負極から負極材料が剥離することによる電池容量の減少及びリサイクル特性の悪化を防ぐことができる。 It is preferable to use 0.1 part by weight or more, preferably 0.2 part by weight or more of the binder resin with respect to 100 parts by weight of the negative electrode material. By setting the amount of the binder resin to 0.1 parts by weight or more with respect to 100 parts by weight of the negative electrode material, the binding force between the negative electrode materials and between the negative electrode material and the current collector becomes sufficient, and the negative electrode material can be separated from the negative electrode material. It is possible to prevent a decrease in battery capacity and deterioration of recycling characteristics due to peeling.

また、結着樹脂の使用量は負極材100重量部に対して10重量部以下とするのが好ましく、7重量部以下とするのがより好ましい。結着樹脂の使用量を負極材100重量部に対して10重量部以下とすることにより、負極の容量の減少を防ぎ、かつリチウムイオン等のアルカリイオンの負極材料への出入が妨げられる等の問題を防ぐことができる。 The amount of the binder resin used is preferably 10 parts by weight or less, more preferably 7 parts by weight or less, based on 100 parts by weight of the negative electrode material. By setting the amount of the binder resin to 10 parts by weight or less with respect to 100 parts by weight of the negative electrode material, it is possible to prevent a decrease in the capacity of the negative electrode and prevent alkaline ions such as lithium ions from entering and exiting the negative electrode material. You can prevent problems.

スラリーに添加する増粘材としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース及びヒドロキシプロピルセルロース等の水溶性セルロース類、ポリビニルアルコール並びにポリエチレングリコール等が挙げられる。これらの中でも好ましいのはカルボキシメチルセルロースである。増粘材は負極材料100重量部に対して、通常0.1~10重量部、特に0.2~7重量部となるように用いるのが好ましい。 Examples of the thickener to be added to the slurry include water-soluble celluloses such as carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose and hydroxypropyl cellulose, polyvinyl alcohol, polyethylene glycol and the like. Of these, carboxymethyl cellulose is preferred. The thickener is preferably used so as to be usually 0.1 to 10 parts by weight, particularly 0.2 to 7 parts by weight, based on 100 parts by weight of the negative electrode material.

負極集電体としては、従来からこの用途に用い得ることが知られている、例えば、銅、銅合金、ステンレス鋼、ニッケル、チタン及び炭素等を用いればよい。集電体の形状は通常はシート状であり、その表面に凹凸をつけたもの、ネット及びパンチングメタル等を用いることも好ましい。 As the negative electrode current collector, for example, copper, copper alloy, stainless steel, nickel, titanium, carbon, etc., which are conventionally known to be usable for this purpose, may be used. The shape of the current collector is usually sheet-like, and it is also preferable to use a current collector having an uneven surface, a net, punching metal, or the like.

集電体に負極材と結着樹脂のスラリーを塗布・乾燥した後は、加圧して集電体上に形成された活物質層の密度を大きくして負極活物質層の単位体積当たりの電池容量を大きくするのが好ましい。活物質層の密度は1.2~1.8g/cmの範囲にあることが好ましく、1.3~1.6g/cmであることがより好ましい。活物質層の密度を上記下限値以上とすることで、電極の厚みの増大に伴う電池の容量の低下を防ぐことができる。また、活物質層の密度を上記上限値以下とすることで、電極内の粒子間空隙が減少に伴い空隙に保持される電解液量が減り、リチウムイオン等のアルカリイオンの移動性が小さくなり急速充放電性が小さくなるのを防ぐことができる。 After applying the negative electrode material and the binder resin slurry to the current collector and drying it, pressurize it to increase the density of the active material layer formed on the current collector, and increase the density of the battery per unit volume of the negative electrode active material layer. It is preferable to increase the capacity. The density of the active material layer is preferably in the range of 1.2 to 1.8 g / cm 3 , and more preferably 1.3 to 1.6 g / cm 3 . By setting the density of the active material layer to the above lower limit value or more, it is possible to prevent a decrease in battery capacity due to an increase in the thickness of the electrodes. Further, by setting the density of the active material layer to the above upper limit value or less, the amount of the electrolytic solution held in the voids decreases as the interparticle voids in the electrode decrease, and the mobility of alkaline ions such as lithium ions becomes small. It is possible to prevent the rapid charge / discharge property from becoming small.

本発明の負極材を用いて形成した負極活物質層の水銀圧入法による10nm~100000nmの範囲の細孔容量は、0.05mL/gであることが好ましく、0.1ml/g以上であることがより好ましい。細孔容量を0.05mL/g以上とすることによりリチウムイオン等のアルカリイオンの出入りの面積が大きくなる。 The pore volume in the range of 10 nm to 100,000 nm by the mercury injection method of the negative electrode active material layer formed by using the negative electrode material of the present invention is preferably 0.05 mL / g, and is 0.1 ml / g or more. Is more preferable. By setting the pore volume to 0.05 mL / g or more, the area of entry and exit of alkaline ions such as lithium ions becomes large.

〔非水系二次電池〕
本発明の非水系二次電池は、正極及び負極、並びに電解質を備える非水系二次電池であって、負極として、本発明の負極を用いたものである。特に、本発明の非水系二次電池に用いる正極及び負極は、通常、Liイオンを吸蔵、放出可能なリチウムイオン二次電池であることが好ましい。
[Non-aqueous secondary battery]
The non-aqueous secondary battery of the present invention is a non-aqueous secondary battery including a positive electrode, a negative electrode, and an electrolyte, and uses the negative electrode of the present invention as the negative electrode. In particular, the positive electrode and the negative electrode used in the non-aqueous secondary battery of the present invention are usually preferably lithium ion secondary batteries capable of storing and releasing Li ions.

本発明の非水系二次電池は、上記の本発明の負極を用いる以外は、常法に従って製造することができる。特に、本発明の非水系二次電池は、[負極の容量]/[正極の容量]の値を1.01~1.5に設計することが好ましく、1.2~1.4に設計することがより好ましい。 The non-aqueous secondary battery of the present invention can be manufactured according to a conventional method except that the above-mentioned negative electrode of the present invention is used. In particular, in the non-aqueous secondary battery of the present invention, the values of [Negative electrode capacity] / [Positive electrode capacity] are preferably designed to be 1.01 to 1.5, and are designed to be 1.2 to 1.4. Is more preferable.

[正極]
本発明の非水系二次電池の正極の活物質となる正極材としては、例えば、基本組成がLiCoOで表されるリチウムコバルト複合酸化物、LiNiOで表されるリチウムニッケル複合酸化物、LiMnO及びLiMnで表されるリチウムマンガン複合酸化物等のリチウム遷移金属複合酸化物、二酸化マンガン等の遷移金属酸化物、並びにこれらの複合酸化物混合物等を用いればよい。更にはTiS、FeS、Nb、Mo、CoS、V、CrO、V、FeO、GeO及びLiNi0.33Mn0.33Co0.33、LiFePO等を用いればよい。
[Positive electrode]
Examples of the positive electrode material used as the active material for the positive electrode of the non-aqueous secondary battery of the present invention include a lithium cobalt composite oxide having a basic composition represented by LiCoO 2 , a lithium nickel composite oxide represented by LiNiO 2 , and LiMnO. A lithium transition metal composite oxide such as a lithium manganese composite oxide represented by 2 and LiMn 2 O 4 , a transition metal oxide such as manganese dioxide, and a mixture of these composite oxides may be used. Furthermore, TiS 2 , FeS 2 , Nb 3 S 4 , Mo 3 S 4 , CoS 2 , V 2 O 5 , CrO 3 , V 3 O 3 , FeO 2 , GeO 2 and LiNi 0.33 Mn 0.33 Co 0 .33 O 2 , LiFePO 4 , etc. may be used.

前記正極材に結着樹脂を配合したものを適当な溶媒でスラリー化して集電体に塗布、乾燥することにより正極を製造することができる。なお、スラリー中にはアセチレンブラック、ケッチェンブラック等の導電材を含有させることが好ましい。また、必要に応じて増粘材を含有させてもよい。なお、結着材及び増粘剤としては、この用途に周知のもの、例えば負極の製造に用いるものとして例示したものを用いることができる。 A positive electrode can be produced by slurrying the positive electrode material with a binder resin with an appropriate solvent, applying it to a current collector, and drying it. It is preferable that the slurry contains a conductive material such as acetylene black or ketjen black. Further, a thickener may be contained if necessary. As the binder and the thickener, those known for this purpose, for example, those exemplified as those used for manufacturing a negative electrode can be used.

導電材の配合量は正極材100重量部に対し、0.5~20重量部が好ましく、1~15重量部がより好ましい。また、増粘材の配合量は正極材100重量部に対し、0.2~10重量部が好ましく、0.5~7重量部がより好ましい。更に、正極材100重量部に対する結着樹脂の配合量は、結着樹脂を水でスラリー化する場合には0.2~10重量部が好ましく、0.5~7重量部がより好ましく、一方、結着樹脂をN-メチルピロリドン等の結着樹脂を溶解する有機溶媒でスラリー化する場合には0.5~20重量部が好ましく、1~15重量部がより好ましい。 The blending amount of the conductive material is preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight, based on 100 parts by weight of the positive electrode material. The blending amount of the thickener is preferably 0.2 to 10 parts by weight, more preferably 0.5 to 7 parts by weight, based on 100 parts by weight of the positive electrode material. Further, the blending amount of the binder resin with respect to 100 parts by weight of the positive electrode material is preferably 0.2 to 10 parts by weight, more preferably 0.5 to 7 parts by weight, when the binder resin is slurried with water. When the binder resin is slurryed with an organic solvent that dissolves the binder resin such as N-methylpyrrolidone, 0.5 to 20 parts by weight is preferable, and 1 to 15 parts by weight is more preferable.

正極集電体としては、例えば、アルミニウム、チタン、ジルコニウム、ハフニウム、ニオブ及びタンタル等並びにこれらの合金が挙げられる。これらの中でもアルミニウム、チタン及びタンタル並びにその合金が好ましく、アルミニウム及びその合金が最も好ましい。 Examples of the positive electrode current collector include aluminum, titanium, zirconium, hafnium, niobium, tantalum and the like, and alloys thereof. Among these, aluminum, titanium and tantalum and their alloys are preferable, and aluminum and its alloys are most preferable.

[電解液]
電解液は、従来周知の非水溶媒に種々のリチウム塩を溶解させたものを用いることができる。
[Electrolytic solution]
As the electrolytic solution, a solution obtained by dissolving various lithium salts in a conventionally known non-aqueous solvent can be used.

非水溶媒としては、例えば、エチレンカーボネート、フルオロエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート及びビニレンカーボネート等の環状カーボネート、ジメチルカーボネート、エチルメチルカーボネート及びジエチルカーボネート等の鎖状カーボネート、γ-ブチロラクトン等の環状エステル、クラウンエーテル、2-メチルテトラヒドロフラン、テトラヒドロフラン、1,2-ジメチルテトラヒドロフラン及び1,3-ジオキソラン等の環状エーテル、1,2-ジメトキシエタン等の鎖状エーテル等を用いればよい。通常はこれらの2種以上を混合して用いる。なかでも環状カーボネートと鎖状カーボネート、又はこれに更に他の溶媒を混合して用いることが好ましい。 Examples of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate, fluoroethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate, chain carbonates such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate, and cyclic esters such as γ-butyrolactone. , Crown ether, cyclic ethers such as 2-methyltetrahydrofuran, tetrahydrofuran, 1,2-dimethyltetrahydrofuran and 1,3-dioxolane, chain ethers such as 1,2-dimethoxyethane and the like may be used. Usually, two or more of these are mixed and used. Of these, it is preferable to use cyclic carbonate and chain carbonate, or a mixture thereof with another solvent.

電解液には、ビニレンカーボネート、ビニルエチレンカーボネート、無水コハク酸、無水マレイン酸、プロパンスルトン及びジエチルスルホン等の化合物やジフルオロリン酸リチウムのようなジフルオロリン酸塩等が添加されていてもよい。更に、ジフェニルエーテル及びシクロヘキシルベンゼン等の過充電防止剤が添加されていてもよい。 Compounds such as vinylene carbonate, vinylethylene carbonate, succinic anhydride, maleic anhydride, propane sultone and diethylsulfone, and difluorophosphates such as lithium difluorophosphate may be added to the electrolytic solution. Further, an overcharge inhibitor such as diphenyl ether and cyclohexylbenzene may be added.

非水溶媒に溶解させる電解質としては、例えば、LiClO、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)及びLiC(CFSO等が挙げられる。電解液中の電解質の濃度は通常0.5~2mol/Lであり、好ましくは0.6~1.5mol/Lである。 Examples of the electrolyte to be dissolved in a non-aqueous solvent include LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , and LiN (CF 3 ). Examples thereof include SO 2 ) (C 4 F 9 SO 2 ) and LiC (CF 3 SO 2 ) 3 . The concentration of the electrolyte in the electrolytic solution is usually 0.5 to 2 mol / L, preferably 0.6 to 1.5 mol / L.

[セパレータ]
正極と負極との間に介在させるセパレータを用いることが好ましい。このようなセパレータとしては、ポリエチレンやポリプロピレン等のポリオレフィンの多孔性シートや不織布を用いることが好ましい。
[Separator]
It is preferable to use a separator interposed between the positive electrode and the negative electrode. As such a separator, it is preferable to use a porous sheet of polyolefin such as polyethylene or polypropylene or a non-woven fabric.

以下、実施例により本発明をより詳細に説明する。以下の実施例及び比較例において、各特性の測定方法は下記のとおりである。 Hereinafter, the present invention will be described in more detail with reference to Examples. In the following examples and comparative examples, the measurement method of each characteristic is as follows.

<負極シートの作製>
以下の実施例及び比較例で調製した負極材を負極材料として用い、活物質層密度1.50±0.03g/cmの活物質層を有する極板を作製した。具体的には、負極材料20.00±0.02gに、1重量%カルボキシメチルセルロースナトリウム塩水溶液を20.00±0.02g(固形分換算で0.200g)、及び重量平均分子量27万のスチレン・ブタジエンゴム水性ディスパージョン0.50±0.05g(固形分換算で0.2g)を加えて、キーエンス製ハイブリッドミキサーで5分間撹拌し、30秒脱泡してスラリーを得た。
<Manufacturing of negative electrode sheet>
Using the negative electrode materials prepared in the following Examples and Comparative Examples as the negative electrode material, a electrode plate having an active material layer having an active material layer density of 1.50 ± 0.03 g / cm 3 was prepared. Specifically, 20.00 ± 0.02 g of the negative electrode material, 20.00 ± 0.02 g of a 1 wt% carboxymethyl cellulose sodium salt aqueous solution (0.200 g in terms of solid content), and styrene having a weight average molecular weight of 270,000. -Add 0.50 ± 0.05 g (0.2 g in terms of solid content) of butadiene rubber aqueous dispersion, stir for 5 minutes with a hybrid mixer manufactured by Keyence, and defoam for 30 seconds to obtain a slurry.

このスラリーを、集電体である厚さ10μmの銅箔上に、負極材料が10.0±0.3mg/cm付着するように、ドクターブレードを用いて幅5cmに塗布し、室温で風乾を行った。更に110℃で30分乾燥後、直径20cmのローラを用いてロールプレスして、活物質層の密度が1.50±0.03g/cmになるよう調整し電極シートを得た。 This slurry was applied to a width of 5 cm using a doctor blade so that the negative electrode material adhered to 10.0 ± 0.3 mg / cm 2 on a copper foil having a thickness of 10 μm, which is a current collector, and air-dried at room temperature. Was done. After further drying at 110 ° C. for 30 minutes, roll pressing was performed using a roller having a diameter of 20 cm to adjust the density of the active material layer to 1.50 ± 0.03 g / cm 3 to obtain an electrode sheet.

<リチウムイオン二次電池(2016コイン型電池)の作製>
上記方法で作製した負極シートを直径12.5mmの円盤状に打ち抜き、リチウム金属箔を直径14mmの円板状に打ち抜き対極とした。両極の間には、エチレンカーボネートとエチルメチルカーボネートの混合溶媒(容量比=3:7)に、LiPFを1mol/Lになるように溶解させた電解液を含浸させたセパレータ(多孔性ポリエチレンフィルム製)を置き、2016コイン型電池をそれぞれ作製した。
<Manufacturing of lithium-ion secondary battery (2016 coin type battery)>
The negative electrode sheet produced by the above method was punched into a disk shape having a diameter of 12.5 mm, and the lithium metal foil was punched into a disk shape having a diameter of 14 mm to serve as a counter electrode. Between the two electrodes, a separator (porous polyethylene film) is impregnated with an electrolytic solution in which LiPF 6 is dissolved at 1 mol / L in a mixed solvent of ethylene carbonate and ethyl methyl carbonate (volume ratio = 3: 7). , 2016 coin type batteries were prepared respectively.

<放電容量、初回クーロン効率>
上記リチウムイオン二次電池(2016コイン型電池)を用いて、下記の測定方法で電池充放電時の放電容量を測定した。
<Discharge capacity, initial Coulomb efficiency>
Using the above-mentioned lithium ion secondary battery (2016 coin type battery), the discharge capacity at the time of charging and discharging the battery was measured by the following measuring method.

前述の方法で作製した非水系二次電池(コイン型電池)を用いて、下記の測定方法で電池充放電時の放電容量(mAh/g)を測定した。0.05Cの電流密度でリチウム対極に対して5mVまで充電し、さらに5mVの一定電圧で電流密度が0.005Cになるまで充電し、負極中にリチウムをドープした後、0.1Cの電流密度でリチウム対極に対して1.5Vまで放電を行なった。この初回サイクルにおいて初回クーロン効率(=(初回放電容量/初回充電容量)×100(%))を算出した。引き続き2、3回目は、同電流密度でcc-cv充電にて10mV、0.005Ccutにて充電し、放電は、全ての回で0.1Cで1.5Vまで放電した。 Using the non-aqueous secondary battery (coin type battery) produced by the above method, the discharge capacity (mAh / g) at the time of battery charging / discharging was measured by the following measuring method. The current density of 0.05C is charged to 5 mV with respect to the lithium counter electrode, the current density is charged to 0.005 C at a constant voltage of 5 mV, lithium is doped into the negative electrode, and then the current density is 0.1 C. The current was discharged to 1.5 V with respect to the lithium counter electrode. In this initial cycle, the initial Coulomb efficiency (= (initial discharge capacity / initial charge capacity) × 100 (%)) was calculated. Subsequently, the second and third times were charged at 10 mV and 0.005 Ccut by cc-cv charging at the same current density, and the discharge was performed at 0.1 C and 1.5 V at all times.

この計3サイクルにおいて3サイクル目の放電容量を初回サイクルの放電容量で割った値をサイクル維持率〔%〕として算出した。 The value obtained by dividing the discharge capacity of the third cycle by the discharge capacity of the first cycle in the total of three cycles was calculated as the cycle maintenance rate [%].

<急速充電特性の評価>
前述の方法で作製した非水系二次電池(コイン型電池)を用いて、下記の測定方法で電池充放電時の放電容量(mAh/g)を測定した。0.05Cの電流密度でリチウム対極に対して5mVまで充電し、さらに5mVの一定電圧で電流密度が0.005Cになるまで充電し、負極中にリチウムをドープした後、0.1Cの電流密度でリチウム対極に対して1.5Vまで放電を行なった。引き続き2、3回目は、同電流密度でcc-cv充電にて10mV、0.005Ccutにて充電し、放電は、全ての回で0.1Cで1.5Vまで放電した。
<Evaluation of quick charge characteristics>
Using the non-aqueous secondary battery (coin type battery) produced by the above method, the discharge capacity (mAh / g) at the time of battery charging / discharging was measured by the following measuring method. The current density of 0.05C is charged to 5 mV with respect to the lithium counter electrode, the current density is charged to 0.005 C at a constant voltage of 5 mV, lithium is doped into the negative electrode, and then the current density is 0.1 C. The current was discharged to 1.5 V with respect to the lithium counter electrode. Subsequently, the second and third times were charged at 10 mV and 0.005 Ccut by cc-cv charging at the same current density, and the discharge was performed at 0.1 C and 1.5 V at all times.

3Cの電流密度でリチウム対極に対して負極材1グラム当たりの容量として360mAh/gとなるまでcc充電し、その過程における電位変化を測定した。得られる電位値を電流値で微分した値(dV/dQ)を充電率(=充電した容量〔mAh/g〕/上記cc-cv3サイクル目放電容量、以下SOCと表記)に対しプロットした。この微分曲線のSOC=0~15%において確認されるピークのピークトップのdV/dQ値から急速充電特性を評価した。 The current density was 3C, and the lithium counter electrode was charged with cc until the capacity per gram of the negative electrode material reached 360 mAh / g, and the potential change in the process was measured. The value (dV / dQ) obtained by differentiating the obtained potential value with the current value was plotted against the charge rate (= charged capacity [mAh / g] / discharge capacity in the third cycle of cc-cv, hereinafter referred to as SOC). The quick charge characteristic was evaluated from the dV / dQ value of the peak peak confirmed at SOC = 0 to 15% of this differential curve.

<人造黒鉛A~Cの製造>
コールタールピッチ(キノリン不溶分:1重量%未満)を500℃で24時間加熱して生コークスを得た。得られた生コークス粉について、75um分級を行い、平均粒子径13μmとしたものを生コークス粉A、平均粒子径8μmとしたものを生コークス粉Bとした。生コークス粉A、Bのそれぞれを3000℃で40時間加熱して黒鉛化させた。生コークス粉Aを黒鉛化させたものを人造黒鉛Cとする。
<Manufacturing of artificial graphites A to C>
Coal tar pitch (quinoline insoluble content: less than 1% by weight) was heated at 500 ° C. for 24 hours to obtain raw coke. The obtained raw coke powder was classified by 75 um, and the one having an average particle diameter of 13 μm was designated as raw coke powder A, and the one having an average particle diameter of 8 μm was designated as raw coke powder B. Each of the raw coke powders A and B was heated at 3000 ° C. for 40 hours to graphitize. Graphitized raw coke powder A is referred to as artificial graphite C.

生コークス粉A、Bのそれぞれの黒鉛化物100重量部に対し、重質油と混合した。これらのそれぞれについて、1300℃で加熱することにより非晶質炭素による被覆処理を行った。生コークス粉Aの黒鉛化物について非晶質炭素で被覆し、更に粉砕機で粉砕した後に45μmの篩を通過させ、人造黒鉛Aとした。また、生コークス粉Bの黒鉛化物について非晶質炭素で被覆し、更に粉砕機にて粉砕した後、45μmの篩を追加させたものを人造黒鉛Bとした。 100 parts by weight of each graphitized product of the raw coke powders A and B was mixed with heavy oil. Each of these was coated with amorphous carbon by heating at 1300 ° C. The graphitized product of raw coke powder A was coated with amorphous carbon, further pulverized by a pulverizer, and then passed through a 45 μm sieve to obtain artificial graphite A. Further, the graphitized product of raw coke powder B was coated with amorphous carbon, further pulverized by a pulverizer, and then a 45 μm sieve was added to obtain artificial graphite B.

[実施例1]
人造黒鉛A、Bを(人造黒鉛A):(人造黒鉛B)=7:3(重量比)として混合して負極材1を製造した。負極材1について各種物性を評価した。また、負極材1を用いて負極シートの作成及びリチウムイオン二次電池の作製を行い、各種の評価を行った。下記表1及び表2にその結果を示す。
[Example 1]
The negative electrode material 1 was manufactured by mixing artificial graphites A and B with (artificial graphite A) :( artificial graphite B) = 7: 3 (weight ratio). Various physical properties of the negative electrode material 1 were evaluated. Further, the negative electrode material 1 was used to prepare a negative electrode sheet and a lithium ion secondary battery, and various evaluations were performed. The results are shown in Tables 1 and 2 below.

[実施例2]
人造黒鉛A、Bを人造黒鉛A:人造黒鉛B=5:5(重量比)として混合して負極材2を製造した。実施例1に対して負極材1の代わりに負極材2を用いた以外は同様にして各種の評価を行った。その結果を表1及び表2に示す。
[Example 2]
The negative electrode material 2 was manufactured by mixing artificial graphites A and B with artificial graphite A: artificial graphite B = 5: 5 (weight ratio). Various evaluations were performed in the same manner as in Example 1 except that the negative electrode material 2 was used instead of the negative electrode material 1. The results are shown in Tables 1 and 2.

[比較例1]
人造黒鉛Cを用いて負極材3を製造した。実施例1に対して負極材1の代わりに負極材3を用いた以外は同様にして各種の評価を行った。その結果を表1及び表2に示す。
[Comparative Example 1]
The negative electrode material 3 was manufactured using artificial graphite C. Various evaluations were carried out in the same manner as in Example 1 except that the negative electrode material 3 was used instead of the negative electrode material 1. The results are shown in Tables 1 and 2.

[比較例2]
人造黒鉛Bを用いて負極材4を製造した。実施例1に対して負極材1の代わりに負極材4を用いた以外は同様にして各種の評価を行った。その結果を表1及び表2に示す。
[Comparative Example 2]
The negative electrode material 4 was manufactured using artificial graphite B. Various evaluations were carried out in the same manner as in Example 1 except that the negative electrode material 4 was used instead of the negative electrode material 1. The results are shown in Tables 1 and 2.

[比較例3]
人造黒鉛A、Bを人造黒鉛A:人造黒鉛B=8:2〔重量比〕として混合して負極材5を製造した。実施例1に対して負極材1の代わりに負極材5を用いた以外は同様にして各種の評価を行った。その結果を表1及び表2に示す。
[Comparative Example 3]
The negative electrode material 5 was manufactured by mixing artificial graphites A and B with artificial graphite A: artificial graphite B = 8: 2 [weight ratio]. Various evaluations were performed in the same manner as in Example 1 except that the negative electrode material 5 was used instead of the negative electrode material 1. The results are shown in Tables 1 and 2.

[比較例4]
人造黒鉛A、Bを人造黒鉛A:人造黒鉛B=9:1〔重量比〕として混合して負極材6を製造した。実施例1に対して負極材1の代わりに負極材6を用いた以外は同様にして各種の評価を行った。その結果を表1及び表2に示す。
[Comparative Example 4]
The negative electrode material 6 was produced by mixing artificial graphites A and B with artificial graphite A: artificial graphite B = 9: 1 [weight ratio]. Various evaluations were performed in the same manner as in Example 1 except that the negative electrode material 6 was used instead of the negative electrode material 1. The results are shown in Tables 1 and 2.

Figure 0007102868000001
Figure 0007102868000001

Figure 0007102868000002
Figure 0007102868000002

[結果の考察]
非晶質被覆を行わない比較例1の結果から、不可逆容量が大きくなることが確認されている。本発明ではこの不可逆容量を防ぐため実施例1、2及び比較例2~4では粒子の一部を非晶質被覆した人造黒鉛A及びBを用いた。
[Discussion of results]
From the result of Comparative Example 1 in which the amorphous coating is not applied, it is confirmed that the irreversible capacity becomes large. In the present invention, in order to prevent this irreversible capacitance, artificial graphites A and B in which a part of the particles are amorphous-coated are used in Examples 1 and 2 and Comparative Examples 2 and 4.

実施例1、2において比較例3、4と比較して、350mAh/g以上の放電容量、97%以上のクーロン効率、容量維持率を示し、リチウムイオン電池負極材料として優れた特性を示した。加えて、急速充電試験から得たSOC vs. dV/dQ曲線から充電初期のSOC0~15%におけるピークトップ値を比較したところ、実施例1,2では-0.0081、-0.0076、比較例3、4では0.0023、0.0023と得られた。充電過程のSOC vs. dV/dQ曲線において正の値を取るということは、本来は充電に伴い電位が降下をする領域で電位の上昇が生じていることを意味する。この現象はオーバーシュートと呼ばれ、電極/電解液間のリチウムイオンの伝導における抵抗や、負極材自体の結晶性の問題で電気抵抗が高い可能性が示唆されるほか、粒子の表面状態や被覆状態の際も大きく影響する。この様な異常な電位の挙動は電解液にも過剰な負荷をかける。これが比較例3、4におけるクーロン効率、サイクル維持率の低下の一因となっていると推察される。 Compared with Comparative Examples 3 and 4, Examples 1 and 2 exhibited a discharge capacity of 350 mAh / g or more, a Coulomb efficiency of 97% or more, and a capacity retention rate, and exhibited excellent characteristics as a negative electrode material for a lithium ion battery. In addition, SOC vs. obtained from the quick charge test. When the peak top values at SOC 0 to 15% at the initial stage of charging were compared from the dV / dQ curve, it was -0.0081 and -0.0076 in Examples 1 and 2, and 0.0023 and 0.0023 in Comparative Examples 3 and 4. Was obtained. SOC vs. charging process. Taking a positive value in the dV / dQ curve means that the potential rises in the region where the potential originally drops with charging. This phenomenon is called overshoot, and it is suggested that the electrical resistance may be high due to the resistance in the conduction of lithium ions between the electrode and the electrolyte and the crystallinity of the negative electrode material itself, as well as the surface condition and coating of the particles. It also has a great effect on the condition. Such anomalous potential behavior also puts an excessive load on the electrolyte. It is presumed that this is one of the causes of the decrease in the Coulomb efficiency and the cycle maintenance rate in Comparative Examples 3 and 4.

実施例1、2及び比較例3、4において用いた負極材1、2、5及び6のそれぞれについて炭素材料の電気伝導性を決定する結晶性、粒子表面状態を評価する目的でXRD、XPS、ラマン分光により評価を実施した。表1に示す結果から、負極材1、2、5及び6のいずれもXRD測定からd002<0.338nm、La>100nm、La>100nmという非常に高結晶性であった。 XRD, XPS, for the purpose of evaluating the crystallinity and particle surface state that determine the electrical conductivity of the carbon material for each of the negative electrode materials 1, 2, 5 and 6 used in Examples 1 and 2 and Comparative Examples 3 and 4. Evaluation was performed by Raman spectroscopy. From the results shown in Table 1, all of the negative electrode materials 1, 2, 5 and 6 had extremely high crystallinity of d002 <0.338 nm, La> 100 nm, and La> 100 nm from the XRD measurement.

一方、電極の充填度を決定し、電解液との親和性を左右する負極材の粒径についても評価を行い、表1に示す結果を得た。その結果から、実施例1、2及び比較例3、4の間で優位に変化する傾向が確認され、粒度分布が条件(3)を満たす範囲において高放電容量、高クーロン効率、高サイクル維持率、良好な急速充電特性を同時に達成することを確認した。 On the other hand, the filling degree of the electrode was determined, and the particle size of the negative electrode material, which affects the affinity with the electrolytic solution, was also evaluated, and the results shown in Table 1 were obtained. From the results, it was confirmed that there was a tendency for the particle size distribution to change predominantly between Examples 1 and 2 and Comparative Examples 3 and 4, and the high discharge capacity, high Coulomb efficiency, and high cycle maintenance rate were confirmed within the range where the particle size distribution satisfied the condition (3). , It was confirmed that good quick charge characteristics are achieved at the same time.

続いて比較例2では表1から実施例1、2と同様の高い放電容量(初回;351mAh/g)と優れた急速充電特性(SOC0~15%におけるdV/dQピークトップ値;-0.0079)を示したが、クーロン効率(96.7%)やサイクル維持率(96.0%)において実施例1、2と比較して低下する傾向が確認された。これは比較例2では粒子径が小さい人造黒鉛Bのみから負極材が構成されることで電極と電解液の接触面積が過剰となり、電解液の分解を生じている可能性が示唆される。 Subsequently, in Comparative Example 2, the same high discharge capacity (first time; 351 mAh / g) and excellent quick charge characteristics (dV / dQ peak top value at SOC 0 to 15%; -0.0079) as in Examples 1 and 2 from Table 1 ), But it was confirmed that the Coulomb efficiency (96.7%) and cycle maintenance rate (96.0%) tended to decrease as compared with Examples 1 and 2. This suggests that in Comparative Example 2, since the negative electrode material is composed only of artificial graphite B having a small particle size, the contact area between the electrode and the electrolytic solution becomes excessive, and the electrolytic solution may be decomposed.

表1に示した比較例2(負極材4)の粒度測定の結果から、平均粒度d10が3.6μmと得られた。電解液の分解を抑制し、クーロン効率やサイクル維持率を良好に保つ観点から、粒度分布を条件(3)の範囲とすることが望ましいという結果が得られた。 From the results of the particle size measurement of Comparative Example 2 (negative electrode material 4) shown in Table 1, the average particle size d10 was obtained as 3.6 μm. From the viewpoint of suppressing the decomposition of the electrolytic solution and maintaining the Coulomb efficiency and the cycle maintenance rate well, the result was obtained that it is desirable to set the particle size distribution within the range of the condition (3).

本発明の人造黒鉛系負極材、並びにこれを含む非水系二次電池用負極及び非水系二次電池は、放電容量及びクーロン効率が高く、容量維持率及び急速充電特性に優れるため、車載用途;パワーツール用途;携帯電話、パソコン等の携帯機器用途等に好適に用いることができる。 The artificial graphite-based negative electrode material of the present invention, and the negative electrode for non-aqueous secondary batteries and the non-aqueous secondary battery containing the same have high discharge capacity and Coulomb efficiency, and are excellent in capacity retention rate and quick charge characteristics, and thus are used in vehicles; Power tool applications: Can be suitably used for mobile device applications such as mobile phones and personal computers.

Claims (4)

単一粒子からなる人造黒鉛系負極材であって、下記条件(1)~(3)を満たし、下記式1で表されるO/Cが0.1~1.5mol%である人造黒鉛系負極材。
条件(1):少なくとも一部が非晶質炭素で被覆されている。
条件(2):X線回折法(XRD)により測定した002面の面間隔(d002)が0.338nm以下である。
条件(3):体積基準粒子径において、メジアン径(d50)が9.0~25.0μmであり、小粒子側から10%積算部の粒子径(d10)が0.5~5.4μmである。
式1:O/C(mol%)=〔[X線光電子分光法分析におけるO1sのスペクトルのピーク面積に基づいて求めたO原子濃度]/[X線光電子分光法分析におけるC1sのスペクトルのピーク面積に基づいて求めたC原子濃度]〕×100
An artificial graphite-based negative electrode material composed of a single particle, which satisfies the following conditions (1) to (3) and has an O / C of 0.1 to 1.5 mol% represented by the following formula 1. Negative electrode material.
Condition (1): At least a part is coated with amorphous carbon.
Condition (2): The surface spacing (d002) of the 002 planes measured by the X-ray diffraction method (XRD) is 0.338 nm or less.
Condition (3): In the volume reference particle diameter, the median diameter (d50) is 9.0 to 25.0 μm, and the particle diameter (d10) of the 10% integrating portion from the small particle side is 0.5 to 5.4 μm. be.
Equation 1: O / C (mol%) = [[O-atomic concentration obtained based on the peak area of the spectrum of O1s in the X-ray photoelectron spectroscopy analysis] / [Peak area of the spectrum of C1s in the X-ray photoelectron spectroscopy analysis] C atom concentration obtained based on]] × 100
下記式2で表されるラマンR値が0.05以上0.8以下である請求項1に記載の人造黒鉛系負極材。
式2:[ラマンR値]=[ラマンスペクトル分析における1360cm-1付近のピークPの強度I]/[ラマンスペクトル分析における1580cm-1付近のピークPAの強度I
The artificial graphite-based negative electrode material according to claim 1, wherein the Raman R value represented by the following formula 2 is 0.05 or more and 0.8 or less.
Equation 2: [Raman R value] = [Intensity IB of peak P B near 1360 cm -1 in Raman spectrum analysis] / [Intensity IA of peak PA near 1580 cm -1 in Raman spectrum analysis]
集電体と、該集電体上に形成された活物質層とを備え、該活物質層が請求項1又は2に記載の人造黒鉛系負極材を含有する、非水系二次電池用負極。 A negative electrode for a non-aqueous secondary battery, comprising a current collector and an active material layer formed on the current collector, wherein the active material layer contains the artificial graphite-based negative electrode material according to claim 1 or 2. .. 正極及び負極、並びに電解質を備える非水系二次電池であって、該負極が請求項3に記載の非水系二次電池用負極である、非水系二次電池。 A non-aqueous secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, wherein the negative electrode is the negative electrode for a non-aqueous secondary battery according to claim 3.
JP2018068830A 2018-03-30 2018-03-30 Artificial graphite-based negative electrode material, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries Active JP7102868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018068830A JP7102868B2 (en) 2018-03-30 2018-03-30 Artificial graphite-based negative electrode material, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018068830A JP7102868B2 (en) 2018-03-30 2018-03-30 Artificial graphite-based negative electrode material, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries

Publications (2)

Publication Number Publication Date
JP2019179687A JP2019179687A (en) 2019-10-17
JP7102868B2 true JP7102868B2 (en) 2022-07-20

Family

ID=68278845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018068830A Active JP7102868B2 (en) 2018-03-30 2018-03-30 Artificial graphite-based negative electrode material, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries

Country Status (1)

Country Link
JP (1) JP7102868B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200089684A (en) * 2017-11-30 2020-07-27 킴벌리-클라크 월드와이드, 인크. Double end cap bundle of stacked consumer products

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021217620A1 (en) 2020-04-30 2021-11-04 宁德时代新能源科技股份有限公司 Negative electrode active material and preparation method therefor, secondary battery, and device including secondary battery
US20230105631A1 (en) 2020-07-07 2023-04-06 Lg Energy Solution, Ltd. Negative electrode and secondary battery including the negative electrode
WO2022010225A1 (en) 2020-07-07 2022-01-13 주식회사 엘지에너지솔루션 Anode, and secondary battery comprising anode
KR102608029B1 (en) * 2021-02-17 2023-11-30 한국화학연구원 Method for preparation of high crystalline artificial graphite from hard carbon and artificial graphite by the same
KR20230086215A (en) 2021-12-08 2023-06-15 주식회사 엘지에너지솔루션 Negative electrode and secondary battery comprising the same
CN115172855A (en) * 2022-08-01 2022-10-11 宁德新能源科技有限公司 Electrochemical device and electronic device including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157590A1 (en) 2011-05-13 2012-11-22 三菱化学株式会社 Carbon material for non-aqueous secondary battery, anode using said carbon material, and non-aqueous secondary battery
JP2013179074A (en) 2011-12-09 2013-09-09 Showa Denko Kk Composite graphite particle and usage of the same
JP2014089887A (en) 2012-10-30 2014-05-15 Hitachi Chemical Co Ltd Negative electrode material for lithium ion secondary battery and lithium ion secondary battery
JP2017010650A (en) 2015-06-17 2017-01-12 三菱化学株式会社 Carbon material and non-aqueous secondary battery
JP2017054583A (en) 2015-09-07 2017-03-16 三菱化学株式会社 Carbon material and nonaqueous secondary battery
JP2017174739A (en) 2016-03-25 2017-09-28 三菱ケミカル株式会社 Negative electrode material for nonaqueous secondary battery, and lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157590A1 (en) 2011-05-13 2012-11-22 三菱化学株式会社 Carbon material for non-aqueous secondary battery, anode using said carbon material, and non-aqueous secondary battery
JP2013179074A (en) 2011-12-09 2013-09-09 Showa Denko Kk Composite graphite particle and usage of the same
JP2014089887A (en) 2012-10-30 2014-05-15 Hitachi Chemical Co Ltd Negative electrode material for lithium ion secondary battery and lithium ion secondary battery
JP2017010650A (en) 2015-06-17 2017-01-12 三菱化学株式会社 Carbon material and non-aqueous secondary battery
JP2017054583A (en) 2015-09-07 2017-03-16 三菱化学株式会社 Carbon material and nonaqueous secondary battery
JP2017174739A (en) 2016-03-25 2017-09-28 三菱ケミカル株式会社 Negative electrode material for nonaqueous secondary battery, and lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200089684A (en) * 2017-11-30 2020-07-27 킴벌리-클라크 월드와이드, 인크. Double end cap bundle of stacked consumer products

Also Published As

Publication number Publication date
JP2019179687A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP7102868B2 (en) Artificial graphite-based negative electrode material, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
JP5589489B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
CN102362381B (en) Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
JP6828551B2 (en) Negative electrode material for non-aqueous secondary batteries, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
JP6060506B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2012133611A1 (en) Negative electrode material for nonaqueous secondary battery, negative electrode using the same, and nonaqueous secondary battery
JP2021061230A (en) Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP7248019B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2014060124A (en) Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2021158043A (en) Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
US20200227746A1 (en) Negative electrode active material for secondary battery, and secondary battery
JP5724199B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP7009049B2 (en) Lithium-ion secondary battery Carbon material for negative electrode, its intermediate, its manufacturing method, and negative electrode or battery using it
TWI752112B (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6625336B2 (en) Carbon material for negative electrode of non-aqueous secondary battery and non-aqueous secondary battery
JP7452140B2 (en) Graphite-based negative electrode materials for non-aqueous secondary batteries, negative electrodes for non-aqueous secondary batteries, and non-aqueous secondary batteries
JP7247701B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2019175775A (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP7077721B2 (en) Negative electrode material for non-aqueous secondary batteries, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
JP2004063456A (en) Manufacturing method of carbon material for electrode
JP7359051B2 (en) Graphite-based negative electrode materials for non-aqueous secondary batteries, negative electrodes for non-aqueous secondary batteries, and non-aqueous secondary batteries
WO2014057690A1 (en) Composite carbon particle and lithium-ion secondary cell using same
JP7388109B2 (en) Negative electrode materials for non-aqueous secondary batteries, negative electrodes for non-aqueous secondary batteries, and non-aqueous secondary batteries
JP7099005B2 (en) Negative electrode material for non-aqueous secondary batteries and its manufacturing method, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R151 Written notification of patent or utility model registration

Ref document number: 7102868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151